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Abstract

Following the Bitcoin model, many modern blockchains reward their miners in two ways:
(i) a base reward for each block that is mined, and (ii) the transaction fees of those trans-
actions that are included in the mined block. The base reward is fixed by the respective
blockchain’s protocol and is not under the miner’s control. Hence, for a miner who wishes
to maximize earnings, the fundamental problem is to form a valid block with maximal total
transaction fees and then try to mine it. Moreover, in many protocols, including Bitcoin
itself, the base reward halves at predetermined intervals, hence increasing the importance
of maximizing transaction fees and mining an optimal block. This problem is further com-
plicated by the fact that transactions can be prerequisites of each other or have conflicts
(in case of double-spending). In this work, we consider the problem of forming an opti-
mal block, i.e. a valid block with maximal total transaction fees, given a set of unmined
transactions.

On the theoretical side, we first formally model our problem as an extension of Knap-
sack and then show that, unlike classical Knapsack, our problem is strongly NP-hard.
We also show a hardness-of-approximation result. As such, there is no hope in solving it
efficiently for general instances. However, we observe that its real-world instances are quite
sparse, i.e. the transactions have very few dependencies and conflicts. Using this fact, and
exploiting two well-known graph sparsity parameters, namely treewidth and pathwidth, we
present exact linear-time parameterized algorithms that are applicable to the real-world
instances and obtain optimal results.

We also provide an experimental evaluation demonstrating that our approach vastly
outperforms the current Bitcoin miners in practice, obtaining a significant per-block average
increase of 13.4% in transaction fee revenues.
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1. Introduction

Mining. In blockchain ecosystems, mining is the process of adding new blocks of
transactions to the public ledger (the blockchain). This terminology is usually applied
to proof-of-work blockchains such as Bitcoin [1] and is sometimes even used to refer
solely to the process of solving a hashcash puzzle. Blockchains that are not based
on proof-of-work sometimes prefer other terms such as farming [2] or validating [3].
For the purposes of this paper, we consider the widest definition of mining that is
not restricted to a specific consensus protocol such as proof-of-work, and distinguish
between the two natural phases of mining:

1. In the first phase, the miner has to gather new transactions and form a valid
block.

2. In the second phase, the miner should perform actions that allow her to add the
new block to the chain. For example, in Bitcoin she has to solve a hashcash
puzzle [1], while in typical proof-of-stake protocols she has to win a specific
type of lottery [4, 5, 6].

A significant amount of research and development has been devoted to optimizing
the second phase. For Bitcoin alone, there are already several generations of mining
hardware [7, 8, 9], from GPU mining, to FPGA, to dedicated ASICs and trusted
hardware frameworks [10]. Moreover, miners often collaborate in what is known as
a mining pool, which has also been widely studied in the literature [11, 12, 13, 14,
15, 16, 17, 18]. In contrast, we focus on the orthogonal task of performing the first
phase efficiently and optimally.

Mining Rewards. In order to incentivize miners to take part in mining, especially
performing the often costly proof-of-work in the second phase, blockchain protocols
reward them in two ways:

• Base reward: The miner is rewarded a predetermined amount for each block
that she successfully adds to the blockchain. This reward is not under the
miner’s control and is instead fixed by the underlying protocol. In Bitcoin,
it is currently 6.25 BTC and halves at predetermined intervals [1]. This is
also how new units of currency are created. Some cryptocurrencies, such as
Ethereum, have a more complex method in which miners who solve the second
phase puzzle but whose block does not eventually get added to the chain are
also rewarded [19].

2



• Transaction fees: Each transaction has a specific fee that is paid to the miner
who includes this transaction in her block and adds it to the chain [1]. The
transaction fees are set by the user who creates the transaction. A miner can
decide which transactions to include in her block based on their fees. Indeed,
it is well-known that transactions with small fees are often added to the chain
with considerable delay or not at all.

Focus and Motivation. In this work, we consider a miner’s point-of-view, and
focus on the problem of creating a block of transactions in the first phase of mining
such that the total amount of gathered transaction fees are maximized. Note that the
base reward is not under the miner’s control and hence her only tool for maximizing
her profits is to create an optimal block with maximal transaction fees. Moreover,
as base rewards halve in cryptocurrencies such as Bitcoin [1], transaction fees form
an ever-increasing percentage of miner revenue. By the year 2140, the base reward
in Bitcoin becomes 0 and transaction fees will be the only source of compensation
for miners [1].

The task of forming an optimal block is complicated by several factors, which we
now shortly review:

Block Size Limit. Every transaction has a known size. On the other hand,
blockchain protocols enforce an upper-bound on the size of mined blocks. In Bitcoin,
the bound is 1,000,000 bytes [20]3. The maximum block size has a direct impact on
the scalability of a cryptocurrency, and has been at the heart of the debate that led
to forks such as Bitcoin Cash, which increased the block size limit to 8MB and then
to 32MB [21, 22]. There are also cryptocurrencies that advocate for larger blocks,
and even a total abandonment of block size limits, such as Bitcoin SV [23]. Block
size limits complicate the task of forming an optimal block by forcing the miner to
choose which transactions to include and which to ignore.

Dependencies. Transactions have dependencies among themselves. For example,
in Bitcoin, if a transaction Tx2 uses an output of a transaction Tx1 as one of its
inputs, i.e. if Tx2 spends funds that were obtained in Tx1, then Tx1 must appear
in the chain before Tx2. This can be achieved either by putting Tx1 in an earlier
block, or in the same block as Tx2 but in an earlier position. Such a dependency will
not create any additional constraints for the miner if Tx1 is already on the chain.

3SegWit [20] affects neither our problem, nor the algorithms we propose. To apply our algorithms
to Bitcoin transactions utilizing SegWit, one should simply discard the witness part when computing
the size of a transaction. As such, we use vbytes and bytes interchangeably.
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Tx1 Tx2

Figure 1: Tx2 uses the first output of Tx1 as its third input. Hence, Tx2 depends on Tx1 and must
appear after it in the chain. In practice, Tx2 has a pointer to Tx1 but for demonstration purposes,
we found it more convenient to show this as an arrow that models the flow of value from Tx1’s
output to Tx2’s input.

Tx1

Tx2

Tx3

Figure 2: Tx2 and Tx3 both use the same funds (the second output of Tx1). This is considered
double-spending and is not allowed. Hence, Tx2 and Tx3 are in conflict and a miner cannot include
both of them in her block.

However, if both Tx1 and Tx2 are new transactions that are not already put on the
chain, then the miner cannot include Tx2 in her block while leaving Tx1 out.

Conflicts. It is possible for a pair of otherwise-valid transactions to be in conflict
with each other. For example, in Bitcoin, one can create two transactions that
double-spend the same output coin, leading to a situation where only one of them
can be added to the consensus chain. In such cases, if one of the transactions is
already on the blockchain, then the other transaction would be ignored. If none of
the transactions are already mined, then the miner has to choose which transaction
to put in her block, but she cannot choose both.

Inefficiency of Heuristics. It is easy to see that in the presence of the require-
ments above, many of the common heuristics used by miners can become infinitely
bad on adversarial instances. For example, a miner that ignores all transactions that
are involved in a double-spending risks not only losing their transaction fees but also
the fees of transactions depending on them. Similarly, a miner that ignores low-
fee transactions risks losing potentially high-fee transactions that depend on them.
Moreover, it is noteworthy that the default Bitcoin implementation does not address
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the problem of forming an optimal block, and chooses transactions based on a “pri-
ority” formula that is meant to ensure that every transaction is eventually put into
a block, instead of aiming at maximizing the miner’s revenue [24]. As such, this
approach has been largely abandoned by the miners [24].

Our Contribution. In this work, we consider the problem of forming an opti-
mal block, i.e. one that maximizes the total transaction fees while respecting the
requirements above. Our contributions are as follows:

• We first formally model the problem as what we call a Dependency-Conflict
Knapsack (DCK) instance.

• We show that, unlike classical Knapsack, DCK is strongly NP-hard, hence
ruling out the existence of pseudo-polynomial algorithms, i.e. algorithms de-
pending polynomially on the block size limit, unless P=NP.

• We provide a hardness-of-approximation result, showing that there exists a
constant ε > 0 such that it is NP-hard to approximate the reward of the
optimal block within a factor of 1− ε. We also show that ε > 0.12.

• Based on the observation that real-world instances of the problem are quite
sparse, i.e. they have few conflicts and dependencies, we consider two graph
sparsity parameters, namely treewidth and pathwidth, and show that for in-
stances in which the dependency-conflict graph has constant treewidth, DCK
is solvable in O(n · k2), whereas in constant-pathwidth instances it is solvable
in O(n ·k). Here, n is the number of new transactions (also known as mempool
size) and k is the block size limit. These pseudo-polynomial algorithms form
optimal blocks.

• We provide real-world experimental results over Bitcoin, showing that the con-
stant pathwidth assumption holds in practice and that our approach leads to
significantly more profitable blocks and beats real-world miners by 13.4%.

Related Works. Surprisingly, the problem of forming an optimal block to mine
is quite understudied. It is well-known that the problem is NP-hard. To the best
of our knowledge, the earliest mention of this fact is in a blog post by Joseph Bon-
neau back in 2014 [25]. However, we show that it is also strongly NP-hard, and
hard-to-approximate. Moreover, we provide the first positive theoretical results,
i.e. pseudo-polynomial algorithms parameterized by treewidth and pathwidth that
obtain an optimal block. We also provide significant practical improvements (See our
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experiments in Section 6). To the best of our knowledge, parameterized algorithms
have not been previously studied in the context of blockchain, except for [26] which
considers treewidth as a parameter for static analysis of smart contracts.

2. Preliminaries

In this section, we provide a short overview of the notions of treewidth and path-
width, which we will later exploit in order to obtain efficient algorithms for optimal
mining. Treewidth [27] is a widely-used graph parameter. Intuitively, it models the
degree to which a graph resembles a tree. Only trees and forests have a treewidth
of 1. Similarly, pathwidth [28] is a measure of path-likeness of a graph. Many prob-
lems that are NP-hard on general graphs admit efficient solutions when restricted
to instances with small treewidth or pathwidth [29, 30, 31, 32]. Even problems that
are not NP-hard can often be solved more efficiently when parameterized by the
treewidth/pathwidth [33, 34, 35, 36, 37]. We now provide more formal definitions:

Tree Decompositions and Path Decompositions [28, 27, 29]. Let G =
(V,E) be a graph with vertex set V and edge set E. A tree decomposition of G is a
tree (T,ET ) such that:

• Each node b ∈ T of the tree decomposition has an associated set Vb ⊆ V of
vertices of G. To avoid confusion, we reserve the word “vertex” for vertices of
G and use the word “bag” to refer to the nodes of T . Moreover, we define Eb
as the set of edges whose both endpoints are in Vb.

• Each vertex v ∈ V appears in at least one bag. More formally,
⋃
b∈T Vb = V.

• Each edge e ∈ E appears in at least one bag. In other words,
⋃
b∈T Eb = E.

• Each vertex v ∈ V appears in a connected subtree of T . In other words, for all
b1, b2, b3 ∈ T , if b3 is on the unique path from b1 to b2, then Vb1 ∩ Vb2 ⊆ Vb3 .

A tree decomposition is called a path decomposition if (T,ET ) is a path.

Treewidth and Pathwidth [28, 27, 29]. The width of a tree decomposition is
defined as the size of its largest bag minus 1. The treewidth (resp. pathwidth) of
a graph G is the smallest width among all of its tree decompositions (resp. path
decompositions).

Example 1. Figure 3 shows an example graph, together with a tree decomposition
and a path decomposition.
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2 3 4

5 6 7

8 9

{2, 3, 6}

{3, 4, 6}{1, 2, 3} {2, 5, 6}

{5, 6, 8}{4, 6, 7}

{7, 9}

{1, 2, 3}

{2, 3, 5}

{2, 3, 4, 5}

{2, 4, 5, 6}

{4, 5, 6, 7}

{5, 6, 7, 8}

{7, 9}

Figure 3: A graph G (left), a tree decomposition of G with width 2 (middle), and a path decom-
position of G with width 3 (right). In each case, the connected subtree containing the vertex 6 is
shown in blue.

Nice Decompositions. Consider a tree decomposition (T,ET ) of a graph G, in
which a bag r ∈ T is chosen as root. The tree decomposition (T,ET ) is called nice
if it satisfies the following conditions:

• If a bag l ∈ T is a leaf, then Vl = ∅.

• If a bag b ∈ T is not a leaf, then b is in one of the following forms:

– Introduce Bag: The bag b has a single child b′ and there is a vertex v ∈ Vb
such that Vb′ = Vb \ {v}. In this case, we say that b introduces v.

– Forget Bag: The bag b has a single child b′ and there is a vertex v′ 6∈ Vb
such that Vb′ = Vb ∪ {v′}. In this case, we say that b forgets v′.

– Join Bag: The bag b has exactly two children, b1 and b2, and we have
Vb = Vb1 = Vb2 .

A nice path decomposition is defined similarly, except that there can be no join
bags in a path decomposition. It is easy to see that any tree decomposition or
path decomposition can be turned nice in linear time. See [29] for details. Nice
decompositions are useful because they allow one to perform dynamic programming
on arbitrary trees in essentially the same manner as on trees or paths. This is
exactly what our algorithm in Section 5 does. See [38] for more examples of this
type of dynamic programming.
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Sparsity. Treewidth and pathwidth are graph sparsity parameters, in the sense that
a graph with n vertices and treewidth t can have at most O(n · t) edges. Moreover,
many well-studied families of graphs, such as cacti, series-parallel graphs, outerplanar
graphs, and control-flow graphs of programs, have constant treewidth [39, 40].

Fixed-parameter Tractability [29]. Given an instance with n vertices and a
graph parameter r as input, we say that a graph decision problem is Fixed-Parameter
Tractable (FPT) with respect to r, if there exists an algorithm that solves it in
O(nc · f(r)), where c is a fixed constant not depending on either n or r, and f is an
arbitrary computable function. This definition, which is standard in parameterized
complexity, captures the requirement that the problem can be solved in polynomial
time when the parameter r is small. Moreover, the degree of the polynomial is
independent of r. In the sequel, we will obtain FPT algorithms with respect to
treewidth and pathwidth.

Computing Treewidth and Pathwidth. In general, computing the treewidth
or pathwidth of an arbitrary input graph are NP-hard problems [41, 42]. However,
the problems are FPT when parameterized by the treewidth (resp. pathwidth) itself.
Indeed, [43, 44] provide linear-time FPT algorithms for computing treewidth and
pathwidth. Moreover, there are efficient tools and libraries, such as [45, 46] that
compute treewidth/pathwidth. As such, in our decomposition-based algorithms,
we assume without loss of generality that a nice tree decomposition (resp. path
decomposition) with O(n · t) bags is given as part of the input.

3. Dependency-Conflict Knapsack

In this section, we formalize our optimal mining task as a variant of the Knap-
sack problem, called Dependency-Conflict Knapsack (DCK).

Instances. A DCK instance is a tuple I = (n, k,Σ, V,W,C,D), in which:

• n and k are positive integers. Intuitively, n is the number of items and k is the
capacity of our knapsack.

• Σ = {σ1, . . . , σn} is a set of n items.

• V,W : Σ → N ∪ {0} are functions that assign a value and a weight to every
item. For brevity, we denote V (σi) by vi and W (σi) by wi.

• C,D ⊆ Σ × Σ, respectively called the conflict and dependency relations, are
relations on Σ such that:
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(i) C is symmetric.

(ii) The transitive closure of D is anti-symmetric.

Informally, σiCσj signifies that the two elements σi and σj are in conflict, i.e. we
cannot put both of them into the knapsack. It is clear that the conflict relation
should be symmetric. Similarly, σiDσ` means that σ` is a prerequisite of σi, i.e. if we
put σi in the knapsack, we have to put σ`, too. In (ii), we are assuming that there
are no cyclic dependencies. We now formalize the problem:

The DCK Problem. Given an instance I = (n, k,Σ, V,W,C,D) as above and a
positive integer α, the DCK(I, α) problem asks whether there exists a subset Σ∗ ⊆ Σ
of items, such that:

(a)
∑

σ∗∈Σ∗W (σ∗) ≤ k, i.e. the items in Σ∗ must fit in a knapsack of size k.

(b) For every σ∗i , σ
∗
j ∈ Σ∗, we have (σ∗i , σ

∗
j ) 6∈ C.

(c) For every σi, σj ∈ Σ, if σiDσj and σi ∈ Σ∗, then we also have σj ∈ Σ∗.

(d)
∑

σ∗∈Σ∗ V (σ∗) ≥ α, i.e. the total value of items in Σ∗ is at least α.

The maximization variant of the DCK problem, MaxDCK, asks for a Σ∗ that
maximizes the sum

∑
σ∗∈Σ∗ V (σ∗).

It is easy to see the correspondence between the DCK problem and the problem
of forming a block. The knapsack size k serves as the block size limit, while each
of the n items represents a valid new transaction. By this, we mean a transaction
that is not already included in the chain, and passes other validity checks (such as
providing the right signatures). If a transaction σ double-spends a coin that was
spent in another transaction σ′ and σ′ is already on the chain, then σ is considered
to be invalid. However, if σ′ is also a new transaction, then they are both considered
valid, but in conflict. The weight wi represents the size of transaction σi and the
value vi represents its transaction fee, which will be paid to the miner if she includes
it in her block (knapsack). The relation C models conflicts between transactions,
i.e. if σi and σj are transactions that are double-spending the same output, then we
have σiCσj. Similarly, D models dependencies. Condition (ii) makes sure that we do
not have cyclic dependencies. In the real-world, if a set of transactions have cyclic
dependencies, they are all invalid, and can be removed by a simple preprocessing.
Using this correspondence, the DCK problem formalizes the question of whether one
can form a valid block with a total transaction fee of at least α, whereas MaxDCK
asks for the maximum possible amount of transaction fees among all valid blocks.
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Independence of C and D. In the real-world scenario of forming a block, two
transactions have a conflict if and only if they both use the same output. In other
words, any pair of conflicting transactions should have a common dependency. How-
ever, note that this common dependency might already be added to the blockchain.
In our modeling as a DCK instance, each item corresponds to a new transaction that
is not yet added to the chain. As such, we do not need to posit extra requirements
on the relation between C and D. Indeed, for any given DCK instance, it is easy to
come up with a block formation problem that exactly corresponds to it.

DCG. Given a DCK instance I = (n, k,Σ, V,W,C,D), its Dependency-Conflict
Graph (DCG) is a graph G = (Σ, E), in which each item serves as a vertex, and
there are two types of edges in E:

• Undirected Conflict Edges : There is an undirected edge {σi, σj} for each σiCσj.

• Directed Dependency Edges : There is a directed edge (σi, σj) for each σiDσj.

4. Hardness Results

In this section, we provide a simple reduction showing that DCK is strongly
NP-hard. This is in contrast to classical Knapsack, which has a simple pseudo-
polynomial dynamic programming algorithm and is only weakly NP-hard. Moreover,
we show that MaxDCK is hard-to-approximate within a constant factor unless
P=NP, and hence does not admit a PTAS. This is again in contrast to classical
Knapsack, which admits an FPTAS. Additionally, our reduction rules out efficient
parameterized algorithms based on several common graph parameters, such as degree
and diameter, on the DCG.

The Reduction. Our reduction is from 3-SAT. Given a 3-SAT formula ϕ with
m clauses over n boolean variables, we construct the following DCK instance Iϕ =
(n, k,Σ, V,W,C,D) :

• n = 3 ·m+ 2 · n

• k = m+ n

• For each variable x appearing in ϕ, we add two items σx and σ¬x to Σ. We set
W (σx) = W (σ¬x) = 1 and V (σx) = V (σ¬x) = 0. Moreover, (σx, σ¬x), (σ¬x, σx) ∈
C, i.e. the two items are in conflict.
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• For each clause c = (`1 ∨ `2 ∨ `3) of ϕ in which each literal `i is either a
boolean variable or its negation, we add three items σc,1, σc,2, and σc,3 to Σ.
We set W (σc,i) = V (σc,i) = 1. Moreover, we have (σc,i, σc,j) ∈ C for every
i 6= j, i.e. every pair of the three elements are in conflict. Additionally, we set
σc,i D σ`i , i.e. the i-th element of c depends on the element corresponding to
`i.

Example 2. Figure 4 illustrates our reduction.

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)

σx

σ¬x

σy

σ¬y

σz

σ¬z

σ1,1

σ1,2 σ1,3

σ2,1

σ2,2 σ2,3

Figure 4: A 3-SAT formula (top), and its reduction to a DCK instance. Red edges denote conflict
and blue directed edges denote dependency. For example, σ1,1 depends on σx. In the DCK instance,
we have k = 5. Moreover, every element has unit weight. The variable elements and their negations
have value zero, whereas σi,j ’s have unit value. The items put into the knapsack in one optimal
solution are shown in green. Note that this yields a total value of 2, which proves satisfiability.
This is achieved by letting x = 1 and y = z = 0, which corresponds to satisfying the second literal
of the first clause (σ1,2), and the third literal of the second clause (σ2,3).

It is easy to verify that I has all the requirements for a DCK instance as defined
in Section 3. Note that every solution to I can pick at most one of σx and σ¬x for
every variable x. Similarly, for each clause c, it can take at most one of the items
corresponding to c, and can take σc,i only if it also takes the item corresponding to
the i-th disjunct of c. Also, note that every item has unit weight, and only the items
corresponding to clauses have a unit value, while all other items are worthless. Given
this discussion, it is easy to see that ϕ is satisfiable iff DCK(Iϕ,m) = 1. Moreover,
MaxDCK(Iϕ) = Max3-SAT(ϕ). Hence, we have the following theorems:

Theorem 1 (Strong NP-hardness). DCK is strongly NP-hard. In other words, it is
NP-hard even if the input instance size is defined to be n+ k.
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Proof. As shown above, for every 3-SAT formula ϕ, we have 3-SAT(ϕ)⇔ DCK(Iϕ,m).
It is well-known that 3-SAT is NP-hard. Moreover, the reduction above keeps n and
k polynomial in terms of |ϕ|. Hence, DCK is strongly NP-hard.

Theorem 2 (Inapproximability). There exists ε > 0, such that it is NP-hard to
approximate MaxDCK within a factor of 1− ε.

Proof. A well-known corollary of the PCP theorem [47] is that such an ε exists
for the Max3-SAT problem. The theorem follows from the fact that we have
MaxDCK(Iϕ) = Max3-SAT(ϕ) in our reduction. Indeed, it is hard to approx-
imate Max3-SAT within a ratio of 7

8
+ ε for any ε > 0 [48]. Using our reduction,

this result also applies to MaxDCK.

5. Efficient Decomposition-based Algorithms

In this section, we provide efficient FPT algorithms for the DCK problem with
respect to the treewidth and pathwidth of its DCG. For a DCG with treewidth t,
our approach leads to an O(n · k2 · 2t · t3)-time algorithm. Moreover, for a DCG with
pathwidth p, it obtains a runtime of O(n · k · 2p · p3). Note that the latter is faster
by a factor of k, so if k is large and both t and p are small, the pathwidth-based
algorithm would be much faster in practice.

Setup and Notation. Let I = (n, k,Σ, V,W,C,D) be a DCK instance given
as input together with a nice tree decomposition (T,ET ) of its DCG G = (Σ, E).
Moreover, as justified in Section 2, we assume that the tree decomposition has width
t and O(n · t) bags. Recall that for a bag b ∈ T, we denote its associated set of
items by Σb ⊆ Σ, and define Eb ⊆ E as the set of edges whose both endpoints
are in Σb. Additionally, as our tree decomposition is nice, we have a distinguished
root bag r, and every bag is either a leaf, an introduce bag, a forget bag, or a
join bag. For a bag b ∈ T, we denote by T ↓b the subtree of T consisting of b and

its descendants. Similarly, we define G↓b as the part of G that corresponds to T ↓b ,

i.e. G↓b =
(⋃

b′∈T ↓b
Σb′ ,

⋃
b′∈T ↓b

Eb′
)
.

Example 3. Figure 5 shows a DCG G (left) and a nice tree decomposition of G
(right). We will use this figure as our running example. Suppose that every vertex
i has a value of i and unit weight. Moreover, let k = 3. In this example, we have
Σb2 = {1, 2, 3} and Eb2 = {(1, 2), {2, 3}}. Moreover, T ↓b1 is the part of the tree that

contains b1, b2, b3, b4, and b5, and the graph G↓b1 contains vertices 1, 2, 3 and edges
(1, 2) and {2, 3}.
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{1, 2}

{1, 2} {1, 2}

{1, 2, 3}

{2, 3}

{3}

{ }

{1, 2, 4}

{2, 4}

{2}

{ }

r = b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

1 2

34

Figure 5: A DCG G (left) and a nice tree decomposition of G (right). Leaf bags are shown in blue,
introduce bags in green, and forget bags in red. The only join bag is the root.

Main Idea. Our algorithm is a bottom-up dynamic programming on the tree
decomposition. At every bag b ∈ T, for every subset M ⊆ Σb, and every non-
negative integer κ ≤ k, we define a variable dp[b,M, κ] and initialize it to −∞. The
goal is to compute values for each such variable such that the following invariant is
satisfied: dp[b,M, κ] is the maximum total value of items that can be placed in a
knapsack of size κ, such that:

• Every item comes from G↓b ,

• All dependency and conflict relations in G↓b are respected, and

• The set of items chosen from Σb is exactly M.

Having this in mind, we now show how one can compute the values for dp variables.
Our algorithm processes the bags of the tree decomposition in a bottom-up order and
performs the following calculations:

Computing Values at Leaves. Given that our tree decomposition is nice, for
every leaf bag l ∈ T, we have Σl = ∅. Hence, the algorithm sets dp[l, ∅, κ] = 0 for
every κ.

Example 4. In the instance of Example 3 (Figure 5), the algorithm computes
dp[b5, ∅, κ] = dp[b10, ∅, κ] = 0 for all 0 ≤ κ ≤ 3.

Computing Values at Introduce Bags. Let b ∈ T be an introduce bag. Also,
let b′ be its child and σ be the item/vertex that is introduced in b. When computing
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dp[b,M, κ], the algorithm first checks whether M violates any dependency/conflict
relations within Eb. If so, it sets dp[b,M, κ] = −∞. Similarly, if the sum of weights
of items in M exceeds κ, it sets dp[b,M, κ] = −∞. Otherwise, it sets:

dp[b,M, κ] =

{
dp[b′,M \ {σ}, κ−W (σ)] + V (σ) σ ∈M

dp[b′,M, κ] σ 6∈M .

It is straightforward to see why this works. The argument is similar to classical 0-1
Knapsack. If σ ∈ M, then we should put σ in the knapsack, leading to a value of
V (σ), and leaving us with k−W (σ) more room to fill with items from G↓b′ . If σ 6∈M,
there is no gain in value and no loss in space, and the knapsack should be filled using
G↓b′ . In both cases, we of course have to respect all the conflicts and dependencies in

G↓b′ , too. This is modeled by dp[b′, ·, ·].

Example 5. In the instance of Example 3 (Figure 5), the algorithm sets dp[b2, {1, 3}, κ] =
−∞ for every κ. This is because 1 depends on 2, which is not included, hence the re-
quirement of the dependency edge (1, 2) is violated. Similarly, we have dp[b7, {1, 2, 4}, 2] =
∅, because there is not enough capacity in a knapsack of size 2 for 3 unit-size ele-
ments. Now consider bag b2, which introduces vertex 1. The algorithm computes
dp[b2, {2, 3}, 3] = dp[b3, {2, 3}, 3] = 3 and dp[b2, {1, 2}, 2] = dp[b3, {2}, 1] +V (1) = 3.

Computing Values at Forget Bags. If b ∈ T is a forget bag with a single child b′,
then by definition, we have G↓b = G↓b′ . Suppose that b forgets σ. Then, the algorithm
computes dp values at b as follows:

dp[b,M, κ] = max{dp[b′,M, κ], dp[b′,M ∪ {σ}, κ]}.

This is because G↓b and G↓b′ enforce the same dependency and conflict requirements.
Moreover, if the set of items put in the knapsack has intersection M with Σb, then
its intersection with Σb′ = Σb ∪ {σ} is either M or M ∪ {σ}.

Example 6. In the instance of Example 3 (Figure 5), bag b6 forgets vertex 4. The al-
gorithm computes dp[b6, {2}, 3] = max{dp[b7, {2}, 3], dp[b7, {2, 4}, 3]} = max{2, 6} =
6. Similarly, we have:

dp[b1, {1, 2}, 2] = max{dp[b2, {1, 2}, 2], dp[b2, {1, 2, 3}, 2]} = max{3, 3} = 3.

Now consider the case of computing dp[b6, {1, 2}, 3]. In a valid solution, it is impos-
sible to take both 1 and 2, because 2 depends on 4 and 4 is in conflict with 1. Nev-
ertheless, this does not violate any local restrictions at b6. Note that Eb6 = {(1, 2)}
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and choosing the set {1, 2} satisfies the requirement. Hence, the algorithm computes
dp[b6, {1, 2}, 3] = max{dp[b7, {1, 2}, 3], dp[b7, {1, 2, 4}, 3]}. However, these values are
both −∞. dp[b7, {1, 2}, 3] = −∞ because the local dependency requirement (2, 4) is
not met at b7. Similarly, dp[b7, {1, 2, 4}, 3] = −∞ because the local conflict require-
ment between 1 and 4 at b7 is not met. Hence, we will get dp[b6, {1, 2}, 3] = −∞.

Computing Values at Join Bags. Let b ∈ T be a join bag with children b1 and
b2. By definition, we have Σb = Σb1 = Σb2 and G↓b = G↓b1 ∪ G

↓
b2
. Note that because

T is a tree decomposition, every vertex appears in a connected subtree. Hence, all
common vertices of G↓b1 and G↓b2 are in Σb. To compute dp[b,M, κ], the algorithm
first checks whether any dependency or conflict requirements in Eb are violated by
M. If so, it sets dp[b,M, κ] = −∞. Otherwise, it computes V (M) =

∑
m∈M V (m),

i.e. the total value of items in M , and W (M) =
∑

m∈M W (m), i.e. the total weight
of items in M . If W (M) > κ, it sets dp[b,M, κ] = −∞. Otherwise, it computes:

dp[b,M, κ] =
κ

max
i=W (M)

(dp[b1,M, i] + dp[b2,M, κ+W (M)− i]− V (M)) .

We now explain why this is correct. Suppose that we want to fill a knapsack of size
κ with items from G↓b = G↓b1 ∪G

↓
b2
. We first decide how much of the capacity in the

knapsack should be assigned to items from G↓b1 and denote it by i. This cannot be
less than W (M) as we know that we have to put M in the knapsack. After putting
M and the other items from G↓b1 , we have κ− i remaining capacity for other elements

from G↓b2 . However, given that M also appears in G↓b2 , this is equivalent to filling a

knapsack of size κ+W (M)− i using items in G↓b2 in which we are forced to take M .
The final −V (M) in the formula is to avoid double-counting the value of items in
M , which were counted in both dp variables.

Example 7. In the instance of Example 3 (Figure 5), the only join bag is the root
r = b0. The algorithm computes

dp[r, {2}, 2] = max{dp[b1, {2}, 1]+dp[b6, {2}, 2], dp[b1, {2}, 2]+dp[b6, {2}, 1]}−V (2)

= max{2 + 6, 6 + 2} − 2 = 6.

Intuitively, we want to fill a knapsack of size 2 and we know that vertex 2 must be
present in the knapsack and 1 must be absent. We consider two cases: either we
allocate capacity 1 to the subgraph G↓b1 and capacity 2 to G↓b2 (The vertex 2 itself has
a weight of 1 is counted in both capacities), or vice versa. We can read the maximum
values from dp variables computed in b1 and b6. However, as vertex 2 was included
in both sides, we have to deduct its value at the end.
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Note that in the steps above, the values of dp variables are computed correctly.
Specifically, at each bag b, we first check that the local dependency/conflict re-
quirements at b are satisfied. If they are not, we set the dp[b, ·, ·] to −∞. Hence, a
bottom-up inductive argument shows that all dp[b, ·, ·] values respect the dependency
and conflict requirements of the edges of G↓b .

Computing the Final Answer. Finally, the algorithm computes the answer to
the MaxDCK problem as follows:

max
M⊆Σr

dp[r,M, k].

Recall that r is the root bag, and hence G↓r = G. So every solution of dp[r,M, k]
respects all dependency and conflict relations in G. Also, note that obtaining the
actual contents of our knapsack is a matter of following dp values that lead to the
optimal solution in each formula above, just as in the classical 0-1 Knapsack.

Example 8. In our running example, the final solution is:

max{dp[r, ∅, 3], dp[r, {1}, 3], dp[r, {2}, 3], dp[r, {1, 2}, 3]} = max{7,−∞, 6,−∞} = 7,

which can be achieved by taking items 3 and 4.

Given the algorithm and discussion above, we have the following theorems:

Theorem 3. Given a DCK instance I = (n, k,Σ, V,W,C,D), and a nice tree de-
composition of its DCG with width t and O(n · t) bags, our algorithm above solves
MaxDCK in time O(n · k2 · 2t · t3).

Proof. We define O(2t · k) dp variables at each bag. Given that there are O(n · t)
bags, the total number of dp variables is O(n · k · t · 2t). Computing each dp variable
takes O(t2), i.e. for checking the satisfaction of local constraints in the current bag,
except when we are handling join bags, where it takes O(t2 + k) due to taking the
maximum of k elements. This leads to the desired bound of O(n · k2 · 2t · t3) for the
whole runtime.

Theorem 4. Given a DCK instance I = (n, k,Σ, V,W,C,D), and a nice path
decomposition of its DCG with width p and O(n · p) bags, our algorithm above solves
MaxDCK in time O(n · k · 2p · p3).

Proof. This is exactly similar to Theorem 3, except that a nice path decomposition
has no join nodes, and hence the algorithm is faster by a significant factor of k.
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Note that if the treewidth or pathwidth are fixed (small) constants, the theorems
above lead to pseudo-polynomial algorithms with runtimes O(n ·k2) and O(n ·k), re-
spectively. Especially, the latter bound matches the runtime of the classical dynamic
programming algorithm for 0-1 Knapsack. As we will see in the next section, this
is exactly what happens in practice.

Parallelization. The dp[b, ., .] computations performed by our algorithm in every
bag are independent of each other and parallelizable. Specifically, when solving
instances with a knapsack of capacity k, if we have θ threads and θ < k · 2t, then
the algorithm can be perfectly parallelized. In real-world use-cases, we often have

k ≥ 106. So, for all practical purposes, our algorithms’ parallel runtimes are O
(
n·k2
θ

)
and O

(
n·k
θ

)
for instances with bounded treewidth and pathwidth, respectively.

6. Implementation and Experimental Results

Implementation. We implemented our algorithm in C++ and used OpenMP [49]
for parallelization. We relied on the codebase of the Esplora Block Explorer [50]
to collect information about the Bitcoin blockchain. This includes details of the
transactions in each block and the mempool (transactions that are published but
not yet mined). We computed tree and path decompositions using SageMath [45].

Machine. All results were obtained on a machine with 4 Intel Xeon E7-4850 v3
processors (2.20GHz, 14 cores, 28 threads, 35 MB Cache), running Ubuntu 20.04
LTS with 160GB of RAM and a total of 112 threads. Note that this is an extremely
modest configuration in comparison with the computation power that the miners
routinely use for proof-of-work. Moreover, as mentioned above, our algorithm can be
perfectly parallelized and will therefore use much less time when run by the real-world
miners.

Central Hypothesis. We consider DCK instances that model the problem of
obtaining optimal blocks (wrt transaction fees) in the Bitcoin blockchain. Our central
hypothesis is that the DCGs (Dependency-Conflict Graphs) of these instances have
bounded treewidth/pathwidth. In other words, we are creating a graph in which
we put a vertex for every transaction and put edges between two transactions if
either they are in conflict or one is a dependency of the other. We hypothesize that
such a graph would be sparse and have a tree-like/path-like structure. As such, we
expect these graphs to have small treewidth/pathwidth. This is intuitively justified
by the fact that double-spending is relatively rare and creates very few conflict edges.
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On the other hand, the dependence between transactions is often in the form of a
directed acyclic graph and has a tree-like structure.

Benchmarks. We ran a real-time experiment on live Bitcoin data, in which we
considered blocks number 681734 to 681935 in the Bitcoin blockchain. These blocks
correspond to more than a day (almost 27 hours) of activity. More specifically, they
were mined between 3rd May 2021 – 15:51 UTC and 4th May 2021 – 19:10 UTC. We
updated our mempool every 5 minutes using live Bitcoin data as provided by [50].
There is a simple reason behind this choice: the mempool is continuously evolving
as new transactions are broadcast. As such, a miner who is intent on mining the
optimal block should constantly run our algorithm on new mempools. As we will
see, each run of our algorithm takes roughly 3 minutes on our machine. To ensure
that we are not obtaining any unfair advantage, we set the interval to 5 minutes. We
used this live mempool as the set Σ of all possible items. We then ran our algorithm
to obtain an optimal block.

Baseline. We compared the total transaction fees obtained by our solution with
transaction fees earned by the miner of the actual block i on the Blockchain. Note
that real-world miners might have a different view of the network and hence form a
block using a different set of transactions. Hence, a direct comparison of the final
transaction fees puts us in a relative disadvantage (see the discussion below).

Results. Our experimental results are shown in Figures 6–7. The raw experimental
data is available in Tables A.1–A.3 in the Appendix. We now discuss them in more
detail:

• Widths. In 138 instances, the DCGs had a pathwidth of 2 and in 64 instances
the width was 3. Tables A.1–A.3 report the pathwidth of every instance. This
demonstrates that our central hypothesis holds in the real world and the widths
are small. Moreover, given that the pathwidth is at most 3 and the capacity
is k = 106 in Bitcoin, our pathwidth-based algorithm is much more promising
than the treewidth-based variant, i.e. O(n · k) vs O(n · k2).

• Transaction Fee Revenues. Figure 6 and Tables A.1–A.3 also show the
amount of transaction fees obtained by our algorithm vs the amount earned
by the miners on chain. Figure 7 provides a histogram of the improvement
percentages obtained by our algorithm. Based on these, our approach obtains a
maximum per-block improvement of 259 percent in transaction fee revenues,
which is huge. Moreover, the average per-block improvement is a whopping
13.4 percent. In absolute terms, our algorithm obtains between -0.029 and
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0.776 BTC more fees than the miners in each block. If we sum this over all
blocks, we get total improvements of 5.539 BTC, which was equal to roughly
325,800 USD at the time4.

• Runtimes. Our runtimes range from 114s to 277s, and the average runtime
is 175s. Tables A.1–A.3 also report the individual runtimes for each block.
Note that in Bitcoin, a new block is mined roughly every 10 minutes. So,
even with our modest computational resources, we are able to find the optimal
block in time. Given that the miners have access to much more computational
power (that they use for proof-of-work), obtaining the optimal block using our
algorithm will have a negligible effect on computation costs, while significantly
increasing revenue.

Discussion. We now discuss several aspects of our results, as well as their limits
of applicability to other blockchains and threats to their validity in the future.

• Close Results. Despite the considerable overall improvement in transaction
fee revenues, there are a sizable number of blocks (69 out of 202) for which
the transaction fees obtained by our algorithm are very close to those of the
miners and show less than 1% improvement. We believe this is evidence that the
miners are already using various relatively successful heuristics for maximizing
their revenue. However, as the overall results demonstrate, such heuristics are
not always effective and lead to a much lower-than-optimal return in the long
run. In contrast, our algorithm is able to form an optimal block and obtain
the highest possible revenue.

• Lower Results vs Optimality. In some cases, our algorithm’s reported
transaction fee revenue is slightly lower than what was obtained by the miners
on the blockchain. This seems to contradict the optimality of our algorithm,
which was proven in Section 5, but is actually caused by an entirely orthogonal
reason: In these instances, the miners had access to transactions which were not
in our mempool. Given the distributed nature of the Bitcoin blockchain, its low
connectivity [51], and our limited networking resources (a single node), it was

4Note that this is the sum of savings over each individual block. However, it is not necessarily
the exact amount of increase in the miners’ revenue if they use our algorithm. Changing the mined
block will also change the current mempool. Moreover, many users form their transactions based
on the current state of the blockchain. As such, computing the exact total change in revenue is
impossible.
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inevitable that we miss some transactions. Moreover, we ran our algorithm in
5-minute intervals. Hence, when forming block i, we missed transactions that
were announced shortly before this block was mined. In contrast, it is well-
known that miners typically deploy several nodes in different continents, ensur-
ing that they have a much more reliable connection. Additionally, they have
considerably larger computational power and can run the algorithm in shorter
intervals. In spite of our limited resources, as Figures 6–7 and Tables A.1–
A.3 demonstrate, we were able to obtain significantly higher transaction fee
revenues overall.

• Extension to other (non-Bitcoin) Blockchains. Our algorithms are di-
rectly applicable to any blockchain with static transaction fees, i.e. blockchains
in which the exact fee is known at the time the transaction is broadcast. Ex-
tending these methods to blockchains with dynamic transaction fees, such as
Ethereum, is a challenging and interesting direction of future work. It is also
noteworthy that our algorithms do not depend on the consensus mechanism
and can be applied to blockchains that do not use proof-of-work.

• Threats to Validity. The main threat to the validity of our approach is
if our central hypothesis (low width) does not hold. This hypothesis can be
violated by the users, who are the originators of transactions and whose actions
ultimately define the conflicts and dependencies. For example, if the network
suddenly receives a huge number of double-spending attacks, then the DCG
will no longer be sparse/low-width. As shown in Section 4, the problem is
strongly NP-hard and hard-to-approximate without this assumption. However,
as demonstrated by our experimental results, our assumption currently holds
in Bitcoin. Another threat is posed if the blocks are added to the chain in
extremely small timeframes. In Bitcoin, a new block is mined roughly every
10 minutes. As shown by our experimental results, this is enough time for us
to run our algorithms and obtain optimal blocks. Given that our algorithms
are perfectly parallelizable, shorter times between mined blocks would only
translate to a need for more computation power. However, our algorithms also
rely on tree/path decompositions which are obtained from external non-parallel
tools. If the rate of addition of new blocks is extremely fast (e.g. one block per
second), we might not be able to compute the decompositions in time.
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Figure 6: Comparison of fees obtained by our approach (green) and the real-world Bitcoin miners
(red). The x axis is the block number and the y axis is the transaction fee revenue in BTC. To
increase readability, points corresponding to the same block are connected by a line.
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Improvement Number
-3% to -2% 3
-2% to -1% 14
-1% to 0% 27
0% to 1% 25
1% to 2% 31
2% to 3% 34
3% to 4% 6
4% to 5% 4
5% to 6% 6
6% to 7% 6
7% to 8% 2
8% to 9% 5
9% to 10% 6
10% to 20% 13
20% to 30% 2
30% to 40% 5
40% to 70% 0
70% to 80% 3
80% to 90% 0
90% to 100% 2
100% to 200% 3
200% to 260% 5

Figure 7: A histogram of the improvements obtained by our algorithm in comparison with real-
world Bitcoin miners. The x axis is the amount of improvement and the y axis is the number of
blocks.
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7. Conclusion

In this work, we considered the problem of forming an optimal block, i.e. a block
that yields maximal transaction fee revenue, from the viewpoint of a miner. We
formalized it as an extension of the Knapsack problem with dependencies and
conflicts. We then showed that it is strongly NP-hard and hard-to-approximate
within a factor of 7

8
+ ε unless P=NP. Then, we exploited the fact that real-world

instances of the problem have sparse underlying dependency-conflict graphs and
obtained efficient algorithms parameterized by the treewidth and pathwidth of this
graph. Finally, we provided experimental results demonstrating that our approach
significantly outperforms real-world miners, obtaining improvements of up to 259
percent per block (average improvement: 13.4 percent). In the 27-hour window of
our experiment, this led to an improvement of 5.539 BTC / 325,800 USD in absolute
terms. Given that our approach is efficient and parallelizable, it provides the miners
with a cost-effective and simple solution to dramatically increase their transaction
fee revenues.
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Appendix A. Raw Experimental Data

Block |Σ| |E| PW T Our Fee Miner’s Fee ∆

681734 32852 4322 2 202 1.64384456 1.64942663 -0.34%
681735 31337 3928 2 193 1.36386228 1.36925564 -0.39%
681736 34303 4962 3 220 1.49203669 1.45670239 +2.43%
681737 36821 5653 3 177 1.42085126 1.40673804 +1.00%
681738 34493 5183 2 183 0.95526813 0.94908231 +0.65%
681739 33639 4812 2 194 0.73592618 0.72156298 +1.99%
681740 33850 4738 2 190 0.87610756 0.86174104 +1.67%
681741 33789 4965 3 123 1.24114721 1.21886940 +1.83%
681742 37416 5875 3 125 1.52396150 1.48609066 +2.55%
681743 39858 7250 3 176 1.65437604 1.61597732 +2.38%
681744 41973 7967 3 128 1.51750749 1.49366215 +1.60%
681745 43291 8687 3 195 1.43887144 1.41367160 +1.78%
681746 40951 7994 3 159 1.20973668 1.18488390 +2.10%
681747 39466 7515 3 141 1.10934511 1.09153173 +1.63%
681748 39123 7392 3 188 1.15656696 1.13553911 +1.85%
681749 38113 7214 3 118 1.09677982 1.06994853 +2.51%
681750 36515 6788 3 169 0.86701302 0.84502231 +2.60%
681751 36550 6794 3 132 0.50364127 0.49441269 +1.87%
681752 36661 6550 2 182 1.48995020 1.45118859 +2.67%
681753 36113 6555 3 152 1.08737204 1.06602783 +2.00%
681754 34164 6344 3 122 0.54606148 0.53454122 +2.16%
681755 33792 6209 3 149 0.99764178 0.99079588 +0.69%
681756 32005 5925 2 163 0.68265387 0.67000081 +1.89%
681757 30593 5587 2 121 0.64262189 0.62817897 +2.30%
681758 29659 5153 3 151 1.40618720 1.39134636 +1.07%
681759 30025 5230 3 139 0.92160374 0.90653020 +1.66%
681760 30507 5301 3 146 0.79691323 0.77947123 +2.24%
681761 30308 5195 3 158 0.84170137 0.82064635 +2.57%
681762 30626 5089 3 117 1.03641038 1.01285348 +2.33%
681763 35409 6306 3 174 1.62126813 1.58237716 +2.46%
681764 35769 6472 3 160 1.41243719 1.37652773 +2.61%
681765 33535 6039 3 121 0.84725060 0.82926047 +2.17%
681766 31299 5567 3 120 0.43660905 0.43107542 +1.28%
681767 31319 5402 3 166 1.02576384 1.00472613 +2.09%
681768 29472 5193 3 175 0.40257931 0.39617466 +1.62%
681769 28193 4620 3 162 0.38398402 0.38524465 -0.33%
681770 26461 3727 2 170 0.24132183 0.22053945 +9.42%
681771 25532 3139 2 153 0.39829964 0.31831705 +25.13%
681772 26248 3247 2 159 1.44575882 1.46178535 -1.10%
681773 26864 3398 2 162 1.47124550 0.69572765 +111.47%
681774 24733 3008 2 141 0.42943216 0.43013572 -0.16%
681775 24796 3011 2 140 0.45939623 0.12792332 +259.12%
681776 23142 2746 2 126 0.37246376 0.36564703 +1.86%
681777 22973 2786 2 128 0.79666808 0.73404594 +8.53%
681778 21402 2591 2 120 0.18574904 0.16262119 +14.22%
681779 21443 2593 2 120 0.25666972 0.13265033 +93.49%
681780 22127 2757 3 169 0.34191520 0.34546023 -1.03%
681781 23238 2816 2 131 0.77277192 0.76596395 +0.89%
681782 21336 2558 2 120 0.35848927 0.35196518 +1.85%
681783 20978 2537 2 119 0.25916462 0.23825538 +8.78%
681784 20584 2512 2 116 0.12759041 0.11706145 +8.99%
681785 22647 2778 2 127 0.77748036 0.77849247 -0.13%
681786 20548 2524 2 117 0.16653468 0.15830595 +5.20%
681787 21647 2687 2 123 0.82741649 0.82965631 -0.27%
681788 21385 2631 2 121 0.45095308 0.44175300 +2.08%
681789 20433 2504 2 118 0.26225203 0.25475921 +2.94%
681790 20169 2483 2 115 0.07722830 0.05665851 +36.30%
681791 20418 2463 2 117 0.23601696 0.22984366 +2.69%
681792 21053 2570 2 120 0.55817715 0.55249285 +1.03%
681793 20152 2459 2 114 0.14900975 0.11448200 +30.16%
681794 20136 2473 2 114 0.14462324 0.06667075 +116.92%
681795 20206 2307 2 115 0.37178710 0.35032445 +6.13%
681796 19806 2217 2 140 0.33822887 0.33057839 +2.31%
681797 20913 2413 2 124 1.44319780 1.46291810 -1.35%
681798 25021 3255 2 159 1.53952924 1.55797209 -1.18%
681799 23955 3080 2 156 1.16094207 1.16811242 -0.61%
681800 22997 2848 2 221 0.68890355 0.67315840 +2.34%
681801 21354 2517 2 204 0.32007874 0.31977864 +0.09%
681802 19488 2208 2 186 0.12761411 0.11148755 +14.46%
681803 18646 2033 2 178 0.35288418 0.34142871 +3.36%

Table A.1: Experimental Results for Blocks 681734–681803. |Σ| is the mempool size, |E| is the number of DCG edges, PW is
its pathwidth, and T is our runtime in seconds. The next two columns show the amounts of transaction fees (in BTC) obtained
by our algorithm and the miners. The final column is the improvement percentage obtained by our method.



Block |Σ| |E| PW T Our Fee Miner’s Fee ∆

681804 18293 1934 2 172 0.39405665 0.38687641 +1.86%
681805 17542 1770 2 164 0.38287323 0.35712051 +7.21%
681806 17658 1760 2 165 0.52766519 0.40536363 +30.17%
681807 16282 1565 2 152 0.16574898 0.16245736 +2.03%
681808 16651 1600 2 157 0.45902543 0.41990118 +9.32%
681809 15962 1511 2 149 0.13608404 0.12461587 +9.20%
681810 18656 2038 2 177 0.92889911 0.91855954 +1.13%
681811 17120 1713 2 161 0.49517938 0.44597426 +11.03%
681812 15705 1497 2 146 0.12318392 0.07099044 +73.52%
681813 15995 1517 2 149 0.18683390 0.17602645 +6.14%
681814 15751 1500 2 147 0.19884083 0.18818186 +5.66%
681815 15832 1497 2 148 0.24194869 0.23771793 +1.78%
681816 16790 1637 2 157 1.26000000 1.25404659 +0.47%
681817 19561 1719 2 181 0.56026644 0.54588518 +2.63%
681818 18466 1552 2 170 0.19322899 0.05612528 +244.28%
681819 20927 2131 2 199 0.90247352 0.84845188 +6.37%
681820 18989 1725 2 176 0.16513421 0.16101704 +2.56%
681821 18582 1670 2 174 0.21646552 0.12519847 +72.90%
681822 19211 1753 2 180 0.37537688 0.37470292 +0.18%
681823 19201 1782 2 180 0.38947393 0.38651571 +0.77%
681824 18522 1657 2 173 0.17853084 0.15605582 +14.40%
681825 20277 2002 2 191 0.74520579 0.74584658 -0.09%
681826 20799 2094 2 197 0.74404969 0.74859451 -0.61%
681827 20144 2074 2 192 0.73620192 0.74241424 -0.84%
681828 22845 2727 2 221 1.15000000 1.17860979 -2.43%
681829 20948 2185 2 198 0.31153417 0.27106087 +14.93%
681830 20027 2016 2 189 0.10106824 0.08286468 +21.97%
681831 19954 2107 2 190 0.44243858 0.33474846 +32.17%
681832 19204 1881 2 181 0.26669875 0.26349802 +1.21%
681833 19333 1900 2 183 0.25954326 0.24630460 +5.37%
681834 22830 2394 3 216 1.18829963 1.21020196 -1.81%
681835 22958 2490 2 218 0.86038850 0.81974529 +4.96%
681836 22699 2471 2 215 0.69359493 0.70238558 -1.25%
681837 22314 2381 2 212 0.49068996 0.44416284 +10.48%
681838 21669 2238 2 205 0.32939677 0.32881838 +0.18%
681839 20902 2000 2 194 0.26930933 0.14015146 +92.16%
681840 20361 1920 2 192 1.25090867 1.07201308 +16.69%
681841 19742 1860 2 187 0.43602749 0.12506248 +248.65%
681842 19043 1702 2 178 0.35298249 0.34703486 +1.71%
681843 21536 1964 2 137 0.87763633 0.88259990 -0.56%
681844 24095 2709 2 230 1.04839823 1.05621396 -0.74%
681845 23533 2498 2 223 0.74771946 0.76224080 -1.91%
681846 24072 2501 2 225 0.67374226 0.68237093 -1.26%
681847 24712 2475 2 149 0.70987242 0.72193862 -1.67%
681848 23719 2259 2 222 0.35468574 0.35398619 +0.20%
681849 22188 2067 2 209 0.17834744 0.17492102 +1.96%
681850 21461 1960 2 201 0.39228623 0.35952578 +9.11%
681851 20082 1776 2 187 0.19677900 0.18721051 +5.11%
681852 20129 1784 2 186 0.20849708 0.05817860 +258.37%
681853 23312 2277 2 219 0.83331331 0.83738092 -0.49%
681854 20939 1945 2 197 0.11826813 0.11135318 +6.21%
681855 21778 1936 2 202 1.03044596 1.03805504 -0.73%
681856 22408 2061 2 211 0.67896948 0.69319732 -2.05%
681857 23435 2313 2 222 0.64131870 0.64982502 -1.31%
681858 23291 2154 2 221 0.46260132 0.39995396 +15.66%
681859 21169 1787 2 198 0.27755617 0.27668157 +0.32%
681860 20028 1736 2 187 0.06587330 0.06067005 +8.58%
681861 21063 1842 2 196 0.36890605 0.36699631 +0.52%
681862 21169 1861 2 197 0.40658124 0.40471842 +0.46%
681863 20694 1786 2 194 0.29448050 0.29225122 +0.76%
681864 20913 1813 2 195 0.34960082 0.34919726 +0.12%
681865 19869 1756 2 187 0.09183317 0.08745974 +5.00%
681866 23410 2317 2 223 0.86738169 0.80467475 +7.79%
681867 21386 1957 2 203 0.19065790 0.18611535 +2.44%
681868 20022 1756 2 190 0.14503619 0.11038115 +31.40%
681869 20809 1847 2 195 0.28632517 0.28383601 +0.88%
681870 20894 1864 2 200 0.35434630 0.17464953 +102.89%
681871 23737 2326 2 229 1.07131655 1.03957922 +3.05%
681872 22233 2017 2 212 0.94969343 0.94285913 +0.72%
681873 22492 2107 2 215 0.38716294 0.34265797 +12.99%

Table A.2: Experimental Results for Blocks 681804–681873.



Block |Σ| |E| PW T Our Fee Miner’s Fee ∆

681874 28394 3234 2 276 1.11112209 1.13271836 -1.91%
681875 27454 3228 2 266 0.71416547 0.72278525 -1.19%
681876 28004 3248 2 272 0.91154430 0.80950891 +12.60%
681877 27033 2940 2 260 0.49491621 0.48321699 +2.42%
681878 28214 3215 2 273 0.69462672 0.62842664 +10.53%
681879 28250 3228 2 269 0.60589116 0.55993980 +8.21%
681880 28606 3196 2 277 0.71022444 0.69002064 +2.93%
681881 27908 3047 2 269 0.51260350 0.50781368 +0.94%
681882 28221 2983 2 271 0.55982050 0.56497381 -0.91%
681883 28060 2892 2 268 1.02171432 1.02494861 -0.32%
681884 27623 2858 2 266 0.42317091 0.42372837 -0.13%
681885 27062 2800 2 153 0.34959188 0.35020198 -0.17%
681886 25206 2532 2 140 0.22519442 0.20494211 +9.88%
681887 24443 2304 2 132 0.30833456 0.26772497 +15.17%
681888 24523 2384 2 134 0.62733265 0.55480357 +13.07%
681889 23134 2135 2 126 0.40131294 0.40244831 -0.28%
681890 22519 2049 2 130 0.35726334 0.35781887 -0.16%
681891 21137 1901 2 125 0.10312303 0.09693855 +6.38%
681892 21345 1925 2 122 0.15243122 0.08678203 +75.65%
681893 25521 2450 2 149 1.06829071 1.07560501 -0.68%
681894 24543 2292 2 146 0.76678077 0.77257066 -0.75%
681895 24472 2241 3 152 0.19276659 0.19059277 +1.14%
681896 24698 2288 2 146 0.74853698 0.76992820 -2.78%
681897 29239 3064 2 174 1.25975887 1.27352615 -1.08%
681898 29122 2740 2 171 0.60687628 0.60315257 +0.62%
681899 27735 2480 2 164 0.28608029 0.28352608 +0.90%
681900 29511 2756 3 180 1.01436727 0.92458580 +9.71%
681901 33319 3215 2 193 1.29056353 1.30119654 -0.82%
681902 33315 3227 3 195 0.93714642 0.93543105 +0.18%
681903 33387 3364 3 196 0.90695797 0.86950137 +4.31%
681904 36147 3721 3 214 0.88171277 0.87618954 +0.63%
681905 40881 4860 3 247 1.24915734 1.24243054 +0.54%
681906 42908 5410 3 122 1.18867622 1.15852898 +2.60%
681907 41358 5377 3 130 0.92948759 0.93374213 -0.46%
681908 40530 5064 2 170 0.82282871 0.81230693 +1.30%
681909 41687 5324 3 195 0.98208464 0.96757379 +1.50%
681910 41068 5262 3 194 0.80082229 0.79263390 +1.03%
681911 39159 4915 3 170 0.90061104 0.88108607 +2.22%
681912 39594 5012 3 181 0.80868621 0.80258654 +0.76%
681913 38174 4876 3 179 0.49615261 0.48603301 +2.08%
681914 37967 4731 2 189 0.70219291 0.69373341 +1.22%
681915 35933 4376 3 142 0.40742654 0.41054890 -0.76%
681916 34912 4248 3 159 0.47658574 0.48157128 -1.04%
681917 34911 3587 3 136 0.70336939 0.68696569 +2.39%
681918 33248 3218 3 180 0.42903424 0.42420651 +1.14%
681919 31610 2866 3 172 0.18974391 0.18075221 +4.97%
681920 34684 3354 3 195 1.15614827 1.16440835 -0.71%
681921 33776 3462 3 186 0.77919507 0.77187267 +0.95%
681922 31312 2849 3 174 0.37583396 0.36439951 +3.14%
681923 31458 2863 3 173 0.41843532 0.12063380 +246.86%
681924 27932 2289 3 150 0.27200923 0.26200284 +3.82%
681925 40039 4832 3 160 1.48506900 1.45820081 +1.84%
681926 37212 4214 3 128 0.95632846 0.95400555 +0.24%
681927 37283 4026 3 210 1.01107639 0.99706719 +1.41%
681928 34628 3678 3 192 0.87653132 0.85706590 +2.27%
681929 34285 3657 3 194 0.81977059 0.79080591 +3.66%
681930 33498 3310 3 189 0.83809034 0.79936893 +4.84%
681931 33314 3299 3 184 0.78243012 0.75338144 +3.86%
681932 31883 3140 3 182 0.50984406 0.48134728 +5.92%
681933 29964 2679 3 167 0.35799011 0.35028722 +2.20%
681934 28877 2331 3 155 0.37891934 0.35523773 +6.67%
681935 32143 2865 3 177 1.00401515 1.01302948 -0.89%

Table A.3: Experimental Results for Blocks 681874–681935.
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