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Abstract
Following the Bitcoin model, many modern blockchains re-
ward their miners in two ways: (i) a base reward for each
block that is mined, and (ii) the transaction fees of those
transactions that are included in the mined block. The base
reward is fixed by the respective blockchain’s protocol and
is not under the miner’s control. Hence, for a miner who
wishes to maximize earnings, the fundamental problem is
to form a valid block with maximal total transaction fees
and then try to mine it. Moreover, in many protocols, includ-
ing Bitcoin itself, the base reward halves at predetermined
intervals, hence increasing the importance of maximizing
transaction fees and mining an optimal block. This prob-
lem is further complicated by the fact that transactions can
be prerequisites of each other or have conflicts (in case of
double-spending). In this work, we consider the problem of
forming an optimal block, i.e. a valid block with maximal
total transaction fees, given a set of unmined transactions.

On the theoretical side, we first formally model our prob-
lem as an extension of Knapsack and then show that, unlike
classical Knapsack, our problem is strongly NP-hard. We
also show a hardness-of-approximation result. As such, there
is no hope in solving it efficiently for general instances. How-
ever, we observe that its real-world instances are quite sparse,
i.e. the transactions have very few dependencies and con-
flicts. Using this fact, and exploiting two well-known graph
sparsity parameters, namely treewidth and pathwidth, we
present exact linear-time parameterized algorithms that are
applicable to the real-world instances and obtain optimal
results.
We also provide an experimental evaluation demonstrat-

ing that our approach vastly outperforms the current Bitcoin
miners in practice, obtaining a significant per-block average
increase of 13.4% in transaction fee revenues.

∗Authors are listed alphabetically.

1 Introduction

Mining. In blockchain ecosystems, mining is the process of
adding new blocks of transactions to the public ledger (the
blockchain). This terminology is usually applied to proof-
of-work blockchains such as Bitcoin [39] and is sometimes
even used to refer solely to the process of solving a hashcash
puzzle. Blockchains that are not based on proof-of-work
sometimes prefer other terms such as farming [20]. For the
purposes of this paper, we consider the widest definition of
mining that is not restricted to a specific consensus protocol
such as proof-of-work, and distinguish between the two
natural phases of mining:

1. In the first phase, the miner has to gather new trans-
actions and form a valid block.

2. In the second phase, the miner should perform actions
that allow her to add the new block to the chain. For
example, in Bitcoin she has to solve a hashcash puz-
zle [39], while in typical proof-of-stake protocols she
has to win a specific type of lottery [27, 32, 33].

A significant amount of research and development has
been devoted to optimizing the second phase. For Bitcoin
alone, there are already several generations of mining hard-
ware [7, 23, 44], from GPU mining, to FPGA, to dedicated
ASICs and trusted hardware frameworks [49]. Moreover,
miners often collaborate in what is known as a mining pool,
which has also been widely studied in the literature [18, 25,
35, 36, 38, 47, 48, 50]. In contrast, we focus on the orthogonal
task of performing the first phase efficiently and optimally.

Mining Rewards. In order to incentivize miners to take part
in mining, especially performing the often costly proof-of-
work in the second phase, blockchain protocols reward them
in two ways:

• Base reward: The miner is rewarded a predetermined
amount for each block that she successfully adds to
the blockchain. This reward is not under the miner’s
control and is instead fixed by the underlying protocol.



In Bitcoin, it is currently 6.25 BTC and halves at pre-
determined intervals [39]. This is also how new units
of currency are created. Some cryptocurrencies, such
as Ethereum, have a more complex method in which
miners who solve the second phase puzzle but whose
block does not eventually get added to the chain are
also rewarded [2].

• Transaction fees: Each transaction has a specific fee that
is paid to the miner who includes this transaction in
her block and adds it to the chain [39]. The transaction
fees are set by the user who creates the transaction.
A miner can decide which transactions to include in
her block based on their fees. Indeed, it is well-known
that transactions with small fees are often added to
the chain with considerable delay or not at all.

Focus and Motivation. In this work, we consider a miner’s
point-of-view, and focus on the problem of creating a block
of transactions in the first phase of mining such that the
total amount of gathered transaction fees are maximized.
Note that the base reward is not under the miner’s con-
trol and hence her only tool for maximizing her profits is
to create an optimal block with maximal transaction fees.
Moreover, as base rewards halve in cryptocurrencies such
as Bitcoin [39], transaction fees form an ever-increasing per-
centage of miner revenue. By the year 2140, the base reward
in Bitcoin becomes 0 and transaction fees will be the only
source of compensation for miners [39].
The task of forming an optimal block is complicated by

several factors, which we now shortly review:

Block Size Limit. Every transaction has a known size. On
the other hand, blockchain protocols enforce an upper-bound
on the size of mined blocks. In Bitcoin, the bound is 1,000,000
bytes [37]1. The maximum block size has a direct impact
on the scalability of a cryptocurrency, and has been at the
heart of the debate that led to forks such as Bitcoin Cash,
which increased the block size limit to 8MB and then to
32MB [31, 34]. There are also cryptocurrencies that advocate
for larger blocks, and even a total abandonment of block size
limits, such as Bitcoin SV [6]. Block size limits complicate
the task of forming an optimal block by forcing the miner to
choose which transactions to include and which to ignore.

Dependencies.Transactions have dependencies among them-
selves. For example, in Bitcoin, if a transaction Tx2 uses an
output of a transaction Tx1 as one of its inputs, then Tx1 must
appear in the chain before Tx2. This can be achieved either
by putting Tx1 in an earlier block, or in the same block as Tx2
but in an earlier position. Such a dependency will not create
any additional constraints for the miner if Tx1 is already on
1SegWit [37] affects neither our problem, nor the algorithms we propose.
To apply our algorithms to Bitcoin transactions utilizing SegWit, one should
simply discard the witness part when computing the size of a transaction.
As such, we use vbytes and bytes interchangeably.

Tx1 Tx2

Figure 1. Tx2 uses the first output of Tx1 as its third input.
Hence, Tx2 depends on Tx1 and must appear after it in the
chain. In practice, Tx2 has a pointer to Tx1 but for demon-
stration purposes, we found it more convenient to show this
as an arrow that models the flow of value from Tx1’s output
to Tx2’s input.

Tx1

Tx2

Tx3

Figure 2. Tx2 and Tx3 both use the same funds (the second
output of Tx1). This is considered double-spending and is
not allowed. Hence, Tx2 and Tx3 are in conflict and a miner
cannot include both of them in her block.

the chain. However, if both Tx1 and Tx2 are new transactions
that are not already put on the chain, then the miner cannot
include Tx2 in her block while leaving Tx1 out.

Conflicts. It is possible for a pair of otherwise-valid trans-
actions to be in conflict with each other. For example, in
Bitcoin, one can create two transactions that double-spend
the same output coin, leading to a situation where only one
of them can be added to the consensus chain. In such cases, if
one of the transactions is already on the blockchain, then the
other transaction would be ignored. If none of the transac-
tions are already mined, then the miner has to choose which
transaction to put in her block, but she cannot choose both.

Inefficiency of Heuristics. It is easy to see that in the pres-
ence of the requirements above, many of the common heuris-
tics used by miners can become infinitely bad on adversarial
instances. For example, a miner that ignores all transactions
that are involved in a double-spending risks not only los-
ing their transaction fees but also the fees of transactions
depending on them. Similarly, a miner that ignores low-fee
transactions risks losing potentially high-fee transactions
that depend on them. Moreover, it is noteworthy that the
default Bitcoin implementation does not address the prob-
lem of forming an optimal block, and chooses transactions
based on a “priority” formula that is meant to ensure that
every transaction is eventually put into a block, instead of



aiming at maximizing the miner’s revenue [1]. As such, this
approach has been largely abandoned by the miners [1].

Our Contribution. In this work, we consider the problem
of forming an optimal block, i.e. one that maximizes the total
transaction fees while respecting the requirements above.
Our contributions are as follows:

• We first formally model the problem as what we call a
Dependency-Conflict Knapsack (DCK) instance.

• We show that, unlike classicalKnapsack,DCK is strongly
NP-hard, hence ruling out the existence of pseudo-
polynomial algorithms, i.e. algorithms depending poly-
nomially on the block size limit, unless P=NP.

• We provide a hardness-of-approximation result, show-
ing that there exists a constant 𝜖 > 0 such that it is NP-
hard to approximate the reward of the optimal block
within a factor of 1 − 𝜖. We also show that 𝜖 > 0.12.

• Based on the observation that real-world instances
of the problem are quite sparse, i.e. they have few
conflicts and dependencies, we consider two graph
sparsity parameters, namely treewidth and pathwidth,
and show that for instances in which the dependency-
conflict graph has constant treewidth, DCK is solvable
in 𝑂 (𝑛 · 𝑘2), whereas in constant-pathwidth instances
it is solvable in 𝑂 (𝑛 · 𝑘). Here, 𝑛 is the number of new
transactions (also known as mempool size) and 𝑘 is the
block size limit. These pseudo-polynomial algorithms
form optimal blocks.

• We provide real-world experimental results over Bit-
coin, showing that the constant pathwidth assumption
holds in practice and that our approach leads to sig-
nificantly more profitable blocks and beats real-world
miners by 13.4%.

Related Works. Surprisingly, the problem of forming an op-
timal block to mine is quite understudied. It is well-known
that the problem is NP-hard. To the best of our knowledge,
the earliest mention of this fact is in a blog post by Joseph
Bonneau back in 2014 [13]. However, we show that it is
also strongly NP-hard, and hard-to-approximate. Moreover,
we provide the first positive theoretical results, i.e. pseudo-
polynomial algorithms parameterized by treewidth and path-
width that obtain an optimal block. We also provide signif-
icant practical improvements (See our experiments in Sec-
tion 6). To the best of our knowledge, parameterized algo-
rithms have not been previously studied in the context of
blockchain, except for [14] which considers treewidth as a
parameter for static analysis of smart contracts.

2 Preliminaries
In this section, we provide a short overview of the notions
of treewidth and pathwidth, which we will later exploit
in order to obtain efficient algorithms for optimal mining.
Treewidth [43] is a widely-used graph parameter. Intuitively,

it models the degree to which a graph resembles a tree.
Only trees and forests have a treewidth of 1. Similarly, path-
width [42] is a measure of path-likeness of a graph. Many
problems that are NP-hard on general graphs admit efficient
solutions when restricted to instances with small treewidth
or pathwidth [19, 21, 28, 29]. Even problems that are not
NP-hard can often be solved more efficiently when parame-
terized by the treewidth/pathwidth [5, 15–17, 26]. We now
provide more formal definitions:

Tree Decompositions and Path Decompositions [21, 42,

43]. Let 𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 and edge
set 𝐸. A tree decomposition of 𝐺 is a tree (𝑇, 𝐸𝑇 ) such that:

• Each node 𝑏 ∈ 𝑇 of the tree decomposition has an asso-
ciated set 𝑉𝑏 ⊆ 𝑉 of vertices of 𝐺 . To avoid confusion,
we reserve the word “vertex” for vertices of𝐺 and use
the word “bag” to refer to the nodes of 𝑇 . Moreover,
we define 𝐸𝑏 as the set of edges whose both endpoints
are in 𝑉𝑏 .

• Each vertex 𝑣 ∈ 𝑉 appears in at least one bag. More
formally,

⋃
𝑏∈𝑇 𝑉𝑏 = 𝑉 .

• Each edge 𝑒 ∈ 𝐸 appears in at least one bag. In other
words,

⋃
𝑏∈𝑇 𝐸𝑏 = 𝐸.

• Each vertex 𝑣 ∈ 𝑉 appears in a connected subtree of
𝑇 . In other words, for all 𝑏1, 𝑏2, 𝑏3 ∈ 𝑇 , if 𝑏3 is on the
unique path from 𝑏1 to 𝑏2, then 𝑉𝑏1 ∩𝑉𝑏2 ⊆ 𝑉𝑏3 .

A tree decomposition is called a path decomposition if (𝑇, 𝐸𝑇 )
is a simple path.

Treewidth and Pathwidth [21, 42, 43]. The width of a tree
decomposition is defined as the size of its largest bag minus
1. The treewidth (resp. pathwidth) of a graph 𝐺 is the small-
est width among all of its tree decompositions (resp. path
decompositions).

Example 2.1. Figure 3 shows an example graph, together
with a tree decomposition and a path decomposition.

NiceDecompositions.Consider a tree decomposition (𝑇, 𝐸𝑇 )
of a graph 𝐺 , in which a bag 𝑟 ∈ 𝑇 is chosen as root. The
tree decomposition (𝑇, 𝐸𝑇 ) is called nice if it satisfies the
following conditions:

• If a bag 𝑙 ∈ 𝑇 is a leaf, then 𝑉𝑙 = ∅.
• If a bag 𝑏 ∈ 𝑇 is not a leaf, then 𝑏 is in one of the
following forms:
– Introduce Bag: The bag 𝑏 has a single child 𝑏 ′ and
there is a vertex 𝑣 ∈ 𝑉𝑏 such that 𝑉𝑏′ = 𝑉𝑏 \ {𝑣}. In
this case, we say that 𝑏 introduces 𝑣 .

– Forget Bag: The bag 𝑏 has a single child 𝑏 ′ and there
is a vertex 𝑣 ′ ∉ 𝑉𝑏 such that 𝑉𝑏′ = 𝑉𝑏 ∪ {𝑣 ′}. In this
case, we say that 𝑏 forgets 𝑣 ′.

– Join Bag: The bag 𝑏 has exactly two children, 𝑏1 and
𝑏2, and we have 𝑉𝑏 = 𝑉𝑏1 = 𝑉𝑏2 .
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Figure 3. A graph 𝐺 (top), a tree decomposition of 𝐺 with
width 2 (middle), and a path decomposition of 𝐺 with width
3 (bottom). In each case, the connected subtree containing
the vertex 6 is shown in blue.

A nice path decomposition is defined similarly, except that
there can be no join bags in a path decomposition. It is easy
to see that any tree decomposition or path decomposition
can be turned nice in linear time. See [21] for details. Nice
decompositions are useful because they allow one to perform
dynamic programming on arbitrary trees in essentially the
same manner as on trees or paths. This is exactly what our
algorithm in Section 5 does. See [9] for more examples of
this type of dynamic programming.

Sparsity. Treewidth and pathwidth are graph sparsity pa-
rameters, in the sense that a graph with 𝑛 vertices and
treewidth 𝑡 can have at most𝑂 (𝑛 · 𝑡) edges. Moreover, many
well-studied families of graphs, such as cacti, series-parallel
graphs, outerplanar graphs, and control-flow graphs of pro-
grams, have constant treewidth [11, 46].

Fixed-parameter Tractability [21].Given an instancewith
𝑛 vertices and a graph parameter 𝑟 as input, we say that a
graph decision problem is Fixed-Parameter Tractable (FPT)
with respect to 𝑟, if there exists an algorithm that solves it in
𝑂 (𝑛𝑐 · 𝑓 (𝑟 )), where 𝑐 is a fixed constant not depending on
either 𝑛 or 𝑟, and 𝑓 is an arbitrary computable function. This
definition, which is standard in parameterized complexity,
captures the requirement that the problem can be solved
in polynomial time when the parameter 𝑟 is small. More-
over, the degree of the polynomial is independent of 𝑟 . In
the sequel, we will obtain FPT algorithms with respect to
treewidth and pathwidth.

Computing Treewidth and Pathwidth. In general, com-
puting the treewidth or pathwidth of an arbitrary input graph
are NP-hard problems [3, 41]. However, the problems are
FPT when parameterized by the treewidth (resp. pathwidth)
itself. Indeed, [10, 12] provide linear-time FPT algorithms
for computing treewidth and pathwidth. Moreover, there are
efficient tools and libraries, such as [24, 45] that compute
treewidth/pathwidth. As such, in our decomposition-based
algorithms, we assume without loss of generality that a nice
tree decomposition (resp. path decomposition) with 𝑂 (𝑛 · 𝑡)
bags is given as part of the input.

3 Dependency-Conflict Knapsack
In this section, we formalize our optimal mining task as
a variant of the Knapsack problem, called Dependency-
Conflict Knapsack (DCK).

Instances.ADCK instance is a tuple 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷),
in which:

• 𝑛 and 𝑘 are positive integers. Intuitively, 𝑛 is the num-
ber of items and 𝑘 is the capacity of our knapsack.

• Σ = {𝜎1, . . . , 𝜎𝑛} is a set of 𝑛 items.
• 𝑉 ,𝑊 : Σ → N ∪ {0} are functions that assign a value
and a weight to every item. For brevity, we denote
𝑉 (𝜎𝑖 ) by 𝑣𝑖 and𝑊 (𝜎𝑖 ) by𝑤𝑖 .

• 𝐶, 𝐷 ⊆ Σ × Σ, respectively called the conflict and de-

pendency relations, are relations on Σ such that:
(i) 𝐶 is symmetric.
(ii) The transitive closure of 𝐷 is anti-symmetric.

Informally, 𝜎𝑖𝐶𝜎 𝑗 signifies that the two elements 𝜎𝑖 and 𝜎 𝑗

are in conflict, i.e. we cannot put both of them into the knap-
sack. It is clear that the conflict relation should be symmetric.
Similarly, 𝜎𝑖𝐷𝜎ℓ means that 𝜎ℓ is a prerequisite of 𝜎𝑖 , i.e. if
we put 𝜎𝑖 in the knapsack, we have to put 𝜎ℓ , too. In (ii), we
are assuming that there are no cyclic dependencies. We now
formalize the problem:

TheDCKProblem.Given an instance 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷)
as above and a positive integer𝛼 , theDCK(𝐼 , 𝛼) problem asks
whether there exists a subset Σ∗ ⊆ Σ of items, such that:



(a)
∑

𝜎∗∈Σ∗𝑊 (𝜎∗) ≤ 𝑘, i.e. the items in Σ∗ must fit in a knap-
sack of size 𝑘.

(b) For every 𝜎∗
𝑖 , 𝜎

∗
𝑗 ∈ Σ∗, we have (𝜎∗

𝑖 , 𝜎
∗
𝑗 ) ∉ 𝐶.

(c) For every 𝜎𝑖 , 𝜎 𝑗 ∈ Σ, if 𝜎𝑖𝐷𝜎 𝑗 and 𝜎𝑖 ∈ Σ∗, then we also
have 𝜎 𝑗 ∈ Σ∗ .

(d)
∑

𝜎∗∈Σ∗ 𝑉 (𝜎∗) ≥ 𝛼, i.e. the total value of items in Σ∗ is at
least 𝛼.

The maximization variant of the DCK problem, MaxDCK,
asks for a Σ∗ that maximizes the sum

∑
𝜎∗∈Σ∗ 𝑉 (𝜎∗).

It is easy to see the correspondence between the DCK
problem and the problem of forming a block. The knapsack
size 𝑘 serves as the block size limit, while each of the 𝑛

items represents a valid new transaction. By this, we mean
a transaction that is not already included in the chain, and
passes other validity checks (such as providing the right
signatures). If a transaction 𝜎 double-spends a coin that was
spent in another transaction 𝜎 ′ and 𝜎 ′ is already on the
chain, then 𝜎 is considered to be invalid. However, if 𝜎 ′

is also a new transaction, then they are both considered
valid, but in conflict. The weight 𝑤𝑖 represents the size of
transaction 𝜎𝑖 and the value 𝑣𝑖 represents its transaction
fee, which will be paid to the miner if she includes it in her
block (knapsack). The relation 𝐶 models conflicts between
transactions, i.e. if 𝜎𝑖 and 𝜎 𝑗 are transactions that are double-
spending the same output, then we have 𝜎𝑖𝐶𝜎 𝑗 . Similarly, 𝐷
models dependencies. Condition (ii) makes sure that we do
not have cyclic dependencies. In the real-world, if a set of
transactions have cyclic dependencies, they are all invalid,
and can be removed by a simple preprocessing. Using this
correspondence, theDCK problem formalizes the question of
whether one can form a valid block with a total transaction
fee of at least 𝛼, whereas MaxDCK asks for the maximum
possible amount of transaction fees among all valid blocks.

DCG. Given a DCK instance 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷), its
Dependency-Conflict Graph (DCG) is a graph 𝐺 = (Σ, 𝐸),
in which each item serves as a vertex, and there are two
types of edges in 𝐸:

• Undirected Conflict Edges: There is an undirected edge
{𝜎𝑖 , 𝜎 𝑗 } for each 𝜎𝑖𝐶𝜎 𝑗 .

• Directed Dependency Edges: There is a directed edge
(𝜎𝑖 , 𝜎 𝑗 ) for each 𝜎𝑖𝐷𝜎 𝑗 .

4 Hardness Results
In this section, we provide a simple reduction showing that
DCK is strongly NP-hard. This is in contrast to classical
Knapsack, which has a simple pseudo-polynomial dynamic
programming algorithm and is only weakly NP-hard. More-
over, we show that MaxDCK is hard-to-approximate within
a constant factor unless P=NP, and hence does not admit a
PTAS. This is again in contrast to classical Knapsack, which

admits an FPTAS. Additionally, our reduction rules out ef-
ficient parameterized algorithms based on several common
graph parameters, such as degree and diameter, on the DCG.

The Reduction.Our reduction is from 3-SAT. Given a 3-SAT
formula 𝜑 with𝑚 clauses over 𝑛 boolean variables, we con-
struct the following DCK instance 𝐼𝜑 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷) :

• 𝑛 = 3 ·𝑚 + 2 · 𝑛
• 𝑘 =𝑚 + 𝑛
• For each variable 𝑥 appearing in 𝜑, we add two items
𝜎𝑥 and 𝜎¬𝑥 to Σ. We set𝑊 (𝜎𝑥 ) = 𝑊 (𝜎¬𝑥 ) = 1 and
𝑉 (𝜎𝑥 ) = 𝑉 (𝜎¬𝑥 ) = 0. Moreover, (𝜎𝑥 , 𝜎¬𝑥 ), (𝜎¬𝑥 , 𝜎𝑥 ) ∈
𝐶, i.e. the two items are in conflict.

• For each clause 𝑐 = (ℓ1 ∨ ℓ2 ∨ ℓ3) of 𝜑 in which each
literal ℓ𝑖 is either a boolean variable or its negation, we
add three items𝜎𝑐,1, 𝜎𝑐,2, and𝜎𝑐,3 to Σ.We set𝑊 (𝜎𝑐,𝑖 ) =
𝑉 (𝜎𝑐,𝑖 ) = 1. Moreover, we have (𝜎𝑐,𝑖 , 𝜎𝑐,𝑗 ) ∈ 𝐶 for
every 𝑖 ≠ 𝑗, i.e. every pair of the three elements are
in conflict. Additionally, we set 𝜎𝑐,𝑖 𝐷 𝜎ℓ𝑖 , i.e. the 𝑖-th
element of 𝑐 depends on the element corresponding to
ℓ𝑖 .

Example 4.1. Figure 4 illustrates our reduction.

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)

σx

σ¬x

σy

σ¬y

σz

σ¬z

σ1,1

σ1,2 σ1,3

σ2,1

σ2,2 σ2,3

Figure 4. A 3-SAT formula (top), and its reduction to a DCK
instance. Red edges denote conflict and blue directed edges
denote dependency. For example, 𝜎1,1 depends on 𝜎𝑥 . In the
DCK instance, we have 𝑘 = 5. Moreover, every element
has unit weight. The variable elements and their negations
have value zero, whereas 𝜎𝑖, 𝑗 ’s have unit value. The items
put into the knapsack in one optimal solution are shown in
green. Note that this yields a total value of 2, which proves
satisfiability. This is achieved by letting 𝑥 = 1 and 𝑦 = 𝑧 = 0,
which corresponds to satisfying the second literal of the first
clause (𝜎1,2), and the third literal of the second clause (𝜎2,3).

It is easy to verify that 𝐼 has all the requirements for a
DCK instance as defined in Section 3. Note that every so-
lution to 𝐼 can pick at most one of 𝜎𝑥 and 𝜎¬𝑥 for every
variable 𝑥 . Similarly, for each clause 𝑐, it can take at most
one of the items corresponding to 𝑐, and can take 𝜎𝑐,𝑖 only



if it also takes the item corresponding to the 𝑖-th disjunct
of 𝑐 . Also, note that every item has unit weight, and only
the items corresponding to clauses have a unit value, while
all other items are worthless. Given this discussion, it is
easy to see that 𝜑 is satisfiable iff DCK(𝐼𝜑 ,𝑚) = 1. More-
over, MaxDCK(𝐼𝜑 ) = Max3-SAT(𝜑). Hence, we have the
following theorems:

Theorem 4.2 (Strong NP-hardness). DCK is strongly NP-

hard.

Proof. As shown above, for every 3-SAT formula 𝜑, we have
3-SAT(𝜑) ⇔ DCK(𝐼𝜑 ,𝑚). It is well-known that 3-SAT is
NP-hard. Moreover, the reduction above keeps 𝑛 and 𝑘 poly-
nomial in terms of |𝜑 |. Hence, DCK is strongly NP-hard. □

Theorem 4.3 (Inapproximability). There exists 𝜖 > 0, such
that it is NP-hard to approximate MaxDCK within a factor of

1 − 𝜖.

Proof. A well-known corollary of the PCP theorem [4] is
that such an 𝜖 exists for the Max3-SAT problem. The the-
orem follows from the fact that we have MaxDCK(𝐼𝜑 ) =

Max3-SAT(𝜑) in our reduction. Indeed, it is hard to approx-
imateMax3-SAT within a ratio of 7

8 + 𝜖 for any 𝜖 > 0 [30].
Using our reduction, this result also applies toMaxDCK. □

5 Efficient Decomposition-based
Algorithms

In this section, we provide efficient FPT algorithms for the
DCK problem with respect to the treewidth and pathwidth
of its DCG. For a DCG with treewidth 𝑡 , our approach leads
to an 𝑂 (𝑛 · 𝑘2 · 2𝑡 · 𝑡3)-time algorithm. Moreover, for a DCG
with pathwidth 𝑝, it obtains a runtime of 𝑂 (𝑛 · 𝑘 · 2𝑝 · 𝑝3).

Setup and Notation. Let 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷) be a DCK
instance given as input together with a nice tree decomposi-
tion (𝑇, 𝐸𝑇 ) of its DCG 𝐺 = (Σ, 𝐸). Moreover, as justified in
Section 2, we assume that the tree decomposition has width
𝑡 and𝑂 (𝑛 · 𝑡) bags. Recall that for a bag 𝑏 ∈ 𝑇, we denote its
associated set of items by Σ𝑏 ⊆ Σ, and define 𝐸𝑏 ⊆ 𝐸 as the
set of edges whose both endpoints are in Σ𝑏 . Additionally,
as our tree decomposition is nice, we have a distinguished
root bag 𝑟, and every bag is either a leaf, an introduce bag, a
forget bag, or a join bag. For a bag 𝑏 ∈ 𝑇, we denote by 𝑇 ↓

𝑏

the subtree of 𝑇 consisting of 𝑏 and its descendants. Simi-
larly, we define 𝐺 ↓

𝑏
as the part of 𝐺 that corresponds to 𝑇 ↓

𝑏
,

i.e. 𝐺 ↓
𝑏
=

(⋃
𝑏′∈𝑇 ↓

𝑏

Σ𝑏′,
⋃

𝑏′∈𝑇 ↓
𝑏

𝐸𝑏′
)
.

Example 5.1. Figure 5 shows a DCG𝐺 (left) and a nice tree
decomposition of 𝐺 (right). We will use this figure as our
running example. Suppose that every vertex 𝑖 has a value of
𝑖 and unit weight. Moreover, let 𝑘 = 3. In this example, we
have Σ𝑏2 = {1, 2, 3} and 𝐸𝑏2 = {(1, 2), {2, 3}}. Moreover, 𝑇 ↓

𝑏1
is the part of the tree that contains 𝑏1, 𝑏2, 𝑏3, 𝑏4, and 𝑏5, and

the graph 𝐺
↓
𝑏1

contains vertices 1, 2, 3 and edges (1, 2) and
{2, 3}.

{1, 2}

{1, 2} {1, 2}

{1, 2, 3}

{2, 3}

{3}

{ }

{1, 2, 4}

{2, 4}

{2}

{ }
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b9
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1 2

34

Figure 5. A DCG𝐺 (left) and a nice tree decomposition of𝐺
(right). Leaf bags are shown in blue, introduce bags in green,
and forget bags in red. The only join bag is the root.

Main Idea. Our algorithm is a bottom-up dynamic program-
ming on the tree decomposition. At every bag 𝑏 ∈ 𝑇, for
every subset𝑀 ⊆ Σ𝑏, and every non-negative integer 𝜅 ≤ 𝑘,

we define a variable dp[𝑏,𝑀,𝜅] and initialize it to −∞. The
goal is to compute values for each such variable such that the
following invariant is satisfied: dp[𝑏,𝑀,𝜅] is the maximum
total value of items that can be placed in a knapsack of size
𝜅, such that:

• Every item comes from 𝐺
↓
𝑏
,

• All dependency and conflict relations in 𝐺
↓
𝑏
are re-

spected, and
• The set of items chosen from Σ𝑏 is exactly𝑀.

Having this in mind, we now show how one can compute
the values for dp variables. Our algorithm processes the bags
of the tree decomposition in a bottom-up order and performs
the following calculations:

Computing Values at Leaves. Given that our tree decom-
position is nice, for every leaf bag 𝑙 ∈ 𝑇, we have Σ𝑙 = ∅.
Hence, the algorithm sets dp[𝑙, ∅, 𝜅] = 0 for every 𝜅.

Example 5.2. In the instance of Example 5.1 (Figure 5), the
algorithm computes dp[𝑏5, ∅, 𝜅] = dp[𝑏10, ∅, 𝜅] = 0 for all
0 ≤ 𝜅 ≤ 3.

Computing Values at Introduce Bags. Let 𝑏 ∈ 𝑇 be an in-
troduce bag. Also, let 𝑏 ′ be its child and 𝜎 be the item/vertex
that is introduced in𝑏.When computing dp[𝑏,𝑀,𝜅], the algo-
rithmfirst checkswhether𝑀 violates any dependency/conflict
relations within 𝐸𝑏 . If so, it sets dp[𝑏,𝑀,𝜅] = −∞. Simi-
larly, if the sum of weights of items in 𝑀 exceeds 𝜅, it sets
dp[𝑏,𝑀,𝜅] = −∞. Otherwise, it sets:

dp[𝑏,𝑀,𝜅] =
{
dp[𝑏 ′, 𝑀 \ {𝜎}, 𝜅 −𝑊 (𝜎)] +𝑉 (𝜎) 𝜎 ∈ 𝑀

dp[𝑏 ′, 𝑀, 𝜅] 𝜎 ∉ 𝑀
.



It is straightforward to see why this works. The argument is
similar to classical 0-1 Knapsack. If 𝜎 ∈ 𝑀, then we should
put 𝜎 in the knapsack, leading to a value of𝑉 (𝜎), and leaving
us with 𝑘 −𝑊 (𝜎) more room to fill with items from 𝐺

↓
𝑏′ . If

𝜎 ∉ 𝑀, there is no gain in value and no loss in space, and
the knapsack should be filled using 𝐺 ↓

𝑏′ . In both cases, we of
course have to respect all the conflicts and dependencies in
𝐺

↓
𝑏′, too. This is modeled by dp[𝑏 ′, ·, ·] .

Example 5.3. In the instance of Example 5.1 (Figure 5), the
algorithm sets dp[𝑏2, {1, 3}, 𝜅] = −∞ for every 𝜅. This is
because 1 depends on 2, which is not included, hence the
requirement of the dependency edge (1, 2) is violated. Sim-
ilarly, we have dp[𝑏7, {1, 2, 4}, 2] = ∅, because there is not
enough capacity in a knapsack of size 2 for 3 unit-size ele-
ments. Now consider bag 𝑏2, which introduces vertex 1. The
algorithm computes dp[𝑏2, {2, 3}, 3] = dp[𝑏3, {2, 3}, 3] = 3
and dp[𝑏2, {1, 2}, 2] = dp[𝑏3, {2}, 1] +𝑉 (1) = 3.

Computing Values at Forget Bags. If 𝑏 ∈ 𝑇 is a forget bag
with a single child 𝑏 ′, then by definition, we have 𝐺 ↓

𝑏
= 𝐺

↓
𝑏′ .

Suppose that 𝑏 forgets 𝜎. Then, the algorithm computes dp
values at 𝑏 as follows:

dp[𝑏,𝑀,𝜅] = max{dp[𝑏 ′, 𝑀, 𝜅], dp[𝑏 ′, 𝑀 ∪ {𝜎}, 𝜅]}.

This is because𝐺 ↓
𝑏
and𝐺 ↓

𝑏′ enforce the same dependency and
conflict requirements. Moreover, if the set of items put in the
knapsack has intersection𝑀 with Σ𝑏, then its intersection
with Σ𝑏′ = Σ𝑏 ∪ {𝜎} is either𝑀 or𝑀 ∪ {𝜎}.

Example 5.4. In the instance of Example 5.1 (Figure 5), bag
𝑏6 forgets vertex 4. The algorithm computes dp[𝑏6, {2}, 3] =
max{dp[𝑏7, {2}, 3], dp[𝑏7, {2, 4}, 3]} = max{2, 6} = 6. Simi-
larly, we have:

dp[𝑏1, {1, 2}, 2] = max{dp[𝑏2, {1, 2}, 2], dp[𝑏2, {1, 2, 3}, 2]}
= max{3, 3} = 3.

Now consider the case of computing dp[𝑏6, {1, 2}, 3] . In a
valid solution, it is impossible to take both 1 and 2, because
2 depends on 4 and 4 is in conflict with 1. Nevertheless,
this does not violate any local restrictions at 𝑏6. Note that
𝐸𝑏6 = {(1, 2)} and choosing the set {1, 2} satisfies the re-
quirement. Hence, the algorithm computes dp[𝑏6, {1, 2}, 3] =
max{dp[𝑏7, {1, 2}, 3], dp[𝑏7, {1, 2, 4}, 3]}. However, these val-
ues are both −∞. dp[𝑏7, {1, 2}, 3] = −∞ because the local
dependency requirement (2, 4) is not met at 𝑏7. Similarly,
dp[𝑏7, {1, 2, 4}, 3] = −∞ because the local conflict require-
ment between 1 and 4 at 𝑏7 is not met. Hence, we will get
dp[𝑏6, {1, 2}, 3] = −∞.

Computing Values at Join Bags. Let 𝑏 ∈ 𝑇 be a join bag
with children 𝑏1 and 𝑏2. By definition, we have Σ𝑏 = Σ𝑏1 =

Σ𝑏2 and 𝐺
↓
𝑏
= 𝐺

↓
𝑏1

∪ 𝐺
↓
𝑏2
. Note that because 𝑇 is a tree de-

composition, every vertex appears in a connected subtree.

Hence, all common vertices of 𝐺 ↓
𝑏1

and 𝐺
↓
𝑏2

are in Σ𝑏 . To
compute dp[𝑏,𝑀,𝜅], the algorithm first checks whether any
dependency or conflict requirements in 𝐸𝑏 are violated by
𝑀. If so, it sets dp[𝑏,𝑀,𝜅] = −∞. Otherwise, it computes
𝑉 (𝑀) = ∑

𝑚∈𝑀 𝑉 (𝑚), i.e. the total value of items in𝑀 , and
𝑊 (𝑀) = ∑

𝑚∈𝑀𝑊 (𝑚), i.e. the total weight of items in𝑀 . If
𝑊 (𝑀) > 𝜅, it sets dp[𝑏,𝑀,𝜅] = −∞. Otherwise, it computes:
dp[𝑏,𝑀,𝜅] =

𝜅max
𝑖=𝑊 (𝑀)

(dp[𝑏1, 𝑀, 𝑖] + dp[𝑏2, 𝑀, 𝜅 +𝑊 (𝑀) − 𝑖] −𝑉 (𝑀)) .

We now explain why this is correct. Suppose that we want to
fill a knapsack of size 𝜅 with items from𝐺

↓
𝑏
= 𝐺

↓
𝑏1
∪𝐺

↓
𝑏2
. We

first decide howmuch of the capacity in the knapsack should
be assigned to items from𝐺

↓
𝑏1

and denote it by 𝑖 . This cannot
be less than𝑊 (𝑀) as we know that we have to put𝑀 in the
knapsack. After putting𝑀 and the other items from 𝐺

↓
𝑏1
, we

have 𝜅 − 𝑖 remaining capacity for other elements from 𝐺
↓
𝑏2
.

However, given that𝑀 also appears in𝐺 ↓
𝑏2
, this is equivalent

to filling a knapsack of size 𝜅 +𝑊 (𝑀) − 𝑖 using items in𝐺 ↓
𝑏2

in which we are forced to take 𝑀 . The final −𝑉 (𝑀) in the
formula is to avoid double-counting the value of items in𝑀 ,
which were counted in both dp variables.

Example 5.5. In the instance of Example 5.1 (Figure 5), the
only join bag is the root 𝑟 = 𝑏0. The algorithm computes

dp[𝑟, {2}, 2] = max{dp[𝑏1, {2}, 1]+dp[𝑏6, {2}, 2], dp[𝑏1, {2}, 2]
+dp[𝑏6, {2}, 1]} −𝑉 (2)

= max{2 + 6, 6 + 2} − 2 = 6.
Intuitively, we want to fill a knapsack of size 2 and we know
that vertex 2 must be present in the knapsack and 1 must be
absent. We consider two cases: either we allocate capacity
1 to the subgraph 𝐺

↓
𝑏1

and capacity 2 to 𝐺
↓
𝑏2

(The vertex 2
itself has a weight of 1 is counted in both capacities), or vice
versa. We can read the maximum values from dp variables
computed in 𝑏1 and 𝑏6. However, as vertex 2 was included
in both sides, we have to deduct its value at the end.

Note that in the steps above, the values of dp variables are
computed correctly. Specifically, at each bag 𝑏, we first check
that the local dependency/conflict requirements at 𝑏 are
satisfied. If they are not, we set the dp[𝑏, ·, ·] to −∞. Hence,
a bottom-up inductive argument shows that all dp[𝑏, ·, ·]
values respect the dependency and conflict requirements of
the edges of 𝐺 ↓

𝑏
.

Computing the Final Answer. Finally, the algorithm com-
putes the answer to the MaxDCK problem as follows:

max
𝑀⊆Σ𝑟

dp[𝑟, 𝑀, 𝑘] .

Recall that 𝑟 is the root bag, and hence 𝐺 ↓
𝑟 = 𝐺. So every

solution of dp[𝑟, 𝑀, 𝑘] respects all dependency and conflict



relations in𝐺. Also, note that obtaining the actual contents
of our knapsack is a matter of following dp values that lead
to the optimal solution in each formula above, just as in the
classical 0-1 Knapsack.

Example 5.6. In our running example, the final solution is:

max{dp[𝑟, ∅, 3], dp[𝑟, {1}, 3], dp[𝑟, {2}, 3], dp[𝑟, {1, 2}, 3]}

= max{7,−∞, 6,−∞} = 7,

which can be achieved by taking items 3 and 4.

Given the algorithm and discussion above, we have the
following theorems:

Theorem5.7. Given aDCK instance 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷),
and a nice tree decomposition of its DCG with width 𝑡 and

𝑂 (𝑛 · 𝑡) bags, our algorithm above solves MaxDCK in time

𝑂 (𝑛 · 𝑘2 · 2𝑡 · 𝑡3).

Proof. We define 𝑂 (2𝑡 · 𝑘) dp variables at each bag. Given
that there are 𝑂 (𝑛 · 𝑡) bags, the total number of dp variables
is 𝑂 (𝑛 · 𝑘 · 𝑡 · 2𝑡 ). Computing each dp variable takes 𝑂 (𝑡2),
i.e. for checking the satisfaction of local constraints in the
current bag, except when we are handling join bags, where
it takes 𝑂 (𝑡2 + 𝑘) due to taking the maximum of 𝑘 elements.
This leads to the desired bound of 𝑂 (𝑛 · 𝑘2 · 2𝑡 · 𝑡3) for the
whole runtime. □

Theorem5.8. Given aDCK instance 𝐼 = (𝑛, 𝑘, Σ,𝑉 ,𝑊 ,𝐶, 𝐷),
and a nice path decomposition of its DCG with width 𝑝 and

𝑂 (𝑛 · 𝑝) bags, our algorithm above solves MaxDCK in time

𝑂 (𝑛 · 𝑘 · 2𝑝 · 𝑝3).

Proof. This is exactly similar to Theorem 5.7, except that a
nice path decomposition has no join nodes, and hence the
algorithm is faster by a significant factor of 𝑘. □

Note that if the treewidth or pathwidth are fixed (small)
constants, the theorems above lead to pseudo-polynomial
algorithms with runtimes𝑂 (𝑛 ·𝑘2) and𝑂 (𝑛 ·𝑘), respectively.
Especially, the latter bound matches the runtime of the clas-
sical dynamic programming algorithm for 0-1 Knapsack. As
we will see in the next section, this is exactly what happens
in practice.

Parallelization. The dp[𝑏, ., .] computations performed by
our algorithm in every bag are independent of each other
and parallelizable. Specifically, when solving instances with
a knapsack of capacity 𝑘, if we have 𝜃 threads and 𝜃 <

𝑘 ·2𝑡 , then the algorithm can be perfectly parallelized. In real-
world use-cases, we often have 𝑘 ≥ 106. So, for all practical
purposes, our algorithms’ parallel runtimes are𝑂

(
𝑛 ·𝑘2

𝜃

)
and

𝑂

(
𝑛 ·𝑘
𝜃

)
for instances with bounded treewidth and pathwidth,

respectively.

6 Implementation and Experimental
Results

Implementation. We implemented our algorithm in C++
and used OpenMP [22] for parallelization. We relied on the
codebase of the Esplora Block Explorer [8] to collect informa-
tion about the Bitcoin blockchain. This includes details of the
transactions in each block and the mempool (transactions
that are published but not yet mined). We computed tree and
path decompositions using SageMath [45].

Central Hypothesis.We considerDCK instances that model
the problem of obtaining optimal blocks (wrt transaction
fees) in the Bitcoin blockchain. Our central hypothesis is
that the DCGs (Dependency-Conflict Graphs) of these in-
stances have bounded treewidth/pathwidth. In other words,
we are creating a graph in which we put a vertex for every
transaction and put edges between two transactions if either
they are in conflict or one is a dependency of the other. We
hypothesize that such a graph would be sparse and have a
tree-like/path-like structure. As such, we expect these graphs
to have small treewidth/pathwidth. This is intuitively justi-
fied by the fact that double-spending is relatively rare and
creates very few conflict edges. On the other hand, the depen-
dence between transactions is often in the form of a directed
acyclic graph and has a tree-like structure.

Benchmarks and Baseline.We considered blocks number
681734 to 681935 in the Bitcoin blockchain. These blocks
correspond to more than a day (almost 27 hours) of activity.
More specifically, they were mined between 3rd May 2021 -
15:51 UTC and 4th May 2021 - 19:10 UTC. When solving for
block 𝑖 , we considered the mempool right after block 𝑖 − 1
or 5 minutes before block 𝑖 was added (whichever were the
latest). We used this mempool as the set Σ of all possible
transactions. There is a simple reason behind this choice:
the mempool is continuously evolving as new transactions
are broadcast. As such, a miner who is intent on mining the
optimal block should constantly run our algorithm on new
mempools. As we will see, each run of our algorithm takes
roughly 3 minutes on our machine. To ensure that we are
not obtaining any unfair advantage, we set the interval to
5 minutes. We then ran our algorithm to obtain an optimal
block. Finally, we compared the total transaction fees ob-
tained by our solution with those earned by the miner of the
actual block 𝑖 on the blockchain.

Experimental Setting. All results were obtained on a ma-
chine with 4 Intel Xeon E7-4850 v3 processors (2.20GHz, 14
cores, 28 threads, 35 MB Cache), running Ubuntu 20.04 LTS
with 160GB of RAM and a total of 112 threads. Note that this
is an extremely modest configuration in comparison with the
computation power that the miners routinely use for proof-
of-work. Moreover, as mentioned above, our algorithm can



be perfectly parallelized and will therefore use much less
time when run by the real-world miners.

Results. The results are shown in Figure 6 and Tables 1–3.
We now discuss them in more detail:

• Widths. The tables report the pathwidth of every in-
stance (PW). This demonstrates that our central hy-
pothesis holds in the real world and the widths are
small. Moreover, given that the pathwidth is at most 3
and the capacity is 𝑘 = 106 in Bitcoin, our pathwidth-
based algorithm is much more promising than the
treewidth-based variant, i.e. 𝑂 (𝑛 · 𝑘) vs 𝑂 (𝑛 · 𝑘2).

• Transaction Fee Revenues. Figure 6 and Tables 1–
3 also show the amount of transaction fees obtained
by our algorithm vs the amount earned by the min-
ers on chain. Based on these, our approach obtains a
maximum per-block improvement of 259 percent in
transaction fee revenues, which is huge. Moreover, the
average per-block improvement is a whopping 13.4
percent. In absolute terms, our algorithm obtains be-
tween -0.029 and 0.776 BTC more fees than the miners
in each block. If we sum this over all blocks, we get
total improvements of 5.539 BTC, which was equal
to roughly 325,800 USD at the time2.

• Runtimes. The tables also report the runtime of our
algorithm for finding the optimal blocks. Our runtimes
range from 114s to 277s, and the average runtime
is 175s. Note that in Bitcoin, a new block is mined
roughly every 10 minutes. So, even with our modest
computational resources, we are able to find the opti-
mal block in time. Given that the miners have access
to much more computational power (that they use for
proof-of-work), obtaining the optimal block using our
algorithm will have a negligible effect on computation
costs, while significantly increasing revenue.

Discussion.We now discuss several aspects of our results,
as well as their limits of applicability to other blockchains
and threats to their validity in the future.

• Close Results. Despite the considerable overall im-
provement in transaction fee revenues, there are a
sizable number of blocks (52 out of 202) for which the
transaction fees obtained by our algorithm are very
close to those of the miners (±1%). We believe this
is evidence that the miners are already using various
relatively successful heuristics for maximizing their
revenue. However, as the overall results demonstrate,
such heuristics are not always effective and lead to a

2Note that this is the sum of savings over each individual block. However,
it is not necessarily the exact amount of increase in the miners’ revenue
if they use our algorithm. Changing the mined block will also change the
current mempool. Moreover, many users form their transactions based on
the current state of the blockchain. As such, computing the exact total
change in revenue is impossible.

much lower-than-optimal return in the long run. In
contrast, our algorithm is able to form an optimal block
and obtain the highest possible revenue.

• Lower Results vs Optimality. In some cases, our al-
gorithm’s reported transaction fee revenue is slightly
lower than what was obtained by the miners on the
blockchain. This seems to contradict the optimality of
our algorithm, which was proven in Section 5, but is ac-
tually caused by an entirely orthogonal reason: In these
instances, the miners had access to transactions which
were not in our mempool. Given the distributed nature
of the Bitcoin blockchain, its low connectivity [40],
and our limited networking resources (a single node
in Rafsanjan, Kerman Province, Iran), it was inevitable
that we miss some transactions. Moreover, we ran our
algorithm in 5-minute intervals. Hence, when forming
block 𝑖 , we missed transactions that were announced
shortly before this block was mined. In contrast, it is
well-known that miners typically deploy several nodes
in different continents, ensuring that they have a much
more reliable connection. Moreover, they have consid-
erably larger computational power and can run the
algorithm in shorter intervals. In spite of our limited
resources, as Tables 1–3 and Figure 6 demonstrate, we
were able to obtain significantly higher transaction fee
revenues overall.

• Extension to other (non-Bitcoin) Blockchains.Our
algorithms are directly applicable to any blockchain
with static transaction fees, i.e. blockchains in which
the exact fee is known at the time the transaction is
broadcast. Extending these methods to blockchains
with dynamic transaction fees, such as Ethereum, is a
challenging and interesting direction of future work. It
is also noteworthy that our algorithms do not depend
on the consensus mechanism and can be applied to
blockchains that do not use proof-of-work.

• Threats to Validity. The main threat to the valid-
ity of our approach is if our central hypothesis (low
width) does not hold. This hypothesis can be violated
by the users, who are the originators of transactions
and whose actions ultimately define the conflicts and
dependencies. For example, if the network suddenly
receives a huge number of double-spending attacks,
then the DCG will no longer be sparse/low-width.
As shown in Section 4, the problem is strongly NP-
hard and hard-to-approximate without this assump-
tion. However, as demonstrated by our experimental
results, our assumption currently holds in Bitcoin. An-
other threat is posed if the blocks are added to the
chain in extremely small timeframes. In Bitcoin, a new
block is mined roughly every 10 minutes. As shown
by our experimental results, this is enough time for
us to run our algorithms and obtain optimal blocks.
Given that our algorithms are perfectly parallelizable,



shorter times between mined blocks would only trans-
late to a need for more computation power. However,
our algorithms also rely on tree/path decompositions
which are obtained from external non-parallel tools.
If the rate of addition of new blocks is extremely fast
(e.g. one block per second), we might not be able to
compute the decompositions in time.

7 Conclusion
In this work, we considered the problem of forming an op-
timal block, i.e. a block that yields maximal transaction fee
revenue, from the viewpoint of a miner. We formalized it as
an extension of the Knapsack problem with dependencies
and conflicts. We then showed that it is strongly NP-hard
and hard-to-approximate within a factor of 7

8 + 𝜖 unless
P=NP. Then, we exploited the fact that real-world instances
of the problem have sparse underlying dependency-conflict
graphs and obtained efficient algorithms parameterized by
the treewidth and pathwidth of this graph. Finally, we pro-
vided experimental results demonstrating that our approach
significantly outperforms real-world miners, obtaining im-
provements of up to 259 percent per block (average improve-
ment: 13.4 percent). In the 27-hour window of our experi-
ment, this led to an improvement of 5.539 BTC / 325,800 USD
in absolute terms. Given that our approach is efficient and
parallelizable, it provides the miners with a cost-effective and
simple solution to dramatically increase their transaction fee
revenues.

Block |Σ | |E | PW T Our Fee Miner’s Fee ∆

681734 32852 4322 2 202 1.64384456 1.64942663 -0.34%
681735 31337 3928 2 193 1.36386228 1.36925564 -0.39%
681736 34303 4962 3 220 1.49203669 1.45670239 +2.43%
681737 36821 5653 3 177 1.42085126 1.40673804 +1.00%
681738 34493 5183 2 183 0.95526813 0.94908231 +0.65%
681739 33639 4812 2 194 0.73592618 0.72156298 +1.99%
681740 33850 4738 2 190 0.87610756 0.86174104 +1.67%
681741 33789 4965 3 123 1.24114721 1.21886940 +1.83%
681742 37416 5875 3 125 1.52396150 1.48609066 +2.55%
681743 39858 7250 3 176 1.65437604 1.61597732 +2.38%
681744 41973 7967 3 128 1.51750749 1.49366215 +1.60%
681745 43291 8687 3 195 1.43887144 1.41367160 +1.78%
681746 40951 7994 3 159 1.20973668 1.18488390 +2.10%
681747 39466 7515 3 141 1.10934511 1.09153173 +1.63%
681748 39123 7392 3 188 1.15656696 1.13553911 +1.85%
681749 38113 7214 3 118 1.09677982 1.06994853 +2.51%
681750 36515 6788 3 169 0.86701302 0.84502231 +2.60%
681751 36550 6794 3 132 0.50364127 0.49441269 +1.87%
681752 36661 6550 2 182 1.48995020 1.45118859 +2.67%
681753 36113 6555 3 152 1.08737204 1.06602783 +2.00%
681754 34164 6344 3 122 0.54606148 0.53454122 +2.16%
681755 33792 6209 3 149 0.99764178 0.99079588 +0.69%
681756 32005 5925 2 163 0.68265387 0.67000081 +1.89%
681757 30593 5587 2 121 0.64262189 0.62817897 +2.30%
681758 29659 5153 3 151 1.40618720 1.39134636 +1.07%
681759 30025 5230 3 139 0.92160374 0.90653020 +1.66%
681760 30507 5301 3 146 0.79691323 0.77947123 +2.24%
681761 30308 5195 3 158 0.84170137 0.82064635 +2.57%
681762 30626 5089 3 117 1.03641038 1.01285348 +2.33%
681763 35409 6306 3 174 1.62126813 1.58237716 +2.46%
681764 35769 6472 3 160 1.41243719 1.37652773 +2.61%
681765 33535 6039 3 121 0.84725060 0.82926047 +2.17%
681766 31299 5567 3 120 0.43660905 0.43107542 +1.28%
681767 31319 5402 3 166 1.02576384 1.00472613 +2.09%
681768 29472 5193 3 175 0.40257931 0.39617466 +1.62%
681769 28193 4620 3 162 0.38398402 0.38524465 -0.33%
681770 26461 3727 2 170 0.24132183 0.22053945 +9.42%
681771 25532 3139 2 153 0.39829964 0.31831705 +25.13%
681772 26248 3247 2 159 1.44575882 1.46178535 -1.10%
681773 26864 3398 2 162 1.47124550 0.69572765 +111.47%
681774 24733 3008 2 141 0.42943216 0.43013572 -0.16%
681775 24796 3011 2 140 0.45939623 0.12792332 +259.12%
681776 23142 2746 2 126 0.37246376 0.36564703 +1.86%
681777 22973 2786 2 128 0.79666808 0.73404594 +8.53%
681778 21402 2591 2 120 0.18574904 0.16262119 +14.22%
681779 21443 2593 2 120 0.25666972 0.13265033 +93.49%
681780 22127 2757 3 169 0.34191520 0.34546023 -1.03%
681781 23238 2816 2 131 0.77277192 0.76596395 +0.89%
681782 21336 2558 2 120 0.35848927 0.35196518 +1.85%
681783 20978 2537 2 119 0.25916462 0.23825538 +8.78%
681784 20584 2512 2 116 0.12759041 0.11706145 +8.99%
681785 22647 2778 2 127 0.77748036 0.77849247 -0.13%
681786 20548 2524 2 117 0.16653468 0.15830595 +5.20%
681787 21647 2687 2 123 0.82741649 0.82965631 -0.27%
681788 21385 2631 2 121 0.45095308 0.44175300 +2.08%
681789 20433 2504 2 118 0.26225203 0.25475921 +2.94%
681790 20169 2483 2 115 0.07722830 0.05665851 +36.30%
681791 20418 2463 2 117 0.23601696 0.22984366 +2.69%
681792 21053 2570 2 120 0.55817715 0.55249285 +1.03%
681793 20152 2459 2 114 0.14900975 0.11448200 +30.16%
681794 20136 2473 2 114 0.14462324 0.06667075 +116.92%
681795 20206 2307 2 115 0.37178710 0.35032445 +6.13%
681796 19806 2217 2 140 0.33822887 0.33057839 +2.31%
681797 20913 2413 2 124 1.44319780 1.46291810 -1.35%
681798 25021 3255 2 159 1.53952924 1.55797209 -1.18%
681799 23955 3080 2 156 1.16094207 1.16811242 -0.61%
681800 22997 2848 2 221 0.68890355 0.67315840 +2.34%
681801 21354 2517 2 204 0.32007874 0.31977864 +0.09%
681802 19488 2208 2 186 0.12761411 0.11148755 +14.46%
681803 18646 2033 2 178 0.35288418 0.34142871 +3.36%

Table 1. Experimental Results for Blocks 681734–681803. |Σ|
is the mempool size, |E| is the number of DCG edges, PW
is its pathwidth, and T is our runtime in seconds. The next
two columns show the amounts of transaction fees (in BTC)
obtained by our algorithm and the miners. The final column
is the improvement percentage obtained by our method.
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Block |Σ | |E | PW T Our Fee Miner’s Fee ∆

681804 18293 1934 2 172 0.39405665 0.38687641 +1.86%
681805 17542 1770 2 164 0.38287323 0.35712051 +7.21%
681806 17658 1760 2 165 0.52766519 0.40536363 +30.17%
681807 16282 1565 2 152 0.16574898 0.16245736 +2.03%
681808 16651 1600 2 157 0.45902543 0.41990118 +9.32%
681809 15962 1511 2 149 0.13608404 0.12461587 +9.20%
681810 18656 2038 2 177 0.92889911 0.91855954 +1.13%
681811 17120 1713 2 161 0.49517938 0.44597426 +11.03%
681812 15705 1497 2 146 0.12318392 0.07099044 +73.52%
681813 15995 1517 2 149 0.18683390 0.17602645 +6.14%
681814 15751 1500 2 147 0.19884083 0.18818186 +5.66%
681815 15832 1497 2 148 0.24194869 0.23771793 +1.78%
681816 16790 1637 2 157 1.26000000 1.25404659 +0.47%
681817 19561 1719 2 181 0.56026644 0.54588518 +2.63%
681818 18466 1552 2 170 0.19322899 0.05612528 +244.28%
681819 20927 2131 2 199 0.90247352 0.84845188 +6.37%
681820 18989 1725 2 176 0.16513421 0.16101704 +2.56%
681821 18582 1670 2 174 0.21646552 0.12519847 +72.90%
681822 19211 1753 2 180 0.37537688 0.37470292 +0.18%
681823 19201 1782 2 180 0.38947393 0.38651571 +0.77%
681824 18522 1657 2 173 0.17853084 0.15605582 +14.40%
681825 20277 2002 2 191 0.74520579 0.74584658 -0.09%
681826 20799 2094 2 197 0.74404969 0.74859451 -0.61%
681827 20144 2074 2 192 0.73620192 0.74241424 -0.84%
681828 22845 2727 2 221 1.15000000 1.17860979 -2.43%
681829 20948 2185 2 198 0.31153417 0.27106087 +14.93%
681830 20027 2016 2 189 0.10106824 0.08286468 +21.97%
681831 19954 2107 2 190 0.44243858 0.33474846 +32.17%
681832 19204 1881 2 181 0.26669875 0.26349802 +1.21%
681833 19333 1900 2 183 0.25954326 0.24630460 +5.37%
681834 22830 2394 3 216 1.18829963 1.21020196 -1.81%
681835 22958 2490 2 218 0.86038850 0.81974529 +4.96%
681836 22699 2471 2 215 0.69359493 0.70238558 -1.25%
681837 22314 2381 2 212 0.49068996 0.44416284 +10.48%
681838 21669 2238 2 205 0.32939677 0.32881838 +0.18%
681839 20902 2000 2 194 0.26930933 0.14015146 +92.16%
681840 20361 1920 2 192 1.25090867 1.07201308 +16.69%
681841 19742 1860 2 187 0.43602749 0.12506248 +248.65%
681842 19043 1702 2 178 0.35298249 0.34703486 +1.71%
681843 21536 1964 2 137 0.87763633 0.88259990 -0.56%
681844 24095 2709 2 230 1.04839823 1.05621396 -0.74%
681845 23533 2498 2 223 0.74771946 0.76224080 -1.91%
681846 24072 2501 2 225 0.67374226 0.68237093 -1.26%
681847 24712 2475 2 149 0.70987242 0.72193862 -1.67%
681848 23719 2259 2 222 0.35468574 0.35398619 +0.20%
681849 22188 2067 2 209 0.17834744 0.17492102 +1.96%
681850 21461 1960 2 201 0.39228623 0.35952578 +9.11%
681851 20082 1776 2 187 0.19677900 0.18721051 +5.11%
681852 20129 1784 2 186 0.20849708 0.05817860 +258.37%
681853 23312 2277 2 219 0.83331331 0.83738092 -0.49%
681854 20939 1945 2 197 0.11826813 0.11135318 +6.21%
681855 21778 1936 2 202 1.03044596 1.03805504 -0.73%
681856 22408 2061 2 211 0.67896948 0.69319732 -2.05%
681857 23435 2313 2 222 0.64131870 0.64982502 -1.31%
681858 23291 2154 2 221 0.46260132 0.39995396 +15.66%
681859 21169 1787 2 198 0.27755617 0.27668157 +0.32%
681860 20028 1736 2 187 0.06587330 0.06067005 +8.58%
681861 21063 1842 2 196 0.36890605 0.36699631 +0.52%
681862 21169 1861 2 197 0.40658124 0.40471842 +0.46%
681863 20694 1786 2 194 0.29448050 0.29225122 +0.76%
681864 20913 1813 2 195 0.34960082 0.34919726 +0.12%
681865 19869 1756 2 187 0.09183317 0.08745974 +5.00%
681866 23410 2317 2 223 0.86738169 0.80467475 +7.79%
681867 21386 1957 2 203 0.19065790 0.18611535 +2.44%
681868 20022 1756 2 190 0.14503619 0.11038115 +31.40%
681869 20809 1847 2 195 0.28632517 0.28383601 +0.88%
681870 20894 1864 2 200 0.35434630 0.17464953 +102.89%
681871 23737 2326 2 229 1.07131655 1.03957922 +3.05%
681872 22233 2017 2 212 0.94969343 0.94285913 +0.72%
681873 22492 2107 2 215 0.38716294 0.34265797 +12.99%

Table 2. Experimental Results for Blocks 681804–681873.

Block |Σ | |E | PW T Our Fee Miner’s Fee ∆

681874 28394 3234 2 276 1.11112209 1.13271836 -1.91%
681875 27454 3228 2 266 0.71416547 0.72278525 -1.19%
681876 28004 3248 2 272 0.91154430 0.80950891 +12.60%
681877 27033 2940 2 260 0.49491621 0.48321699 +2.42%
681878 28214 3215 2 273 0.69462672 0.62842664 +10.53%
681879 28250 3228 2 269 0.60589116 0.55993980 +8.21%
681880 28606 3196 2 277 0.71022444 0.69002064 +2.93%
681881 27908 3047 2 269 0.51260350 0.50781368 +0.94%
681882 28221 2983 2 271 0.55982050 0.56497381 -0.91%
681883 28060 2892 2 268 1.02171432 1.02494861 -0.32%
681884 27623 2858 2 266 0.42317091 0.42372837 -0.13%
681885 27062 2800 2 153 0.34959188 0.35020198 -0.17%
681886 25206 2532 2 140 0.22519442 0.20494211 +9.88%
681887 24443 2304 2 132 0.30833456 0.26772497 +15.17%
681888 24523 2384 2 134 0.62733265 0.55480357 +13.07%
681889 23134 2135 2 126 0.40131294 0.40244831 -0.28%
681890 22519 2049 2 130 0.35726334 0.35781887 -0.16%
681891 21137 1901 2 125 0.10312303 0.09693855 +6.38%
681892 21345 1925 2 122 0.15243122 0.08678203 +75.65%
681893 25521 2450 2 149 1.06829071 1.07560501 -0.68%
681894 24543 2292 2 146 0.76678077 0.77257066 -0.75%
681895 24472 2241 3 152 0.19276659 0.19059277 +1.14%
681896 24698 2288 2 146 0.74853698 0.76992820 -2.78%
681897 29239 3064 2 174 1.25975887 1.27352615 -1.08%
681898 29122 2740 2 171 0.60687628 0.60315257 +0.62%
681899 27735 2480 2 164 0.28608029 0.28352608 +0.90%
681900 29511 2756 3 180 1.01436727 0.92458580 +9.71%
681901 33319 3215 2 193 1.29056353 1.30119654 -0.82%
681902 33315 3227 3 195 0.93714642 0.93543105 +0.18%
681903 33387 3364 3 196 0.90695797 0.86950137 +4.31%
681904 36147 3721 3 214 0.88171277 0.87618954 +0.63%
681905 40881 4860 3 247 1.24915734 1.24243054 +0.54%
681906 42908 5410 3 122 1.18867622 1.15852898 +2.60%
681907 41358 5377 3 130 0.92948759 0.93374213 -0.46%
681908 40530 5064 2 170 0.82282871 0.81230693 +1.30%
681909 41687 5324 3 195 0.98208464 0.96757379 +1.50%
681910 41068 5262 3 194 0.80082229 0.79263390 +1.03%
681911 39159 4915 3 170 0.90061104 0.88108607 +2.22%
681912 39594 5012 3 181 0.80868621 0.80258654 +0.76%
681913 38174 4876 3 179 0.49615261 0.48603301 +2.08%
681914 37967 4731 2 189 0.70219291 0.69373341 +1.22%
681915 35933 4376 3 142 0.40742654 0.41054890 -0.76%
681916 34912 4248 3 159 0.47658574 0.48157128 -1.04%
681917 34911 3587 3 136 0.70336939 0.68696569 +2.39%
681918 33248 3218 3 180 0.42903424 0.42420651 +1.14%
681919 31610 2866 3 172 0.18974391 0.18075221 +4.97%
681920 34684 3354 3 195 1.15614827 1.16440835 -0.71%
681921 33776 3462 3 186 0.77919507 0.77187267 +0.95%
681922 31312 2849 3 174 0.37583396 0.36439951 +3.14%
681923 31458 2863 3 173 0.41843532 0.12063380 +246.86%
681924 27932 2289 3 150 0.27200923 0.26200284 +3.82%
681925 40039 4832 3 160 1.48506900 1.45820081 +1.84%
681926 37212 4214 3 128 0.95632846 0.95400555 +0.24%
681927 37283 4026 3 210 1.01107639 0.99706719 +1.41%
681928 34628 3678 3 192 0.87653132 0.85706590 +2.27%
681929 34285 3657 3 194 0.81977059 0.79080591 +3.66%
681930 33498 3310 3 189 0.83809034 0.79936893 +4.84%
681931 33314 3299 3 184 0.78243012 0.75338144 +3.86%
681932 31883 3140 3 182 0.50984406 0.48134728 +5.92%
681933 29964 2679 3 167 0.35799011 0.35028722 +2.20%
681934 28877 2331 3 155 0.37891934 0.35523773 +6.67%
681935 32143 2865 3 177 1.00401515 1.01302948 -0.89%

Table 3. Experimental Results for Blocks 681874–681935.
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