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Remarks on the Selberg–Delange method

Régis de la Bretèche & Gérald Tenenbaum

Abstract. Let % be a complex number and let f be a multiplicative arithmetic function whose
Dirichlet series takes the form ζ(s)%G(s), where G is associated to a multiplicative function g.
The classical Selberg-Delange method furnishes asymptotic estimates for the averages of f under
assumptions of either analytic continuation for G, or absolute convergence of a finite number of
derivatives of G(s) at s = 1. We consider different set of hypotheses, not directly comparable to the
previous ones, and investigate how they can yield sharp asymptotic estimates for the averages of f .

Keywords: Averages of multiplicative functions, Selberg-Delange method, Dirichlet series, powers
of the Riemann zeta function.
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1. Introduction and statement of results

In a series of papers published in 1953 and 1954, [12], [13], L. G. Sathe studied the local laws
of the arithmetic functions counting the number of prime factors, with or without multiplicity,
a problem previously considered by Hardy and Ramanujan. Sathe’s results provided asymptotic
formulae while only upper and lower bounds were previously known. However Sathe’s method,
based on induction formulae, involved very long and technical estimates. In the same year 1954,
Selberg devised a fruitful method based on the idea that the Dirichlet series of the search for
probabilities may be expressed through Taylor coefficients of powers of the Riemann zeta function.
This idea was then systematically developed by Delange [4], [5]. In the second author’s book [18]
(latest edition, first in 1990), the results were generalized and made effective regarding various
parameters—the method being there named after Selberg and Delange.

This theory provides estimates for counting functions associated to Dirichlet series of the form

(1·1) F (s) = ζ(s)%G(s),

where % is a complex number, ζ(s) is Riemann’s zeta function, and G(s) satisfies suitable regularity
conditions. Usually, G is associated with a multiplicative arithmetic function g, but this need not
be so — see, e.g., [11]. In the sequel, we shall however concentrate on the case when g is indeed
multiplicative. Then F (s) is the Dirichlet series of a multiplicative function f .

In [18], two types of assumptions on G(s) are considered : (a) analytic continuation at the left of
the vertical line σ = <e s = 1; (b) absolute convergence at s = 1 for a finite number of derivatives.

In a recent work [8], Granville and Koukoulopoulos, propose a third type of condition, implying
mere convergence, instead of absolute convergence, for a finite number of right-derivatives of G(s)
at s = 1 . However, their analysis actually rests upon a much stronger assumption, viz., for some
constant A > 0, not necessarily an integer,

(1·2)
∑
p6x

g(p) log p =
∑
n6x

{f(p)− %} log p� x/(log x)A (x > 2).

Some extra, secondary hypotheses are also needed for the values f(pν) at prime powers. Here and
in the sequel, the letter p denotes a prime number. For the sake of comparison, it is worthwhile to
note that hypothesis (b) above essentially amounts to

∑
p |g(p)|(log p)j/p <∞ for a finite number

of exponents j.
Similar, but weaker, conditions have been considered by Wirsing [21], in the frame of comparison

theorems, evaluating the ratio of averages of f and of a non-negative majorant. Via a further
weakening of the hypotheses, such results were improved in [22]. In [19], the second author
considered generalizations, and obtained effective forms of the results. In the present work, the
viewpoint is quite different: taking advantage of the strength of assumptions like (1·2), one aims at
directly deriving an asymptotic estimate for the averages of f . As in the classical Selberg-Delange
approach, this also enters in the frame of comparison theorems, but the average of f(n) is now
compared with that of τ%(n)—the nth coefficient in the Dirichlet series expansion of ζ(s)%— instead
of being compared with that of a majorant.
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Assuming (1·1), (1·2), and |f | 6 τr for some parameter r > 0, the main result in [8] states that,
with J := dA− 1e and suitable coefficients {λj(f)}Jj=0, we have, for x > 3,

(1·3) M(x; f) :=
∑
n6x

f(n) = x(log x)%−1

{ ∑
06j6J

λj(f)

(log x)j

}
+O

(
x(log2 x)δA,J+1

(log x)A+1−r

)
,

with Kronecker’s δ-notation. Here and henceforth, logk denotes the k-fold iterated logarithm.
Formula (1·3) is specially interesting when A is small, for less is then required on g. However,

it furnishes no more than an upper bound when A 6 r − <e %. Incidentally, under the weaker
assumption that the series ∑

p

g(p)

p

converges, and arguing as in [10] (see also [18; th. III.4.14]), theorem 1.1 of [19] readily yields, for
real f ,

(1·4) M(x; f)� x(log x)r−1−min{1,K(r−%)} (x > 2),

where K ≈ 0.32867 is optimal. Moreover, in the case % = 0, the same technique furnishes

(1·5) M(x; f)� x(log x)r−1−min{1,(1−2/π)r} (x > 2).

In particular, (1·4) supersedes (1·3) as soon as A < K(r − %) 6 1. Analogous upper bounds are
available for complex f , under suitable hypotheses upon f(p): see e.g. [9].

The purpose of the present work is two-fold: (a) to investigate refinements of (1·2) enabling an
improvement of the error term in (1·3) by replacing the exponent r of log x by <e %, as expected
in view of standard estimates in the theory; (b) to propose a simpler and more natural (i.e. relying
on a direct convolution argument) proof of (1·3), with possibly weaker hypotheses.

In the first direction, we meet the set goal when <e % > 0, where % is the exponent appearing in
the generic assumption (1·1). This latter restriction is actually necessary for achieving target (a):
we construct a family of counter-examples in Section 5.1.

In the following statement, hypothesis (1·2) is replaced by a short interval version, with the same
value of A. The other assumptions concern |f |: we use those now classical introduced by Shiu [15],
although they could be somewhat weakened if needed. Accordingly, we define the class S(B) of
those multiplicative functions f such that:

(i) |f(pν)| 6 Bν (ν > 0),

(ii) ∀ε > 0 ∃C = Cε : |f(n)| 6 Cεn
ε (n > 1),

and, for r > 0, we consider the subclass S(B, r) of those f satisfying the extra assumption:

(iii)
∑
p6x

|f(p)|
p

6 r log2 x+O(1) (x > 3).

Theorem 1.1. Let A > 0, B > 0, 0 < α < 1, r > 0, % ∈ C, J := dA− 1e, and let f ∈ S(B, r)
verify

(1·6)
∑

x<p6x+z

f(p) log p = %z +O
( z

(log x)A

)
(x > 2, x1−α 6 z 6 x).

Then, for suitable constants {λj(f)}06j6J and with ϑ := B + |%|+ 1, we have

(1·7) M(x; f) = x(log x)%−1
∑

06j6J

λj(f)

(log x)j
+O

(
x(log2 x)ϑ

(log x)A+1−max(0,<e %)

)
(x > 3).
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The coefficients λj(f) may be described as follows. Representing f = τ%∗g consistently with (1·1),
we prove the convergence of the series

(1·8) γj(g) :=
∑
n>1

g(n)(log n)j

n
(0 6 j 6 J),

and derive

(1·9) λj(f) =
1

Γ(%− j)
∑
`+h=j

α`(%)γh(g)

`!h!
(0 6 j 6 J),

where Γ is Euler’s function and α`(%)/`! is the `-th Taylor coefficient at the origin of

{sζ(s+ 1)}%/(s+ 1).

Alternatively, we also have

(1·10) λj(f) =
dj{s%F (s+ 1)/(s+ 1)}

j!Γ(%− j) dsj
(0+) (0 6 j 6 J).

In particular, λj(f) = 0 for all j if % in an integer 6 0.
As for our second aim, namely goal (b) described above, we apply friable convergence (see below)

to show the following result, essentially equivalent, in the intersection of the respective validity
domains, to [8; th. 1]. For r > 0, σ ∈]0, 1[, we define the class F(r, σ) comprising those complex
multiplicative functions f such that

(1·11)

∑
v<p6w

|f(p)|
p

6 r log
( logw

log v

)
+O(1) (w > v > 2),

∑
p

{ |f(p)|2

p2σ
+
∑
ν>2

|f(pν)|
pνσ

}
<∞.

These conditions are weaker than those of [8; th. 1] and not directly comparable to those
described in [8; § 7]. For instance, letting pk denote the kth prime number, conditions (1·11) allow
f(pk2) � k/ log 2k, whereas the latter do not.

Contrary to that of [8], our analysis does not ascribe a special role to the case when A is an
integer.

Theorem 1.2. Let A > 0, J := dA− 1e, r > 0, % ∈ C, σ ∈]0, 1[, and let f ∈ F(r, σ) be a
multiplicative function such that p 7→ g(p) := f(p) − % verifies (1·2). Then, for suitable constants
β > 0 and {λj(f)}06j6J , we have

(1·12) M(x; f) = x(log x)%−1
∑

06j6J

λj(f)

(log x)j
+O

(
x(log3 x)β

(log x)A+1−r

)
.

We shall see that the λj(f) are still given by (1·10).
In Section 5.2, we show that, even when <e % > 0, the remainder term of (1·12) cannot be

sharpened so as to meet that of (1·7) —although a possibility of some improvement remains open
if f is real. To this end, we construct a family of counterexamples f ∈ F(σ, r) satisfying (1·2) with
% = 0, 0 < A < r (resp. 0 < A < 2r/π in the real case), but contravening the short interval
condition (1·6), and for which the exponent r in (1·12) cannot be replaced by cr if c < 1 (resp.
c < 2/π).

As a final remark, we note the following: as that of [8], our analysis heavily depends on the
asymptotic expansion for

(1·13) T%(x) := M(x; τ%) =
∑
n6x

τ%(n)

provided by the Selberg-Delange method; since the arithmetical functions under consideration are
of the form f = g ∗ τ%, refinements regarding hypotheses on g or on its generating series G(s) may
hence be regarded as genuine parts of this theory.
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2. On the case % = r

The bound (1·4) shows that the error term of (1·3) is not optimal in the general case. Moreover,
Theorem 1.1 provides fairly standard assumptions under which an essentially optimal remainder
is achieved. However, inasmuch the power of the logarithm is concerned, (1·3) is expected to be
sharp when % = r. This latter case is discussed in [8], where it is confirmed that the error term
may be replaced by a quantity � x(log x)r−A−1 when % = r > 1, A /∈ Z.

Assuming % = r essentially amounts to considering f > 0. In this latter circumstance, an
asymptotic formula with optimal remainder may be obtained in a very simple way under lighter
hypotheses. We present the details below.

Theorem 2.1. Let A > 0, σ ∈]0, 1[, r > 0, and assume f is a non-negative multiplicative function
such that

(i)
∑
p6x

f(p) log p = rx+O
( x

(log x)A

)
(x > 2),

(ii)
∑
p

{
f(p)2

p2σ
+
∑
ν>2

f(pν)

pνσ

}
<∞.

We then have

(2·1) M(x; f) = λ0(f)x(log x)r−1
{

1 +O
( (log2 x)δ1,A

(log x)min(1,A)

)}
(x > 2),

with λ0(f) :=
1

Γ(r)

∏
p

(
1− 1

p

)r∑
ν>0

f(pν)

pν
·

Proof. We have

(2·2)

M(x; f) log x =
∑
n6x

f(n) log n+
∑
n6x

f(n) log(x/n)

=
∑
m6x

f(m)
∑

pν6x/m
p -m

f(pν) log pν +

∫ x

1

M(t; f)

t
dt

= rx
∑
m6x

f(m)

m
+O

(
R+ S + x(log x)r−1

)
,

with

R :=
∑
mp6x
p |m

f(m)f(p) log p+
∑

pνm6x
ν>2

f(m)f(pν) log pν , S :=
∑
m6x

xf(m)

m(log 2x/m)A
,

and where the last integral has been estimated by an Halberstam-Richert type bound—see, e.g.,
[18; th. III.3.5].

Now, with α := (σ + 1)/2 < 1, we have

R 6
∑
m6x

f(m)
∑

pνm6x
ν>2

{f(p)f(pν−1) + f(pν)} log pν

�
∑
m6x

f(m)xα

mα

∑
p

∑
ν>2

f(p)f(pν−1) + f(pν)

pνσ
�
∑
m6x

f(m)xα

mα
� x(log x)r−1,

where we used assumption (ii). Moreover, partial summation furnishes

S � x(log x)r−1−min(1,A)(log2 x)δ1,A .

It remains to note that, by [20; th. 3.3] (with κ = r and y = x), we have∑
m6x

f(m)

m
=
{

1 +O
( 1

log x

)}λ0(f)

r
(log x)r (x > 2),

and carry back into (2·2). ut
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3. Proof of Theorem 1.1

3·1. Preparation

Given % ∈ C, let M(%) denote the class of those multiplicative functions f satisfying

(3·1) f(pν) = τ%(p
ν) + τ%(p

ν−1){f(p)− %} (p > 2, ν > 1).

When f ∈ S(B, r), we can write f = f ∗ h where f ∈ M(%), h is multiplicative, supported on the
set of squareful integers, and such that the series∑

n>1

h(n)(log n)j

n
(j > 0)

are absolutely convergent and uniformly bounded in terms of B for bounded j. This is enough to
yield the required estimate, arguing as in [18; th. II.5.4]. Therefore, it will be sufficient to prove
that (1·7) holds when f ∈M(%), |f(p)| 6 B, and f satisfies (1·6).

As a consequence of this reduction, we can assume that f = τ% ∗ g, where g is supported on the
set of squarefree integers. Moreover, g ∈ S(B, r + |%|) with B := B + |%|, and satisfies (1·2).

3·2. Main estimates

The main part of the argument consists in providing effective estimates for averages of the
function g defined above.

Lemma 3.1. For a suitable constant c0 and uniformly for x > 3, 0 6 j 6 J, k � log2 x, we have

(3·2)
Gj,k(x) :=

∑
n6x

ω(n)=k

g(n)(log n)j � x(B log3 x+ c0)k−1

(k − 1)!(log x)A+1−j ·

For further reference we note right away that a consequence of (3·2) is that

Gj(x) :=
∑
n6x

g(n)(log n)j �j
x(log2 x)B

(log x)A+1−j (j > 0, x > 3),(3·3)

gj(x) :=
∑
n6x

g(n)(log n)j

n
= γj(g) +O

(
(log2 x)B

(log x)A−j

)
(0 6 j 6 J, x > 3).(3·4)

Indeed, it suffices to apply, e.g., lemma 1 from [17] in order to note that, for large, constant D, the
contribution of those n with ω(n) > D log2 x is negligible and then appeal to (3·2) for k 6 D log2 x.

In the following proof and henceforth, we let P+(n)—resp. P−(n)—denote the largest—resp. the
smallest—prime factor of an integer n > 1, and make the standard convention that P+(1) = 1,
P−(1) =∞.

Proof of Lemma 3.1. By partial summation, it is enough to consider j = 0. We may also plainly
restrict to bounding the subsum over n ∈]

√
x, x].

Given a suitably large parameter K, set X := (log x)K and represent each n arising in (3·2) as
n = md with P+(m) 6 X, P−(d) > X. By, for instance, [16; lemma 2] (a Rankin-type bound), we
see that the contribution to G0,k(x) of d 6 x1/4 is, for suitable positive constants cj ,

�
∑

d6x1/4

|g(d)|
∑

x1/4<m6x/d
P+(m)6X

|g(m)| �
∑

d6x1/4

|g(d)|
d

x1−c1/ log X � x1−c2/ log X.

Whence

(3·5)

G0,k(x) =
∑
s+t=k
t>1

∑
m6x3/4

ω(m)=s

P+(m)6X

g(m)Gt
( x
m

;X
)

+O
(
x1−c3/ log2 x

)
,
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with

(3·6) Gt(w;X) :=
∑

x1/4<d6w
ω(d)=t

P−(d)>X

g(d)
(
1 6 t 6 k, x1/4 < w 6 x

)
.

Let H := αK, where α > 0 is the constant appearing in (1·6), and let δ := 1/(log x)H. Put
I(`) :=]eδ`, eδ(`+1)] (` > L := (K log2 x)/δ). The contribution to (3·6) from those integers d having
at least two prime factors in a same interval I(`) is

� Bt
∑

16j<t

∑
X<p1<···<pt
p1···pt6w
pj+1<pje

δ

w

p1 · · · pt
� δw(logw)B � w

(log x)A+2
,

for a suitable choice of K and hence of H.
For the remaining integers, split the prime factors of the summation variable d in (3·6) among the

various I(`) and consider the multiple sum over all hypercubes that are hit. If `1 < `2 < . . . < `t is
a sequence of admissible indexes, then δ(`1 + . . .+ `t) 6 logw since d 6 w in (3·6). If some product
v :=

∏t
j=1 pj happens to be > w, we must have w < v 6 wetδ. Therefore the total contribution of

those admissible hypercubes containing at least one product > w is

�
∑

w<v6wetδ

Bω(v)µ(v)2 � w(logw)B−1δt� w

(log x)A+2
·

We have shown so far that, for relevant values of t and w,

Gt(w;X) = St +O

(
w

(log x)A+2

)
,

with, for some absolute constants Cj (j = 0, 1),

St :=
∑

L<`1<···<`t
(log x)/4δ<`1+...+`t6(logw)/δ

∏
16j6t

∑
p∈I(`j)

g(p)

�
∑

L<`1<···<`t
(log x)/4δ<`1+...+`t6(logw)/δ

∏
16j6t

C0e`jδ

δA`A+1
j

� Ct1t
A+1

(t− 1)!(Lδ)A(t−1)

∑
(log x)/4δ<`6(logw)/δ

eδ`

δA`A+1

� Ct1t
A+1w

(t− 1)!(δL)A(t−1)(log x)A+1
� w

(t− 1)!(κ log2 x)t−1(log x)A+1
,

where κ = κ(K) may be chosen as large as we wish. Here, we made use of the short-interval
assumption (1·6) at the very first step. In the third line, we set ` := `1 + . . . + `t and bounded
1/`A+1

t by tA+1/`A+1. Carrying back into (3·5), we obtain

G0,k(x)�
∑
s+t=k
t>1

x(B log3 x+ c3)s

s!(t− 1)!(κ log2 x)t−1(log x)A+1
� x(B log3 x+ c4)k−1

(k − 1)!(log x)A+1
,

provided K, and therefore κ, is suitably chosen. This is the required estimate. ut
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3·3. Completion of the argument

It is now a simple matter to derive (1·7). Recalling definition (1·13), we have

M(x; f) =
∑
n6x

g(n)T%

(x
n

)
.

By (3·4) and partial summation, we have

(3·7) gj(y) =
∑
n6y

g(n)(log n)j

n
� j(log y)j−A(log2 y)B+δA,J+1 (y > 3, j > J).

Recall the definition of the coefficients αh(%) appearing in (1·9) and put

νh := αh(%)/h!Γ(%− h) (h > 0).

By [18; th. II.5.2], for a suitable constant b, we have νh � (bh+ 1)h and

(3·8) T%(x) = x(log x)%−1

{ ∑
06h6H

νh
(log x)h

+O

(
(bH + 1)H+1

(log x)H+1

)}
(x > 2),

uniformly for H � (log x)1/3, say.
Now Dirichlet’s hyperbola formula provides

M(x; f) = U + V +O
(
x(log x)%−1−A

)
,

with

U :=
∑
n6
√
x

g(n)T%

(x
n

)
, V :=

∑
d6
√
x

τ%(d)
∑

√
x<n6x/d

g(n).

The sum V may be treated as an error term: for d 6
√
x, we have, by (3·3),

∑
√
x<n6x/d

g(n)� x(log2 x)B

d(log x)A+1
·

By distributing the variable d into intervals ]e−δ(j+1)
√
x, e−δj

√
x] and approximating the corre-

sponding n-range by [
√
x,
√
xeδj ] with δ := 1/(log x)K for suitably large K, we obtain

V �
∑
j>0

ejδ6
√
x

∣∣∣∣{G0

(
eδj
√
x
)
−G0

(√
x
)} ∑

e−δ(j+1)
√
x<d6e−δj

√
x

τ%(d)

∣∣∣∣+
x

(log x)A+1

� xδ(log2 x)B

(log x)A+1

∑
j>0

ejδ6
√
x

{(log x)− 2jδ + 1}<e %−1

� x(log2 x)B

(log x)A+1

{
1 + (log2 x)δ0,<e %(log x)<e %

}
,

with Kronecker’s notation.
Finally, we apply (3·8) with H = dA+ 2re to get

U = x
∑
n6
√
x

g(n)

n

{ ∑
06h6H

νj

(
log

x

n

)%−h−1

+O
(

(log x)<e %−H−2
)}
.
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From the expansion(
log x/n

log x

)%−h−1

=
∑

06k6K

ckh

( log n

log x

)k
+O

(
K |%−1−j|

( log n

log x

)K)
(1 6 n 6

√
x)

with ckh � k|%−1−h|, we get, for each h ∈ [0, H],

(3·9)
∑
n6
√
x

g(n)

n

(
log x/n

log x

)%−h−1

=
∑

06k6K

ckh
gk
(√
x
)

(log x)k
+O

(
K |%−1−h|

2K
(log2 x)B

)
,

where we used the trivial estimate |g| 6 Bω to bound the error term.
Select K := b2(A+ B + 1) log2 xc. Applying (3·4) for j 6 J , and (3·7) when J < j 6 H, we get

U = x(log x)%−1

{ ∑
06j6J

λj(f)

(log x)j
+O

(
(log2 x)B+δA,J+1

(log x)A

)}
,

the exponent δA,J+1 arising from that in (3·7). This completes the proof.

4. Proof of Theorem 1.2—friable summation

4·1. Setting

An integer n such that P+(n) 6 y is said to be y-friable. Friable summability of series, was
defined in [6], [7], and has been employed systematically in [1], [2], [3]. A series

∑
n>1 an is said to

be friably summable to a (or is said to have friable sum a) if the subseries∑
n>1

P+(n)6y

an

converges for each y > 2 and tends to a as y tends to infinity. We then write∑
n>1

an = a (P ).

Letting ζ(s) denote Riemann’s zeta function, it is well known that, for any given real number
τ 6= 0, the series

∑
n>1 1/n1+iτ has friable sum ζ(1 + iτ) (by the convergence of the Eulerian

product on the pointed line 1 + iτ , τ 6= 0), while being divergent in the ordinary meaning.
We shall show that, representing f as a Dirichlet convolution f = τ% ∗ g, then, for 0 6 j 6 J , we

have

(4·1) γj(g) :=
∑
n>1

g(n)(log n)j

n
(P ).

With this notation, the coefficients λj(f) appearing in (1·12) are given by

(4·2) λj(f) =
1

Γ(%− j)
∑
`+h=j

α`(%)γh(g)

`!h!
(0 6 j 6 J),

while (1·10) remains valid.

4·2. Reduction

Let g be exponentially multiplicative, i.e. such that g(pν) = g(p)ν/ν! for all primes p and all
integers ν > 0,(1) and define g(p) := f(p) − %. Put f := τ% ∗ g. Then f = f ∗ h where h is

1. This concept has been extensively used in the literature, in particular by Wirsing [22].
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multiplicative, supported on the set of squareful integers, and, for each p, the values h(pν) are
given by the power series expansion∑

ν>0

h(pν)ξν = (1− ξ)%e−ξg(p)
∑
ν>0

f(pν)ξν (|ξ| < 1/pσ).

Thus,
∑
n>1 |h(n)|/nτ < ∞ for all τ > σ and so, by a standard convolution argument left to the

reader, we may restrict to proving (1·12) for f.
We note right away that g ∈ F(2r, σ) and that (1·2) holds. Introducing the series∑

P+(n)6y

g(n)

ns
= exp

{∑
p6y

g(p)

ps

}
(<e s > 1),

we readily see by partial summation that the right-derivatives of any order j 6 J at s = 1 of the
left-hand side converge to a limit as y → ∞, in other words that (4·1) holds. Moreover partial
summation yields that, for integer j and y > 2,

(4·3) γj(y; g) :=
∑

P+(n)6y

g(n)(log n)j

n
=

{
γj(g) +O

(
(log y)j−A

)
(0 6 j 6 J),

O
(
j!(log y)j−A(log2 y)δj,A

)
(j > J).

To prove this, observe that, for |w| 6 1/ log y, we have

∑
p6y

g(p)

p1−w =
∑
k>0

∑
p6y

g(p)wk(log p)k

k!p
=
∑
k6J

{
µkw

k

k!
+O

(
1

k!(log y)A

)}
+O

(
(log2 y)δA,J+1

(log y)A

)

=
∑
k6J

µkw
k

k!
+O

(
(log2 y)δA,J+1

(log y)A

)
,

with µk :=
∑
p g(p)(log p)k/p (0 6 k 6 J). Estimate (4·3) then follows from Cauchy’s formula.

4·3. An auxiliary estimate

For f = τ% ∗g and g as above, let us write f = τ% ∗gy ∗hy, where gy and hy are the multiplicative
functions defined by

gy(pν) := 1{p6y}g(pν), hy(pν) = 1{p>y}g(pν) (p > 2, ν > 1).

Our first goal is to estimate

Hy(x) :=
∑

y<n6x

hy(n) (2 6 y 6 x).

Lemma 4.1. Uniformly for x > y > 2, and with u := (log x)/ log y, we have

(4·4) Hy(x)� xu2r

(log x)A+1
·

Proof. We have

Hy(x) =
∑

y<p6x
pν6x

g(pν) +
∑

y<m6x/y

hy(m)
∑

pν6x/m
p>P+(m)

g(pν)� x

(log x)A+1
+ S,

with

S :=
∑

y<m6x/y
mP+(m)6x

|hy(m)|x
m{log(x/m)}A+1

.



10 R. de la Bretèche & G. Tenenbaum

Writing m = nqν with P+(n) < q, where, here and in the sequel of this proof, q denotes a prime
number, we have

S =
∑
q>y
ν>1

|g(q)|ν

ν!qν

∑
n6x/qν+1

P+(n)<q

|hy(n)|x
n{log(x/nqν)}A+1

,

.

Let S− denote the contribution to S of n = 1, and S+ that of n > y. We plainly have

S− �
∑
ν>1

∑
y<q6x1/(ν+1)

|g(q)|νx
ν!qν(log x/qν)A+1

�
∑
ν>1

∑
y<q6x1/(ν+1)

x|g(q)|ν(ν + 1)A+1

ν!qν(log x)A+1
� x log(2u)

(log x)A+1
·

In order to majorize S+, we appeal to the Rankin-type bound

∑
y<n6t
P+(n)6q

|hy(n)| � t1−c/ log q (log t)2r−1

(log y)2r
(t, q > y),

where c > 0 is an abolute constant. It follows that

S+ �
∑
ν>1

∑
y<q6x1/(ν+1)

x|g(q)|ν

ν!qν

∫ x/qν+1

y

1

t(log x/tqν)A+1
dO
( t1−c/ log q(log t)2r−1

(log y)2r

)

�
∑
ν>1

∑
y<q6x1/(ν+1)

x|g(q)|ν

ν!qν(log y)2r

∫ x/qν+1

y

(log t)2r−1 dt

t1+c/ log q(log x/tqν)A+1

�
∑
ν>1

∑
y<q6x1/(ν+1)

x|g(q)|ν(log q)2r−A−1

ν!qν(log y)2r

∫ (log x)/(log q)−ν−1

0

e−cww2r−1 dw

{(log x)/(log q)− ν − w}A+1

�
∑
ν>1

∑
y<q6x1/(ν+1)

x|g(q)|ν(log qν)2r

ν!qν(log y)2r(log x)A+1
� xu2r

(log x)A+1
·

ut

4·4. Completion of the argument

Put fy := τ% ∗ gy and let y := xc/ log2 x, where c is a sufficiently small constant. We have

M(x; fy) = Vy(x) + Ey(x)

with

Vy(x) :=
∑
n6
√
x

gy(n)T%

(x
n

)
, Ey(x) :=

∑
d6
√
x

τ%(d)
∑

√
x<n6x/d

gy(n).

We immediately note that a Rankin-type estimate such as [16; lemma 2] provides

(4·5) Ey(x)� x1−1/ log y
∑
d6x

τr(d)

d
� x(log x)%−1−N ,

for any given integer N .
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From (3·8), we deduce, for any fixed integer H, that

Vy(x) = x
∑
n6
√
x

gy(n)(log x/n)%−1

n

{ ∑
06h6H

νh
(log x/n)h

+OH

(
1

(log x)H+1

)}
.

Using the bound provided by (1·11) and selecting H sufficiently large in terms of r, we get that
the overall contribution of the above remainder term is

� x(log x)%+2r−H−2 � x(log x)%−1−N ,

for any given integer N .
Appealing to (3·9) for gy, we may write

(4·6)
∑
n6
√
x

gy(n)

n

(
log x/n

log x

)%−h−1

=
∑

06k6K

ckh
∑
n6
√
x

gy(n)

n

( log n

log x

)k
+O

( 1

(log x)N+r+1

)
,

for sufficiently large K. Let v := 1/ log y. For all 0 6 k 6 K, we have, by Rankin’s device again,
provided c is suitably chosen,

∑
n>
√
x

|gy(n)|(log n)k

n
6

k!

vkxv/4
exp

{∑
p6y

|gy(p)|
p1−v/2

}
� k!

xv/4
(log y)k+2r � 1

(log x)N+r+1
·

We may therefore extend, in (4·6), the inner n-sum to all y-friable integers without perturbing the
error. Taking (4·5) into account, we thus obtain

M(x; fy) = x(log x)%−1

{ ∑
06h6H

νh
(log x)h

∑
06k6K

ckh
γk(y; g)

(log x)k
+O

(
1

(log x)N

)}
,

which, by rearranging the double sum, yields

(4·7) M(x; fy) = x(log x)%−1

{ ∑
06j6K+H

λj(y; f)

(log x)j
+O

(
1

(log x)N

)}

where, in view of (4·3),

(4·8) λj(y; f) = λj(f) +O
(
jj(log y)j−A(log2 y)δA,j

)
(0 6 j 6 K +H),

with the convention that, say, λj(f) = 0 for j > J .
By Dirichlet’s hyperbola formula, we have

(4·9) M(x; f − fy) = M(x; fy ∗ hy − fy) = S + U −W,

with

S :=
∑
n6
√
x

fy(n)Hy

(x
n

)
, U :=

∑
y<m6

√
x

hy(m)M
( x
m

; fy

)
, W := M

(√
x; fy

)
Hy

(√
x
)
.

Now

S �
∑
n6
√
x

|fy(n)|x(log2 x)2r

n(log x)A+1
� x(log2 x)2r

(log x)A+1−r ,

and similarly

W � x(log x)%−A−2(log2 x)2r � x(log2 x)2r

(log x)A+1−r .
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To estimate the sum U , we insert (4·7) and evaluate the contribution of the main terms by partial
summation from (4·4). Taking (4·8) into acount, we obtain

U � xu2r(log x)%−A−1.

Recalling (4·7), (4·8) and (4·9), we have thus almost reached (1·12), but with a remainder term

R(x; f)� x(log2 x)2r

(log x)A+1−r ·

We now show that an inductive argument enables us to replace (log2 x)2r by a power of log3 x.
Indeed, under assumption (1·11), consider the exponentially multiplicative function ϕ defined by

ϕ(pν) = f(p)ν/2νν! (p > 2, ν > 1).

Then ϕ ∈ F(r/2, σ). Moreover, we may write f = ϕ ∗ ϕ ∗ ψ with

ψ(pν) =
∑

06j6ν

(−1)jf(p)jf(pν−j)

j!
(ν > 1).

Thus ψ(p) = 0 and, writing εp := |f(p)|2/p2σ +
∑
ν>2 |f(pν)|/pνσ, we have

∑
ν>2

|ψ(pν)|
pσν

6
∑
j+k>2

|f(p)|j |f(pk)|
j!pσ(k+j)

6 εp +
|f(p)|
pσ

εp + εpe
|f(p)|/pσ

{
1 +
|f(p)|
pσ

+ εp

}
� εp.

Applying the estimate already proved for ϕ and writing the hyperbola formula for f furnishes

R(x; f)� x(log2 x)r

(log x)A+1−r ·

After k + 1 iterations, the exponent of log2 x becomes r/2k, while the implicit constant in the
upper bound for R(x; f) gets multiplied by Ck for a suitable constant C. Selecting k � log4 x
yields (1·12).

5. Limitations

5·1. Optimatility of Theorem 1.1

We show here that it is not possible, in general, to replace max(0,<e %) by <e % in the error term
of (1·7). To this end, we initially consider the completely multiplicative function g0 defined by

g0(pν) := 1/(log p)Aν (p > 2, ν > 1)

with 0 < A < 1—note however that, at the cost of slightly more complicated computations, our
approach would work for any positive A. As a preliminary step we show that, for a suitable constant
C, we have

(5·1) M(x; g0) =
Cx

(log x)A+1

{
1 +O

( 1

(log x)A

)}
(x > 2).

Indeed, on the one hand, since
∑
g0(n)/n <∞, we have

(5·2) M(x; g0)� x/ log x (x > 2),
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and, on the other hand,

(5·3)

M(x; g0) log x−
∫ x

1

M(t; g0)

t
dt =

∑
m6x

g0(m)
∑

d6x/m

g0(d)Λ(d)

= x
∑
m6x

g0(m)

m(log 2x/m)A
+O

(
x
∑
m6x

g0(m)

m(log 2x/m)A+1

)
.

From this and (5·2), we deduce that M(x; g0)� x/(log x)A+1 (x > 2). Carrying this estimate back
into (5·3) yields

M(x; g0) =
x

log x

∑
m6x

g0(m)

m(log 2x/m)A
+O

( x

(log x)A+2

)
.

=
x

log x

∑
m6
√
x

g0(m)

m(log x/m)A
+O

( x

(log x)2A+1

)
=

x

(log x)A+1

∑
m6
√
x

g0(m)

m

{
1 +O

( logm

log x

)}
+O

( x

(log x)2A+1

)
=

x

(log x)A+1

∑
m6
√
x

g0(m)

m
+O

( x

(log x)2A+1

)
,

which implies (5·1) with C :=
∑
m>1 g0(m)/m.

Next, define g(n) := g0(n)ni (n > 1). By partial summation, we have

(5·4) M(x; g) =
Cx1+i

(1 + i)(log x)A+1

{
1 +O

( 1

(log x)A

)}
(x > 2).

Now, select % = −r, with A < r < 1 and define f = g ∗ τ%. This function satisfies the hypotheses
of Theorem 1.1. By the hyperbola formula, we have, for 1 6 y 6 x,

(5·5) M(x; f) = U + V −W

with
U :=

∑
n6x/y

g(n)T%

(x
n

)
, V :=

∑
n6y

τ%(n)M
(x
n

; g
)
, W := T%(y)M

(x
y

; g
)
.

We choose y := ea(log2 x)2 , where a is a sufficiently large constant. We plainly have

W � x

(log y)r+1(log x)A+1
.

The sum U may be evaluated by the Selberg-Delange method in the form given in [18; § II.5.4,
Notes]. For suitable positive constants b, c, we have

T%(x) =

∫ b

0

α(t)x1−ttr dt+O
(
xe−c
√

log x
)

(x > 2),

where α is continuous on [0, b]. Since we may deduce from (5·4) that

Z(t) :=
∑
n6x/y

g(n)

n1−t �
(x/y)t

(log x)A+1
(0 6 t 6 b),

we get, with an appropriate choice of a,

U =

∫ b

0

α(t)x1−tZ(t)tr dt+O
( x

(log x)A+2

)
� x

(log x)A+1(log y)r+1
·
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Finally

V =
Cx1+i

(1 + i)(log x)A+1

∑
n6y

τ%(n)

n1+i

{
1 +O

( log n

log x

)}
+O

(
x

(log x)2A+1

∑
n6y

τr(n)

n

)

=
{1 + o(1)}Cx1+i

(1 + i)ζ(1 + i)r(log x)A+1
·

Carrying back into (5·5), we obtain

M(x; f)� x

(log x)A+1
,

which implies the stated property.

5·2. Optimality of Theorem 1.2

We show here that the exponent r appearing in the remainder term of (1·12) cannot in general
be replaced by <e %, even when <e % > 0. To this end we exhibit a function f belonging to F(σ, r)
for 1/2 < σ < 1 and for which: (i) condition (1·6) fails, (ii) % = 0, 0 < A < r, and (iii) given
any c < 1, one cannot replace r by cr in (1·12). If f happens to be real, the conditions become
0 < A < 2r/π and c < 2/π. Our construction relies on exploiting possible resonance between f(p)
and pit for certain values of the real parameter t.

Let A > 0, r > 0, C > 0 (large), and let xk := exp expCk, tk := (log xk+1)A (k > 1). Put
ϕ(v) := eiv and define f as the exponentially multiplicative function such that f(p) := rϕ(tk log p)
whenever xk < p 6 xk+1 and, say, f(p) = 0 when p 6 x1. Observe that

∫ y
0
ϕ(tw) dw � 1/t

(t > 1, y > 0). Due to the rapid increase of xk, partial summation hence yields∑
p6x

f(p) log p� x

(log x)A
(x > 2).

Now, for x := xk+1, t := tk, σ := 1 + 1/ log x, we have

(5·6)

∣∣∣∣∣∣
∑
n>1

f(n)

nσ+it

∣∣∣∣∣∣ �
∏
h6k

eSh � t

∫ x

1

|M(y; f)|
y2

dy

with

Sh := r
∑

xh<p6xh+1

<e {f(p)/pit}
p

(1 6 h 6 k).

Of course

(5·7) Sk : = rlog
( log xk+1

log xk

)
+O(1) = rCk+1(1− 1/C) +O(1).

Next, for 2 log k < h 6 k − 1, we have, by the prime number theorem in a strong form,

Sh = r

∫ xh+1

xh

cos{(tk − th) log v)}
v log v

dv +O(1)

= r

∫ log xh+1

log xh

cos{(tk − th)w}
w

dw +O(1)� 1

tk log xh
+ 1� 1.

Bounding Sh trivially for h 6 2 log k, we finally get∑
h6k

Sh > rCk+1(1− 1/C) +O
(
k2 logC

)
= r(1− 1/C) log2 x+O

(
(log3 x)2 logC

)
.
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Carrying back into (5·6) yields∫ x

1

|M(y; f)|
y2

dy � (log x)r(1−1/C)−A+o(1).

and so, as x→∞, provided A < r(1− 1/C),

(5·8) M(x; f) = Ω

(
x

(log x)A+1−r(1−1/C)+o(1)

)
.

Since C may be chosen arbitrarily large, this furnishes the required result.
If we require f to be real, we define ϕ(v) := sgn(cos v) (v ∈ R). Since ϕ(v) cos v has mean value

2/π, we obtain Sk = (2r/π)Ck+1(1− 1/C) +O(1) instead of (5·7), appealling, e.g., to [18; Lemma
III.4.13]. The remainder of the analysis is essentially identical and so we get (5·8) with 2r/π in
place of r. It is noticeable that, provided A is suitably chosen, the implied lower bound and (1·5)
may agree to an arbitrary small power of log x.

Remark. The above construction shows that assumptions f ∈ F(σ, r) (σ < 1, r > 1) and (1·2) with
% = 0, 0 < A < r − 1, are insufficient to imply the convergence of the series

∑
n>1 f(n)/n.
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[7] É. Fouvry & G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London
Math. Soc. (3) 63 (1991), 449–494.

[8] A. Granville & D. Koukoulopoulos, Beyond the LSD method for the partial sums of multiplicative functions,
Ramanujan J. 49 (2019), 287-319.

[9] R.R. Hall, A sharp inequality of Halász type for the mean value of a multiplicative arithmetic function,
Mathematika 42, no 1 (1995), 144–157.

[10] R.R. Hall & G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Math. Proc.
Camb. Phil. Soc. 110 (1991), 337–351.

[11] G. Hanrot, G. Tenenbaum & J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, 2,
Proc. London Math. Soc. (3) 96 (2008), 107–135.

[12] L.G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors, I, II,
J. Indian Math. Soc. 17 (1953), 63–141.

[13] L.G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors, III,
IV, J. Indian Math. Soc. 18 (1954), 27–81.

[14] A. Selberg, Note on the paper by L.G. Sathe, J. Indian Math. Soc. 18 (1954), 83–87.
[15] P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. reine angew. Math. 313 (1980), 161–170.
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