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is established over (standard) ordered metric spaces. Further, it is shown that some related statements, including the ones due to Choudhury and Kundu [Demonstr.

Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short: asingleton), provided [y 1 , y 2 ∈ Y implies y 1 = y 2 ]; and singleton if, in addition, Y is nonempty; note that in this case Y = {y}, for some y ∈ X. Take a metric d : X × X → R + := [0, ∞[ over X, as well as a selfmap T ∈ F(X). [Here, for each couple A, B of nonempty sets, F(A, B) stands for the class of all functions from A to B; when A = B, we write F(A) in place of F(A, A)]. Denote Fix(T ) = {x ∈ X; x = T x}; each point of this set is referred to as fixed under T . Concerning the existence and uniqueness of such points, a basic result (referred to as: Banach fixed point theorem; in short: (B-fpt)) may be stated as follows. Call the selfmap T , (d; λ)-contractive (where λ ≥ 0), if (con) d(T x, T y) ≤ λd(x, y), for all x, y ∈ X.

Theorem 1.1. Suppose that T is (d; λ)-contractive, for some λ ∈ [0, 1[. In addition, let X be d-complete. Then, Fix(T ) is a singleton {z}, and lim n T n x = z, for each x ∈ X.

This result, obtained in 1922 by Banach [START_REF] Banach | Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales[END_REF], found a multitude of applications in operator equations theory; so, it was the subject of many extensions. The most general ones have the (set) implicit form (i-set) (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ∈ M, for all x, y ∈ X; where M ⊆ R 6 + is a (nonempty) subset. A basic particular case of the general contractive property above is (i-set-2) (d(T x, T y), d(x, y)) ∈ M, for all x, y ∈ X; where M ⊆ R 2 + is a (nonempty) subset. The classical example in this particular direction is the one due to Meir and Keeler [START_REF] Meir | A theorem on contraction mappings[END_REF]. Further refinements of the method were proposed by Cirić [START_REF] Cirić | A new fixed-point theorem for contractive mappings[END_REF] and Matkowski [START_REF] Matkowski | Fixed point theorems for contractive mappings in metric spaces[END_REF]; see also Jachymski [START_REF] Jachymski | Equivalent conditions and the Meir-Keeler type theorems[END_REF]. In particular, when M is the zero-section of a certain function F : R 6 + → R; i.e., M = {(t 1 , ..., t 6 ) ∈ R 6 + ; F (t 1 , ..., t 6 ) ≤ 0}, the implicit contractive condition above has the functional form: (i-fct) F (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ≤ 0, for all x, y ∈ X. In this setting, certain early statements have been obtained by Leader [START_REF] Leader | Fixed points for general contractions in metric spaces[END_REF] and Turinici [START_REF] Turinici | Fixed points of implicit contraction mappings[END_REF]. Finally, when the function F appearing here admits the explicit form F (t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) = t 1 -G(t 2 , t 3 , t 4 , t 5 , t 6 ), (t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) ∈ R 6 + , (where G : R 5 + → R + is a function), one gets the explicit functional version of this (functional) contraction (e-fct) d(T x, T y) ≤ G(d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)), for all x, y ∈ X. For this case, some outstanding results were given in Boyd and Wong [START_REF] Boyd | On nonlinear contractions[END_REF], Reich [START_REF] Reich | Fixed points of contractive functions[END_REF], Matkowski [START_REF] Matkowski | Integrable solutions of functional equations[END_REF], and Piticari [START_REF] Piticari | Successive approximations method and fixed point principle (Romanian)[END_REF]Ch II]. Further aspects have been discussed in the survey paper by Rhoades [START_REF] Rhoades | A comparison of various definitions of contractive mappings[END_REF]; see also Collaco and E Silva [START_REF] Collaco | A complete comparison of 25 contractive definitions[END_REF].

Concerning the recent developments in this area, we must mention the class of implicit functional contractions having as model the ones introduced in 1969 by Krasnoselskii and Stetsenko [19], re-discovered in 2001 by Rhoades [START_REF] Rhoades | Some theorems on weakly contractive maps[END_REF], and refined in 2008 by Dutta and Choudhury [START_REF] Dutta | A generalisation of contraction principle in metric spaces[END_REF]; see also Wardowski [START_REF] Wardowski | Fixed points of a new type of contractive mappings in complete metric spaces[END_REF]. The fixed point or coincidence point results obtained with the aid of such contractions were appreciated as interesting enough to be used in the treatment of various operator equations involving univalued and multivalued maps; see, in this direction, the 2020 survey paper by Karapinar et al [START_REF] Karapinar | A survey: F -contractions with related fixed point results[END_REF]. On the other hand, certain efforts have been made towards a structural extension of them, under the convergence setting in Petruşel and Rus [START_REF] Petruşel | Fixed point theorems in ordered L-spaces[END_REF]; see, in this direction, Batra and Vashistha [START_REF] Batra | Fixed points of an F -contraction on metric spaces with a graph[END_REF].

Having these precise, it is our objective in the following to show that most of these fixed point statements are obtainable by means of a unitary Meir-Keeler procedure. For simplicity reasons, the standard metrical case will be considered. Further aspects, involving the pseudometric setting developed in the 2016 paper by Turinici [START_REF] Turinici | Contraction maps in pseudometric structures[END_REF], will be delineated elsewhere.

Dependent Choice Principle

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel's (abbreviated: (ZF)), as described by Cohen [START_REF] Cohen | Set Theory and the Continuum Hypothesis[END_REF]Ch 2]. The notations and basic facts to be considered in this system are more or less standard. Some important ones are discussed below.

(A) Let X be a nonempty set. By a relation over X, we mean any (nonempty) part R ⊆ X × X; then, (X, R) will be referred to as a relational structure. For simplicity, we sometimes write (x, y) ∈ R as xRy. Note that R may be regarded as a mapping between X and exp[X] (=the class of all subsets in X). In fact, denote

X(x, R) = {y ∈ X; xRy} (the section of R through x), x ∈ X; then, the desired mapping representation is [R(x) = X(x, R); x ∈ X].
A basic example of relational structure is to be constructed as below. Let N = {0, 1, ...} be the set of natural numbers, endowed with the usual addition and (partial) order (≤); note that (N, ≤) is well ordered: any (nonempty) subset of N has a first element. For each r ∈ N , the section N (r, >) is referred to as the initial interval (in N ) induced by r. Any set P with P ∼ N (in the sense: there exists a bijection from P to N ) will be referred to as effectively denumerable. In addition, given some natural number n ≥ 1, any set Q with Q ∼ N (n, >) will be said to be n-finite; when n is generic here, we say that Q is finite. Finally, the (nonempty) set Y is called (at most) denumerable iff it is either effectively denumerable or finite.

Let X be a nonempty set. By a sequence in X, we mean any mapping x : N → X, where N = {0, 1, ...} is the set of natural numbers. For simplicity reasons, it will be useful to denote it as (x(n); n ≥ 0), or (x n ; n ≥ 0); moreover, when no confusion can arise, we further simplify this notation as (x(n)) or (x n ), respectively. Also, any sequence (y n := x i(n) ; n ≥ 0) with (i(n); n ≥ 0) is strictly ascending (hence, i(n) → ∞ as n → ∞) will be referred to as a subsequence of (x n ; n ≥ 0). Note that, under such a convention, the relation "subsequence of" is transitive; i.e.:

(z n )=subsequence of (y n ) and (y n )=subsequence of (x n ) imply (z n )=subsequence of (x n ). (B) Remember that, an outstanding part of (ZF) is the Axiom of Choice (abbreviated: (AC)); which, in a convenient manner, may be written as (AC) For each couple (J, X) of nonempty sets and each function F : J → exp(X), there exists a (selective) function f : J → X, with f (ν) ∈ F (ν), for each ν ∈ J. (Here, exp(X) stands for the class of all nonempty elements in exp[X]). Sometimes, when the index set J is denumerable, the existence of such a selective function may be determined by using a weaker form of (AC), called: Dependent Choice principle (in short: (DC)). Call the relation R over X, proper when (X(x, R) =)R(x) is nonempty, for each x ∈ X. Then, R is to be viewed as a mapping between X and exp(X); and the couple (X, R) will be referred to as a proper relational structure. Further, given a ∈ X, let us say that the sequence (x n ; n ≥ 0) in X is (a; R)-iterative, provided

x 0 = a, and x n Rx n+1 (i.e.: x n+1 ∈ R(x n )), for all n.

Proposition 2.1. Let the relational structure (X, R) be proper. Then, for each a ∈ X there is at least one (a, R)-iterative sequence in X.

This principle -proposed, independently, by Bernays [START_REF] Bernays | A system of axiomatic set theory: Part III. Infinity and enumerability analysis[END_REF] and Tarski [START_REF] Tarski | Axiomatic and algebraic aspects of two theorems on sums of cardinals[END_REF] -is deductible from (AC), but not conversely; cf. Wolk [START_REF] Wolk | On the principle of dependent choices and some forms of Zorn's lemma[END_REF]. Moreover, by the developments in Moskhovakis [START_REF] Moskhovakis | Notes on Set Theory[END_REF]Ch 8] and Schechter [START_REF] Schechter | Handbook of Analysis and its Foundation[END_REF]Ch 6], the reduced system (ZF-AC+DC) it comprehensive enough so as to cover the usual mathematics; see also Moore [START_REF] Moore | Zermelo's Axiom of Choice: its Origin, Development and Influence[END_REF]Appendix 2].

A basic consequence of (DC) is the so-called Denumerable Axiom of Choice [in short: (AC(N))].

Proposition 2.2. Let F : N → exp(X) be a function. Then, for each a ∈ F (0) there exists a function f : N → X with f (0) = a and f (n) ∈ F (n), ∀n ∈ N .

Proof. Denote Q = N × X; and let us introduce the (proper) relation R over it: R(n, x) = {n + 1} × F (n + 1), n ∈ N , x ∈ X. Then, an application of (DC) to the proper relational structure (Q, R) yields the desired conclusion; we do not give details.

As a consequence of the above facts, (DC) =⇒ (AC(N)) in the strongly reduced system (ZF-AC); or, equivalently: (AC(N)) is deductible in the reduced system (ZF-AC+DC). The reciprocal of this inclusion is not true; see Moskhovakis [START_REF] Moskhovakis | Notes on Set Theory[END_REF]Ch 8,Sect 8.25] for details.

Statement of the problem

Let (X, d) be a metric space; and (≤) be a quasi-order [i.e.: reflexive, transitive relation] over X; then, (X, d, ≤) will be referred to as a quasi-ordered metric space. Call Y ∈ exp[X], (≤)-asingleton if [y 1 , y 2 ∈ Y , y 1 ≤ y 2 ] imply y 1 = y 2 ; and (≤)singleton if, in addition, Y = ∅. Further, let T ∈ F(X) be a selfmap with (s-pro) T is semi-progressive (X(T, ≤) := {x ∈ X; x ≤ T x} is nonempty) (incr) T is increasing (x ≤ y implies T x ≤ T y). We are interested in establishing sufficient conditions for the determination of elements in Fix(T ). The basic directions for getting these fixed points are described in our list below, comparable with the one proposed by Turinici [START_REF] Turinici | Implicit contractive maps in ordered metric spaces[END_REF]: opic-0) We say that T is fix-(≤)-asingleton, when Fix(T ) is an (≤)-asingleton; and fix-(≤)-singleton, when Fix(T ) is a (≤)-singleton opic-1) We say that T is a semi Picard operator

(modulo (d, ≤)) if, for each x ∈ X(T, ≤), (T n x; n ≥ 0) is d-asymptotic: lim n d(T n x, T n+1 x) = 0 opic-2) We say that T is a Picard operator (modulo (d, ≤)) when, for each x ∈ X(T, ≤), (T n x; n ≥ 0) is d-Cauchy: d(T n x, T m x) → 0 as n, m → ∞, n ≤ m opic-3) We say that T is a strong Picard operator (modulo (d, ≤)) if, for each x ∈ X(T, ≤), (T n x; n ≥ 0) is d-convergent and T ω x := lim n (T n x) ∈ Fix(T ) opic-4)
We say that T is a Bellman Picard operator (modulo (d, ≤)) when, for each x ∈ X(T, ≤), (T n x; n ≥ 0) is d-convergent, T ω x := lim n (T n x) belongs to Fix(T ), and T n x ≤ T ω x, ∀n.

In particular, when (≤) = X ×X (the trivial quasi-order on X) these conventions reduce to the ones in Rus [33, Ch 2, Sect 2.2]; because, in this case, X(T, ≤) = X.

Returning to the general setting, the sufficient (regularity) conditions attached to these properties are being founded on ascending orbital full (in short: (a-o-f)) concepts. Call the sequence (z n ) in X, (aof-1) ascending, provided z i ≤ z j whenever i ≤ j;

(aof-2) orbital, if (z n = T n x; n ≥ 0), for some x ∈ X;

(aof-3) full, when n → z n is injective (i = j implies x i = x j ); the intersection of these notions yields the precise one.

reg

-1) Call X, (a-o-f,d)-complete provided (for each (a-o-f)-sequence) d-Cauchy =⇒ d-convergent reg-2) We say that T is (a-o-f,d)-continuous, if ((z n )=(a-o-f)-sequence and z n d -→ z) imply T z n d -→ T z reg-3) Call the quasi-order (≤), (a-o-f,d)-selfclosed when ((z n )=(a-o-f)-sequence and z n d -→ z) imply (z n ≤ z, ∀n).
As a basic completion of these, we have to introduce the contractive type conditions to be used. Denote (P 0 (x, y) = d(T x, T y); x, y ∈ X); and let P : X ×X → R + be a map. We say that T is Meir-Keeler (d, ≤; P )-contractive, if (mk-1) x ≤ y, P (x, y) > 0 imply P 0 (x, y) < P (x, y); referred to as: T is strictly nonexpansive (modulo (d, ≤; P ))

(mk-2) ∀ε > 0, ∃δ > 0: [x ≤ y, ε < P (x, y) < ε + δ] =⇒ P 0 (x, y) ≤ ε;
referred to as: T has the Meir-Keeler property (modulo (d, ≤; P )). Note that, by the former of these, the Meir-Keeler property may be written as (mk-2a) ∀ε > 0, ∃δ > 0: [x ≤ y, 0 < P (x, y) < ε + δ] =⇒ P 0 (x, y) ≤ ε; referred to as: T has the complete Meir-Keeler property (modulo (d, ≤; P )). The following asymptotic version of Meir-Keeler contractive property is sometimes useful in applications, as we will see. Call the selfmap T , asymptotic Meir-Keeler (d, ≤; P )-contractive if (a-mk-1) x ≤ y, P (x, y) > 0 imply P 0 (x, y) < P (x, y); referred to as:

T is strictly nonexpansive (modulo (d, ≤; P )) (a-mk-2) there are no sequences (u n ), (v n ) in X and no elements ε > 0 with (u n ≤ v n , ∀n), P 0 (u n , v n ) → ε+, P (u n , v n ) → ε+; referred to as:
T has the asymptotic Meir-Keeler property (modulo (d, ≤; P )). Here, given the sequence (r n ; n ≥ 0) in R and the point r ∈ R, we denoted r n → r+, if r n → r and (r n > r, for all n ≥ 0). The relationships with the standard Meir-Keeler condition are described by Theorem 3.1. We have, in (ZF-AC+DC),

T is Meir-Keeler (d, ≤; P )-contractive iff T is asymptotic Meir-Keeler (d, ≤; P )-contractive.

Proof. i): Suppose that T is Meir-Keeler (d, ≤; P )-contractive; but [in contradiction with the conclusion] T is not endowed with the asymptotic Meir-Keeler property (modulo (d, ≤; P )); i.e.: there are sequences (u n ), (v n ) in X and elements ε > 0 with (u n ≤ v n , ∀n), P 0 (u n , v n ) → ε+, P (u n , v n ) → ε+. Given this ε > 0, let δ > 0 be the number associated to it, by the Meir-Keeler (d, ≤; P )-contractive property. From the convergence relations above, there exists some rank n(δ) with (rela)

ε < P 0 (u n , v n ) < ε + δ, ε < P (u n , v n ) < ε + δ, ∀n ≥ n(δ)
. By the second part of this (and the underlying contractive property) P 0 (u n , v n ) ≤ ε, for all n ≥ n(δ). This, however, contradicts the first part of (rela). Hence, our working assumption cannot be accepted; and the assertion follows.

ii): Suppose that T is asymptotic Meir-Keeler (d, ≤; P )-contractive; but [in contradiction with the conclusion] T is not endowed with the Meir-Keeler property (modulo (d, ≤; P )); i.e. (for some ε > 0)

A(δ) := {(u, v) ∈ X × X; u ≤ v, ε < P (u, v) < ε + δ, P 0 (u, v) > ε} is nonempty, for each δ > 0. Taking a zero converging sequence (δ n ; n ≥ 0) in R 0
+ , we get by the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)], a couple of sequences (x n ; n ≥ 0) and (y n ; n ≥ 0) in X, so as (∀n): (x n , y n ) ∈ A(δ n ); i.e. (by the strict nonexpansive condition)

x n ≤ y n , ε < P 0 (x n , y n ) < P (x n , y n ) < ε + δ n . As a direct consequence of this relation, (x n ≤ y n , ∀n), and (P 0 (x n , y n ) → ε+, P (x n , y n ) → ε+), as n → ∞.
This contradicts the asymptotic Meir-Keeler property (modulo (d, ≤; P )) of T . Hence, the Meir-Keeler property (modulo (d, ≤; P )) of T follows.

In the following, two basic examples of such contractions are constructed.

(Ex-I) Given the mapping P : X × X → R + and the function ϕ ∈ F(R 0 + , R), let us say that T is (d, ≤; P ; ϕ)-contractive, if (phi-con) P 0 (x, y) ≤ ϕ(P (x, y)), ∀x, y ∈ X, x ≤ y, P (x, y) > 0. The functions ϕ to be considered may described as below. Let F(re

)(R 0 + , R) stand for the subclass of all ϕ ∈ F(R 0 + , R), with ϕ is regressive: ϕ(t) < t, for each t > 0. Call ϕ ∈ F(re)(R 0 + , R), Meir-Keeler admissible if (mk-adm) ∀γ > 0, ∃β > 0, (∀t): γ < t < γ + β =⇒ ϕ(t) ≤ γ;
and Matkowski admissible, provided (M-adm) for each sequence (t n ; n ≥ 0) in R 0 + with (t n+1 ≤ ϕ(t n ), ∀n), we have lim n t n = 0. The relationships between these notions are illustrated in Theorem 3.2. For each ϕ ∈ F(re)(R 0 + , R), we have ϕ is Meir-Keeler admissible iff ϕ is Matkowski admissible.

For a complete proof of this we refer to the paper by Turinici [START_REF] Turinici | Reports in Metrical Fixed Point Theory[END_REF]. Some partial aspects of the problem can be found in Jachymski [START_REF] Jachymski | Common fixed point theorems for some families of mappings[END_REF].

In particular, letting F(re, in)(R 0 + , R) stand for the class of all increasing functions in

F(re)(R 0 + , R), we have (cf. Matkowski [21]) ϕ ∈ F(re, in)(R 0 + , R
) is Matkowski admissible iff for each t > 0: lim n ϕ n (t) = 0, as long as (ϕ n (t); n ≥ 0) exists. Here, as usual, ϕ n stands for the n-th iterate of ϕ, for each n ∈ N .

To get concrete examples of such functions, the constructions below are in effect. Let ϕ ∈ F(re)(R 0 + , R) and s ∈ R 0 + be given. Denote, for each ε > 0, Λ + ϕ(s) = inf ε>0 Φ * (s+)(ε); where Φ * (s+)(ε) = sup ϕ(]s, s + ε[); this will be referred to as: right superior limit of ϕ at s. From the regressive property of ϕ, we have -∞ ≤ Λ + ϕ(s) ≤ s, ∀s ∈ R 0 + ; but the alternative of the extremal terms being attained cannot be avoided. The following consequence of this definition will be useful.

Theorem 3.3. Let ϕ ∈ F(re)(R 0 + , R) and s ∈ R 0 + be arbitrary fixed. Then, (33-a) lim sup n (ϕ(t n )) ≤ Λ + ϕ(s), for each sequence (t n ) in R 0 + with t n → s+ (33-b) there exists a sequence (r n ) in R 0 + with r n → s+ and ϕ(r n ) → Λ + ϕ(s). Proof. Denote, for simplicity, α = Λ + ϕ(s); hence, α = inf ε>0 Φ * (s+)(ε), and -∞ ≤ α ≤ s. i) Given ε > 0, there exists a rank p(ε) ≥ 0 such that s < t n < s + ε, for all n ≥ p(ε); hence lim sup n (ϕ(t n )) ≤ sup{ϕ(t n ); n ≥ p(ε)} ≤ Φ * (s+)(ε).
Passing to infimum over ε > 0, yields (see above) lim sup n (ϕ(t n )) ≤ inf ε>0 Φ * (s+)(ε) = α; and the claim follows.

ii): Define (

β n := Φ * (s+)(2 -n-1 s); n ≥ 0); clearly, (p1) (∀n): -∞ < β n ≤ s + 2 -n-1 s, if we note that -∞ < ϕ(t) < t < s + 2 -n-1 s, for all t ∈]s, s + 2 -n-1 s[; (p2) (β n ) is descending, (β n ≥ α, ∀n), inf n β n = α; hence lim n β n = α.
By these properties, there may be constructed a sequence (γ n ; n ≥ 0) in R, with γ n < β n , ∀n; lim n γ n = lim n β n = α. (For example, (γ n = β n -3 -n ; n ≥ 0) has such a property; so, (DC) is not used here). Define the map n → E(n) from N to exp(R 0 + ), as

E(n) = {t ∈]s, s + 2 -n-1 s[; β n ≥ ϕ(t) > γ n }, n ∈ N ;
clearly, this construction is meaningful, by the supremum definition. From the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)], a sequence (r n ; n ≥ 0) in R 0 + may be obtained so as (∀n): r n ∈ E(n); that is (by the above definition):

s < r n < s + 2 -n-1 s and β n ≥ ϕ(r n ) > γ n .
This yields (r n → s+ and ϕ(r n ) → α); wherefrom, we are done.

In the following, some particular examples of Meir-Keeler (or, equivalently: Matkowski) admissible functions will be given.

I-1) Call ϕ ∈ F(re)(R 0 + , R), Boyd-Wong admissible if (bw-adm) Λ + ϕ(s) < s, for all s > 0.
(This convention is related to the developments in Boyd and Wong [START_REF] Boyd | On nonlinear contractions[END_REF]). In particular, ϕ ∈ F(re)(R 0 + , R) is Boyd-Wong admissible provided it is upper semicontinuous at the right on R 0 + : Λ + ϕ(s) ≤ ϕ(s), ∀s ∈ R 0 + . This, e.g., is fulfilled when ϕ is continuous at the right on R 0 + ; for, in such a case, Λ + ϕ(s) = ϕ(s), for each s ∈ R 0 + . Proposition 3.1. Each Boyd-Wong admissible function in F(re)(R 0 + , R) is Meir-Keeler admissible (or, equivalently: Matkowski admissible).

Proof. Suppose that ϕ ∈ F(re)(R 0 + , R) is Boyd-Wong admissible, and fix γ > 0; hence Λ + ϕ(γ) < γ. By definition, there exists β = β(γ) > 0 with [γ < t < γ + β implies ϕ(t) < γ]; proving that ϕ is Meir-Keeler admissible.

I-2) Given ϕ ∈ F(re)(R 0 + , R), we call it Geraghty admissible [15], provided (t n ; n ≥ 0)= sequence in R 0 + and ϕ(t n )/t n → 1 imply t n → 0. Proposition 3.2.
Each Geraghty admissible function is Boyd-Wong admissible; hence, necessarily, Meir-Keeler admissible.

Proof. Let ϕ ∈ F(re)(R 0 + , R) be Geraghty admissible; and suppose by contradiction that ϕ is not Boyd-Wong admissible. From a previous observation, there exists some s ∈ R 0 + with Λ + ϕ(s) = s. Combining with a preceding auxiliary fact, there exists a sequence (r n ; n ≥ 0) in R 0 + with r n → s+ and ϕ(r n ) → s; whence ϕ(r n )/r n → 1;

i.e.: ϕ is not Geraghty admissible. The obtained contradiction proves our claim.

Having these precise, we may establish the necessary connections between the introduced functional contractions and the Meir-Keeler ones.

Theorem 3.4. Assume that T is (d, ≤; P ; ϕ)-contractive, where ϕ ∈ F(re)(R 0 + , R). Then, T is Meir-Keeler (d, ≤; P )-contractive when ϕ is Meir-Keeler admissible (or, equivalently: Matkowski admissible). In particular, this is retainable whenever ϕ is Boyd-Wong admissible; hence, all the more, when it is Geraghty admissible.

Proof. i) Let x, y ∈ X be such that x ≤ y and P (x, y) > 0. By the contractive condition [and ϕ=regressive], one has P 0 (x, y) ≤ ϕ(P (x, y)) < P (x, y); so that, T is strictly nonexpansive (modulo (d, ≤; P )).

ii) Let ε > 0 be arbitrary fixed; and δ > 0 be the number assured by the Meir-Keeler admissible property of ϕ. Further, let x, y ∈ X be such that x ≤ y and ε < P (x, y) < ε + δ. By the contractive condition and admissible property, P 0 (x, y) ≤ ϕ(P (x, y)) ≤ ε; so that, T has the Meir-Keeler property (modulo (d, ≤; P )).

ii): Evident, by the above auxiliary facts.

(Ex-II) Let (ψ, ϕ) be a couple of functions over

F(R 0 + , R) endowed with (norm) (ψ, ϕ) is normal: ψ is increasing and ϕ is strictly positive [ϕ(t) > 0, ∀t > 0].
(This concept is related with the developments in Rhoades [START_REF] Rhoades | Some theorems on weakly contractive maps[END_REF]; see also Dutta and Choudhury [START_REF] Dutta | A generalisation of contraction principle in metric spaces[END_REF]). The following extra condition will be considered here:

(r-s-pos) (ϕ is right sequentially positive) for each sequence (t n ) in R 0 + and each ε > 0 with t n → ε+, the relation lim n ϕ(t n ) = 0 is impossible. Given the mapping P : X × X → R + and the couple (ψ, ϕ) of functions over F(R 0 + , R), let us say that T is (d, ≤; P ; (ψ, ϕ))-contractive, provided ψ(P 0 (x, y)) ≤ ψ(P (x, y)) -ϕ(P (x, y)), ∀x, y ∈ X, x ≤ y, P 0 (x, y) > 0, P (x, y) > 0. The following auxiliary fact establishes the necessary connection between this contractive concept and the Meir-Keeler one. Proposition 3.3. Suppose that T is (d, ≤; P ; (ψ, ϕ))-contractive, for a normal couple (ψ, ϕ) over F(R 0 + , R) with ϕ=right sequentially positive. Then, in the reduced system (ZF-AC+DC),

T is asymptotic Meir-Keeler (d, ≤; P )-contractive; or, equivalently: Meir-Keeler (d, ≤; P )-contractive.

Proof. i) Let x, y ∈ X be such that x ≤ y, P (x, y) > 0. If P 0 (x, y) = 0, we are done; so, without loss, assume that P 0 (x, y) > 0. As P (x, y) > 0, we have (along with ϕ=strictly positive), ϕ(P (x, y)) > 0; wherefrom ψ(P 0 (x, y)) < ψ(P (x, y)) (by the contractive condition); and this, via [ψ=increasing], yields P 0 (x, y) < P (x, y). Putting these together, one derives that T is strictly nonexpansive (modulo (d, ≤; P )).

ii) We have to establish that T is endowed with the asymptotic Meir-Keeler property (modulo (d, ≤; P )). Suppose not: there are sequences (u n ), (v n ) in X and elements ε > 0 with (u n ≤ v n , ∀n), P 0 (u n , v n ) → ε+, P (u n , v n ) → ε+.

By the contractive property, (∀n): ψ(P 0 (u n , v n )) ≤ ψ(P (u n , v n )) -ϕ(P (u n , v n )); or, equivalently (along with ϕ=strictly positive):

(0 <)ϕ(P (u n , v n )) ≤ ψ(P (u n , v n )) -ψ(P 0 (u n , v n )).
Passing to lim sup as n → ∞, gives

0 ≤ lim sup ϕ(P (u n , v n )) ≤ ψ(ε + 0) -ψ(ε + 0) = 0; whence, lim n ϕ(P (u n , v n )) = 0;
in contradiction with the choice of ϕ. Hence, the underlying asymptotic property holds; and we are done.

Note that, some other examples of such contractions are available. But, for the developments below, this will suffice.

Main result

Let (X, d, ≤) be a quasi-ordered metric space; and T be a selfmap of X; supposed to be semi-progressive and increasing. As precise, we have to determine whether Fix(T ) is nonempty; and, if this holds, to establish whether T is fix-(≤)-asingleton. The basic directions as well as general regularity conditions under which this problem is to be solved were already listed. In addition, the contractive Meir-Keeler setting of our problem, expressed in terms of a certain mapping P ∈ F(X ×X, R + ), is being settled. It remains now to discuss the specific regularity conditions upon P to be used. Denote for each x, y ∈ X, A 1 (x, y) = d(x, y), A 2 (x, y) = max{d(x, T x), d(y, T y)}, L 0 (x, y) = min{d(x, y), d(T x, T y)}, L 1 (x, y) = min{d(x, y), d(T x, T y), d(x, T x), d(y, T y)}, M (x, y) = diam{x, T x, y, T y}.

(I) The first condition upon P writes P is L-positive (where L ∈ {L 0 , L 1 }): L(x, y) > 0 implies P (x, y) > 0.

It has the role of working with our iterative sequences (under L = L 1 ) as well as to assure the fix-(≤)-asingleton property (under L = L 0 ). Note that P is L 0 -positive implies P is L 1 -positive; but the reciprocal is not in general true.

(II) The second condition upon the mapping P is expressed as

P is orbitally bounded: P (x, T x) ≤ A 2 (x, T x), for all x ∈ X;
it allows us deducing the d-asymptotic and full properties for the iterative sequences to be considered (see below).

(III) The third condition upon P writes P is diametral: P (x, y) ≤ M (x, y), for all x, y ∈ X.

It has the role of deducing (in conjunction with Meir-Keeler contractive assumption) the d-Cauchy property for the iterative sequences in question.

(IV) The fourth condition upon the mapping P is a couple of orbital asymptotic ones, formulated as (o-sg-asy) P is orbitally singular asymptotic:

for each (a-o-f) sequence (x n ) in X and each z ∈ X with x n d -→ z, (x n ≤ z, L 1 (x n , z) > 0, ∀n), we have lim inf n P (x n , z) < d(z, T z) (s-o-sg-asy) P is strongly orbitally singular asymptotic:

for each (a-o-f) sequence (x n ) in X and each z ∈ X with x n d -→ z, (x n ≤ z, L 1 (x n , z) > 0, ∀n), we have (∃) lim n P (x n , z) < d(z, T z). Clearly, the former of these is weaker than the latter one. Note that the imposed conditions allow us deducing (in addition to the Meir-Keeler contractive assumption) the fixed point property for the limit of underlying iterative sequence.

We are now in position to state our basic fixed point result in this exposition. Proof. Let us firstly establish the fix-(≤)-asingleton property. Take some couple z 1 , z 2 ∈ Fix(T ) with z 1 ≤ z 2 ; and suppose by contradiction that

z 1 = z 1 ; hence, L 0 (z 1 , z 2 ) = d(z 1 , z 2 ) > 0. As P is L 0 -positive, we must have P (z 1 , z 2 ) > 0; so, that d(z 1 , z 2 ) = d(T z 1 , T z 2 ) < P (z 1 , z 2 ) [since T is strictly nonexpansive (modulo (d, ≤; P ))].
On the other hand, as P is diametral,

P (z 1 , z 2 ) ≤ M (z 1 , z 2 ) = d(z 1 , z 2 ).
Since the obtained relations are contradictory, our working assumption cannot be accepted; wherefrom, the assertion follows.

It remains to establish that T is a strong/Bellman Picard operator (modulo (d, ≤)). Fix some x 0 ∈ X; and put (x n = T n x 0 ; n ≥ 0); it is an ascending and orbital sequence. If x n = x n+1 for some n ≥ 0, we are done; so, without loss, one may assume that the non-telescopic property holds (n-tele) x n = x n+1 (that is, ρ n := d(x n , x n+1 ) > 0), ∀n. The argument will be divided into several parts.

Part 1. By the imposed condition, (∀n): L 1 (x n , x n+1 ) = min{ρ n , ρ n+1 } > 0; hence P (x n , x n+1 ) > 0, if we remember that P is L 1 -positive. The Meir-Keeler (d, ≤; P )-contractive condition applies to (x n , x n+1 ), for each n; and yields (by the strict nonexpansive condition upon T and the orbital boundedness of P ) (iter-1) (∀n):

ρ n+1 = P 0 (x n , x n+1 ) < P (x n , x n+1 ) ≤ A 2 (x n , x n+1 ) = max{ρ n , ρ n+1 };
From the strict inequality between the extremal members of this relation, we get (iter-2) (∀n): ρ n+1 < ρ n ; wherefrom, ρ n+1 < P (x n , x n+1 ) ≤ ρ n . Two consequences of this fact are retainable.

Conseq 1. By the first half of (iter-2), (ρ n ) is strictly descending. We claim that, in this case, (x n ) is full: i = j implies x i = x j (whence, d(x i , x j ) > 0). In fact, suppose by contradiction that there exist i, j ∈ N with i < j, x i = x j . Then, by definition, x i+1 = x j+1 ; so that ρ i = ρ j ; in contradiction with ρ i > ρ j ; and the assertion follows.

Conseq 2. By the same strict descending property of (ρ n ; n ≥ 0), we have that ρ := lim n ρ n exists in R + ; and [ρ n > ρ, ∀n]. Assume that ρ > 0; and let σ > 0 be the number given by the Meir-Keeler property (modulo (d, ≤; P )) of T . From the convergence, relation, there exists a rank n(σ) such that (∀n ≥ n(σ)): ρ < ρ n < ρ + σ; hence, by (iter-2), ρ < ρ n+1 < P (x n , x n+1 ) ≤ ρ n < ρ + σ. This, by the quoted condition, yields (for the same n), (ρ <) ρ n+1 = P 0 (x n , x n+1 ) ≤ ρ; a contradiction. Hence, ρ = 0; so that, (x n ; n ≥ 0) is a d-asymptotic sequence.

Part 2. Summing up, (x n ) is orbital, full, and d-asymptotic. We claim that, under the precise conditions, (x n ) is d-Cauchy. Let ε > 0 be arbitrary fixed; and δ > 0 be the number associated by the Meir-Keeler property; without loss, one may assume that δ < ε. From the obtained d-asymptotic property, there exists a rank n(δ) ≥ 0 such that (d-asy) d(x n , x n+1 ) < δ/4 (hence, d(x n , x n+2 ) < δ/2), ∀n ≥ n(δ). We claim, via ordinary induction, that for each i ≥ 1, the property below holds (d-C;i) d(x n , x n+i ) < ε + δ/2, ∀n ≥ n(δ); wherefrom, the d-Cauchy property of (x n ; n ≥ 0) is clear. The case i ∈ {1, 2} is evident, by (d-asy). Assume that, for a certain k ≥ 2, (d-C;i) holds for all i ∈ {1, ..., k}; we must establish that (d-C;k+1) holds too. So, let n ≥ n(δ) be arbitrary fixed. From the inductive hypothesis, d(x n , x n+k ) < ε + δ/2; as well as d(x n+1 , x n+k ) < ε + δ/2, d(x n+1 , x n+k+1 ) < ε + δ/2. On the other hand, by the asymptotic property, d(x n , x n+1 ) < δ/4, d(x n+k , x n+k+1 ) < δ/4. Finally, the triangular inequality gives (in a direct way)

d(x n , x n+k+1 ) ≤ d(x n , x n+k ) + d(x n+k , x n+k+1 ) < ε + δ/2 + δ/4 < ε + δ.
Putting these together, gives M (x n , x n+k ) < ε + δ; whence, P (x n , x n+k ) < ε + δ; if we remember that P is diametral. On the other hand, as (x n ) is full,

L 1 (x n , x n+k ) = min{ρ n , ρ n+k , d(x n , x n+k ), d(x n+1 , x n+k+1 )} > 0;
whence P (x n , x n+k ) > 0 if we take the L 1 -positive property of P into account. Combining these with the complete Meir-Keeler property (modulo (d, ≤; P )), one derives d(x n+1 , x n+k+1 ) = P 0 (x n , x n+k ) ≤ ε. This, along with the triangular inequality, gives

d(x n , x n+k+1 ) ≤ d(x n , x n+1 ) + d(x n+1 , x n+k+1 ) < ε + δ/2; and the assertion is retainable. Part 3. Since X is (a-o-f,d)-complete, there exists (a unique) z ∈ X with x n d -→ z.
Two basic alternatives are to be discussed. Alter 1. Suppose that T is (a-o-f,d)-continuous. Then, u n := T x n d -→ T z as n → ∞. On the other hand, (u n = x n+1 ; n ≥ 0) is a subsequence of (x n ; n ≥ 0); so, u n d -→ z as n → ∞. Combining with d=separated, yields z = T z; which tells us that T is strongly Picard (modulo (d, ≤)).

Alter 2. Suppose that (≤) is (a-o-f,d)-selfclosed and P is orbitally singular asymptotic. By the convergence property above,

x n ≤ z, for all n. Further, as (T x n = x n+1 ; n ≥ 0) appears as full, H := {n ∈ N ; T x n = T z} is an asingleton; so that, the following separation property holds:

(sepa) ∃k = k(z) ≥ 0, such that n ≥ k implies P 0 (x n , z) > 0; hence, d(x n , z) > 0. Denote for simplicity (u n = x n+k ; n ≥ 0); note that (by the above) (∀n):

u n ≤ z, d(u n , z) > 0, P 0 (u n , z) > 0, d(u n , T u n ) > 0.
Suppose by contradiction that d(z, T z) > 0. By the obtained relations, L 1 (u n , z) > 0; hence, P (u n , z) > 0 (as P is L 1 -positive). The contractive condition is therefore applicable to (u n , z), for each n; and yields (by the strict nonexpansive (modulo (d, ≤; P )) property of T ) (s-ineq) P 0 (u n , z) < P (u n , z), ∀n. Moreover, from the d-Cauchy and convergence relations, one gets (taking a metrical property of d(., .

) into account) (conv) d(u n , z), d(T u n , z), d(u n , T u n ) → 0; d(u n , T z), d(T u n , T z) → d(z, T z)
. By the strict inequality relation, we get, passing to (inferior) limit as n → ∞ (and remembering that P is orbitally singular asymptotic) d(z, T z) = lim inf n P 0 (u n , z) ≤ lim inf n P (u n , z) < d(z, T z); a contradiction. This tells us that the working hypothesis d(z, T z) > 0 cannot be true; so that, z = T z; which tells us that T is strongly Picard (modulo (d, ≤)). The proof is complete.

Note that, coincidence type versions of these facts are available, by means of related techniques in Roldán et al [START_REF] Roldán | Coincidence point theorems on metric spaces via simulation method[END_REF]. On the other hand, all these developments may be extended to quasi-metric structures, by following the methods in Turinici [START_REF] Turinici | Contractive maps in locally transitive relational metric spaces[END_REF]. Finally, multivalued extensions of these facts are possible under the lines in Nadler [START_REF] Nadler | Multi-valued contraction mappings[END_REF]. We will discuss these elsewhere.

Du-Rassias results

Let (X, d, ≤) be a quasi-ordered metric space; and T be a selfmap of X; supposed to be semi-progressive and increasing. As precise, we have to determine whether Fix(T ) is nonempty; and, if this holds, to establish whether T is fix-(≤)-asingleton. The basic directions and sufficient conditions under which this problem is to be solved were already listed. In addition, the contractive Meir-Keeler setting of our problem as well as a lot of specific regularity conditions upon our data are being settled. As a by-product of these, we stated the main result of this exposition, Theorem 4.1. It is our aim in the sequel to get a particular case of this result, with practical finality.

To begin with, remember that a lot of maps was introduced, as (for x, y ∈ X) 

Q = {A 1 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 , E 1 , E 2 }, P = max(Q) = max{A 1 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 , E 1 , E 2 }.
The following fixed point statement is available. Proof. We show that all conditions in our main result are fulfilled by our data. Part 1. For each x ∈ X, we have

A 1 (x, T x) = d(x, T x) ≤ A 2 (x, T x), B 1 (x, T x) = (1/2)[d(x, T x) + d(T x, T 2 x)] ≤ A 2 (x, T x), B 2 (x, T x) = (1/2)d(x, T 2 x) ≤ B 1 (x, T x) ≤ A 2 (x, T x), B 3 (x, T x) = (1/2)d(x, T x) ≤ A 2 (x, T x), B 4 (x, T x) = (1/2)d(T x, T 2 x) ≤ A 2 (x, T x), C 1 (x, T x) = (1/3)[d(x, T x) + d(T x, T 2 x)] ≤ A 2 (x, T x), C 2 (x, T x) = (1/3)[d(x, T x) + d(x, T 2 x)] ≤ (1/3)[2d(x, T x) + d(T x, T 2 x)] ≤ A 2 (x, T x), C 3 (x, T x) = (1/3)[d(T x, T 2 x) + d(x, T 2 x)] ≤ (1/3)[2d(T x, T 2 x) + d(x, T x)] ≤ A 2 (x, T x), E 1 (x, T x) = (1/4)[d(x, T x) + d(T x, T 2 x) + d(x, T 2 x)] ≤ (1/2)[d(x, T x) + d(T x, T 2 x)] = B 1 (x, T x) ≤ A 2 (x, T x), E 2 (x, T x) = (1/5[2d(x, T x) + d(T x, T 2 x) + d(x, T 2 x)] ≤ (1/5[3d(x, T x) + 2d(T x, T 2 x)] ≤ A 2 (x, T x).
Putting these together, yields each Q ∈ Q is orbitally bounded; hence, so is P = max(Q). Part 2. For each x, y ∈ X, we have A i (x, y) ≤ M (x, y), i ∈ {1, 2}; B j (x, y) ≤ M (x, y), j ∈ {1, 2, 3, 4}, C k (x, y) ≤ M (x, y), k ∈ {1, 2, 3}; E h (x, y) ≤ M (x, y), h ∈ {1, 2}. This, by definition, yields each Q ∈ Q is diametral; hence, so is P = max(Q). Part 3. Let the (a-o-f) sequence (x n ) in X and the point z ∈ X be such that

x n d -→ z (hence, T x n d -→ z) and d(z, T z) > 0.
We have, by definition (and a metrical property of d)

lim n A 1 (x n , z) = 0, lim n B 1 (x n , z) = (1/2)d(z, T z), lim n B 2 (x n , z) = (1/2)d(z, T z), lim n B 3 (x n , z) = 0, lim n B 4 (x n , z) = (1/2)d(z, T z) lim n C 1 (x n , z) = (1/3)d(z, T z), lim n C 2 (x n , z) = (1/3)d(z, T z) lim n C 3 (x n , z) = (2/3)d(z, T z), lim n E 1 (x n , z) = (1/2)d(z, T z), lim n E 2 (x n , z) = (2/5)d(z, T z).

This yields

each Q ∈ Q is strongly orbitally singular asymptotic; hence, so is P = max(Q). Part 4. Finally, again by definition, P is A 1 -positive: A 1 (x, y) > 0 implies P (x, y) > 0; so that: P is both L 0 -positive and L 1 -positive. Part 5. As a consequence of this, the main result is indeed applicable here; wherefrom, all is clear. ε = P (x, y) < ε + δ; whence, P 0 (x, y) < ε = P (x, y); which tells us that T is strictly nonexpansive (modulo (d, ≤; P )).

Step 2. Let ε > 0 be given; and δ > 0 be the associated by (mk-orig) number. Then, by the underlying condition, (x ≤ y, ε < P (x, y) < ε + δ) =⇒ (x ≤ y, ε ≤ P (x, y) < ε + δ) =⇒ P 0 (x, y) < ε =⇒ P 0 (x, y) ≤ ε; whence, T has the Meir-Keeler property (modulo (d, ≤; P )). Putting these together, we are done.

Note, finally, that a variant of Theorem 5.1 with respect to the mappings used in Samet et al [START_REF] Samet | A fixed point theorem for a Meir-Keeler type contraction through rational expression[END_REF] and Du et al [START_REF] Du | Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory[END_REF] is also possible, by the same technique. Further aspects will be discussed elsewhere.

Particular aspects

Let (X, d, ≤) be a quasi-ordered metric space; and T : X → X be a selfmap of X; supposed to be semi-progressive and increasing. Roughly speaking, the particular statements above have been obtained by an appropriate choice of the mapping P appearing in the Meir-Keeler contractive condition. In the following, some other particular cases of our main result are stated, by working upon the contractive condition itself. Some connections between these and a lot of related developments in the area will be also discussed.

(A) Remember that ϕ ∈ F(re

)(R 0 + , R) is called Meir-Keeler admissible, if (mk-adm) ∀ε > 0, ∃δ > 0, (∀t): ε < t < ε + δ =⇒ ϕ(t) ≤ ε.
Given the mapping P : X × X → R + and the function ϕ ∈ F(R 0 + , R), let us say that T is (d, ≤; P ; ϕ)-contractive, provided P 0 (x, y) ≤ ϕ(P (x, y)), ∀x, y ∈ X, x ≤ y, P (x, y) > 0. As precise, any such contraction is necessarily Meir-Keeler (d, ≤; P )-contractive, whenever ϕ ∈ F(re)(R 0 + , R) is Meir-Keeler admissible. As a direct consequence of this, we have (by means of our main result) Theorem 6.1. Suppose that the selfmap T is (d, ≤; P ; ϕ)-contractive, where the function ϕ ∈ F(re)(R 0 + , R) and the mapping P : X × X → R + are such that (phi-P) ϕ is Meir-Keeler admissible (or, equivalently: Matkowski admissible), and P is orbitally bounded, diametral. In addition, let X be (a-o-f,d)-complete. Then, (61-a) T is a Picard operator (modulo (d, ≤)) when, in addition, P is L 1 -positive (61-b) T is a strong Picard operator (modulo (d, ≤)) when, in addition to the setting of (61-a), T is (a-o-f,d)-continuous (61-c) T is a Bellman Picard operator (modulo (d, ≤)) when, in addition to the setting of (61-a), (≤) is (a-o-f,d)-selfclosed and P is orbitally singular asymptotic (61-d) T has the fix-(≤)-asingleton property when (in addition) P is L 0 -positive.

Some particular cases of this result are described as follows. Let the system of maps over F(X × X, R + )

Q = {A 1 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 , E 1 , E 2 
} be the already introduced one.

I) The regularity condition (phi-P) holds under (phi-P-1) ϕ is Boyd-Wong admissible and P = A 1 .

In this case, the corresponding version of Theorem 6.1 includes directly the related statement in Agarwal et al [START_REF] Agarwal | Generalized contractions in partially ordered metric spaces[END_REF], proved by a direct method. But, as shown in that paper, this result includes (under (≤) = X × X) the well known contribution due to Boyd and Wong [START_REF] Boyd | On nonlinear contractions[END_REF] or Matkowski [START_REF] Matkowski | Integrable solutions of functional equations[END_REF]; hence, so does Theorem 6.1.

II) The same regularity condition (phi-P) holds (see above) under (phi-P-2) ϕ is Geraghty admissible and P = A 1 . Then, the corresponding version of Theorem 6.1 includes the related statement in Amini-Harandi and Emami [START_REF] Amini-Harandi | A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations[END_REF]. But (cf. a previous remark) (phi-P-2) is a particular case of (phi-P-1) This tells us that the result due to Amini-Harandi and Emami [START_REF] Amini-Harandi | A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations[END_REF] is nothing but a particular case of the one in Agarwal et al [START_REF] Agarwal | Generalized contractions in partially ordered metric spaces[END_REF].

III) Finally, the same regularity condition (phi-P) holds under (phi-P-3) ϕ is Geraghty admissible and P ∈ Q. In particular, when P = B 1 , the corresponding version of Theorem 6.1 includes the related statement in Choudhury and Kundu [START_REF] Choudhury | A Kannan-like contraction in partially ordered spaces[END_REF] proved by a distinct argument.

(B) Let (ψ, ϕ) be a pair of functions over F(R 0 + , R), with (norm) (ψ, ϕ) is normal: ψ is increasing and ϕ is strictly positive (ϕ(t) > 0, ∀t ∈ R 0 + ) The following extra condition will be considered here: (r-s-pos) ϕ is right sequentially positive: for each sequence (t n ; n ≥ 0) in R 0 + and each element ε > 0 with t n → ε+, the relation lim n ϕ(t n ) = 0 is impossible. Given the mapping P : X × X → R + and the couple (ψ, ϕ) of functions over F(R 0 + , R), let us say that T is (d, ≤; P ; (ψ, ϕ))-contractive, provided ψ(P 0 (x, y)) ≤ ψ(P (x, y)) -ϕ(P (x, y)), ∀x, y ∈ X, x ≤ y, P 0 (x, y) > 0, P (x, y) > 0. By a previous result, any such contraction is Meir-Keeler (d, ≤; P )-contractive, whenever (ψ, ϕ) is normal and ϕ is right sequentially positive. As a direct consequence of this, we have (by means of our main result) Theorem 6.2. Suppose that T is (d, ≤; P ; (ψ, ϕ))-contractive, where the mapping P : X × X → R + and the couple (ψ, ϕ) of functions over F(R 0 + , R) are such that (psi-phi-P) (ψ, ϕ) is normal, ϕ is right sequentially positive, and P is orbitally bounded, diametral. In addition, let X be (a-o-f,d)-complete. Then, (62-a) T is a Picard operator (modulo (d, ≤)) when, in addition, P is L 1 -positive (62-b) T is a strong Picard operator (modulo (d, ≤)) when, in addition to the setting of (62-a), T is (a-o-f,d)-continuous (62-c) T is a Bellman Picard operator (modulo (d, ≤)) when, in addition to the setting of (62-a), (≤) is (a-o-f,d)-selfclosed and P is orbitally singular asymptotic (62-d) T has the fix-(≤)-asingleton property when (in addition) P is L 0 -positive.

The obtained result extends the one in Dutta and Choudhury [START_REF] Dutta | A generalisation of contraction principle in metric spaces[END_REF]. In fact, it also includes a related statement in Gȃvrut ¸a et al [START_REF] Gȃvrut ¸a | Two classes of Meir-Keeler contractions[END_REF]; we do not give details.

In the following, a basic particular case of this last result is discussed. Let F : R 0 + → R and ϕ : R 0 + → R be a couple of functions with (nc-1) (F, ϕ) is normal: F is increasing and ϕ is strictly positive (nc-2) ϕ is right sequentially positive (see above).

Note that this couple is just the one appearing in Theorem 6.2. As a consequence, the quoted result is applicable to contractions like F (P 0 (x, y)) ≤ F (d(x, y)) -ϕ(d(x, y)), x, y ∈ X, x ≤ y, P 0 (x, y) > 0, d(x, y) > 0; referred to as: Wardowski type contractions. This tells us that Theorem 6.2 includes the basic fixed point result in Wardowski [START_REF] Wardowski | Solving existence problems via F -contractions[END_REF]; that extends an older statement by the same author [START_REF] Wardowski | Fixed points of a new type of contractive mappings in complete metric spaces[END_REF]. In fact, some other statements in the area, described in the survey paper by Karapinar et al [START_REF] Karapinar | A survey: F -contractions with related fixed point results[END_REF] may be obtained via these techniques; we do not give details. Note, finally, that our main result includes, partially, the ones described in Vujaković et al [START_REF] Vujaković | On recent results concerning Fcontraction in generalized metric spaces[END_REF]. For a complete inclusion of all these, the implicit methods in Turinici [START_REF] Turinici | Implicit contractive maps in ordered metric spaces[END_REF] may be used; this will be discussed elsewhere.

Theorem 4 . 1 .

 41 Suppose that T is Meir-Keeler (d, ≤; P )-contractive, (or, equivalently: asymptotic Meir-Keeler (d, ≤; P )-contractive), where the mapping P : X × X → R + is orbitally bounded and diametral. In addition, let X be (a-o-f,d)complete. Then, (41-a) T is a Picard operator (modulo (d, ≤)) when, in addition, P is L 1 -positive (41-b) T is a strong Picard operator (modulo (d, ≤)) when, in addition to the setting of (41-a), T is (a-o-f,d)-continuous (41-c) T is a Bellman Picard operator (modulo (d, ≤)) when, in addition to the setting of (41-a), (≤) is (a-o-f,d)-selfclosed and P is orbitally singular asymptotic (41-d) T is fix-(≤)-asingleton when (in addition) P is L 0 -positive.

A 1 (

 1 x, y) = d(x, y), A 2 (x, y) = max{d(x, T x), d(y, T y)}, L 0 (x, y) = min{d(x, y), d(T x, T y)}, L 1 (x, y) = min{d(x, y), d(T x, T y), d(x, T x), d(y, T y)}, M (x, y) = diam{x, T x, y, T y}. Then, let us complete this system with an extra lot of maps as (for x, y ∈ X)B 1 (x, y) = (1/2)[d(x, T x) + d(y, T y)], B 2 (x, y) = (1/2)[d(x, T y) + d(y, T x)], B 3 (x, y) = (1/2)[d(x, T x) + d(y, T x)], B 4 (x, y) = (1/2)[d(y, T x) + d(y, T y)], C 1 (x, y) = (1/3)[d(x, T x) + d(y, T y) + d(y, T x)], C 2 (x, y) = (1/3)[d(x, T x) + d(x, T y) + d(y, T x)], C 3 (x, y) = (1/3)[d(y, T y) + d(x, T y) + d(y, T x)], E 1 (x, y) = (1/4)[d(x, T x) + d(y, T y) + d(x, T y) + d(y, T x)], E 2 (x, y) = (1/5[d(x, y) + d(x, T x) + d(y, T y) + d(x, T y) + d(y, T x)]. Finally, define the families of maps

Theorem 5 . 1 .

 51 Suppose that T is Meir-Keeler (d, ≤; P )-contractive, (or, equivalently: asymptotic Meir-Keeler (d, ≤; P )-contractive), where the mapping P : X × X → R + is as before. In addition, let X be (a-o-f,d)-complete. Then, (51-a) T is a Picard operator (modulo (d, ≤)) (51-b) T is a strong Picard operator (modulo (d, ≤)) when, in addition to the setting of (51-a), T is (a-o-f,d)-continuous (51-c) T is a Bellman Picard operator (modulo (d, ≤)) when, in addition to the setting of (51-a), (≤) is (a-o-f,d)-selfclosed (51-d) T has the fix-asingleton property.