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Abstract

Interpretability of learning algorithms is crucial for applications involving critical
decisions, and variable importance is one of the main interpretation tools. Shapley
effects are now widely used to interpret both tree ensembles and neural networks,
as they can efficiently handle dependence and interactions in the data, as opposed
to most other variable importance measures. However, estimating Shapley effects
is a challenging task, because of the computational complexity and the conditional
expectation estimates. Accordingly, existing Shapley algorithms have flaws: a
costly running time, or a bias when input variables are dependent. Therefore,
we introduce SHAFF, SHApley eFfects via random Forests, a fast and accurate
Shapley effect estimate, even when input variables are dependent. We show
SHAFTF efficiency through both a theoretical analysis of its consistency, and the
practical performance improvements over competitors with extensive experiments.
An implementation of SHAFF in C++ and R is available online.

1 Introduction

State-of-the-art learning algorithms are often qualified as black-boxes because of the high number
of operations required to compute predictions. This complexity prevents to grasp how inputs are
combined to generate the output, which is a strong limitation for many applications, especially those
with critical decisions at stake—healthcare is a typical example. For this reason, interpretability of
machine learning has become a topic of strong interest in the past few years. One of the main tools to
interpret learning algorithms is variable importance, which enables to identify and rank the influential
features of the problem. Recently, Shapley effects have been widely accepted as a very efficient
variable importance measure since they can equitably handle interactions and dependence within
input variables [Owen, 2014, §trumbelj and Kononenko, 2014, [Iooss and Prieur, [2017, [Lundberg and
Leel 2017]]. Shapley values were originally defined in economics and game theory [Shapleyl, [1953]] to
solve the problem of attributing the value produced by a joint team to its individual members. The
main idea is to measure the difference of produced value between a subset of the team and the same
subteam with an additional member. For a given member, this difference is averaged over all possible
subteams and gives his Shapley value. Recently, Owen|[2014]] adapted Shapley values to the problem
of variable importance in machine learning, where an input variable plays the role of a member of
the team, and the produced value is the explained output variance. In this context, Shapley values
are now called Shapley effects, and are extensively used to interpret both tree ensembles and neural
networks. Next, |[Lundberg and Lee|[2017] also introduced SHAP values to adapt Shapley effects to
local importance measures, which break down the contribution of each variable for a given prediction.
We focus on Shapley effects throughout the article, but our approach can be easily adpated to SHAP
values as they share the same challenges.
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The objective of variable importance is essentially to perform variable selection. More precisely, it is
possible to identify two final aims [Genuer et al., 2010]: (i) find a small number of variables with a
maximized accuracy, or (ii) detect and rank all influential variables to focus on for interpretation and
further exploration with domain experts. The following example illustrates that different strategies
should be used depending on the targeted objective: if two influential variables are strongly correlated,
one must be discarded for objective (i), while the two must be kept in the second case. Indeed, if
two variables convey the same statistical information, only one should be selected if the goal is
to maximize the predictive accuracy with a small number of variables, i.e., objective (i). On the
other hand, these two variables may be acquired differently and represent distinct physical quantities.
Therefore, they may have different interpretations for domain experts, and both should be kept for
objective (ii). Shapley effects are a relevant measure of variable importance for objective (ii), because
they equitably allocate contributions due to interactions and dependence across all input variables.

The main obstacle to estimate Shapley effects is the computational complexity. The first step is to
use a learning algorithm to generalize the relation between the inputs and the output. Most existing
Shapley algorithms are agnostic to the learning model. [Lundberg et al.|[2018]] open an interesting
route by restricting their algorithm to tree ensembles, in order to develop fast greedy heuristics,
specific to trees. Unfortunately, as mentioned by Aas et al.| [2019], the algorithm is biased when
input variables are dependent. In the present contribution, we focus our Shapley algorithm on random
forests, well known for their good behavior on high-dimensional or noisy data, and their robustness.
Using the specific structure of random forests, we develop SHAFTF, a fast and accurate Shapley effect
estimate.

Shapley effects. To formalize Shapley effects, we introduce a standard regression setting with an
input vector X = (X, ..., X»)) € RP, and an output Y € R. We denote by X'V) the subvector
with only the components in U C {1,...,p}. Formally, the Shapley effect of the j-th variable is
defined by

Sh* (X)) = 1 (p - 1>1V[E[Y|X(Uu{j})” _ V[E[Y\X(U)]].

Ul VY]

In other words, the Shapley effect of X (4 is the additional output explained variance when j is added
toasubset U C {1,...,p}, averaged over all possible subsets. The variance difference is averaged
for a given size of U through the combinatorial weight, and then the average is taken over all U sizes
through the term 1/p. Observe that the sum has 2P~! terms, and each of them requires to estimate
VIE[Y [XY]], which is computationally costly. Overall, two obstacles arise to estimate Shapley
effects:

vegn oy ?

1. the computational complexity is exponential with the dimension p;

2. VIE[Y |XY)]] requires a fast and accurate estimate for all variable subsets U C {1,...,p}.

In the literature, efficient strategies have been developed to handle these two issues. They all have
drawbacks: they are either fast but with a limited accuracy, or accurate but computationally costly.
We will see how SHAFF considerably improves this trade-off.

Related work. The computational issue of Shapley algorithms—1. above—is solved using Monte-
Carlo methods in general [Song et al., 2016} |Lundberg and Lee}, 2017, |Covert et al., 2020, |Williamson
and Feng| [2020, |Covert and Lee, 2020]. In the case of tree ensembles, specific heuristics based on the
tree structure enable to simplify the algorithm complexity [Lundberg et al.,[2018]].

For the second issue of conditional expectation estimates—2. above, two main approaches exist: train
one model for each selected subset of variables (accurate but computationally costly) [Williamson
and Feng|, |2020]], or train a single model once with all input variables and use greedy heuristics to
derive the conditional expectations (fast but limited accuracy). In the latter case, existing algorithms
estimate the conditional expectations with a quite strong bias when input variables are dependent.
More precisely, Lundberg and Lee [2017, kernelSHAP], |Covert et al.| [2020, SAGE], and |Covert and
Leel[2020] simply replace the conditional expectations by the marginal distributions, |[Lundberg et al.
[2018]] use a greedy heuristic specific to tree ensembles, and |Broto et al.|[2020] leverage k-nearest
neighbors to approximate sampling from the conditional distributions. Besides, efficient algorithms
exist when it is possible to draw samples from the conditional distributions of the inputs [Song et al.|



Reference Model Local or Subs.et Conditiqnal
global sampling expectations
. kown conditional
Song et al.| [2016] All global permutation distributions
| [Lundberg and Lee|[2017]] All local Monte-Carlo marginals
| [Lundberg et al[[2018]] tree ensembles| local |greedy heuristic| greedy heuristic
Aas et al.| [2019)] All local | Monte-Carlo | KO%™ conditional
istributions
| |Covert et al.|[2020] All global | Monte-Carlo marginals
| [Broto et al.[[2020] All global brute force |k-nearest neighbors
Williamson and Feng| [2020] All global | Monte-Carlo retrain model
Covert and Lee|[2020] All local Monte-Carlo marginals

Table 1: State-of-the-art of Shapley algorithms.

2016l |Aas et al., 2019, Broto et al.|[2020]]. However, we only have access to a finite sample in practice,
and the input dimension p can be large, which implies that estimating the conditional distributions of
the inputs is a very difficult task. This last type of methods is therefore not really appropriate in our
setting—see Table I|for a summary of the existing Shapley algorithms.

As mentioned above, several of the presented methods provide local importance measures for specific
prediction points, called SHAP values [Lundberg and Leel 2017, [Lundberg et al.l 2018, |[Covert
and Lee, [2020]. Their final objective differs from ours, since we are interested in global estimates.
However, SHAP values share the same challenges as Shapley effects: the computational complexity
and the conditional expectation estimates, and our approach can therefore be adapted to SHAP values.
Let us also mention that several recent articles discuss Shapley values in the causality framework
[Frye et al., 2020, |[Heskes et al.,|2020, |Janzing et al., 2020, |Wang et al.,|2021]]. These works have a
high potential since causality is quite often the ultimate goal when one is looking for interpretations.
However, causality methods require strong prior knowledge and assumptions about the studied
system, and can therefore be difficult to apply in some applications. In these cases, we argue that the
best way to go is to use standard Shapley effects to detect and rank influential variables, as a starting
point to deepen the analysis with domain experts.

Outline. We leverage random forests to develop SHAFF, a fast and accurate Shapley effect estimate.
Such remarkable performance is reached by combining two new features. Firstly, we improve the
Monte-Carlo approach by using importance sampling to focus on the most relevant subsets of
variables identified by the forest. Secondly, we develop a projected random forest algorithm to
compute fast and accurate estimates of the conditional expectations for any variable subset. The
algorithm details are provided in Section[2] Next, we prove the consistency of SHAFF in Section 3]
To our knowledge, SHAFTF is the first Shapley effect estimate, which is both computationally fast
and consistent in a general setting. In Section[d] several experiments show the practical improvement
of our method over state-of-the-art algorithms.

2 SHAFF Algorithm

Existing approach. SHAFF builds on two Shapley algorithms: [Lundberg and Lee| [2017, ker-
nelSHAP] and |Williamson and Feng|[2020]. From these approaches, we can deduce the following
general three-step procedure to estimate Shapley effects. First, a set U,, x of K variable subsets
U c {1,...,p} is randomly drawn. Next, an estimate o, (U) of V[E[Y|XY)]] is computed for
all selected U from an available sample 2,, = {(X1,Y1), ..., (Xn, Ys)} of n independent random
variables distributed as (X,Y"). Finally, Shapley effects are defined as the least square solution of
a weighted linear regression problem. If 7(U) is the binary vector of dimension p where the j-th
component takes the value 1 if j € U and 0 otherwise, Shapley effect estimates are the minimum in
B of the following cost function:

L) = Y wO)Ew) - BT,

Uely, ik



where the weights w(U) are given by

p—1
’U}(U) = ’
(|IZJ)|) [Ul(p —[U])
and the coefficient vector 3 is constrained to have its components sum to 9, ({1,...,p}).

Algorithm overview. SHAFF introduces two new critical features to estimate Shapley effects
efficiently, using an initial random forest model. Firstly, we apply importance sampling to select
variable subsets U C {1,...,p}, based on the variables frequently selected in the forest splits. This
favors the sampling of subsets U containing influential and interacting variables. Secondly, for each
selected subset U, the variance of the conditional expectation is estimated with the projected forest
algorithm described below, which is both a fast and consistent approach. We will see that these
features considerably reduce the computational cost and the estimate error. To summarize, once an
initial random forest is fit, SHAFF proceeds in three steps:

1. sample many subsets U, typically a few hundreds, based on their occurrence frequency in
the random forest (Subsection [2.1));

2. estimate V[E[Y |X(Y)]] with the projected forest algorithm for all selected U and their
complementary sets {1,...,p} \ U (Subsection|2.2);

3. solve a weighted linear regression problem to recover Shapley effects (Subsection [2.3).

Initial random forest. Prior to SHAFF, a random forest is fit with the training sample &, to
generalize the relation between the inputs X and the output Y. A large number M of CART trees
are averaged to form the final forest estimate 1z ,, (x,® /), where x is a new query point, and each
tree is randomized by a component of @y = (0O1,...,0y,...,0,s). Each Oy is used to bootstrap
the data prior to the ¢-th tree growing, and to randomly select mtry variables to optimize the split at
each node. mtry is a parameter of the forest, and its efficient default value is p/3. In the sequel, we
will need the forest parameter min_node_size, which is the minimum number of observations in
a terminal cell of a tree, as well as the out-of-bag (OOB) sample of the /-th tree: the observations
which are left aside in the bootstrap sampling prior to the construction of tree ¢. Given this initial
random forest, we can now detail the main three steps of SHAFF.

2.1 Importance Sampling

The Shapley effect formula for a given variable X (/) sums terms over all subsets of variables
U c{l,...,p}\ {4}, which makes 2°~! terms, an intractable problem in most cases. SHAFF uses
importance sampling to draw a reasonable number of subsets U, typically a few hundreds, while
preserving a high accuracy of the Shapley estimates. We take advantage of the initial random forest
to define an importance measure for each variable subset U, used as weights for the importance
sampling distribution.

Variable subset importance. In a tree construction, the best split is selected at each node among
mtry input variables. Therefore, as highlighted by Proposition 1 in|Scornet et al.|[2015]], the forest
naturally splits on influential variables. SHAFF leverages this idea to define an importance measure
for all variable subsets U C {1,...,p} as the probability that a given U occurs in a path of a tree of
the forest. Empirically, this means that we count the occurrence frequency of U in the paths of the M
trees of the forest, and denote it by ps ,(U). Such approach is inspired by [Basu et al.| [2018]] and
Bénard et al.|[2021a]. This principle is illustrated with the following simple example in dimension
p = 10. Let us consider a tree, where the root node splits on variable X (5), the left child node splits
on variable X ), and the subsequent left child node at the third tree level, on variable X ), Thus,
the path that leads to the extreme left node at the fourth level uses the following index sequence
of splitting variables: {5,3,2}. All in all, the following variable subsets are included in this tree
path: U = {5}, U = {3,5}, and U = {2, 3,5}. Then, SHAFF runs through the forest to count the
number of times each subset U occurs in the forest paths, and computes the associated frequency
P (U). If a subset U does not occur in the forest, we obviously have pas,, (U) = 0. Notice that
the computational complexity of this step is linear: O(Mn).
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Figure 1: Example of the partition of [0, 1] by a random CART tree (left side) projected on the
subspace spanned by X(Y) = X (1) (right side). Here, p = 2 and U = {1}.

Paired importance sampling. The occurrence frequencies ps,, (U) defined above are scaled to
sum to 1, and then define a discrete distribution for the set of all subsets of variables U C {1,...,p},
excluding the full and empty sets. By construction, this distribution is skewed towards the subsets U
containing influential variables and interactions, and is used for the importance sampling. Finally,
SHAFF draws a number K of subsets U with respect to this discrete distribution, where K is a
hyperparameter of the algorithm. We define U, x the random set of the selected variable subsets
U. For all U € U, x, SHAFF also includes the complementary set {1,...,p} \ U in U, k, as
Covert and Lee|[2020] show that this “paired sampling” improves the final Shapley estimate accuracy.
Clearly, the computational complexity and the accuracy of the algorithm increase with K. The next
step of SHAFF is to efficiently estimate V[E[Y |X(Y)]] for all drawn U € U K.

2.2 Projected Random Forests

In order to estimate V[E[Y |X(Y)]] for the selected variable subsets U € U, i, most existing methods
use greedy algorithms. However, such estimates are not accurate in moderate or large dimensions
when input variables are dependent [Aas et al., 2019} |Sundararajan and Najmil, 2020|]. Another
approach is to train a new model for each subset U, but this is computationally costly [Williamson
and Fengl 2020]. To solve this issue, we design the projected random forest algorithm (PRF), to
obtain a fast and accurate estimate of V[E[Y |X'Y)]]/V[Y] for any variable subset U C {1,...,p}.

PRF principle. PREF takes as inputs the initial forest and a given subset U. The general principle
is to project the partition of each tree of the forest on the subspace spanned by the variables in U,
as illustrated in Figure[I] Then the training data is spread across this new tree partitions, and the
cell outputs are recomputed by averaging the output Y; of the observations falling in each new cell,
as in the original forest. The projection enables to eliminate the variables not contained in U from
the tree predictions, and thus to estimate E[Y|X(Y)] instead of E[Y |X]. Finally, the predictions for
the out-of-bag samples are computed with the projected tree estimates, and averaged across all trees.
The obtained predictions are used to estimate the tag%gted normalized variance V[E[Y |X(Y)]]/V]Y],
denoted by vz, (U). More formally, we let mg\%’g )(XEU), ©®)) be the out-of-bag PRF estimate
for observation ¢ and subset U, and take '

1 n
n& Y i

(¥; = mi 2P (X 00)",

1

Omn(U)=1-

where &y is the standard estimate of V[Y].

PREF algorithm. The critical feature of PRF is the algorithmic trick to compute the projected
partition efficiently, leaving the initial tree structures untouched. Indeed, a naive computation of the



projected partitions from the cell edges is computationally very costly, as soon as the dimension
increases. Instead, we simply drop observations down the initial trees, ignoring splits which use a
variable outside of U. This enables to recover the projected partitions with an efficient computational
complexity. To explain this mechanism in details, we focus on a given tree of the initial forest.
Thus, the training observations are dropped down the tree, and when a split involving a variable
outside of U is met, data points are sent both to the left and right children nodes. Conseqlljlently, each
observation falls in multiple terminal leaves of the tree. We drop the new query point X ) down the
tree, following the same procedure, and retrieve the set of terminal leaves where XU falls. Next,
we collect the training observations which belong to every terminal leaf of this collection, in other
words, we intersect the collection of leaves where XU/ falls. Fmally, we average the outputs Y; of
the selected training points to enerate the tree prediction for X (). Notice that such set of selected
observations can be empty if xW belongs to a large collection of terminal leaves. To avoid this issue,
PRF uses the following strategy. Recall that a partition of the input space is associated to each tree
level, and consequently, a projected tree partition can also be defined at each tree level. Thus, when
X is dropped down the tree, it is stopped before reaching a tree level where it falls in an empty
cell of the associated projected partition. Overall, this mechanism is equivalent to the projection of
the tree partition on the subspace span by X (V) because all splits on variables X () with j ¢ U are
ignored, and the resulting overlapping cells are intersected—see Figure ]

PRF computational complexity. An efficient implementation of the PRF algorithm is detailed in
Algorithm(T]in the Supplementary Material. The computational complexity of PRF for all U € U, x
does not depend on the dimension p, is linear with M, K, and quasi-linear with n: O(M Knlog(n)).
PREF is therefore faster than growing K random forests from scratch, one for each subset U, which has
an averaged complexity of O(M Kpnlog®(n)) [Louppe, [2014]. The computational gain of SHAFF
can be considerable in high dimension, since the complexity of all competitors depends on p—see
the Supplementary Material for a detailed computational complexity analysis. Notice that the PRF
algorithm is close in spirit to a component of the Sobol-MDA [Bénard et al.,2021b]], used to measure
the loss of output explained variance when an input variable j is removed from a random forest.
In particular, a naive adaptation leads to a quadratic complexity with respect to the sample size n,
whereas our PRF algorithm has a quasi-linear complexity, which makes it operational. Finally, the
last step of SHAFF is to take advantage of the estimated 0y, (U) for U € U,, i to recover Shapley
effects.

2.3 Shapley Effect Estimates

The importance sampling introduces the correctlve terms Pps , (U) in the final loss function. Thus,
SHAFF estimates Shy;,, = (Shar (XM), ..., Shar (X (1’3)) as the minimum in § of the follow-
ing cost function

1478 n( K Z (Om n( ) — BTI(U))27

Uelt, PM n

where the sum of the components of /3 is constrained to be the proportion of output explained variance
of the initial forest, fit with all input variables. Finally, this can be written in the following compact
form:

SAhM’n = argmin  £p7.,(5)
Belo,1]P

st [[Blh = omn({1,- .., p}).

3 SHAFF Consistency

We prove in this section that SHAFF is consistent, in the sense that the estimated value can be
arbitrarily close to the ground truth theoretical Shapley effect, provided that the sample size is large
enough. To our knowledge, we provide the first Shapley algorithm which requires to fit only a single
initial model and is consistent in the general case. We insist that our result is valid even when input
variables exhibit strong dependences. The consistency of SHAFF holds under the following mild and
standard assumption on the data distribution:



(Al). The response’Y € R follows
Y =m(X) + e,

where X = (X ... X®)) € [0, 1P admits a density over [0, 1] bounded from above and below
by strictly positive constants, m is continuous, and the noise ¢ is sub-Gaussian, independent of X,
and centered.

To alleviate the mathematical analysis, we slightly modify the standard Breiman random forests: the
bootstrap sampling is replaced by a subsampling without replacement of a,, observations, as it is
usually done in the theoretical analysis of random forests [[Scornet et al., 2015, |Mentch and Hooker,
2016]. Additionally, we follow [Wager and Athey|[2018]] with an additional small modification of the
forest algorithm, which is sufficient to ensure its consistency. Firstly, a node split is constrained to
generate child nodes with at least a small fraction v > 0 of the parent node observations. Secondly,
the split selection is slightly randomized: at each tree node, the number mtry of candidate variables
drawn to optimize the split is set to mtry = 1 with a small probability 6 > 0. Otherwise, with
probability 1 — 6, the default value of mtry is used. It is stressed that these last modifications are
mild, since y and ¢ can be chosen arbitrarily small.

Finally, we introduce the following two assumptions on the asymptotic regime of the algorithm
parameters. Assumption (A2) enforces that the tree partitions are not too complex with respect to the
sample size n. On the other hand, Assumption (A3) states that the number of trees and the number
of sampled variable subsets U grow with n. This ensures that all possible variable subsets have a
positive probability to be drawn, which is required for the convergence of our algorithm based on
importance sampling.

(A2). The asymptotic regime of a.,, the size of the subsampling without replacement, and the number
of terminal leaves t,, are such that a,, < n — 2, a,/n < 1 — k for a fixed k > 0, lim a, = oo,
n—oo

(@)’ _

. . 1
lim ¢, = oo, and lim otn (108(an))”
n—00 n— 00 an

(A3). The number of Monte-Carlo sampling K,, and the number of trees M,, grow with n, such that
M, — oo and n.M,,/ K,, — 0.

We also let the theoretical Shapley effect vector be Sh* = (Sh*(X ™M), ..., Sh*(X ®))) to formalize
our main result.

Theorem 1. If Assumptions (Al), (A2), and (A3) are satisfied, then SHAFF is consistent, that is

Shys, ., — Sh*.

Sketch of proof of Theorem[I] Firstly, we need three lemmas to prove Theorem [I] gathered in the
Supplementary Material. Lemma 1 states that all variable subsets U have a positive probability to be
drawn asymptotically, which ensures that the importance sampling approach can converge. Lemma 2
states the consistency of the projected forest estimate, and the proof uses arguments from |Gyorfi et al.
[2006] to control both the approximation and estimation errors. Lemma 3 applies the two previous
lemmas to state the convergence of the loss function of the weigthed regression problem solved to
recover Shapley effect estimates.

Secondly, we apply Theorem 2 from |Lundberg and Lee| [2017] to show that the minimum of the
theoretical loss function are the theoretical Shapley effects. Finally, using Lemma 3 and Theorem
5.7 from Van der Vaart| [2000, page 45], we show that the minimum of the empirical loss function
converges towards the minimum of the theoretical loss function, which gives the consistency of
SHAFF. O

4 Experiments

We run two batches of experiments to show the improvements of SHAFF over the main competitors
Broto et al.|[2020]], Williamson and Feng|[2020], and |Covert et al.|[2020, SAGE]. Experiment 1 is
a simple linear case with a redundant variable, while Experiment 2 is a non-linear example with
high order interactions. In both cases, existing Shapley algorithms exhibit a bias which significantly
modifies the accurate variable ranking, as opposed to SHAFF.
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Figure 2: Shapley effects for Experiment 1. Red crosses are the theoretical Shapley effects.

Experiment settings. Our implementation of SHAFTF is based on ranger, a fast random forest
software written in C++ and R from |Wright and Ziegler|[2017]. We implemented |Williamson and
Feng| [2020] from scratch, as it only requires to sample variable subsets U, fit a random forest for
each U, and recover Shapley effects by solving the linear regression problem defined in Section
Notice that we limit tree depth to 6 when |U| < 2 to avoid overfitting. We implemented SAGE
following Algorithm 1 from [Covert et al.|[2020], and setting m = 30. The original implementation
of Broto et al.|[2020] in the R package sensitivity has an exponential complexity with p. Even
for p = 10, we could not have the experiments done within 24 hours when parallelized on 16 cores.
Therefore, we do not display the results for|Broto et al. [2020], which seem to have a high bias on toy
examples. In all procedures, the number K of sampled subsets U is set to 500, and we use 500 trees
for the forest growing. Each run is repeated 30 times to estimate the standard deviations. For both
experiments, we analytically derive the theoretical Shapley effects, and display this ground truth with
red crosses in Figures 2]and B} —see the Supplementary Material for the formulas.

Experiment 1. In the first experiment, we consider a linear model and a correlated centered
Gaussian input vector of dimension 11. The output Y follows

Y =p"X+e,

where 3 € [0, 1], and the noise ¢ is centered, independent, and such that V[g] = 0.05 x V[Y].
Finally, two copies of X (?) are appended to the data as X (*2) and X (3, and two dummy Gaussian
variables X (14 and X (5 are also added. We draw a sample Z,, of size n = 3000.

Figure [2] shows that SHAFF is more accurate than its competitors. [Covert et al] [2020, SAGE]
has a strong bias for several variables, in particular X*, X(7) X&) "and X9 The algorithm
from Williamson and Feng|[2020] has a lower performance since its variance is higher than for the
other methods. Notice that Williamson and Feng|[2020] recommend to set K = 2n (= 6000 here).
Since we use K = 500 to compare all algorithms, this high variance is quite expected and show the
improvement due to the importance sampling of our method. Besides, the computational complexity
of [Williamson and Feng| [2020] is O(n?) whereas SHAFF is quasi-linear. Finally, in this experiment,
the random forest has a proportion of explained variance of about 86%, and the noise variance is 5%,
which explains the small negative bias of many estimated values.

Experiment 2. In the second experiment, we consider two independent blocks of 5 interacting
variables. The input vector is Gaussian, centered, and of dimension 10. All variables have unit
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Figure 3: Shapley effects for Experiment 2. Red crosses are the theoretical Shapley effects.

variance, and all covariances are null, except Cov(X ™), X)) = Cov(X©®) X(M) = 0.9, and
Cov(X™, X)) = Cov(X®, x(19)) = 0.5. The output Y follows

Y =3V3x XWXPT 600+ V3x XBXO 5
+3x XOXD1 o0+ XOXADT L) o + 6,

where the noise ¢ is centered, 1nde endent, and such that V]e] = 0.05 x V[Y]. We add 5 dummy
Gaussian variables X (1D, X (1) x(13) x(14) and X(15) and draw a sample %, of size n. = 10000.

In this context of strong interactions and correlations, we observe that all competitors have a strong
bias for most variables, as opposed to SHAFF, which is also the only algorithm providing the accurate
variable ranking given by the theoretical Shapley effects. In particular, SHAFF properly identifies
variable X ®) as the most important one, whereas SAGE considerably overestimates the Shapley
effects of variables X () and X (). SHAFF also clearly ranks variable X (®) as more 1mp0rtant than
X©) and X (7 as opposed to its competitors. Besides, the proportion of explained variance of the
forest is about 84% in this setting, which explains the negative bias observed for several estimates.

5 Conclusion

We introduced SHAFF, SHApley eFfects via random Forests, an algorithm to estimate Shapley
effects based on random forests, which has an implementation in C++ and R available online. The
challenges in Shapley estimation are the exponential computational complexity, and the estimates of
conditional expectations. SHAFF addresses the first point by using importance sampling to favor
the subsets of influential variables, which often occur along the forest paths. For the second point,
SHAFTF uses the projected forest algorithm, a fast procedure to eliminate variables from the forest
prediction mechanism. Thanks to this approach, SHAFF only needs to fit a random forests once, as
opposed to other methods which retrain many models and are computationally costly. Importantly,
we prove that SHAFF is consistent. To our knowledge, we propose the first Shapley algorithm which
do not retrain several models and is proved to be consistent under mild assumptions. Furthermore,
we conducted several experiments to show the practical performance improvements over state-of-
the-art Shapley algorithms. Notice that the adaptation of SHAFF to SHAP values is straightforward,
since the projected random forests provides predictions of the output conditional on any variable
subset. Finally, in specific settings, it is obviously possible that other learning algorithms outperform
random forests. Then, we can use such efficient model to generate a new large sample of simulated
observations, which can then feeds SHAFF and improves its accuracy.
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A Computational Complexity

We provide the average computational complexity of SHAFF, as well as its competitors |Broto et al.
[2020]], [Williamson and Feng| [2020], and |Covert et al.|[2020, SAGE]. For these last two algorithms,
random forests are used as the required black-box model. Only SHAFF is quasi-linear with the
sample size n and independent of the dimension p.

A.1 SHAFF

We derive the computational complexity of each step of SHAFF. Overall, the computational com-
plexity is O(M Knlog(n)).

Importance sampling. In order to compute the variable subset importance, SHAFF counts the
occurence of variable subsets U in the tree paths of the forest, which has a complexity of O(Mn),
since each tree has about O(n) nodes. The sampling of K subsets U has a complexity of O(K).

Projected random forests. An efficient implementation of the PRF algorithm is detailed in Algo-
rithm [T} For the sake of clarity, we provide a version of PRF for a smgle variable subset U and one
query point X ) Let us consider a given tree. The new observation X s dropped down the tree,
eventually applying multiple splits at each level, because data points are sent on both sides of splits
involving a variable outside of U. At the same time, the PRF computes which training observations
fall in the same projected cell as X, and stops going down the tree just before the size of this
projected cell becomes lower than the parameter min_node_size. Such procedure has a complexity
of O(n) since we sequentially apply splits to reduce the number of training observations from about
n tomin_node_size to reach the terminal projected cell. Therefore, the computational complexity
to compute the PRF prediction for a given U and X s O(Mn).

In SHAFF, the PRF is run for all subsets U € U, x and the full OOB sample for each tree. In
pract1ce we do not naively run Algorithm . 1| for all U and OOB observations, i.e., O(Kn) times,
since it would lead to a quadratic complexity with n. Instead, for a given tree, all OOB and training
observations are dropped down the tree simultaneously. Even if multiple splits are applied at each tree
level, we are still partitioning two samples of size O(n) by sequentially applying splits: splitting one
time all cells of a given partition takes O(n) operations, and this has to be repeated O(log(n)) times
so that each cell reaches a size of min_node_size. Therefore, the global complexity of running PRF
for the full OOB samples and the K subsets U is O(M Knlog(n)).

Shapley effect estimates. The complexity to solve a least square problem with p columns and K
rows is O(p3 K). However in practice, K is always fixed to default value, and when p > K, only at
most O(K) input variables are selected in the subsets U. For the non-selected inputs, the Shapley
effect4 is null, and they can be removed from the least square problem, leading to a complexity of
O(K*%).

A.2  Competitors

Broto et al. [2020] The conditional expectations are estimated for all U € {1, ..., p}, which makes
27 estimates. Efficient k-nearest neighbor algorithms have a complexity of O(pnlog(n)). Overall
the complexity is O(n log(n)p2P), which is exponential with respect to the dimension p.

Williamson and Feng|[2020] Growing K random forests from scratch, one for each subset U,
has an averaged complexity of O(M Kpn log?(n)) [Louppel 2014]. Wllhamson and Feng [2020]
recommend to use K = O(n), which makes a global complexity of O(Mpn*log*(n)), and is
quadratic with respect to the sample size n and depends on the dimension p.

Covert et al.[2020, SAGE] Running a prediction for random forests takes O (M log(n)) operations.
Since SAGE computes np predictions, the global complexity is O(M pn log(n)) and depends on the
dimension p.
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Algorithm 1 Projected Random Forest

1: Inputs: A random forest fit with 9,,, a variable subset U C {1,...,p}, and a query point XV,

2: for all trees in the forest:

3:  # Step 1: initialize variables
4 initialize nodes_level as a list of nodes containing only the root node;
5: initialize nodes_child as an empty list of child nodes;
6: initialize samples as the list of observation indices of the full training data of the tree;
7 for all levels in the tree:
8 # Step 2: drop X to the next tree level with the relevant training observations
9: for all nodes in nodes_level:
10: if the node splits on a variable in U:
11: compute whether XY falls in the left or right child node;
12: append the child node to nodes_child,
13: set samples_child as the observations in samples which satisfy the split
14: else:
15: append both the left and right children nodes to nodes_child,
16: set samples_child = samples;
17: if the size of samples_child is lower then min_node_size:
18: break the loop through the tree levels;
19: else:
20: set samples = samples_child,
21: set nodes_level = nodes_child;
22: # Step 3: compute prediction
23: compute the tree prediction as the average of Y; for all 7 in samples;

24: average predictions of all trees;
25: return final prediction;

B Proof of Theorem 1

We need the following three lemmas to prove Theorem [I] Lemma [I] gives the convergence of
the importance sampling, because all variable subsets U have a positive probability to be drawn
asymptotically. Lemma [2] states the consistency of the projected forest estimate, and the proof
follows arguments from [Scornet et al| [2015]]. Lemma [3|uses the two previous lemmas to state the
convergence of the loss function of the weighted regression problem solved to recover Shapley effect
estimates.

Lemma 1. If Assumption (A3) is satisfied, we have

P(prr,n(U) > 0) — 1.
Lemma 2. If Assumptions (Al) and (A2) are satisfied, the PRF is consistent, that is, for all M € N*
andU C {1,...,p},

def

iarn(U) == VEY XD/ VY] = 0*(U).

We let Z be a discrete random variable taking values in the set of all subsets of {1, ..., p}, excluding
the full and empty sets. The discrete distribution of Z is given by the weights w(U) (the weights are
scaled to sum to 1).

Lemma 3. If Assumptions (Al), (A2), and (A3) are satisfied, we have
Orin(B) o Bl(0*(2) - B71(2)))) = £4(8).

Proof of Theorem([l] We assume that Assumptions (A1), (A2), and (A3) are satisfied. Since £* is
convex and j3 belongs to the compact set [0, 1]?, the pointwise convergence of Lemma gives the
uniform convergence

sup [y (B) — ()] = 0.
pelo,1]p
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Additionally, since £* is a quadratic convex function and the constraint domain [0, 1]? is convex,
£* has a unique minimum. According to Theorem 2 from [Lundberg and Lee|[2017]], this unique
minimum is Sh*. Finally, since the minimum of ¢* is unique and ¢, ,, uniformly converges to £*,
we apply Theorem 5.7 from |Van der Vaart| [2000, page 45] to conclude that

Shys ., -2+ Sh*.

We prove Lemmas and [3]involved in the proof of Theorem I}

Proof of Lemmall] We assume that Assumption (A3) is satisfied, and denote by 7, ; the random set
of all variable subsets of {1, ..., p} belonging to a path of the ¢-th tree. To prove the result, we derive
an upper bound for P(pys ., (U) = 0). First, we write
M’!L
P(parn(U) = 0(Zn) =P ([ U ¢ Tn.l ),
(=1
and since the trees are independent conditional on Z,,
P(pr1n(U) = 01%p) = P(U & T2 |Z0)™
For n > slog,(p), where s is the minimum number of observations in a terminal leaf, there is at least
one path in each tree that has at least p splits. Additionally, recall that the random forest algorithm is
slightly modified such that mtry is randomly set to 1 with a small probability 4. Thus, if we define
the random event A,, as mtry is set to 1 and a new variable of U is selected at each node of a path
of length at least |U|, then A,, is included in {U € T,, 1}. This event A,, is of probability lower
bounded by (§/p)P, and thus for n > slog,(p)
P(U € Th,11%n) = P(An) = (6/p)",
and then
P(par,n(U) = 012,) < (1= (3/p)")™
Finally, Assumption (A3) gives that the number of trees increases with n, and we obtain
]P(ﬁ]y[’n(U) = 0) — 0,
which is the desired result. O

Proof of Lemmal[2] We assume that Assumptions (A1) and (A2) are satisfied and consider M € N*
and U C {1,...,p}. Recall that

n

. o 1 \U:00B)  (U) 2
UM,”( - nay Zz:; M n (X ®M)) .
The right hand side is expanded as follows:
) RN
orn(U) = > (m(X) + &1 = miy 7P (X )
TLUY

}Y Z(m(Xi) — Em(X) XD + ¢,

— SO (X @) — Epm(X:) X)),

Therefore,

O (U) =

n

S (m(X:) — Em(X,;)[X{7])?

i=1

1

nay

+ &7 + 25 x (m(X;) — Efm(X,)[X["])

=2 % (miy, 7P (X, ©ar) - Elm(X,) X))

= 2(m(Xs) — Bm(X)X;"]) x (miy 777 (X[, ©r) — Blm (X)) X["])
+ (miyr P (X, @ar) — Efm(X:) X)), (B.1)
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Now, using the law of large numbers, we obtain

=3 (%) Bl (X)X{])? + <2
=t +2¢; x (m(X;) — E[m(X;)[X{7)) 2 E[Vim(X)|XW]] + V[e],

and also 6y — V[Y]. Combining these two limits, we have

L= = S m(X,) ~ Elm(X,) X2 + &
T e x (m(X,) — E[m(X) X)) 25 1— EVIm(X) X)) + Vi) VIY]
Rewriting this limit using the law of total variance, we are led to
1 — (E[V[m(X)[X'"]] + V[e])/V]Y]

= (VY] = E[V[m(X)|X]] + V[e]) /V[Y]
= (V[m(X)] + V[e] = E[V[m(X)XD)] - VIe])/V[Y]
= V[E[m(X)[X"])/V]Y]
= VIE[Y X D])/V[Y]
=v*(U).

Overall, the result of the lemma holds if the last three terms of the decomposition converge
towards 0 in probability. This is clearly true if the OOB PRF estimate is L.?-consistent, that is for
1€{l,...,n},

E[(m{y 0P (X", @) — Elm(X,)[X("))*] — 0.

According to Lemma 2 from Bénard et al.| [2021b]], the I.?-convergence of the OOB forest estimate
follows from the convergence of the standard forest estimate. Therefore, we only need to show the
IL2-convergence of the PRF estimate to get the final result. To do so, we adapt the proof of Theorem 1
from |Scornet et al.|[2015]], which shows the convergence of Breiman’s forests for additive models.

The proof only differs for the approximation error. Indeed, we need to show that the variation of
the regression function vanishes in a cell of the empirical PRF. |Scornet et al.|[2015]] show that this
is always true in the original forest for additive models. Here, the result is valid for all regression
functions, using the fact that the random forest is slightly modified: splits cannot be too close from
the edges of cells (at least a fraction of + observations in children nodes), and mtry is set to 1 at
each node with a small probability . Under these small modifications, Lemma 2 from Meinshausen
[2006] gives that the diameter of each cell of the original forest vanishes, i.e,
ILm diam(A4, (X, 0)) =0,

where A,, (X, O) is the cell of the forest where the new query point X falls, and the diameter of a cell
A is the length of the longest line fitting in A, formally

diam(A) = sup [|x —X/||».
x,x' €A

By definition of the PRF algorithm, the projected cell where XY falls is included in A, (X, 0), and
therefore the diameter of the projected cell also vanishes as n increases. Additionally, the regression
function m is continuous by Assumption (A1), and consequently the approximation error converges
to 0. Finally, the PRF estimate is IL2-consistent, and we deduce the final result,

o1 (U) = 0*(U).

O

Proof of Lemma([3] The loss function £y, ,, contains three sources of randomness: the data Z,,, the
forest randomization ©, and the importance sampling of the subsets U. The discrete distribution used
to sample the subsets U is built using the occurrence frequency in the forest pas ,,(U), which depends
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on 9, and O. This subtle relation between the data, the forest, and the importance sampling prevent
a straightforward proof for this lemma. We reshape the loss function and use the law of total variance
to handle separately the multiple sources of randomness. We assume that Assumptions (A1), (A2),
and (A3) are satisfied.

First, we have

taaald) = - > S (0) = 57TV
= Z mﬂﬁM,n(U)>0(@]\/l,n(U) - BTI(U))?,

Uc{1,....,p}

where N,,(U) is the number of times where U is drawn in U, x (with the convention 0/0 = 0).
Since the sum is finite, it is enough to study the convergence of the terms one by one. Let us consider
a given variable subset U. First, we define

A _ Nn(U)]lﬁM,n(U)>0
n, K, — ~
Kan,n(U)

Next, we derive the limit of V[A,, k, ] using the law of total variance. We have
VA, k,] =EV[A, k,|Zn, O]] + V[E[A,, k., |Zn, O]].

On one hand, since K, is a constant and pys,,(U) only depends on Z,, and O, we have

No(U)1p,, . 0)>0 Ly (0)>0 \2
V[An k. |Zn, 0] =V el g,,0] = (LD VN, (0)] 20, 6.
[ ’Kn| ] [ Kan,n(U) | ] Kan,n(U) [ ( )| }
By definition, N,,(U) = Zsz"l 1y, =v, where Uy, ..., Uk, are the variable subsets drawn at each
iteration of the importance sampling. Since U, ..., Uk, are independent conditional on Z,, and ©,

and U is drawn with probability ps,(U),
V[Nn(U”-@na 6] - Kn,V[1U1:U|~@n7 @] = Kn,p]VI,n(U)[l 7ﬁM,n(U)L
and finally

1
E[V[An k., |Zn, O]] = —E[

1= pan(U)
m ﬁM,n(U)>0]'

Therefore,
E[V[An k,|Zn, O]] < LE[M]
o Kn " pun(U)

The number of paths in the forest is upper bounded by n x M,,, and therefore if pps ., (U) is not null,
it is lower bounded by 1/(n.M,,). Thus

EV[An k|2, €] < 20

n

which converges to 0 by Assumption (A3).
On the other hand,

Lsy . (0)>0

R Y YR C]

E[NH(U”@n? 9] = ]lﬁM,n(U)>0’

and then

VIE[An, K, |Zn; O]] =P(prr,n(U) > 0)[1 = P(prrn(U) > 0)]
=P(prrn(U) > 0)P(par,n(U) = 0).

Lemma gives that P(pas,,(U) = 0) —> 0, which implies the convergence of V[E[A,, k. |Zy, O]
towards 0.
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Overall, the law of total variance gives that
V[An’ Kn] — 0.

Since E[A,, k] = P(prr,n(U) > 0) — 1 and L2-convergence implies convergence in probability,
we have

p
An,Kn — 1.

Next, using Lemma 2] we obtain

w(U)N,(U) N
mﬂm,n(u»o(vmn((]) - BTI(U))* 5 w(U)(v*(U) = BTI(U))>.
If Z is a discrete random variable taking values in the set of all subsets of {1, ..., p}, excluding the

full and empty sets, and distributed with the scaled weights w(U ), we finally have

U n(B) = E[(v*(2) - BT1(2))?).

C Formulas of Theoretical Shapley Effects for Experiments

Experiment 1. For a linear model with a Gaussian input vector of dimension p, the theoretical
Shapley effects are given by Theorem 2 in [Owen and Prieur, 2017]] as

A A () XEUT g(-0) 1 x(U)2 2

1w (V)
pUC{lwp}\j |U| VX X e

where the conditional covariances and variances can be easily computed using standard formulas for
Gaussian vectors, and Ug is the noise variance.

In Experiment 1, several copies of a given input X (*) are added to the data. We denote by 7 the
number of redundant variables. We easily deduce the updated value Sh"* (X)) from the original
Shapley effects Sh* (X () for all variables. Then, we have

Sh* (X)) = L (
p+r Uc{1,...p}\k

p4r—1\ " Cov[x® XEOTR-U) X)) L
U] ) VX ®) [XO)] <_V[Y])'

Ifje{1,...,p} \ k, we have

4 ) ! X)) XEOT g(—U) x (V)12
SWH X)) = ——— 2 (p+5| ) — ) B<U> = (-
J
PET v e g v
st. k¢ U
1 S\ (pHr—1\"" =~ (r\[p+r—1\""
torr > , [Z (z)( |U|+£) +Z<€><|UI+€—1> }
stheU Cov[ XD, XTOTRCDIXOR - o2
x VX O XD ( 7V[Y}>'

Finally, forj € {p+1,...,p 4 r}, clearly
Sh*(XW) = Sp'* (X *)),

and dummy variables have a null Shapley effect.
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Experiment 2. Recall that in the second experiment, we consider two independent blocks of 5
interacting variables. The input vector is Gaussian, centered, and of dimension 10. All variables have
unit variance, and all covariances are null, except Cov(X ™), X(2)) = Cov(X©®), X(M) = p,, and
Cov(X™, X®)) = Cov(X®, X(19) = p,. The output Y is defined as a specific case of

Y =ayva x XWX oo+ byv/ax XHXO
+ey/Bx XOXD 00+ dy/BXOXWO g5 +e.

The Shapley effects of the input variables are given by

2
5
Shr(xXW) = S (x®?) = - (ap)” | 5 2
() (X aV1+ﬂV2+J§( 8 +24a)’
bp2)2 5
Sh*(XW) = Sh*(X®) = - ( —p?
() () aV1+BV2+a§( 5 )
—bp2)?® | (ap1)® | (bp2)® | a® P
*(x(3)) — @ (apy a0
Sh*(XT) av1+ﬁv2+ag< i 1 Tty +12+12>’
where
_ (lapi —bp2)*  (ap1)? | (bp2)*  a® VP
Vi _( 4 Ty T ta T 2)’
and
_(lepr —dpa)®  (cp1)® | (dpa)® [ & &
va = ( i T S ).
Symmetrically, we have
2
)
WO = S (X)) — B (cp1)” | 5 5
S ( ) s ( ) OéVl—‘rBVQ—f—O'?( 8 +24C)7
dp2)®> | 5
h* X(9) — Sh* X(IO) — B ( 7d2
SWXT) = SR avl+ﬁv2+ag( st
2 2 2 2 2
X (®) _ B (cpr —dp2)” | (cp1)” | (dp2)* &  d*
Sh*(XT) avl+ﬁvg+ag( 1 1 T3 +124“12>'

Clearly, SP*(X (V) = Sh*(X12)) = Sh*(X (%)) = Sh*(X1D) = Sh*(X19)) = 0.
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