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ABSTRACT
Silicon carbide is an important material with applications in numerous domains, but for which our knowl-
edge of basic properties like elastic constants is surprisingly limited. Although several density functional
theory calculations have been reported, those are usually not accurate enough, with a sizeable dispersion
of published values. An heuristic method is proposed here, allowing for largely reducing the uncertainty.
It is based on the use of a weighted average of errors for two reference materials, Si and C. It is demon-
strated that this method is effective for physical properties like the lattice parameter and the bulk modulus.
It is then used for determining the full sets of elastic constants for the 3C, 2H, 4H, and 6H silicon carbide
polytypes.

Silicon carbide, a ceramic compound, has found its way in various applications, in particular as an
abrasive and a structural material due to its excellent mechanical properties [1]. It is also used in high-
frequency or high temperature electronic devices. Its high resistance to radiation makes it a potential
key component in nuclear applications [2]. Finally, SiC is bio-compatible and interesting for biosensor
applications [3]. It is then not surprising to find an abundance of dedicated studies in the literature.

It is however surprising that despite of all these works, basic SiC properties like the elastic constants
are still not known with a high accuracy. Table 1 shows available data, both from experiments and
calculations, for the most common polytypes. It appears clearly that measured values are scarce, and
are associated to a non negligible uncertainty. There are also no reported values for 2H SiC. One of the
main issue for these measurements is the lack of monocrystalline samples with very high crystalline
quality and of large enough dimensions. Numerical simulations offer an alternative to this issue, but
the ranges of reported values are often large, even when obtained using first principles calculations. For
instance, reported ranges for 3C C11 and C44 values are greater than 60 GPa. It would then be highly
desirable to determine more accurate values of these elastic constants.

Unfortunately, there are not many practical solutions. The determination of elastic constants re-
quires an accurate calculation of the second-order derivative of the energy relatively to the strain. For
density functional theory (DFT), this quantity considerably depends on the functional used to describe
exchange correlation (XC) contributions. This partially explains the dispersion of values reported in the
literature. Other first principle methods like quantum Monte Carlo or other wavefunction based quan-
tum chemistry approaches are more accurate than DFT. However they are not well suited for periodic
system calculations and for computing elastic constants.

In this work we describe a heuristic method allowing for correcting DFT computed elastic constants
in silicon carbide. It is based on estimating the error associated to the XC functional from a weighted
average of the errors computed for Si and C as references. The gain in accuracy is demonstrated in the
case of the lattice parameter and the bulk modulus, using data from the literature. Then the method is
applied to determine the elastic constants of 3C, 2H, 4H and 6H SiC, by correcting DFT calculations
carried out with six different XC functionals.
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Table 1. Elastic constants values reported in the literature for 3C, 2H, 4H and 6H SiC. The experimental uncertainty is indicated when
provided by the authors. For theoretical values, the range of all reported values is given (in parenthesis the range of values obtained using
first-principles calculations).

Ref. C11 C12 C13 C33 C44

3C Exp. [4] 395±12 132±9 236±7
Exp. [5] 390 142 256
The. [1, 5–12] 300–451 (352–420) 101–214 (126–163) 136–287 (211–287)

2H The. [1, 11–13] 388–541 (499–541) 93–183 (93–117) 49–139 (49–61) 422–586 (533–586) 127–162 (156–162)

4H Exp. [14] 507±6 108±8 52±9 547±6 159±7
Exp. [15] 605.2±1
The. [1, 9, 12] 495–534 (498–534) 91–187 (91–96) 50–159 (50–52) 535–577 (535–574) 142–171 (171)

6H Exp. [14] 501±4 111±5 52±9 553±4 163±4
Exp. [16] 502±20 95±29 565±11 169±4
Exp. [15] 551.2±8.3
The. [1, 8] 498–527 (527) 107–186 (107) 56–176 (56) 563–567 (563) 141–165 (165)

Figure 1. DFT calculated values for SiC lattice parameter (top), cohesive energy (middle), and bulk modulus (bottom), for various exchange
correlation functionals (data from Ref. [17]). Red dots correspond to the original data, and blue dots to corrected values using Eq. 5. The
dashed lines show the experimental reference values.
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Table 2. Mean average errors (MAE) for 3C-SiC lattice
parameter a0, cohesive energy Ecoh and bulk modulus B
from original data reported in Ref. [18] (4 XC function-
als), Ref. [17] (63 XC functionals), and Ref. [19] (18 XC
functionals), as well as MAE for corrected values (see text
for details). The values corresponding to a subset of 24 XC
functionals from Ref. [17] are also reported.

a0 (Å) Ecoh (eV) B (GPa)

Ref. [18] orig. 0.0118 0.157 7.520
corr. 0.0019 0.091 1.208

Ref. [17] orig. 0.0200 0.245 8.859
corr. 0.0041 0.085 3.669

Ref. [17]∗ orig. 0.0240 0.315 10.348
corr. 0.0029 0.118 0.556

Ref. [19] orig. 0.0258 0.237 11.042
corr. 0.0027 0.090 1.931

First, let XAB be the value of a given property for an AB alloy, such as the lattice parameter or the
bulk modulus. Let us assume that XAB can be expressed as the weighted average of the same quantity
for its constituent materials A and B. For cubic SiC, for instance, one can write

XSiC = αXC +(1−α)XSi (1)

Knowing XSiC, XSi and XC values, α is obtained with

α =
XSiC −XSi

XC −XSi
(2)

For instance, α = 0.575 for the lattice parameter and α = 0.362 for the bulk modulus. Next, let X̃
be the DFT computed value of the property X . The error compared to the correct reference value is

∆ = X̃ −X (3)

∆ depends on the considered property as well as on material. It also critically depends on the ex-
change correlation functional used in the DFT calculation. Now, for the property X and a given exchange
correlation functional, let us assume that ∆ for 3C-SiC can be computed using a weighted average

∆SiC = α∆C +(1−α)∆Si (4)

with α obtained from Eq. 2. Knowing ∆SiC would then allow for determining an error-corrected
value X∗

SiC from

X∗
SiC = X̃SiC −∆SiC (5)

This assumption is tested for three properties, the lattice parameter, the cohesive energy and the
bulk modulus, and different exchange correlation functionals. Figure 1 compares both original DFT (X̃)
and corrected values (X∗) using data compiled by Tran et al. [17]. For each property, α is computed
with eq. 2 and reference values for C, Si, and 3C-SiC (given in Ref. [17]). For each functional, the
corrected value is obtained from Eq. 5, ∆SiC being calculated using Eq. 4. Figure 1 clearly shows that
a significant improvement is achieved for most functionals for the three quantities. Going deeper into
the analysis, it appears that for the lattice parameter and the bulk modulus, an impressive agreement
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Figure 2. Variations of mean average error (MAE) for three 3C-SiC quantities, with corrections using a weight factor α ranging from 0 to
1 and Eq. 4, using data reported in Ref. [17]. The crosses show the MAE with corrections using α computed using Eq. 2. Values for lattice
parameter (cohesive energy) were multiplied by 500 (50) for the sake of comparison.

Table 3. Lattice parameter and elastic constants (raw and corrected values) for
3C-SiC from DFT calculations with different XC functionals

3C-SiC a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa)
Raw Corr. Raw Corr. Raw Corr.

LDA 4.3288 403.8 403.1 142.3 112.3 253.7 253.2
PBE 4.3805 383.9 401.8 127.6 124.7 239.5 251.3

PBEsol 4.3575 390.9 401.3 138.0 116.7 243.4 249.7
optB88 4.3721 387.5 402.9 129.5 122.0 241.9 251.7

optB86b 4.3663 385.8 400.3 135.6 117.2 240.3 248.8
revPBE 4.3966 377.2 401.5 122.7 128.5 235.3 250.6

Avg. 388.2 400.3 132.6 120.2 242.3 250.9
Std. Dev. 8.1 1.0 6.6 5.4 5.7 1.4

is obtained for LDA, GGA functionals, and their hybrid versions (left part of the graphs). It is less
satisfactory for dispersion-corrected functionals (right part). A quantitative assessment of the correction
is obtained by calculating the mean average errors (MAE) for the different sets of data (Tab. 2). The
MAE are significantly reduced for all datasets, which confirms the visual impression in Fig. 1.

This analysis confirms that our assumption is correct for the considered properties, and that Eq. 4
and 5 can be used to correct DFT data for SiC. In other words, it is shown that the DFT errors for SiC
can be approximated by a weighted average of the DFT errors for Si and C, at least for quantities like
lattice parameter, cohesive energy, and bulk modulus.

Note that for computing the weight factor α , one needs to know the value of the desired SiC quan-
tity (Eq. 2). However, it can be shown that a relevant error reduction can be achieved even with an
approximate value. Figure 2 represents the variation of the MAE using a weight factor α ranging from
0 to 1, and using data from Ref. [17] (a similar picture is obtained for all datasets). Two findings stand
out. First, for the lattice parameter and the bulk modulus, the lowest MAE are obtained for α computed
using Eq. 2. This is not true for cohesive energy. This is probably related to the fact that there is an
energy gain by forming SiC from its constituents, which is not described by Eq. 1. Second, for lattice
parameter and bulk modulus, it appears that significant errors corrections can be obtained even when α

is close but not equal to the ideal value given by Eq. 2. Therefore the error correction scheme proposed
in this work can be employed even if only approximate XSiC data are available.

The DFT calculations were performed using the Quantum Espresso package [22]. Overestimated
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Table 4. DFT calculated lattice parameters and elastic constants for C and Si with different XC functionals, and
experimental reference values for C [20] and Si [21] elastic constants.

C Si
a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa) a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa)

Ref. 1080.9 125.0 578.9 167.54 64.92 80.24
LDA 4.3288 1102.4 148.3 591.0 5.3995 161.6 64.4 74.4
PBE 4.3805 1051.7 125.5 557.6 5.4692 153.3 56.8 73.6

PBEsol 4.3575 1071.0 141.1 573.3 5.4325 157.0 62.6 73.6
optB88 4.3721 1057.7 129.3 561.4 5.4571 154.6 58.0 74.6

optB86b 4.3663 1059.5 138.5 567.8 5.4440 155.3 61.2 73.1
revPBE 4.3966 1033.6 118.1 547.0 5.4919 150.6 54.0 73.9

Table 5. Lattice parameters and elastic constants (raw and corrected values) for 2H-SiC from DFT calculations with different
XC functionals

2H-SiC a0 (Å) c0/a0 C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)
Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr.

LDA 3.0562 1.64123 522.9 518.5 114.4 85.4 58.1 49.7 566.7 560.0 155.7 157.8
PBE 3.0905 1.64124 495.9 519.2 102.7 94.9 51.3 51.5 535.2 560.7 151.7 158.8

PBEsol 3.0763 1.64113 504.1 513.9 111.1 89.3 57.8 52.2 545.6 554.7 150.1 156.3
optB88 3.0864 1.64144 498.4 517.5 103.4 91.6 51.3 50.2 538.3 558.8 152.2 158.6

optB86b 3.0826 1.64101 497.7 512.8 109.1 90.1 56.7 52.7 538.3 553.3 148.5 156.0
revPBE 3.1038 1.64113 483.8 516.0 97.4 96.7 47.9 51.6 521.3 556.9 149.7 158.3

Avg. 500.5 516.3 106.3 91.3 53.8 51.3 540.9 557.4 151.3 157.7
Std. Dev. 11.7 2.3 5.7 3.7 3.9 1.1 13.6 2.7 2.3 1.1

parameters were used whenever possible in order to minimize computational errors. For instance, ex-
cellent convergence was obtained with plane-wave and charge density cutoffs of 90 Ry and 720 Ry.
The Brillouin zone sampling was achieved with k-points grids of 12×12×12 for 3C (2 atoms) and 2H
(4 atoms), 12×12×6 for 4H (8 atoms), and 12×12×4 for 6H (12 atoms). An initial variable cell op-
timization was performed to determine the lattice parameters, with convergence thresholds of 10−9 eV
for the energy, 3×10−5 eV Å−1 for forces, and 10−4 GPa for cell stress components. The second-order
elastic constants were next determined using the ElaStic tool [23], with DFT convergence thresholds of
10−9 eV for the energy and 3× 10−3 eV Å−1 for forces. The range of applied strains was ±0.06, and
elastic constants were computed by fitting the energies of the strained cells using 6th-order polynomials.
We checked that these parameters were appropriate to obtain extremely well converged elastic constants
(Tab. 3 and 4).

Regarding the choice of the exchange correlation (XC) functionals, it is important to emphasize
that we aim at determining accurate values for SiC polytypes elastic constants, and not at assessing
the accuracy of a large set of these functionals. However, several ones should be considered to gain
confidence in the robustness of our results. As a compromise, six different XC functionals (LDA [24,25],
PBE [26], PBEsol [27], revPBE [28], optB88 [29], and optB86bb [30]) were selected. In particular, we
found that bulk modulus values computed with these functionals match closely the reference data, with
differences lower than 1 GPa, when the corrections described in the previous section are applied.

The full-potential projector augmented wave method was used to compute the electron-ion inter-
actions [31]. Pseudopotentials for C and Si, generated for LDA, PBE, and PBEsol functionals, were
selected from the PSlibrary [32]. For the calculations with the revPBE, optB88 and optB86B func-
tionals, the PBE pseudopotential was used. Note that all calculations were carried out with the scalar
relativistic version of these pseudopotentials, since tests made with full relativistic pseudopotentials
resulted in negligible differences.

There is an additional hurdle for computing the elastic constants of the hexagonal polytypes. In fact,
accurate reference values of the elastic constants of hexagonal diamond and silicon are not available. A
way to circumvent this issue is to transform the cubic elastic constants for Si and C into their hexagonal
counterparts, using the known relations [33] reported below:
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Table 6. Lattice parameters and elastic constants (raw and corrected values) for 4H-SiC from DFT calculations with different
XC functionals

4H-SiC a0 (Å) c0/a0 C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)
Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr.

LDA 3.0583 3.27373 515.9 511.5 118.5 89.5 59.2 50.8 566.3 559.6 163.1 165.2
PBE 3.0946 3.27389 486.7 510.0 104.5 96.7 51.7 51.9 532.0 557.5 157.6 164.7

PBEsol 3.0784 3.27364 497.6 507.4 114.4 92.6 58.7 53.1 545.8 554.9 157.1 163.3
optB88 3.0886 3.27404 491.8 510.9 106.4 94.6 52.6 51.5 538.0 558.5 158.8 165.2

optB86b 3.0847 3.27351 491.2 506.3 112.4 93.3 57.6 53.6 538.6 553.6 155.3 162.8
revPBE 3.1059 3.27377 477.4 509.6 100.2 99.5 49.1 52.8 521.2 556.9 155.9 164.5

Avg. 493.4 509.3 109.4 94.4 54.8 52.3 540.3 556.8 158.0 164.3
Std. Dev. 11.8 1.8 6.2 3.1 3.9 1.0 13.8 2.0 2.6 0.9

Table 7. Lattice parameters and elastic constants (raw and corrected values) for 6H-SiC from DFT calculations with different
XC functionals

6H-SiC a0 (Å) c0/a0 C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)
Raw Corr. Raw Corr. Raw Corr. Raw Corr. Raw Corr.

LDA 3.0591 4.90676 512.9 508.5 119.5 90.5 59.6 51.2 566.8 560.1 165.8 167.9
PBE 3.0955 4.90688 483.9 507.2 105.4 97.6 52.1 52.3 532.1 557.6 159.9 167.0

PBEsol 3.0793 4.90666 494.9 504.7 115.4 93.6 59.0 53.4 546.3 555.4 159.6 165.8
optB88 3.0895 4.90708 489.1 508.2 107.2 95.4 53.1 52.0 538.3 558.8 161.2 167.6

optB86b 3.0855 4.90654 488.6 503.7 113.4 94.4 57.9 53.9 539.1 554.1 157.8 165.3
revPBE 3.1069 4.90680 474.9 507.1 101.0 100.3 49.6 53.3 521.5 557.2 158.2 166.8

Avg. 490.7 506.6 110.3 95.3 55.2 52.7 540.7 557.2 160.4 166.8
Std. Dev. 11.6 1.8 6.3 3.1 3.8 0.9 13.9 2.0 2.7 0.9

CH
11 =

1
6
(3C11 +3C12 +6C44) (6)

CH
12 =

1
6
(C11 +5C12 −2C44) (7)

CH
13 =

1
6
(2C11 +4C12 −4C44) (8)

CH
33 =

1
6
(2C11 +4C12 +8C44) (9)

CH
44 =

1
6
(2C11 −2C12 +2C44) (10)

Such a transformation is accurate if internal strains in the hexagonal phase are negligible, which
we assume to be the case for elemental materials like C and Si. The raw and corrected DFT results
for 2H, 4H and 6H SiC are reported in Tab. 5, 6, and 7. A large reduction of the standard deviation is
clearly obtained for C11 and C33, and to a lesser extent for C13 and C44. Only for C12 the improvement is
moderate, as for 3C-SiC. Our values are in excellent agreement with experiments by Kamitani et al. [14],
except for C12. It is not clear if the discrepancy is related to the correction scheme or to the experiments.
Arlt and Schodder reported a C12 value close to ours, but associated to a significant error [16]. Finally, a
value of 203.5 GPa for C66 was recently reported [34] for 4H SiC. Since C66 = (C11 −C12)/2, it would
suggest that C12 = 102 GPa using our C11 value, or C12 = 100 GPa if C11 = 507 GPa as in Ref. [14].
Finally, Karmann et al. measured C33 = 551.2 GPa and C33 = 605.2 GPa in 6H and 4H, respectively
(Tab. 1). While their 6H value is comparable to ours and to previous works, the second one is probably
overestimated.

Since we have now a full set of accurate elastic constants for several polytypes, it is interesting to
examine trends. We note that there is a slight decrease for C11 from 2H to 6H. Conversely, shear-related
constants like C12 and C44 increase. No obvious variation exist for C13 and C33. Overall, the differences
between hexagonal polytypes remain small.

In this work, we have presented an heuristic method allowing for computing elastic constants in
different SiC polytypes with an unprecedented accuracy. This method is based on a determination of
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the error associated to density functional theory calculations from a weighted average of equivalent
errors estimated for Si and C, two materials for which accurate data are available. The validity of the
approach is demonstrated for the lattice parameter and the bulk modulus. In the case of elastic constants,
it is shown that a significant reduction of the dispersion of DFT computed values is obtained in all
cases, except for the C12 constant for which the improvement is marginal. As a result, the full sets of
elastic constants for 3C, 2H, 4H, and 6H were determined. Our results are in excellent agreement with
experimental values from Kamitani et al. for 6H and 4H polytypes [14], and fill a gap for 2H and 3C for
which there are few or no available data.
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