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RESUME. Les modéles spatio-temporels (ST) sont souvent utilisés pour analyser les
phénomeénes ST. Une de ces techniques d’analyse consiste a détecter des motifs dans
le phénoméne pour comprendre son évolution et modéliser le comportement de ses en-
tités dans l’espace et le temps. Dans cet article, nous nous concentrons sur l’utilisation
d’une représentation fondée sur les graphes dynamiques pour la modélisation des phé-
noménes ST, au sein duquel des motifs structurels, également modélisés sous forme
de graphes dynamiques, peuvent étre détectés. Nous illustrons le concept de motif par
deux exemples applicatifs - le trafic routier et les sports collectifs. Pour chacun d’eux,
nous présentons une modélisation du graphe ainsi que des motifs associés. Ensuite,
nous formalisons le probléme de la détection de motifs comme celui de l’isomorphisme
de sous-graphe pour les graphes dynamiques. Enfin, nous présentons les résultats de
notre algorithme pour résoudre ce probléme. Les premiers résultats décrits dans cet
article, qui sont obtenus en utilisant les graphes aléatoires, présentent une base de
référence pour les futurs tests de l’algorithme.

ABSTRACT. Spatio-temporal (ST) models are often used for analyzing ST phenomena.
One such analysis technique is to detect patterns in the phemomenon to understand
its evolution and model the behaviour of its entities over space-time. In this paper,
we focus on using a dynamic graph-based representation for modeling ST phenomena,
within which structural patterns, also modeled using dynamic graphs, can be detected.
We illustrate the concept of pattern using two applications - road traffic and invasive
team sports. For both these applications, we present the graph model as well as the
corresponding patterns. Then we formalize the problem of pattern detection as that
of subgraph isomorphism for dynamic graphs. Finally, we present the results of our
algorithm to solve this problem. The initial results described in this paper, obtained
using random graphs, present a baseline for the future tests of the algorithm.

MOTS-CLES : Modélisation spatio-temporelle, Graphes dynamiques, Isomorphisme de
sous-graphe, Trafic routier, Sports collectifs

KEYWORDS: Spatio-temporal modeling, Dynamic graphs, Subgraph isomorphism, Road
traffic, Invasive team sports
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1. Introduction

The field of Spatio-Temporal (ST) Modeling has seen a growing interest in
the last decades, most notably in the development of Geographical Informa-
tion Science (GIS). GISystems store and analyze data about real-world entities,
highlighting their ST evolution as well as the evolution of the overall phenome-
non. Taking Leibnizian point of view, the real-world entities act as the basic
units of space. In fact, space is defined in terms of the relations between such
entities (Chrisman, 1977). From a conceptual point of view, these distinct en-
tities and their time-varying spatial relations represent the ST phenomenon.
This point of view leads to the development of a graph model of the pheno-
menon (Batty, 2003), where the nodes of the graph correspond to the entities
and its edges represent the spatial relations between them. With this approach,
the evolution of the phenomenon and its entities is explained in terms of the
evolution of the graph, i.e., by modeling change in the attributes of the nodes
and the edges and by modeling change in its overall structure. This evolu-
tion of the graph makes the temporal dimension of the model explicit. Such
a modeling approach has been used for modeling dynamics of street networks
(Costes et al., 2015), for describing topological relations between places and
events (Maduako, Wachowicz, 2019), etc. in the literature.

Representing the structure of the phenomenon using a graph encourages
the development of analysis techniques which exploit the structural properties
of the phenomenon. In other words, using this methodology, graph algorithms
can be directly applied to analyse the characteristics of the phenomenon. One
such analysis technique is the graph-based pattern detection. Pattern detection,
in general, is useful to analyse the evolution or the behaviour of the entities
of the phenomenon. Depending on the context, patterns might represent the
evolution of environmental data (Tsoukatos, Gunopulos, 2001), spatio-temporal
proximity of trajectories of moving objects (Demsar, Virrantaus, 2010) etc.
However, in these cases, since the representation of the phenomenon does not
take into account its underlying structure, the patterns detected are based
on the quantitative data acquired about the phenomenon. Such patterns are
called statistical patterns since statistical techniques are used for their definition
and detection. When the underlying structure of the phenomenon is modeled,
the concept of structural patterns comes into picture. Such patterns take a
qualitative modeling approach and are defined in terms of the distinct entities
and their corresponding relations which make up the ST phenomenon.

In this paper, we consider the notion of structural patterns and describe
a method for their detection in ST phenomena. First, we consider two appli-
cations - urban road traffic and invasive team sports (specifically Handball)
- to demonstrate the conceptual idea behind the structural patterns within a
phenomenon. In case of road traffic, the patterns represent the movement of
dynamic entities, like vehicles and pedestrians, and in case of handball, they re-
present predefined plays of the attacking team. The considered ST phenomena
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(road traffic and handball) as well as the structural patterns are modeled using
dynamic graphs with time-varying edge sets. For now, we do not consider the
change in the attributes of the nodes or the edges.

Next, we describe the problem of pattern detection in a ST phenomenon in
terms of the well known problem of subgraph isomorphism (SI)in graph theory,
where a given pattern graph has to be detected in a given target graph. SI has
been well studied in case of static pattern and target graphs (cf. (Conte et
al., 2004)). However, we are currently developing an algorithm to extend it for
dynamic pattern and target graphs. In this paper, without going into details
of the algorithm, we will present some initial results in terms of its runtime,
which were computed using random dynamic pattern and target graphs. By
using random graphs, we were able to modify various graph parameters, for
both pattern and target graphs, to formalize the performance of our algorithm.
The results presented in this paper provide us with a baseline which will be
helpful when the algorithm will be applied to real data about different ST
phenomena in the future.

The paper is organised as follows. Section 2 presents the related work. In
Section 3, we will describe the graph model for representing road traffic and
discuss different kinds of structural traffic patterns which can be defined using
this model. In Section 4, we follow the same plan and discuss structural patterns
in a game of handball. In Section 5, we formalize the problem of SI in case of
dynamic graphs and then discuss the initial results of our algorithm. Lastly,
Section 6 concludes the paper and discusses the future work.

2. Related work

Graphs have been used to model different kinds of spatial and spatio-
temporal phenomena for the last two decades. However, an interesting point of
discussion is the type of analysis that has been done using such graph represen-
tations. For example, (B. Jiang et al., 2000) proposed a graph representation,
called connectivity graph, to model the spatial structure of a building, using
which graph parameters, like node degree, were applied for developing a cogni-
tive point of view of space. Similarly, graph representations have been used to
model street networks to understand the topological structure of the network
and the centrality or the importance of a given street (Porta et al., 2006).

Incorporating temporal information in the graph model leads to the defi-
nition of temporal version of graph parameters. For example, in (Del Mondo
et al., 2010), the authors have proposed a spatio-temporal graph model for
representing ST phenomena. Since time is incorporated in the graph in terms
of its time-varying structure, the neighborhood of a node is time-dependent.
The authors have used the term spatio-temporal neighborhood to describe the
neighbors of a node at a given instant (spatial) or during an interval (tem-
poral). Using this notion, the authors are able to model the propagation of
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brambles through space-time. Furthermore, for understanding the propagation
of a disease within a population, it is important to note the contacts between
different people over time. This idea has been applied in (Shirani-Mehr et al.,
2012) where a dynamic contact network is used to analyze the propagation of
a virus. The authors study reachability queries which verify if a path exists
between two nodes of the graph. But since the graph is time-varying, the path
between two nodes evolves over time.

Graph-based pattern detection is also a very well studied research field.
Some existing research focuses on frequent pattern mining, where the pattern
is not known a priori and a subgraph which exists a certain number of times
is considered pertinent (C. Jiang et al., 2013). Moreover, detecting a given
pattern graph in a given target graph also has its particular applications (Conte
et al., 2004). However, detection of dynamic patterns in dynamic graphs is not
very matured research area. With this paper, we want to, first, highlight the
semantics behind dynamic graph-based patterns in different spatio-temporal
phenomena and, second, formalize the problem of pattern detection as that
of subgraph isomorphism for dynamic graphs. The experiments performed on
random graphs outline the performance of our algorithm.

3. Structural patterns in urban road traffic

In this section, we consider the case of urban road traffic. We will first
describe, in brief, the formalization of the graph model representing traffic
and semantics behind its nodes and edges and then discuss some examples of
structural traffic patterns.

3.1. Graph-based model of road traffic

In our previous work (Oberoi et al., 2017), a graph for representing urban
road traffic was proposed. One of the objectives of this work was to understand
the behaviour of dynamic entities of traffic (vehicles and pedestrians) under dif-
ferent traffic situations. As a result, we developed a traffic model which takes
into account not only dynamic but static entities (buildings, traffic signs, road
markings, footpaths, road segments, intersections) as well which affect traffic
flow. In addition, the interactions between these entities, in terms of spatial re-
lations between them (like topological, orientation, relative trajectory, relative
speed, qualitative distance etc.), were also considered. The entities constitu-
ting traffic were represented as the nodes and the relations between them were
represented as its edges. Given that traffic is a dynamic phenomenon, the mo-
del incorporated the temporal dimension as well. The proposed model had the
support for snapshot-based approach, where each graph snapshot represented
the state of the road traffic at a given time instant. Hence, the evolution of the
graph, and in turn of road traffic, was described by a set of distinct graph snap-
shots for a given period of time. The model represents the behaviour of dynamic



Graph-based pattern detection in ST phenomena 5

entities in terms of their movement and their interactions with other entities
over time. Given that the evolution of traffic is described using a set of distinct
graph snapshots, the movement of dynamic entities can also be modeled using
the same methodology. This defines the semantics behind the structural traffic
patterns discussed below.
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FIGURE 1. Pattern representing the movement of a vehicle and a pedestrian

3.2. Structural traffic patterns

Here, we present two examples of structural traffic patterns describing the
movement of a vehicle and/or a pedestrian and their interactions with other
entities over time. It is noteworthy that in the model proposed in (Oberoi et
al., 2017) edges represent spatial relations between entities but for defining the
structural patterns we do not explicitly consider any spatial relations and focus
only on the time-varying graph structure.

3.2.1. Vehicle crossing an intersection

A basic traffic situation is that of a vehicle crossing an intersection (the
green encircled part of the graphs in Figure 1). In this situation, we consider
five graph snapshots which represent the location of the vehicle V1 at a given
instant. When the vehicle is on a road segment (at times ¢1, to, t4 and t5),
an edge between the vehicle and the corresponding road segment node (R1 or
R2) exists in those graph snapshots. At t3, the vehicle is on the intersection I,
hence, there is an edge between the vehicle and the intersection nodes. At times
to and t4 , the vehicle is shared between the road segment and the intersection.

8.2.2. Vehicle crossing an intersection while pedestrian crossing a street

This situation combines the movement of the pedestrian P1 with that of the
vehicle V1 (Figure 1). At time t;, the pedestrian is on the footpath FR1 and
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the vehicle is approaching the intersection. The vehicle waits for the pedestrian
at time t3 and once the pedestrian has crossed the street, the vehicle continues
moving at time t4. The road marking (zebra crossing) is represented as M?2.
This example highlights the fact that the movement of dynamic entities gets
affected due to the presence of other entities around them and this effect can
be represented using the structural representation of road traffic.

4. Structural patterns in team sports

In the literature, invasive team sports have been represented using graphs to
model player interactions (Gudmundsson, Horton, 2017). In this section, while
focusing on the game of handball, we will describe a graph modeling approach
which takes into account the "role" of the players as well as their positions on
the playing field. Then we will describe two examples of predefined plays for
the attacking team, modeled using dynamic graphs. Such predefined actions
could represent spatio-temporal patterns in other team sports as well.

4.1. Graph-based model for handball

We are working on developing a graph model to represent the game of
handball while taking into account the role of each player and their correspon-
ding positions for both defending and attacking teams. For the attacking team,
there are six roles: Left and Right Backcourt, Center Backcourt, Left and Right
Wingers and Pivot. For the defending team, there are seven roles (six defenders
and one goal keeper) and we consider "6-0" defending formation. In addition,
we consider two zones on the court which describe the position of each player.
Free Throw ("FT") zone represents the area between the six meter line and the
free throw line whereas Nine metre ("9m") zone represents the area beyond the
free throw line towards the middle of the court. These two zones are added as
nodes in the graph which has a total of seventeen nodes, fourteen corresponding
to the player roles, one representing the ball and two for the zones.

The edges between "role" nodes represent the proximity relation, i.e., two
players of same or opposite teams are connected if they are close to each other.
The exact distance value to define the relation between two role nodes is not
yet fixed. An edge between a role and the ball node represents the possession of
the ball by the player having that role. The ball node could also be connected to
two role nodes representing the action of pass between corresponding players.
And finally, an edge between a role and zone node represents the topological
relation between the player and the zone. It is added to represent the position
of the player on the court. As in the case of road traffic, this graph represents
the underlying structure of the game by describing player interactions. It is
evident that this graph evolves with time and its evolution can be modeled in
terms of its time-varying structure. The progress of the game is represented as
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a set, of discrete states of the graph. Such a graph model can be used to model
and extract the predefined actions of the attacking team as discussed below.
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FIGURE 2. Switch between CB and LB players in the attacking team (in
blue). The defending team is in red and the green star represents the ball

4.2. Structural patterns in handball

Similar to road traffic, structural patterns representing player actions in
handball can be defined and modeled using dynamic graphs.

4.2.1. Switch between Center Backcourt and Left Backcourt

This tactic involves the players with roles of Center Backcourt C'B, Left
Backcourt LB and Right Backcourt RB in the attacking team (Figure 2). The
tactic begins when Center Backcourt is in the possession of the ball at time
t1. Then the ball is passed to the Right Backcourt at time ¢5 . Then Center
Backcourt takes the place of Left Backcourt and Left Backcourt takes the place
of Center Backcourt leaving Right Backcourt with the ball possession at time
ts. Then, according to the game situation, Right Backcourt may pass the ball
or take the shot. Here, the roles of Right and Left Backcourt players can be
interchanged.

4.2.2. Crossover between Center Backcourt and Right Backcourt

Here, the Center Backcourt and the Right Backcourt are involved in the
action. The tactic begins when Center Backcourt is in the possession of the
ball at time ¢;. He/she runs towards the direction of the Right Backcourt and
Right Backcourt runs towards the middle of the playing field. When they are
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close enough, the Center Backcourt makes a pass to the Right Backcourt at
time to, leaving Right Backcourt with the ball possession at time t¢3. Then,
depending on the situation, Right Backcourt either shoots or makes another
pass. The same action can also be performed by Center and Left Backcourt
players as well.

5. Pattern detection in ST phenomena

In Sections 3 and 4, we described the graph-based approach for modeling
road traffic and invasive team sports respectively. In both cases, the global
phenomenon was modeled using a dynamic (target) graph within which some
pertinent patterns, also modeled using dynamic (pattern) graphs, could be
detected. In this section, we will the formalize the problem of pattern detection
as that of subgraph isomorphism (SI). First, we will formally define the problem
and then present initial results of the algorithm under development to solve SI
in case of dynamic pattern and target graphs.

5.1. Problem formulation

Consider a static graph G = (X, E,¢) with a set of nodes X and set of
edges £ C X x X. Node classification function ¢ : X — C assigns a class to
each node from a set of classes C'. It is possible for two nodes to belong to the
same class. For example, in case of road traffic a node class could mean Vehicle,
Road marking etc. whereas in case of handball a node class could mean Zone,
Player of the attacking team etc. In addition, unique node labels are assigned
to each node. Given a pair of static pattern graph H = (Xg, Fy,¢¥g) and
static target graph G = (X¢, Fg, ), the problem of SI is to find an injective
mapping u C Xy x X between the nodes of both graphs, while respecting the
following conditions:

Vue Xg,3veXq| (u,v) €p (1)
Vu,u' € Xpg,u#u',3 {(u,v), (W, v} ep=v#0 (2)
V(u,u') € Ey,3 (v,0") € Eg (3)

Vu,u' € Xg, (v,v") € Eg,{(u,v), (v/,v")} € p= (u,u') € Eg (4)
Yu € Xpr,3 (u,v) € p= Yp(u) =g (v) (5)

Equations 1 and 2 state that all distinct nodes of the H must be mapped
to some (but distinct) nodes of G. Equation 3 states that all edges of H are
mapped to some edges of G. Equation 4 verifies the "induced" version of SI
by checking that a mapped edge of G has a corresponding edge in H, i.e., the
subgraph of G matched with H has no extra edges. Lastly, equation 5 states
that only the nodes belonging to the same class in both H and G are mapped.
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FIGURE 3. Snapshots of target graph G and pattern graph H with detected
pattern highlighted in G. Set of nodes in both graphs remains constant over
time but the isolated nodes are not shown for better readability

Next, we define a simple dynamic graph G = (Xg, Eg,7g,v%¢g) as a graph
whose set of edges Fg is time-varying. Its discrete time domain 7¢ is represen-
ted as a set of time instants Tg = {t1,ta, ..., tx}. We consider a snapshot-based
model where a graph snapshot G; at time instant ¢; represents its state. Fol-

lowing this, a dynamic graph can be represented as a set of its discrete states,
ie., G ={G1,Gs,...,G;} (Figure 3).

Given a pair of dynamic pattern graph H = {H;, Hs, ..., H,,}, having
m snapshots, and dynamic target graph G = {G1, Ga, ..., G}, having n
snapshots, with m < n, we extend the problem of SI for dynamic graphs, i.e.,
(1) Each snapshot of H must be mapped to some snapshot of G while respecting
the conditions of subgraph isomorphism (Equations 1-5). (2) The time order of
‘H and G must be respected, i.e., if a snapshot H;,1 < i < m of H is mapped
to a snapshot Gj,1 < j < n of G, then the next snapshot H;; of H must
be mapped to some snapshot Gy of G where f > j. (3) To find a complete
matching of H, a node v € X3, must be mapped to the same node v’ € Xg at
every time instant where the matching is possible and both nodes v and v’ exist.
(4) Tt is possible to have some snapshots of G to which no snapshots of H are
matched. Such snapshots represent noise. They are included to be realistic in
terms of the sampling rate to generate the target graphs in real applications. In
Figure 3, the node classes are represented by the first character of their unique
labels, i.e., the node having label V20 belongs to the class V' etc. The pattern
and target graph snapshots are matched as follows: H1 — G1, H2 — G2,
H3 — G3, H4 — G5 and H5 — G8, while the nodes of the pattern graph are
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matched as: V1 — V100, R4 — R35, I — I15 and R3 — R25. Some target
graph snapshots (G4, Gg and G7) represent "noise”.

5.2. FExperiments and results

We are developing an algorithm which takes graphs H and G as input and
detects all instances of H in G. Our algorithm is based on another algorithm,
VF3 (Carletti et al., 2018), which has been developed for static pattern and
target graphs. We extend VF3 to include the temporal order for both graphs.
We have tested our algorithm using 6050 random pattern and target graph
pairs which were generated with different values of graph parameters - Size
(N), Density (D), Number of node classes (C) and Number of snapshots (7'),
while making sure that at least one instance of the pattern graph exists in the
corresponding target graph. We calculated the average runtime and standard
deviation (SD) for fifty graph pairs with different values of each parameter,
while considering the total time taken, excluding, however, the time required
to load each graph from the files. Some of the results obtained are tabulated in
Table 1. For denser target graphs, the average runtime increases. This is due to
the fact that for denser target graphs, the number of possible node mappings
to be verified is higher. Similarly, increasing the number of snapshots of the
target graph, the runtime increases since algorithm performs more iterations to
find the solution. Increasing, however, the number of node classes of the target
graph does not have a significant effect on the average runtime. For denser
pattern graphs, the runtime also increases since it takes more time to look for
the corresponding edges in the target graph to satisfy the equations 3 and 4
(Section 5.1). Increasing the number of snapshots of the pattern graph shows
a peculiar behaviour. The runtime keeps increasing with the increase in the
number of pattern snapshots since more graphs have to mapped to find the
complete solution. However, when the number of pattern snapshots becomes
equal to the number of target snapshots (7, = T, = 100 in this case) the
algorithm terminates quickly. This is due to the fact that the steps required to
look for a future snapshot of the target graph are not performed in this case
since a snapshot H; of the pattern graph gets mapped to the snapshot G; of the
target graph. Similarly to target graph, increasing the number of node classes
of the pattern graph does not have any significant effect on the runtime.

6. Conclusion and future work

The objective of this paper is to show the applicability of qualitative graph-
based representations for modeling ST phenomena. Graphs represent the un-
derlying structure of the phenomenon which can be exploited to analyse its
spatio-temporal evolution. We focused on detecting patterns within different
phenomena. Taking the examples of road traffic and handball, we highlighted
the conceptual idea of structural pattern and then formalized the problem of
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TABLE 1. Avg. runtime and standard deviation for different graph parameters

Pattern Graph Target Graph Runtime SD
N, |Co | Dy | Tp | Ne | Cy | Dy | T (secs) (secs)
30 [ 20 | 0.8 | 30 | 700 |20 |0.2] 30 0.15 0.02
30 [ 20 | 0.8 | 30 | 700 | 20 | 0.3 30 0.15 0.016
30 [ 20 | 0.8 | 30 | 700 |20 | 0.4 | 30 0.34 0.06
30 | 20 | 0.8 | 10 | 700 | 20 | 0.3 | 30 0.63 0.08
30 | 20 | 0.8 | 10 | 700 | 20 | 0.3 | 60 1.43 0.16
30 [ 20 | 0.8 | 10 | 700 | 20 | 0.3 | 100 2.57 0.3
30 [ 20 | 0.8 ] 30 | 700 | 5 | 0.3 | 30 0.14 0.015
30 [ 20 | 0.8 | 30 | 700 |10 | 0.3 | 30 0.13 0.013
30 [ 20 | 0.8 | 30 | 700 [ 20| 0.3 | 30 0.15 0.016
100 | 20 | 0.4 | 30 | 300 | 20 | 0.3 | 30 0.71 0.033
100 | 20 | 0.6 | 30 | 300 | 20 | 0.3 | 30 0.76 0.032
100 | 20 | 0.8 | 30 | 300 | 20 | 0.3 | 30 0.82 0.034
100 | 20 | 0.4 | 30 | 300 | 20 | 0.3 | 100 28.02 1.23
100 | 20 | 0.4 | 60 | 300 | 20 | 0.3 | 100 58.55 2.6
100 | 20 | 0.4 | 100 | 300 | 20 | 0.3 | 100 2.43 0.12
100 5 | 04| 30 | 3001 20 | 03] 30 0.71 0.031
100 | 10 | 0.4 | 30 | 300 | 20 | 0.3 | 30 0.72 0.033
100 | 20 | 0.4 | 30 | 300 | 20 | 0.3 | 30 0.71 0.034

pattern detection as that of subgraph isomorphism for dynamic graphs. Finally,
the results of our algorithm applied to random dynamic graphs were discussed.
The next step would be to apply our algorithm on the real data. In fact, we
have generated structural traffic patterns using a traffic simulator and we are
in the process of applying our algorithm on the generated traffic model. For the
case of Handball, the graph has been generated for a single game using video
sequences and we are at the stage of defining pertinent structural patterns.
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