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Supplemental material: Beyond-mean-field effects in Rabi-coupled two-component
Bose-Einstein condensate

L. Lavoine, A. Hammond, A. Recati, D.S. Petrov, and T. Bourdel

BOGOLIUBOV SPECTRUM AND BMF ENERGY IN COUPLED BINARY MIXTURES

The expansion of the Hamiltonian (1) (hereafter, equation numbers without prefix S refer to the main text) up to

quadratic terms in the fields φ̂σ,p (we switch to momentum space) can be written as EMF + E0 + Ĥ2, where EMF is
given by Eq. (2),
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The first four terms in the brackets on the right-hand side of Eq. (S1) arise as a compensation for the “incorrectly”
ordered terms added to the quadratic form (S2) in order to make it symmetric with respect the ordering of creation and
annihilation operators. This symmetrized form is convenient since it stays symmetrized under the usual Bogoliubov
transformation and diagonalizes into
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The last term in Eq. (S1) is due to the standard renormalisation of the coupling constant gσσ′ → gσσ′(1+gσσ′
∑
p 1/p2)

in the MF term.
The dispersion relations Ep,± of the Bogoliubov modes (created by operators b̂†p,±) can be written as
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From Eq. (S5) one sees that the mode Ep,− is gapless, while Ep,+ has a gap
√

2D0 6= 0. The former is just the
Goldstone mode due to the breaking of the U(1) symmetry in the condensed state, while the latter is related to the
gap introduced by Ω in having a different phase for the two spinor components. The gap vanishes for Ω = 0, since in
this case there exist two Goldstone modes of the broken U(1)× U(1) symmetry.

The BMF energy is obtained by adding the vacuum part of Eq. (S3) to the constant energy E0. The BMF energy
thus explicitly reads
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where we have replaced the sum over momenta by the integral. Equation (4) is obtained from Eq. (S6) under the
conditions (3) as follows. We switch to the integration variable z = p2 and express the integral in Eq. (S6) as a
contour integral around the branch cut of

√
z along the positive real semiaxis. We then deform this contour towards

the negative semiaxis such that it now goes around the branch cut of Ep,+. This is a finite interval which we map
onto x ∈ [0, 1].

EXACT SOLUTION OF THE TWO-BODY PROBLEM IN THE ZERO-RANGE APPROXIMATION

In order to characterize the two-body scattering let us introduce the single-particle states (normalization will not
be important) |+〉 = |↑〉 − α0 |↓〉 and |−〉 = |↑〉 + |↓〉 /α0, which are eigenstates of the operator ξ corresponding to
eigenvalues ±

√
Ω2 + δ2/2. For two bosons we thus have three possible “total spin” states, which correspond to three

scattering channels equally separated in energy by
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|++〉 = |↑↑〉 − α0(|↑↓〉+ |↓↑〉) + α2
0 |↓↓〉 . (S9)

Consider the scattering of two ground-state |−〉 bosons at the collision energy q2 below the gap
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where the parameters a, C1, and C2 are fixed by three zero-range Bethe-Peierls boundary conditions ensuring that
for r → 0 the projections of Eq. (S10) on the spin states |↑↑〉, |↑↓〉 + |↓↑〉, and |↓↓〉 are proportional, respectively, to
1−a↑↑/r, 1−a↑↓/r, and 1−a↓↓/r. Note that C1, C2, and the overall prefactor in Eq. (S10) absorb the normalization
coefficients omitted in Eqs. (S7-S9). Performing the projection leads to the matrix equation1/a↓↓ −α2
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The energy-dependent scattering length a(q) is related to the s-wave scattering amplitude by the equation

f(q) = − 1

1/a(q) + iq
(S12)

and can be obtained from Eq. (S11) by eliminating C1 and C2. The corresponding explicit expression is analytic but
bulky. However, in the limit of small aσσ′ one can recover the MF result a(0) = a−−, where a−− is defined in the
main text. If one assumes a↑↓ ∼ a↓↓ ∼ |a↑↓| and |δ| ∼ Ω, one can see from Eq. (S11) that a(0) can be expanded in

powers of the small parameter |a↑↓|
√

Ω� 1. The leading BMF correction to a is thus expected to be of order a2
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By solving Eq. (S11) exactly under the conditions Eq. (3) we obtain
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the leading-order asymptote of which is indeed proportional to a2
↑↓
√

Ω (since a−− = 0) and corresponds to the
two-body coupling constant in Eq. (5).

The term ∝ a2
↑↓
√

Ω can be understood as the second-order Born correction to the scattering amplitude for small

aσσ′
√

Ω. This term accounts for virtual interaction-induced transitions of two atoms in the unperturbed ground |−−〉
state with zero momenta to various spin states (|−−〉, |+−〉, |++〉) and momenta q and −q. In spite of the fact that
the channels |+−〉 and |++〉 are strongly gapped at large Ω the second-order integral actually grows as

√
Ω. This
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can be understood by looking at the structure of this integral, which behaves (qualitatively) as
∫
g2d3q/(q2 + Ω).

Its diverging part
∫
g2d3q/q2 is regularized in the standard manner by replacing the bare coupling constants gσσ′ by

4πaσσ′ and the remaining part indeed scales as
√

Ω as the number of momentum states essentially contributing to
the integral grows faster than the gap.

Finally, we note that the Bogoliubov quadratic Hamiltonian, which leads to the BMF energy Eq. (4), does take
into account the virtual two-body processes which we have just described. Equation (5) therefore exactly reproduces
the second-order Born term. On the other hand, the third-order two-body correction ∝ a3

↑↓Ω [present in Eq. (S13)] is
not captured on the level of the Bogoliubov Hamiltonian [and we therefore do not see it in Eq. (5)] since it requires
taking into account interactions between atoms excited from the condensate.


