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We theoretically calculate and experimentally measure the beyond-mean-field (BMF) equation of
state in a coherently-coupled two-component Bose-Einstein condensate (BEC) in the regime where
averaging of the interspecies and intraspecies coupling constants over the hyperfine composition of
the single-particle dressed state predicts the exact cancellation of the two-body interaction. We show
that with increasing the Rabi frequency, the BMF energy density crosses over from the nonanalytic
Lee-Huang-Yang (LHY) scaling ∝ n5/2 to an expansion in integer powers of density, where, in
addition to a two-body BMF term ∝ n2, there emerges a repulsive three-body contribution ∝ n3.
We work in a Rabi-coupled two-component 39K condensate which is released in a waveguide. Its
expansion dynamics is governed by the BMF energy allowing for its quantitative measurement. By
studying the expansion with and without Rabi coupling, we reveal an important feature relevant for
observing BMF effects and associated phenomena in mixtures with spin-asymmetric losses: Rabi
coupling helps preserve the spin composition and thus prevents the system from drifting away from
the point of vanishing mean field.

Vacuum effects are among the most striking features
of quantum field theories. The high degree of control of
cold gases has made these systems ideal candidates to
identify and measure the role of quantum fluctuations in
matter fields. For instance, using Bose gases, quantum
phonons fluctuations [1], phononic Lamb shift [2], dy-
namical phononic Casimir effect [3], as well as evidence
of Hawking-like radiation from analog gravity configura-
tions [4] have been reported.

For a weakly interacting Bose gas quantum fluctua-
tions cause the BEC depletion [5, 6] and lead to the so-
called LHY correction to the mean-field (MF) equation of
state [7]. This BMF correction has found experimental
verification a few years ago [8, 9]. More recently, self-
trapped quantum droplets were stabilized against col-
lapse by BMF effects in single component dipolar BECs
[10, 11] and in two-component BEC mixtures [12–14]. In
the latter case, the MF interaction is greatly reduced by
the compensation between intraspecies repulsion and in-
terspecies attraction while the BMF energy originating
from quantum fluctuations remains finite.

In this Letter we consider a Bose gas formed by atoms
with two internal levels, which are coherently coupled
[15]. The BEC order parameter is then a two-component
vector and the relative phase excitations are gapped due
to the coherent drive. Such systems have been throughly
analyzed on the MF level and used in variety of experi-
ments on coherent Rabi oscillations [16, 17], internal self-
trapping effects [18], ferromagnetic classical bifurcation
[19], Kibble-Zurek mechanism [20], control of the two-
body interaction [21–23], and magnetic domain wall dy-
namics [24]. For sufficiently attractive interspecies inter-
action such Rabi-coupled BECs are predicted to sustain
droplets in the symmetric case, where the Rabi coupling

is resonant and the intraspecies coupling constants are
equal to each other. The stabilization mechanism is in-
terpreted from the few-body perspective as an emergent
three-body repulsion [22] or as a many-body BMF effect
due to a structural change in the excitation spectrum
[25].

Here, we analytically calculate the BMF energy den-
sity in the experimentally relevant case of an asymmetric
Rabi-coupled Bose mixture in the whole range of Rabi
frequencies Ω. We show that the BMF correction crosses
over from the LHY law ∝ n5/2 for small Ω to the reg-
ular expansion in integer powers of n for large Ω. The
quadratic term in the latter limit can be understood as
a renormalization of the two-body interaction, the cu-
bic term as an emergent three-body interaction, and so
on. Experimentally, we quantitatively measure the BMF
energy as a function of Ω by observing the expansion
of a condensed 39K spin-mixture in a waveguide at the
point of vanishing mean-field [26]. In the absence of Rabi
coupling, we observe that asymmetric losses between the
two spin states drive the spin composition away from the
point of zero MF interaction and thus strongly affect the
expansion.

We consider a Bose gas of N atoms possessing two in-
ternal states, σ =↑, ↓, coherently coupled with the Rabi
frequency Ω and detuning δ. In the rotating wave approx-
imation the Hamiltonian of the mixture reads [15, 27]

Ĥ =

∫ (∑
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where Ψ̂σr is the annihilation Bose field operator, ξ =
−(δσz + Ωσx)/2 is the single particle spin Hamiltonian
written in terms of the Pauli matrices acting in the |↑〉-
|↓〉 space, and gσσ′ = 4πaσσ′ are the coupling constants
for the σ-σ′ interaction with the scattering lengths aσσ′ .
In Eq. (1) and in the rest of the paper we adopt the units
~ = m = 1, where m is the mass of the particles.

Assuming zero-temperaure and weak interactions, we
follow the usual Bogoliubov procedure by separating the
dominant condensate contribution and writing the field
operator as Ψ̂σr =

√
nσ + φ̂σr, where nσ are the conden-

sate densities and φ̂σr annihilate particles with nonzero
momenta. Neglecting φ̂ and substituting Ψ̂σr =

√
nσ

into Eq. (1) we obtain the MF energy density
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δ
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where n = n↑ + n↓ and α =

√
n↑/n↓. In the limit-

ing case of vanishing density (or interactions), EMF gets
minimized for α = α0 = δ/Ω +

√
1 + δ2/Ω2, consis-

tent with the condensation in the dressed state |−〉 =
(α0 |↑〉 + |↓〉)/

√
1 + α2

0, which is the ground state of ξ.
The coefficient in front of n2/2 in Eq. (2) is then the MF
coupling constant corresponding to the scattering length
a−− = (a↑↑α

4
0+a↓↓+2a↑↓α

2
0)/(1+α2

0)2 [23]. For a↑↑ > 0,
a↓↓ > 0, and a↑↓ < 0, a−− exhibits a minimum as a
function of δ (or α0). We are interested in the particular
configuration of the scattering lengths (controlled by the
magnetic field) and the RF drive parameters where this
minimum touches zero. This translates into two condi-
tions:

δa = 0 and α0 = β, (3)

where we have introduced the scattering length detun-
ing δa = a↑↓ +

√
a↑↑a↓↓ and the interaction asymmetry

parameter β = (a↓↓/a↑↑)
1/4. Note that for finite n the

energy EMF, upon minimization with respect to α, is not,
in general, a quadratic function of n since the optimal po-
larization parameter α does depend on n. In particular,
the system can feature a three-body attraction already
on the MF level [28]. However, the minimum of a−− is
a special point where both terms on the right-hand side
of Eq. (2) are minimized at α = α0 independent of n. At
this point EMF is thus quadratic in n. If, in addition, we
tune δa to zero [configuration (3)], the minimum of a−−
also vanishes and the condensate becomes noninteracting
on the MF level.

We shall now discuss the influence of BMF effects on
the equation of state. In the Bogoliubov approach the
leading BMF term is obtained by expanding the Hamil-
tonian (1) up to quadratic terms in φ̂σ and by summing
the zero point energies of the corresponding Bogoliubov
modes. In the symmetric case (a↑↑ = a↓↓ and δ = 0) the
calculation has been performed in Ref. [25]. The general
asymmetric case is technically more difficult because of

cumbersome expressions for the Bogoliubov modes [29].
However, under the conditions (3), these expressions sim-
plify and read

Ep,− = p2/2,

Ep,+ =

√
(p2/2 + Ω̃)(p2/2 + Ω̃− 2g↑↓n),

where p is the momentum and Ω̃ = Ω(α0 +1/α0)/2. The
BMF energy density can then be reduced to the form [29]

EBMF =
8(−g↑↓n)5/2

15π2
I

(
Ω̃

−2g↑↓n

)
, (4)

with I(y) =
15

4

∫ 1

0

√
x(1− x)(x+ y)dx.

Equation (4) remains a good approximation for the BMF
energy density as long as |δa/a↑↓| � 1 and |α0− β| � 1.
The function I(y) is a monotonically growing function,
which tends to 1 for y = Ω̃/(−2g↑↓n) → 0. This is the
limit of two uncoupled condensates where Eq. (4) reduces
to the LHY form, responsible for the BMF stabilization of
quantum droplets in binary mixtures [12]. In the opposite
limit I(y) can be expanded in powers of 1/y � 1, the first
two leading terms being I(y) ≈ (15π/128)(1/

√
y+ 4

√
y).

The substitution of this expansion into Eq. (4) gives
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2
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2
+

3

4
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2π
√
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6
, (5)

which is qualitatively different from the LHY n5/2 scal-
ing. The two terms in Eq. (5) can be interpreted as a
BMF-renormalized two-body interaction and an emer-
gent three-body term, respectively. In the symmetric
case, the three-body term agrees with the exact three-
body calculation [22], if the latter is taken in the regime

where the characteristic length scale 1/
√

Ω̃, associated to
the drive, is much larger than aσσ′ . Curiously, the three-

body coupling constant g3 = 3|g↑↓|3/(4π
√

2Ω̃) which we
have obtained here by using the many-body Bogoliubov
approach would be significantly more difficult to calculate
in the asymmetric case by using the general three-body
formalism of Ref. [22].

We now turn to the experimental measurement of the
BMF energy. The latter, in a situation where the MF
interaction is cancelled, is directly measured through
the released energy in a one-dimensional expansion ex-
periment. We work with the second and third lowest
Zeeman states of the lowest manifold of 39K, namely
|↑〉 = |F = 1,mF = −1〉 and |↓〉 = |F = 1,mF = 0〉. At
a magnetic field of 56.830(1) G, the three relevant scat-
tering lengths are a↑↑ = 33.4 a0, a↓↓ = 83.4 a0 and
a↑↓ = −53.2 a0, where a0 is the atomic Bohr radius [30].
The minimum of a−− is then −0.2 a0. We have checked
that the corresponding residual MF energy is a small
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correction as compared to the BMF energy for our pa-
rameters. The experiment starts with a quasi pure BEC
in state |↑〉. The atoms are optically trapped in an elon-
gated harmonic potential with frequencies (ωx, ωy, ωz) =
(137, 137, 25.4) Hz.

The coherent mixture in |−〉 is prepared in an adiabatic
passage, in which the radio-frequency (RF) detuning is
swept from δ = 7.5 Ω to its final value δ ≈ 0.23 Ω, for
which α0 ≈ β. During the RF sweep, a−− decreases
from 33.3 a0 to a value close to 0. Its shape and duration
of 9 ms are chosen in order to be adiabatic not only with
respect to the internal-state dynamics but also with re-
spect to the radial evolution of the wave function, which
progressively shrinks and approaches the ground state of
the radial harmonic confinement. We have checked that
we cannot detect any residual oscillations of the radial
size after the RF sweep. In addition, the axial trap fre-
quency is progressively turned off during the sweep and
adjusted such that the gas is neither axially expanding
nor shrinking in a three-dimensional expansion after the
sweep. The radially confined condensate is then free to
expand in the axial direction for a time of 75 ms. Dur-
ing the final stage of the expansion, we sweep back the
RF frequency to its initial value to map the states |−〉
and |+〉 back onto |↑〉 and |↓〉, which we independently
detect by fluorescent imaging after a short Stern-Gerlach
separation.

Interestingly, we observe that the atoms remain in
state |−〉 [35], which might be surprising as losses are
known to take place mostly in state |↓〉 and thus could
lead to the creation of |+〉. In order to understand the
spin dynamics, we can model the losses by adding −iΓ/2
to the second diagonal term in ξ. Diagonalizing the re-
sulting matrix, we see that for Γ � Ω the initial state
|−〉 remains essentially unchanged, except that it decays
with the rate ≈ Γ| 〈−| ↓〉 |2 = Γ/(1 + α2

0). In our exper-
iment Γ is at most ∼ 20 s−1, which is much lower than
Ω. We thus conclude that the spin-dependent loss in our
case reduces to an effective loss in the dressed state, with
Γ weighted by the fraction of the lossy component.

For each value of the Rabi frequency Ω, we first mea-
sure the condensate density profile after expansion as a
function of the detuning δ. The condensate sizes are ex-
tracted from fits with 1D Thomas-Fermi density profiles
∝ 1− (z/RTF)2 (see Fig. 1). In principle, the condensate
expansion is governed by the total energy EMF +EBMF.
However, the variation of the MF energy as a function
of δ is much stronger than the corresponding variation
of EBMF such that the latter can be approximated by
a constant [36]. As a consequence, the variation of our
measured size is dominated by the variation of a−−. As
we have explained above, under the conditions (3), the
MF term vanishes (a−− ≈ 0) and the expansion of the
cloud is governed by the BMF term. In Fig. 2, we plot
the measured minimal size as a function of the Rabi fre-
quency Ω/2π. For Rabi frequencies Ω/2π between 6 kHz
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FIG. 1: Experimental Thomas-Fermi radius of the conden-
state after 75 ms of expansion as a function of δ/Ω, for a Rabi
frequency Ω/2π = 12.29 kHz. The curve is a parabolic guide
to the eye.

and 38 kHz, we observe a slow increase of the measured
size as a function of Ω, which corresponds to an increase
of the LHY energy as predicted previously. More pre-
cisely, the size after a long time of flight is expected to
scale with

√
ELHY ∝ Ω1/4 for a dominant two-body term

valid at large Ω, which is indeed close to our observed
behavior. At low Rabi frequencies, below 6 kHz, we ob-
serve an increase of the size which we attribute to low fre-
quency magnetic field noise. In a 50µs Ramsey sequence,
we have measured a standard deviation of the magnetic
field ∆B ∼ 0.8(2) mG corresponding to ∆δ ∼ 560 Hz.
This fluctuations leads to an increased average value of
the scattering length ∆a−− ≈ 48(∆δ/Ω)2 a0, which can
explain our observed increasing size for low value of Ω
[37].

We now precisely model our experiment. In brief,
we solve the wave-function evolution through a single
component one-dimensional non-linear Schrödinger equa-
tion in which we properly account for the BMF energy
EBMF [31]. The axial initial wave function is taken to
be ∝ 1− (z/RTF)2, such that the axial density profile is
the one of the initial 3D Thomas-Fermi condensate be-
fore the RF sweep. The spin healing length is smaller
than the radial cloud size and the LHY energy is treated
in a local density approximation in the radial direction
[32]. Since the chemical potential can be of the order
of the radial confinement energy ω⊥ (especially at large
Ω), we take into account, as a function of the 1D den-
sity, the correction to the Gaussian radial profile due to
the dominant two-body BMF contribution. The 1D en-
ergy density is then found by radial integration, and the
chemical potential entering the Schödinger equation by
partial derivation with respect to the 1D density. The
magnetic field noise can be accounted for by an increase
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of a−− entering the MF term.

We find that our model quantitatively reproduces our
experimental results (see Fig. 2). The initial atom num-
ber 1.05 × 105 have been adjusted to match the experi-
mental data and corresponds within 5% to a calibration
using the condensation temperature (which precision is
∼20%). The initial peak density is n ∼ 5× 1020 m−3. A
three-body loss coefficient K−−−/3! = 4×10−28 cm6.s−1

has been adjusted to match our observed ∼ 30% atom
loss during the expansions [38]. As an example, for a
value Ω/2π = 10 kHz, Ω̃/(−2g↑↓n) ≈ 1 and the initial
two-body and three-body energies per particle are found
to be 20 Hz and 3.2 Hz, respectively.
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FIG. 2: Thomas-Fermi radius of the condensate after 75 ms of
expansion as a function of the Rabi coupling strength. Each
point is obtained by averaging 15 fluorescence images and the
error bars correspond to the single shot standard deviation.
The curves correspond to quasi-1D extended Gross-Pitaevskii
simulations (see text). Red dotted curve: BMF description;
black solid curve: BMF description with the addition of mag-
netic field noise; green dashed curve: BMF description re-
stricted to the two-body term.

Finally, we can also repeat the expansion measurement
while removing the RF coupling field at the end of the
sweep such that we are left with two uncoupled conden-
sates. The losses then dominantly take place in state
|↓〉 and contrary to the coupled case, α quickly deviates
from its initial value β. Moreover, we observe after a
Stern-Gerlach separation that the two clouds behave dif-
ferently in the expansion (see Fig. 3). The |↓〉 condensate
does not expand much whereas the |↑〉 condensate ex-
hibits a double structure with a low energy central part.
This behavior is reminiscent of previous observations in
droplet configuration where excess |↑〉 atoms are expelled
from the droplet region [13, 14, 33]. In addition, we find
that the condensate 1D Thomas-Fermi radius in state |↓〉
is 31µm, a value that is significantly lower than the ex-
pected radius of 57µm for our parameters in the single
component simulation with Ω → 0, i.e. with the BMF
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FIG. 3: Density profiles for |↑〉 (black) and |↓〉 (red) atoms
after 75 ms of expansion at Ω = 0. The blue dashed curve is
a 1D Thomas-Fermi fit of the density profile in state |↓〉.

energy density scaling with n5/2. This difference indi-
cates a significant role of transient MF effects in the ex-
pansion dynamics of the central region. Here, |↑〉 atoms,
which are more abundant than expected and which re-
quire some time to escape, create an excessive effective
trapping for |↓〉 atoms forcing their slower expansion.

In conclusion, we have studied both theoretically
and experimentally, the BMF equation of state of a
coherently-coupled two-component BEC in the asymmet-
ric case at the special point (3) where the MF energy
vanishes. The BMF energy density as a function of
n interpolates between the usual ∝ n5/2 LHY form in
the uncoupled limit to a qualitatively different behav-
ior in the strong-coupling regime where one can intro-
duce a hierarchie of effective BMF N -body interactions
with N = 2, 3, ... We quantitatively verify our theoretical
findings in an experiment where the BMF energy gov-
erns the condensate expansion and can thus be accurately
measured. Our results open the path to the creation of
coherently-coupled quantum droplets in which the two-
body interaction (MF+BMF) is compensated by BMF
three-body effects [22]. Interestingly, a coherent Rabi
coupling helps to preserve the spin composition and thus
prevents the system from dynamically drifting away from
the point of vanishing mean field and thus facilitates di-
rect measurements of the BMF equation of state.
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