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We prove a Central Limit Theorem for the empirical optimal transport cost, + {T ( , ) -T ( , )}, in the semi-discrete case, i.e when the distribution is supported in points, but without assumptions on . We show that the asymptotic distribution is the sup of a centered Gaussian process, which is Gaussian under some additional conditions on the probability and on the cost. Such results imply the central limit theorem for the -Wassertein distance, for ≥ 1. This means that, for fixed , the curse of dimensionality is avoided. To better understand the influence of such , we provide bounds of |W ( , ) -W ( , )| depending on and . Finally, the semi-discrete framework provides a control on the second derivative of the dual formulation, which yields the first central limit theorem for the optimal transport potentials and Laguerre cells. The results are supported by simulations that help to visualize the given limits and bounds. We analyse also the cases where classical bootstrap works.

Introduction

A large number of problems in statistics or computer science require the comparison between histograms or, more generally, measures. Optimal transport (OT) has proven to be an important tool to compare probability measures since it enables to define a metric over the set of distributions which conveys their geometric properties, see [START_REF] Verdinelli | Hybrid Wasserstein distance and fast distribution clustering[END_REF]. Moreover, together with the convergence of the moments, it metrizes the weak convergence, see Chapter 7.1. in [START_REF] Villani | Topics in optimal transportation[END_REF]. It is nowadays used in a large variety of fields, in probability and statistics. In particular in machine learning, OT based methods have been developed to tackle problems in fairness as in [START_REF] De Lara | Transport-based Counterfactual Models[END_REF], [START_REF] Gordaliza | Obtaining Fairness using Optimal Transport Theory[END_REF], [START_REF] Jiang | Wasserstein fair classification[END_REF], ?, in domain adaptation [START_REF] Shen | Wasserstein Distance Guided Representation Learning for Domain Adaptation[END_REF], or transfer learning [START_REF] Gayraud | Optimal transport applied to transfer learning for P300 detection[END_REF]. Hence, there is a growing need for theoretical results to support such applications and provide theoretical guarantees on the asymptotic distribution.

The most general formulation of the optimal transport problem considers X, Y both Polish spaces. We use the notation P (X) (resp. P (Y)) for the set of Borel probability measures on X (resp. Y). The optimal transport problem between ∈ P (X) and ∈ P (Y) for the cost : X × Y → [0, ∞) is formulated as minimization problem

T ( , ) := inf ∈Π( , ) ∫ X×Y (x, y) (x, y), (1) 
where Π( , ) is the set of probability measures ∈ P (X × Y) such that ( × Y) = ( ) and (Y × ) = ( ) for all , measurable sets.
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If is continuous and there exist two continuous functions ∈ 1 ( ) and ∈ 1 ( ) such that for all (x, y) ∈ supp( ) × supp( ), (x, y) ≥ (x) + (y),

then the Kantorovich problem (1) can be formulated in a dual form, as

T ( , ) = sup ( , ) ∈Φ ( , ) ∫ (x) (x) + ∫ (y) (y), (3) 
where Φ ( , ) = {( , ) ∈ 1 ( ) × 1 ( ) : (x) + (y) ≤ (x, y)}, see for instance Theorem 5.10 in [START_REF] Villani | Optimal Transport: Old and New[END_REF]. It is said that ∈ 1 ( ) is an optimal transport potential from to for the cost if there exists ∈ 1 ( ) such that the pair ( , ) solves (3).

This work focuses on the semi-discrete optimal transport, i.e. when one of both probabilities, let us assume , is supported on a discrete set X = {x 1 , . . . , x }. Lemma 2.1 shows that T ( , ) is equivalent to the maximization of

( , , z) = =1 + ∫ inf =1,..., { (x , y) -} (y), (4) 
The solution z * (unique up to additive constant under some assumptions) of (4) defines set of Laguerre cells Lag (z) := {y ∈ R : (x , y) -< (x , y) -, for all ≠ }, = 1, . . . , , which are generalizations of the Voronoi cells -equivalent to Lag (0) for the quadratic cost. From an economical perspective semi-discrete optimal transport plays an important role. We refer to Galichon s monograph [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF] and references therein. Let us consider the example contained in chapter 5.1, "Hotelling's location model", where the location of certain population is represented by a continuous probability and the 'fountains' -businesses trying to sell a product-as a discrete probability . Here the location of the fountain is x and the capacity is . Each inhabitant would choose the fountain which enjoys the properties to be at the same time closer and offering a better price, i.e. the strategy arg inf =1,..., { (x , y) -}, where represents the prize of the fountain . The fraction of population that prefers to consume from the fountain is then Lag (z). Under market clearing -supply equals demand -each fountain is used to its full capacity and the problem of determining the prizes reduces to (4).

Other important applications of the semi-discrete optimal transport are quantization and sampling -where the goal of both is to reduce a probability distribution into a finitely supported one. It is well known (cf. Lemma 3.4 in [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] eg.) that the quantization error is the semi-discrete optimal transport between and its quantized version and the optimal quantizer minimizes, among all probability measures supported in a set of elements, the optimal transport cost. In the quadratic case this gives the -means clustering. Futher applications include the resolution of the incompressible Euler equation using Lagrangian methods [START_REF] Gallouët | A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations[END_REF], non-imaging optics; matching between a point cloud and a triangulated surface; seismic imaging [START_REF] Meyron | Initialization Procedures for Discrete and Semi-Discrete Optimal Transport[END_REF], astronomy (Lévy, Mohayaee and von Hausegger, 2020). From a statistical point of view, Goodness-of-fit-tests based on semi-discrete optimal transport enable to detect deviations from a density map to have ≠ , by using the fluctuations of W ( , ), see [START_REF] Hartmann | Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case[END_REF].

Contributions

In this paper we consider observations drawn from two mutually independent samples X 1 , . . . , X and Y 1 , . . . , Y i.i.d. with laws and . Let = 1 =1 X and = 1 =1 Y be the corresponding empirical measures. The optimal transport cost between the empirical distributions T ( , ) defines a random variable.

We are concerned with the asymptotic behaviour of + {T ( , ) -T ( , )} in a general semi-discrete setting. We propose a new proof that relies on the framework introduced in Cárcamo, Cuevas and Rodríguez (2020) and considers the Hadamard derivative of the sup of the process with respect to ℓ ∞ topology. The link to the CLT for optimal transport cost comes from the fact that the dual formulation of the transport problem is, in fact, a supremum of functions. Hence if such functions live in a Donsker class B (see [START_REF] Vaart | Weak convergence and empirical processes[END_REF]), then we can obtain the CLT by proving differentiability of the supremum in ℓ ∞ (B) and applying then the general delta-method.

Hence this paper first covers and generalizes the results of [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF] for a semidiscrete approximated by and a general probability distribution to handle all cases of the semidiscrete framework. Moreover, the computation of T ( , ) is not easy in general, see for instance [START_REF] Gallouët | A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations[END_REF]. Consequently, an interesting problem, also for applications, becomes its approximation by a , an estimation of . Hence we also provide the asymptotic behaviour of √ {T ( , ) -T ( , )}. Surprisingly, Theorem 2.4 yields that it tends to

sup z∈Opt ( , ) G ( inf =1,..., { (x , y) -}),
where Opt ( , ) is the set of optimal transport potentials and G is the Brownian bridge in F (both will be defined more precisely later) with mean zero and covariance

( , ) ↦ → ∫ (y) (y) (y) - ∫ (y) (y) ∫ (y) (y).
Finally we provide in Section 2 a unified general result that describes the asymptotic distribution of the empirical transport cost between a probability supported in the finite set X = {x 1 , . . . , x } ⊂ X and ∈ P (Y) under the minimal assumption ∫ (x , y) (y) < ∞, for all = 1, . . . , , for all cases:

• (One sample case for empirical discrete distribution )

√ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) =1 U ,
and if, additionally, ∫ (x , y) 2 (y) < ∞, for all = 1, . . . , , then,

• (One sample case for empirical distribution )

√ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , )
G (z).

• (Two sample case ) If , → ∞, with + → ∈ (0, 1), then

+ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) √ =1 U + ( √ 1 -)G (z) .
The fact that the curse of dimensionality does not seem to affect the semi-discrete case for both probabilities is quite astonishing. But it is partially hidden in the assumption that the set X has a fixed size. For a better understanding, Theorem 2.6 provides, in the context of quadratic costs, a bound which studies the effect of the choice of a discretization with size the one of the set X. It highlights a natural trade-off between the discretization scheme of the distribution and the sampling of the distribution.

Moreover, in cases where , ∈ P (R ) with having a Lebesgue negligible boundary and being absolutely continuous with respect to ℓ , and the cost satisfying conditions (A1) through (A3), the limits can be made more explicit and the supremum in the previous limits can be computed. These results are presented in Section 3, where the transport potential is unique up to additive constants. Under some regularity assumptions on the cost and on , the limit is no longer a supremum but instead a centered Gaussian random variable.

The contributions of Section 4 are two-fold. The first part studies the semi-discrete OT in manifolds and provides, to the best of our knowledge, the first Central Limit Theorem for the solutions of the dual problem (3). The second part studies the asymptotic distribution of the Laguerre cells. It should be noted that these results cannot be generalized to continuous distributions. If both probabilities are continuous and the space is not one-dimensional, we cannot expect such a central limit for the potentials, since the expected value of the transport cost estimate converges at a rate of ( -1 ) and not ( -1 2 ). In the case where the two samples are discrete, even if such a rate is ( -1 2 ), the lack of uniqueness in the dual problem does not allow for the proof of such results. As a result, the semi-discrete case is the only one where such results for the potentials of the OT problem in general dimension can be expected. Regarding the Laguerre cells, we obtain the weak limits of the metric (see [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF] for definition) between the empirical and population cells. Additionally, we provide asymptotic confidence intervals in terms of the Hausdorff distance. In all cases, the parametric ratio is achieved. We conjecture that the same approach would provide similar bounds for the empirical Voronoi cells, the solutions of the -means clustering. Finally, Remark 4.9 bounds the 1 (ℓ ) norm between empirical and population transport maps, opening new doors of research in this direction.

The last section is dedicated to applying some of the results discussed earlier to the Hotelling's location model. We present asymptotic confidence intervals for prices and demand sets in a simulated location model in Brooklyn (NYC).

Prior and current works in weak limits of optimal transport

The asymptotic distribution of the empirical transport cost T ( , ) has been explored in several works. For the general dimensional case, a Central Limit Theorem (CLT) for the centered process has been established using the Efron-Stein inequality. In particular, del Barrio and Loubes (2019), del Barrio, Sanz and Loubes (2021), [START_REF] González-Delgado | Two-sample goodnessof-fit tests on the flat torus based on Wasserstein distance and their relevance to structural biology[END_REF] have proven that

+ (T ( , ) -ET ( , )
) converges to a Gaussian distribution. Mena and Niles-Weed (2019) also proves a similar result for the regularized optimal transport cost. Under additional conditions, this result can be extended to the semi-discrete framework. In particular, when is finitely supported, but is absolutely continuous with respect to the Lebesgue measure and has a convex support, del Barrio and Loubes (2019) shows that for the quadratic cost, the limit √ (T ( , ) -T ( , )) is Gaussian. Their argument relies on the differentiability properties of the optimal transport problem, but it is restricted by the assumption of uniqueness of the optimal transport potential, which is not always guaranteed for general costs or Polish spaces. Similar results have been established for the case where both and are supported on a finite or countable set. [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF] and [START_REF] Tameling | Empirical optimal transport on countable metric spaces: Distributional limits and statistical applications[END_REF] respectively prove that, in these settings, + (T ( , ) -T ( , )) converges to a weak limit , which is the supremum of a Gaussian process. Their proof relies on the identification of the space of distributions supported in a finite set X = {x 1 , . . . , x } with a subset of R , and then on a proof based on the directional Hadamard differentiability of the functional (p, q) ↦ → T ( =1

x , =1

x ). The result of [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF] establishes that, if and are both supported in a finite set, then

√ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) G(z), where G(z) := =1 U .
Lately [START_REF] Tameling | Empirical optimal transport on countable metric spaces: Distributional limits and statistical applications[END_REF] extended the same result for probabilities supported in countable spaces. Yet this approach does not hold for probabilities non supported on finite or countable sets.

The parametric rate obtained for the limits in the semi-discrete case is consequence of the adaptability of the optimal transport problem to lower complexities. This was first observed by [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF]. During the review process of our work, two new papers by the same authors underlined this fact. Hundrieser, Staudt and Munk (2022) observes that the covering numbers of a class of functions are invariant after conjugation, which is exactly what happens here for the class F . As a consequence, Hundrieser et al. (2022) focuses on the cases where the complexity is small enough to obtain the parametric rate and therefore weak limits. However, since they assume bounded costs, the semi-discrete case is partially covered. We avoid this assumption by a control of the quantity , , described above. We believe that this technique could successfully address their case, where the bound of the potentials could be the more accurate given in del Barrio, Sanz and Loubes (2021), eq. (2.5).

The Hadamard derivative of supremum type functionals as a way to provide weak limits of the Wasserstein distance has been proposed also in Goldfeld et al. (2022a), [START_REF] Sadhu | Limit Distribution Theory for the Smooth 1-Wasserstein Distance with Applications[END_REF] for Gaussian-convoluted measures. However, although related, this is not the Wasserstein distance -they will coincide when the variance of the convolution tends to zero. This supremum functional derivative argument has proven to be valid in other simplifications of the transport problem; such as sliced or Sinkhorn [START_REF] Goldfeld | Statistical inference with regularized optimal transport[END_REF]. However, in these cases the same results can be obtained by other methods, e.g. [START_REF] Manole | Minimax confidence intervals for the Sliced Wasserstein distance[END_REF] uses the quantile representation in the sliced model and del Barrio et al. (2022) the centered-in-expectation CLT of [START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF] and a bound of the expectation.

Regarding weak limits of the optimal transport potentials, two recent pre-prints (Goldfeld et al., 2022c, González Sanz, Loubes andNiles-Weed, 2022) obtain the weak limits of the potentials of the Sinkhorn regularized transport problem.

Notation

For convenience, we list here the main notation that will be used throughout the document. Unless otherwise stated, we denote by ( Ω, A, P) the underlying probability space. The the probability is always assumed to be supported in the set X = {x 1 , . . . , x }. The notation ℓ is reserved for the Lebesgue measure in R , whereas H -1 denotes the -1-dimensional Hausdorff measure. We use boldface for the vectors, a notation that is not used, however, for their components, which will be expressed by a sub-index. For instance, z = ( 1 , . . . , ). For the norm in a Polish space we use always the notation | • |, which, when there is no room for confusion and we are in R , will denote the Euclidean norm.

The rest of the norms will be specified in each case, i.e.

|x| ∞ = sup | | and |x| = =1 | | 1 .
For a set , we denote its border by . For a measure ∈ P (Y) and a function : Y → R , we denote

( ) = ∫ 1 .
The functions where this last value is finite are said to belong to ( ).

2. Central Limit Theorems for semi-discrete distributions 2.1. Semi-discrete optimal transport reframed as optimization program

Consider general Polish spaces X, Y and let P (Y) be the set of distributions on Y. Consider also a generic finite set, X = {x 1 , . . . , x } ⊂ X be such that x ≠ x , for ≠ . In all this work, we consider P (X) the set of probabilities supported in this finite set. So any ∈ P (X) can be written as :=

=1

x , where > 0, for all = 1, . . . , , and

=1 = 1. ( 5 
)
In consequence is characterized by the vector p = ( 1 , . . . , ) ∈ R .

We focus on semi-discrete optimal transport cost which is defined as the optimal transport between a finite probability ∈ P (X) and any probability ∈ P (Y).

The following result shows that the optimal transport problem in the semi-discrete case is equivalent to an optimization problem over a finite dimensional parameter space. Define the following function , which depends on and as

( , , z) = =1 + ∫ inf =1,..., { (x , y) -} (y), z ∈ R (6)
Lemma 2.1. Let ∈ P (X) , ∈ P (Y) and be a non-negative cost, then the optimal transport between and for the cost , T ( , ), satisfies

T ( , ) = sup z∈R , |z | ≤ * ( , , z). ( 7 
)
for * = 1 inf sup =1,..., ∫ (y, x ) (y)
. Moreover we can assume that 1 = 0.

Remark 2.2. Consider the dual expression for T ( , ) and let denote an optimal transport potential from to for the cost , then T ( , ) = ( , , ( (x 1 ), . . . , (x ))).

Hence the optimal transport potentials and optimal values for (7) are linked through the expression z = ( (x 1 ), . . . , (x )).

Note that ( , , •) is a continuous function, a fact that follows from the next lemma. Therefore, the sup in ( 7) is attained and the the class of optimal values Opt ( ,

) := z ∈ R : T ( , ) = ( , , z) (8) 
and its restriction Opt 0 ( ,

) := z ∈ R : T ( , ) = ( , , z), 1 = 0 . ( 9 
)
are both non-empty.

Lemma 2.3.

If (y) = inf =1,..., { (x , y) -} and (y) = inf =1,..., { (x , y) -}, then | (y) -(y)| ≤ sup =1,..., {| -|} ≤ |z -s|. (10)

Main results : Central Limit Theorems for semi-discrete optimal transport cost

Our aim is to study the empirical semi-discrete optimal transport cost. Let X 1 , . . . , X and Y 1 , . . . , Y be two independent sequences of i.i.d. random variables with laws and respectively, since X ∈ X for all = 1, . . . , , the empirical measure := 1 =1 X belongs also to P (X). In consequence it can be written as :=

=1

x , where 1 , . . . , are real random variables such that ≥ 0, for all = 1, . . . , , and =1 = 1. We want to study the weak limit of the following sequences corresponding to all possible asymptotics

√ (T ( , ) -T ( , )) ∈N , √ (T ( , ) -T ( , )) ∈N ,
and the two sample case

+ (T ( , ) -T ( , ))
, ∈N

, under the assumption + → ∈ (0, 1).

To state the asymptotic behaviour we introduce first a centered Gaussian vector, (X 1 , . . . , X ) with covariance matrix Σ(p) with entries

Σ(p) , = - , ≠ and Σ(p) , = (1 -). (11) 
We also define a centered Gaussian process G in R with covariance function

Ξ (z, s) := ∫ inf =1,..., { (x , y) -} inf =1,..., { (x , y) -} (y) - ∫ inf =1,..., { (x , y) -} (y) ∫ inf =1,..., { (x , y) -} (y). (12) 
We can now state our main theorem.

Theorem 2.4. Let ∈ P (X), ∈ P (Y), be non-negative and

∫ (x , y) (y) < ∞, for all = 1, . . . , , (13) 
then the following limits hold.

• (One sample case for empirical discrete distribution )

If → ∞, √ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) =1 U .
Suppose that

∫ (x , y) 2 (y) < ∞, for all = 1, . . . , . (14) 
• (One sample case for empirical distribution

) If → ∞, √ (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) G (z). • (Two sample case ) If , → ∞, with + → ∈ (0, 1), + (T ( , ) -T ( , )) -→ sup z∈Opt 0 ( , ) √ =1 U + ( √ 1 -)G (z) .
Here (U 1 , . . . , U ) ∼ N (0, Σ(p)), with Σ(p) as in (11), and G is a centered Gaussian process with covariance function Ξ ( ) defined in (12). Moreover G and (U 1 , . . . , U ) are independent.

When X and Y are contained in the same Polish space (Z, ), a particular cost that satisfies the assumptions of Theorem 2.4 is , for all ≥ 1. Then applying Theorem 2.4 to the empirical estimatiors of T ( , ) and a delta-method, enable to prove the asymptotic behaviour of the -Wasserstein distance W ( , ) = T ( , ) as given in the following corollary. The case = is a discrete optimal transport, so that its asymptotic behaviour has been previously studied in [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF]. Therefore, the following result assumes W ( , ) ≠ 0.

Corollary 2.5. Let ∈ P (X) and ∈ P (Z) be such that W ( , ) ≠ 0 and ∫ (x 0 , y) (y) < ∞, for some x 0 ∈ X. Then, for any ≥ 1, the following limits hold.

• (One sample case for ) If → ∞, √ W ( , ) -W ( , ) -→ 1 W ( , ) -1 sup z∈Opt ( , ) =1
U .

If we further assume that ∫ (x 0 , y) 2 (y) < ∞, for some x 0 ∈ X, then

• (One sample case for ) If → ∞, √ W ( , ) -W ( , ) -→ 1 W ( , ) -1 sup z∈Opt 0 ( , ) G (z). • (Two sample case) If , → ∞, with + → ∈ (0, 1), + W ( , ) -W ( , ) -→ sup z∈Opt 0 ( , ) √ =1 U + ( √ 1 -)G (z) W ( , ) -1
.

Here (U 1 , . . . , U ) follows a Gaussian distribution N (0, Σ(p)), with Σ(p) defined in (11), and G is a centered Gaussian process with covariance function Ξ ( ), defined in (12). Moreover, G and (U 1 , . . . , U ) are independent.

The proof of Theorem 2.4 is provided in the supplementary material, and is restricted to the case of two samples. The same proof verbatim applies also for the CLT for the one sample case for . The one sample case for can be proven under weaker moment assumptions on and will be commented separately.

An upper-bound on the expectation for the Wasserstein distance

Theorem 2.4 states the central limit theorem, when one of both probabilities is supported on a finite set. Now, we investigate the influence of the number of points of the discrete measure on the convergence bounds. In order to better understand the influence of the number of points, we will restrict our analysis to the Euclidean cost.

Theorem 2.6. Let be supported on points in X, ∈ P (Y) be a distribution with finite second order moment and its corresponding empirical version, then

|W 1 ( , ) -W 1 ( , )| ≤ 8 √ 2 √ (diam(X), )
where

(diam(X), ) = (4 diam(X) + 2 ∫ |y| 2 (y) + 2 diam(X)) log(2) + 2 diam(X) + 1 and W 1 is the 1-Wasserstein distance for the Euclidean distance. Moreover, if diam(Y) < ∞, then W ( , ) -W ( , ) ≤ 4 √ 2 √ (4 diam(X) diam(Y) -1 , ).
The theorem provides a control on the consistency of the empirical bias for the Wasserstein distance. The rate becomes slower when the number of points defining the support of the discrete measures increases. If models an approximation of a continuous probability on R , hence the number required to obtain a proper approximation grows exponentially larger when the dimension increases. Hence the influence with respect to stands for the curse of dimension.

The previous bound has a practical consequence in the following approximation problem. Assume that and are probability distributions supported on a compact set Ω ⊂ R . Assume further that is unknown but observed through the empirical distribution . We approximate the (known) probability by the -points discretization . If we aim at approximating the true 1-Wasserstein distance W 1 ( , ) from the empirical semi-discrete distance W 1 ( , ) (which is what can be indeed computed), Theorem 2.6 and the triangle inequality give the following upper bound

W 1 ( , ) -W 1 ( , ) ≤ 8 √ 2 √ (Ω, ) + W 1 ( , ) -W 1 ( , ) .
We can see that there is a trade-off between the size of the sample and the size of the discretization: the first term requires / to be small while the second term is only driven by the discretization, being smaller when the number of points is larger.

We point out that previous upper bound is optimal, up to logarithmic factors, as specified in (Bing, Bunea and Niles-Weed, 2022, Theorem 5), where is proved the faster convergence rate at which a function of the sample can approximate the population Wasserstein distance between discrete measures. The lower bound they provide is

diam(X) max min x≠x ∈X |x -x | 2 max x,x ∈X |x -x | 2 log( ) 2 , 1 .
It follows directly from Theorem 2.6 that the empirical Wasserstein distance is an estimator that achieves an optimal convergence rate up to logarithmic factors, even in cases where one of the underlying probabilities is continuous.

Asymptotic Gaussian distribution optimal transport cost

Theorem 2.4 is valid for generic Polish spaces. When X, Y are subsets of R , the limit distribution in the CLT can be specified. Under the following regularity assumptions, we prove in this section that the limit distribution is Gaussian.

Let ∈ P (R ) be a probability measure absolutely continuous with respect to the Lebesgue measure in R . Assume that (x, y) = ℎ(xy) where ℎ : R → [0, ∞) is a non negative function satisfying: (A1): ℎ is strictly convex on R . (A2): Given a radius ∈ R + and an angle ∈ (0, ), there exists some := ( , ) > 0 such that for all |p| > , one can find a cone

( , , z, p) := x ∈ R : |x -p||z| cos( /2) ≤ z, x -p ≤ |z| , (15) 
with vertex at p on which ℎ(x) attains its maximum at p.

(A3): lim |x |→0 ℎ (x) |x | = ∞.
Under such assumptions, [START_REF] Gangbo | The geometry of optimal transportation[END_REF] shows the existence of an optimal transport map solving

T ( , ) := inf ∫ (y, (y)) (y), and # = , (16) 
where # denotes the push-forward measure, defined for each measurable set by # ( ) := ( -1 ( )). The minimizer in ( 16) is an optimal transport map from to . Moreover, it is defined as the unique Borel function satisfying

(x) = x -∇ℎ * (∇ (x)), where solves (3). ( 17 
)
Here ℎ * denotes the convex conjugate of ℎ, see [START_REF] Rockafellar | Convex analysis[END_REF]. Such uniqueness enabled del Barrio, Sanz and Loubes (2021) to deduce the uniqueness, under additive constants, of the solutions of (3) in .

They assumed (A1)-(A3) to show that if two solutions of (3) have the same gradient almost everywhere for ℓ in a connected open set, then both are equal, up to an additive constant. In consequence, assuming that ℎ is differentiable, the interior of the support of is connected and with Lebesgue negligible boundary, that is, ℓ ( supp( )) = 0, the uniqueness, up to additive constants, of the solutions of (3) holds. The proof of the main theorem in this section is a direct consequence of Lemma 3.1, which proves that there exists a unique, up to an additive constant, z ∈ Opt( , ). We use within this section the notation 1 := (1, . . . , 1).

Lemma 3.1. Let ∈ P (X) and ∈ P (R ) be such that ℓ and its support is connected with Lebesgue negligible boundary. If the cost satisfies (A1)-(A3), is differentiable and

∫ (x , y) (y) < ∞, for all = 1, . . . , .
Then the set Opt 0 ( , ) is a singleton.

The following theorem states, under the previous assumptions, that the limit distribution described in Theorem 2.4 is the centered Gaussian variable

√ =1 U + ( √ 1 -)G (z) where {z} = Opt 0 ( , ). Note that =1 U is Gaussian and centered, with variance 2 ( , z) = Var( =1 U ) and (U 1 , . . . , U ) ∼ N (0, Σ(p)), (18) 
where Σ(p) is defined in (11). On the other side G (z) follows the distribution N (0, 2 ( , z)), where

2 ( , z) = ∫ inf =1,..., { (x , y) -} 2 (y) - ∫ inf =1,..., { (x , y) -} (y) 2 . ( 19 
)
Since, for every ∈ R, we have that 2 ( , z) = 2 ( , z + 1), then the asymptotic variance obtained in the following theorem is well defined.

Theorem 3.2. Let ∈ P (X) and ∈ P (R ) be such that ℓ and its support is connected with Lebesgue negligible boundary. If the cost satisfies (A1)-(A3), is differentiable and ∫ (x , y) (y) < ∞, for all = 1, . . . , , then the following limits hold.

• (One sample case for ) If → ∞, √ (T ( , ) -T ( , )) -→ ∼ N (0, 2 ( , z)).
If, additionally, ∫ (x , y) 2 (y) < ∞, for all = 1, . . . , , then the following limits hold.

• (One sample case for ) If → ∞, √ (T ( , ) -T ( , )) -→ ∼ N (0, 2 ( , z)).
• (Two sample case ) If , → ∞, with + → ∈ (0, 1),

+ (T ( , ) -T ( , )) -→ √ + ( √ 1 -) .
Here, 2 ( , z) and 2 ( , z) are defined in (18) and (19) and, moreover, and are independent. Corollary 3.3. Let ∈ P (X) be as in (5) and ∈ P (R ) be such that ℓ , has finite moments of order and its support is connected with Lebesgue negligible boundary. Then, for every > 1, the following limits hold.

• (One sample case for ) If → ∞, √ T ( , ) -T ( , ) -→ N (0, 2 ( , z)),
and

√ W ( , ) -W ( , ) -→ N 0, 2 ( , z) 2 W ( , ) 2 -2 .
Suppose that has finite moments of order 2 , then, as → ∞,

• (One sample case for )

√ T ( , ) -T ( , ) -→ N (0, 2 ( , z)), and 
√ W ( , ) -W ( , ) -→ N 0, 2 ( , z) 2 W ( , ) 2 -2 .
• (Two sample case) If, moreover, , → ∞, with + → ∈ (0, 1),

+ T ( , ) -T ( , ) -→ N (0, 2 ( , z) + (1 -) 2 ( , z)),
and

+ W ( , ) -W ( , ) -→ N 0, 2 ( , z) + (1 -) 2 ( , z) 2 W ( , ) 2 -2 .
Here, 2 ( , z) and 2 ( , z) are defined in (18) and ( 19)

for z ∈ Opt | • | ( , ) and the cost | • | .
We observe that, since is discrete and is continuous, W ( , ) > 0 and the limit distribution of Corollary 3.3 is always well defined. We note also that Corollary 3.3 is a particular case of Corollary 2.5 in the cases where the optimal transport potential is unique -the hypotheses of Theorem 3.2 holdwhich is the reason why the case = 1 can not be considered. Concerning other potential costs, > 1, it is straightforward to see that the hypotheses (A1)-(A3) hold, see for instance del Barrio, Sanz and Loubes (2021) or [START_REF] Gangbo | The geometry of optimal transportation[END_REF].

Remark 3.4. Note that in this Gaussian limit case the variance of the limit can be consistently estimated. Let ẑ , be a solution of Opt 0 ( , ). del Barrio, Sanz and Loubes (2021) proves that 2 , ( ,

) = + ∫ ( , ) 2 (x i ) - ∫ , (x i ) 2 + ∫ ( inf =1,..., { (x , y) -, }) 2 (y) - ∫ inf =1,..., { (x , y) -, } (y) 
2 is a consistent estimator of 2 ( , z) + (1 -) 2 ( , z), in the two sample case. The same holds for the one sample cases. We underline that the value inf =1,..., { (x , y) -, } should not be computed in the two sample case -it is the solution of the (discrete-discrete) empirical dual problem.

Central Limit theorems for the potentials and Laguerre cells 4.1. A central Limit theorem for the potentials

The aim of this section is to provide a CLT for the empirical potentials, defined as the solutions of the empirical version of the dual formulation of the Monge-Kantorovich problem (3). In the semi-discrete case the potentials are pairs formed by z = ( 1 , . . . , ) ∈ Opt ( , ) and (y) := inf =1,..., { (x , y) -}. Note that potentials are defined up to a constant in the sense that if ( , ) solves ( 3) then ( + , -) also solves (3), for any constant . Hence we will study the properties of the following functional, defined in 1 ⊥ which denotes the orthogonal complement of the vector space generated by 1 = (1, . . . , 1)

M p : 1 ⊥ -→ R z ↦ → ( , , z),
where ( , , z) is defined as in (6).

In this section we will use some framework developed in [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF]. Hence, we make some slight changes in the notation, yet maintaining as much coherence as possible with the previous one. First we will assume that Y is an open domain of a -dimensional Riemannian manifold R endowed with the volume measure V and metric . We consider C(Y), C 1 (Y) and C 1,1 (Y) the spaces of real valued continuous functions, real valued continuously differentiable functions and the space of real valued continuously differentiable functions with Lipschitz derivatives, respectively.

Following the approach in Kitagawa, Mérigot and Thibert (2019), we assume that the cost satisfies the following assumptions

(x , •) ∈ C 1,1 (Y), for all = 1, . . . , , (Reg) 
y (x , y) : Y → * y (Ω) is injective as a function of y, for all = 1, . . . , ,

where y denotes the partial derivative of w.r.t. the second variable and * y (Y) the tangent space. For every ∈ {1, . . . , } there exists Y ⊂ R open and convex set, and a C 1,1 diffeomorphism exp :

Y → Y such that the functions Y p ↦ → , (p) := (x , exp p) -(x , exp p) are quasi-convex for all = 1, . . . , .

(QC)

Here quasi-convex, according to [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], means that for every ∈ R the sets -1 , ( [-∞, ]) are convex. Besides the assumptions on the cost, we assume that the probability is supported in a -convex set Y, which means that (exp ) -1 (Y) is convex, for every = 1, . . . , . Formally, let Y ⊂ R be a compact -convex set, ∈ P (X) be as in ( 5) and suppose that

∈ P (Y) satisfies V with density ∈ C(Y). (Cont)
The last required assumption in Kitagawa, Mérigot and Thibert ( 2019) is that satisfies a Poincaré-Wirtinger inequality with constant : a probability measure supported in a compact set Y ⊂ R satisfies a Poincaré-Wirtinger inequality with constant if for every ∈ C 1 (Y) we have that for

∼ (| ( ) -( ( ))|) ≤ (|∇ ( )|). (PW)
In order to clarify the feasibility of such assumptions, we will provide some insights on them at the end of the section. Kitagawa, Mérigot and Thibert (2019) proved the following assertions.

1. Under assumptions (Reg) and (Twist) the function M p (z) is concave and differentiable with derivative 

∇ z M p (z) = (-(Lag 1 (z)) + 1 , . . . , -(Lag (z)) + ), (20) 
M p (z) = ∫ Lag (z)∩Lag (z) (y) |∇ y (x , y) -∇ y (x , y)| V -1 (y), if ≠ , 2 2 M p (z) = - ≠ 2 M p (z). (22) 
3. Under assumptions (Reg),(Twist) and (QC), and if satisfies (PW), there exists a positive constant such that

2 z M p (z)v, v ≤ -3 |v| 2 , for all z ∈ K and v ∈ 1 ⊥ , ( 23 
)
where

K := {z ∈ R : (Lag (z)) > , for all = 1, . . . , }.
Under this assumptions we can state the main result of the section: a CLT for the OT potentials.

Theorem 4.1. Let Y ⊂ R be a compact -convex set, ∈ P (X) and ∈ P (Y). Under Assumptions (Reg), (Twist) and (QC) on the cost , and (PW) and (Cont) on , then the following limits hold.

• (One sample case for )

If → ∞, √ (ẑ -z * ) -→ -( 2 M p (z * )) -1 ((U 1 , . . . , U )). • (One sample case for ) If → ∞, √ (ẑ -z * ) -→ -( 2 M p (z * )) -1 ((U 1 , . . . , U )).
• (Two sample case ) If , → ∞, with + → ∈ (0, 1),

+ (ẑ , -z * ) -→ -( 2 M p (z * )) -1 ((U 1 , . . . , U )).
Here

z * ∈ 1 ⊥ ∩ Opt ( , ), ẑ ∈ 1 ⊥ ∩ Opt ( , ), ẑ ∈ 1 ⊥ ∩ Opt ( , ) ẑ , ∈ 1 ⊥ ∩ Opt ( ,
) and (U 1 , . . . , U ) ∼ N (0, Σ(p)), for Σ(p) defined in (11).

For z * defined as in Theorem 4.1, set

(y) := inf =1,..., { (x , y) - * } (24)
and note that it is an optimal transport map from to . Set also the value (y) ∈ {1, . . . , }, where the infumum of ( 24) is attained. As before, we can define their empirical counterparts

, (y) := inf =1,..., { (x , y) -ˆ , }, (y) := inf =1,..., { (x , y) -ˆ }, and (y) 
:= inf =1,..., { (x , y) -ˆ }, (25) 
which are the other empirical OT potentials, and , (y) denotes the index where the infimum of ( 25) is attained for the two sample case. Then we have 

+ ( ˆ , , (y) 
We can take supremum over y in both sides of ( 26) and obtain

+ sup =1,..., ( ˆ , - * ) = + sup y∈Y ( , (y) -(y))
.

By symmetry we have that

+ | ˆ , - * | = + sup y∈Y | , (y) -(y)|,
which implies the following corollary.

Corollary 4.2. Under the hypotheses and notation of Theorem 4.1, for , , and , defined in (24) and (25), we have the following limits.

• (One sample case for ) If → ∞ √ sup y∈Y | (y) -(y)| -→ ( 2 M p (z * )) -1 ((U 1 , . . . , U )) ∞ . • (One sample case for ) → ∞ √ sup y∈Y | (y) -(y)| -→ ( 2 M p (z * )) -1 ((U 1 , . . . , U )) ∞ .
• (Two sample case ) If , → ∞, with + → ∈ (0, 1),

+ sup y∈Y | , (y) -(y)| -→ ( 2 M p (z * )) -1 ((U 1 , . . . , U )) ∞ .
We will conclude by some comments on the assumptions made in this section.

1. Under the hypotheses of Theorem 4.1, the optimal potential is unique once we set its value at a given point. Then Corollary 4.2 provides a uniform confidence band for this optimal potential, namely,

(y) ± Δ √ y∈Y ,
where Δ is the 1quantile of the limit distribution. 2. Note that if we consider R = R and the quadratic cost, then (Reg), (Twist) and (QC) are obviously satisfied, by taking the function exp as the identity. Actually the map y ↦ → |x -y| 2 is C ∞ (R ) and yx is its derivative w.r.t. y. Finally note that the function

R p ↦ → |x -p| 2 -|x -p| 2 = |x | 2 -|x | 2 + x -x , p
is linear in p and consequently quasi-convex. 3. Assumption (PW) on the probability has been widely studied in the literature for its implications in PDEs, see [START_REF] Acosta | An Optimal Poincaré Inequality in L1 for Convex Domains[END_REF]. They proved that (PW) holds for a uniform distribution on a convex set Y. [START_REF] Rathmair | On how Poincaré inequalities imply weighted ones[END_REF], Lemma 1) claims that (PW) is equivalent to the bound of inf ∈R (| ( ) -|), for every ∈ C 1 (Y). Let ∼ be such that there exists a C 1 (Y) map satisfying the relation ( ) = , where follows a uniform distribution on a compact convex set . Since • ∈ C 1 ( ), by the powerful result of [START_REF] Acosta | An Optimal Poincaré Inequality in L1 for Convex Domains[END_REF], there exists

> 0 such that inf ∈R (| ( ) -|) = inf ∈R (| ( ( )) -|) ≤ (|∇ ( ( ))| • || ( )|| 2 ) ≤ sup u∈ || (u)|| 2 (|∇ ( ( ))|),
where || ( )|| 2 denotes the matrix operator norm. We conclude that, in such cases, (PW) holds.

Note that the existence of this map relies on the well known existence of continuously differentiable optimal transport maps, which is treated by Caffarelli's theory. This is the case, for instance of log-concave probability measures (see [START_REF] Caffarelli | Boundary Regularity of Maps with Convex Potentials-II[END_REF]). As pointed out by an anonymous reviewer, we can arrive directly to this conclusion using [START_REF] Milman | On the role of convexity in isoperimetry, spectral gap and concentration[END_REF]. We refer to the most recent work Cordero-Erausquin and Figalli (2019) and references therein. However, as pointed out in [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], more general probabilities can satisfy that assumption such as radial functions on R with density

(|x|) |x| -1 , for |x| ≤ , with = 0 in [0, ] and concave in [ , ].
Moreover the spherical uniform U , used in del Barrio, González Sanz and Hallin (2022), [START_REF] Hallin | Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach[END_REF] to generalize the distribution function to higher dimension, also satisfies (PW). This can be proved by using previous argument with the function (x) = x|x| -1 , which is continuously differentiable. But note that this probability measure does not satisfy (Cont). We conjecture that Theorem 4.1 still holds in this case, but some additional, that we leave for future work is needed. Similarly, the regularity of the transport can be obtained in the continuous case by a careful treatment of the Monge-Ampére equation, see del [START_REF] Del Barrio | A note on the regularity of optimaltransport-based center-outward distribution and quantile functions[END_REF].

Figure 1. Bootstrap approximation of (0, Σ(z * )) . Here is supported in tree points = 1 3 (x 1 + x 2 + x 3 ), and is uniform on (0, 1) 6 . We assume that is deterministic, we compute the empirical potentials ẑ for a sample of 10, 000 points and the Bootstrap potentials ẑ , for = 1, . . . , 10, 000. Both -the empirical and the bootstrap-are projected to the space 1 ⊥ . Since the space 1 ⊥ is, in this case, 2-dimensional, we can plot the 2 distribution of (ẑẑ ) √ 10000 (left). The qq-plot of the projection to the second coordinate is in the right hand side.

4. The limit distribution described in 4.1 is not easy to derive, even knowing the exact probabilities and . But note that the limits are consequence of its transformation as a -estimation problem (eg. chapter 3.3 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]), as the limit is a -dimensional Gaussian, using example 3.9.35 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF] we obtain the consistency of the parametric bootstrap. Hence a bootstrap procedure can be used to approximate the limit distribution. The approximation will be consistent as in [START_REF] Fang | Inference on Directionally Differentiable Functions[END_REF]. In Figure 1 we compute such an approximation by using bootstrap where is supported on three points in R 6 and is the uniform on (0, 1) 6 .

A central Limit theorem for the Laguerre cells and square-Euclidean cost

A natural question for semi-discrete problems is the convergence of the Laguerre tessellations. Actually, the semi-discrete framework is mainly applied to quantization, sampling or resource allocation problems. The Laguerre cells represent the optimal cluster (quantization or sampling) or the population choosing certain product in a resource allocation problems. Therefore, our objective will be to infer the population Laguerre cell from the empirical one.

Note that, although we are working with probabilities supported on a compact set, the cells may not be bounded. Hence for 0 < < +∞, define B the ball with radius . We will consider in the following, the restricted version of Laguerre cell Lag (z) = Lag (z) ∩ B , which is compact. As a consequence, the distances between the empirical and the population can be measured by means of the support functions. Recall (cf. p. 317 in [START_REF] Rockafellar | Variational Analysis[END_REF] eg.) that the support function of a set ⊂ R is defined as the functional in the unit sphere

S -1 v → ℎ (v) := sup y∈A v, x .
Due to purely geometrical reasons, we are forced to restrict ourselves to the Euclidean case with quadratic cost -otherwise the following argument cannot be applied [START_REF] Bansil | Quantitative Stability in the Geometry of Semi-discrete Optimal Transport[END_REF], Remark 5.1)).

To give a characterization of the convergence of sets usually the metrics, with ∈ [1, ∞], are used. Recall that, for ∈ [1, ∞) the metric is defined for two sets , as ( ,

) := ( ∫ |ℎ -ℎ | H -1 )
1

, where Note that all these norms are equivalent for compact convex sets (see [START_REF] Vitale | Lp metrics for compact, convex sets[END_REF]), which is our case. For any interior point y 0 of Lag (z * ), we set the notation Sol(z * , v, y 0 ) := arg min

H -1 is the Hausdorff measure in S -1 . The case = ∞ is ∞ ( , ) = sup ∈S -1 |ℎ -ℎ |,
>0 ≠ + |v - ≠ (x -x )| -v - ≠ (x -x ), y 0 ,
where

(z * ) = (|x | 2 -|x | 2 - * + * ) -x -x , y 0 and z * ∈ 1 ⊥ ∩ Opt | • | 2 ( , ), for the quadratic cost | • | 2 .
With this notation, the following result provides the weak limit, with parametric rate, of the distance, for ∈ [0, ∞), between the empirical and population Laguerre cells.

Theorem 4.3. Let Y ⊂ R be a compact convex set such that Y ⊂ B , ∈ P (X) and ∈ P (Y).

Under Assumptions (PW) and (Cont) on and considering the quadratic cost | • | 2 , we have the following limits, for ∈ (1, ∞).

• (One sample case for )

If → ∞ √ (Lag (ẑ ), Lag (z * )) -→ ∫ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) H -1 1 . • (One sample case for ) If → ∞, √ (Lag (ẑ ), Lag (z * )) -→ ∫ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) H -1 1 . • (Two sample case) If , → ∞, with + → ∈ (0, 1), + (Lag (ẑ , ), Lag (z * )) -→ ∫ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) H -1 1 . Here z * ∈ 1 ⊥ ∩ Opt | • | 2 ( , ), for the quadratic cost | • | 2 and (M 1 , . . . , M ) = 2 M p (z * ) -1 (U 1 , . . . , U ),
where (U 1 , . . . , U ) ∼ N (0, Σ(p)), for Σ(p), is defined in (11).

The proof is based on the following description of the support functions of Laguerre's cells

ℎ Lag (z) (v) = min >0 ≠ (|x | 2 -|x | 2 -+ ) + |v - ≠ (x -x )| , (27) 
which allows to apply standard arguments to handle Hadamard derivative of the infimum. However, the compactness of the solution-set of ( 27) is not guaranteed. Note that the same problem happens in [START_REF] Bansil | Quantitative Stability in the Geometry of Semi-discrete Optimal Transport[END_REF]. Therefore we adopt the same reparation strategy (cf. Remark 5.1 in [START_REF] Bansil | Quantitative Stability in the Geometry of Semi-discrete Optimal Transport[END_REF]). This consists in setting an interior point y 0 and observing that Remark 4.5 below implies that

ℎ Lag ( ẑ , ) (v) -ℎ Lag (z * ) (v) = ℎ Lag ( ẑ , )+{-y 0 } (v) -ℎ Lag (z * )+{-y 0 } (v).
In such a case

ℎ Lag (z * )+{-y 0 } (v) = min >0 ≠ (z * ) + |v - ≠ (x -x )| -v - ≠ (x -x ), y 0 , (28) 
where, for all ≠ , (z * ) = (|x | 2 -|x | 2 - * + * )xx , y 0 ≥ > 0, for some > 0. This uniform bound implies the compactness of Sol(z * , v, y 0 ) and gives, as an intermediate step, the pointwise limit of the support functions.

Lemma 4.4. Let Y ⊂ R be a compact convex set such that Y ⊂ B , ∈ P (X) and ∈ P (Y).

Under Assumptions (PW) and (Cont) on , we have the following limits.

• (One sample case for ) If → ∞, √ (ℎ Lag ( ẑ ) (v) -ℎ Lag (z * ) (v)) -→ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) . • (One sample case for ) If → ∞, √ (ℎ Lag ( ẑ ) (v) -ℎ Lag (z * ) (v)) -→ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) .
• (Two sample case ) If , → ∞, with + → ∈ (0, 1),

+ (ℎ Lag ( ẑ , ) (v) -ℎ Lag (z * ) (v)) -→ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) .
Here

(M 1 , . . . , M ) = 2 M p (z * ) -1 ((U 1 , . . . , U ))
, where (U 1 , . . . , U ) ∼ N (0, Σ(p)), for Σ(p), is defined in (11).

Remark 4.5. Let us recall some basic properties of the support function (see Corollary 11.24 in Rockafellar and Wets (1998) eg.). Let , ⊂ R be non empty sets and > 0, then:

• ℎ = ℎ , • ℎ + = ℎ + ℎ , • ℎ ∪ = max(ℎ , ℎ ), • and, if and are convex ∩ ≠ ∅, then ℎ ∩ (v) = inf u+w=v (ℎ (u) + ℎ (w)).
Remark 4.5 is important for the proof of Theorem 4.3. It also has been extracted here because of the interpretation it gives of the limits. Note that thanks to it we can obtain, equivalently, the following limit:

+ Lag (ẑ , ), + Lag (z * ) -→ ∫ inf t∈Sol(z * ,v,y 0 ) ≠ (M -M ) H -1 1 . (29) 
To go from point-wise convergence to convergence, the proof of Theorem 4.3 uses the following result, which is direct consequence of Remark 5.1 in [START_REF] Bansil | Quantitative Stability in the Geometry of Semi-discrete Optimal Transport[END_REF] and Theorem 3.9 in Segers (2022) (see also Theorem 3.4 in del Barrio, Sanz and Loubes ( 2021)). Moreover, if u + 2 B ⊂ Lag (z * ), then lim inf ≥ .

Lemma 4.6 gives confidence intervals for the Hausdorff distance between the cells -uncovered in Theorem 4.3. Note that Lemma (4.6) implies that

P Lag (z * ) ⊂ Lag (ẑ ) + 4 Ψ -1 ( ) √ B ≥ P ∞ (Lag (z * ), Lag (ẑ )) ≤ 4 Ψ -1 ( ) √ ≥ P 4 | (M 1 ,...,M ) | ∞ ≤ 4 Ψ -1 ( ) √ = P √ | (M 1 ,...,M ) | ∞ ≤ Ψ -1 ( ) ,
where, taking inferior limits, we obtain the following result.

Remark 4.7. Let (M 1 , . . . , M ) = 2 M p (z * ) -1
((U 1 , . . . , U )) be as in Theorem 4.3 and Ψ -1 be the quantile function of We notice that we need to approximate the distribution Ψ. In the previous section we justified the consistency of the parametric bootstrap to approximate the distribution of (M 1 , . . . , M ) = 2 M p (z * )

|(M 1 , . . . , M )| ∞ . Under the assumptions of Theorem 4.3, if u + 2 B ⊂ Lag (z * ), then lim inf P Lag (z * ) ⊂ Lag (ẑ ) + 4 Ψ -1 ( ) √ B ≥ .
-1

(U 1 , . . . , U ). More precisely, let Y 1 , . . . , Y be a bootstrap sample of i.i.d. (conditionally given the sample Y 1 , . . . , Y ) with common law . We assume that the empirical process √ ( -) of Y 1 , . . . , Y converges conditionally given Y 1 , . . . , Y in distribution to a tight random element G. Lemma 3.9.34 and Theorem 3.9.11 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF] give sup

∈ (R ) |E( ( √ ((ẑ ) -z * ))|Y 1 , . . . , Y ) -((M 1 , . . . , M ))| -→ 0,
where the set (R ) is the set of Bounded Lipschitz functions (see eg. p.73 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]) and (ẑ ) is the solution of (7) for and . Any function of the form

• | • | ∞ , with ∈ (R), belongs to (R ), so that sup ∈ (R) |E( (| √ ((ẑ ) -z * | ∞ ))|Y 1 , . . . , Y ) -(|(M 1 , . . . , M | ∞ )| -→ 0.
We can thus estimate the distribution of |(M 1 , . . . , M )| ∞ by means of the bootstrap sample.

We consider now a synthetic example to illustrate the usefulness of Remark 4.7. Let be the uniform law on the unit square and = 1 4 ( (0,0) + (0,1) + (1,0) + (1,1) ). We easily see that population cells are

Lag 1 (z * ) = [0, 1 2 ] 2 , Lag 2 (z * ) = [ 1 2 , 1] × [0, 1 2 ], Lag 3 (z * ) = [ 1 2 , 1] 2 , Lag 4 (z * ) = [0, 1 2 ] × [ 1 2 , 1].
We analyze the behavior of the first cell. In Figure 2 we plot, for sample sizes = 100, 500, 1000, 5000, 10000, the values of Lag 1 (ẑ ) + 4 (Ψ -1 ) (0.05) √ B . Here (Ψ -1 ) denotes the quantile of the bootstrap approximation.

Remark 4.8. The same technique can be applied to the Voronoi cells, i.e.

Vor (z) := {y ∈ R : |c -y| 2 < |c -y| 2 , for all ≠ }, = 1, . . . , ,

where {c } =1 ∈ arg min {a } =1 ⊂R ∫ min 0≤ ≤ |a -y| 2 (y) is the solution of the -means clustering. Indeed, under certain uniqueness conditions of the minimum, the weak limit of √ (cc ) exists (see [START_REF] Pollard | A Central Limit Theorem for -Means Clustering[END_REF]) and the rewriting of the cells as in (27) can be made, which yields the differentiability.

Remark 4.9. Note that Theorem 4.1 and the following upper bound

ℓ (Lag (z) \ Lag (z )) ≤ z -z ∞ ,
proved in (Bansil and Kitagawa, 2020, Lemma 5.5), suggest that + ( ˆ , -) is stochastically bounded in norm 1 (ℓ ), where ℓ denotes the -dimensional Lebesgue measure. Here ˆ , denotes (when exists) the optimal transport map from and and is defined in (17). In order to provide an insight into this claim, we can bound

∫ ˆ , - ℓ ≤ sup =1,..., x ℓ (Lag (z * ) \ Lag (ẑ , )) + ℓ (Lag (ẑ , ) \ Lag (z * )) ≤ 2 ẑ , -z * ∞ sup =1,...,
x .

As a consequence, Theorem 4.1 states that + ∫ ˆ ,ℓ is stochastically bounded. This bound holds for the estimator ˆ , . The recent pre-print [START_REF] Pooladian | Minimax estimation of discontinuous optimal transport maps: The semi-discrete case[END_REF] provides a bound on the 2 ( ) distance between an estimator based on the Sinkhorn relaxation and . Research on the possible weak limits of + ( ˆ , -) will be the scope of further research.

Applications to Hotelling's location model

As mentioned in the introduction and driven by the application described in [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF], the equilibrium of the Hotelling's location model becomes

sup z =1 + ∫ inf =1,..., {|x -y| 2 -} (y), (30) 
where the distribution models the location of the population, the distribution the fountains and the prize of the fountain . Denote z * the solution of (30). The set of population that prefers to consume from the fountain -called demand set-is Lag (z).

In this section we apply the methodology developed in previous section to provide asymptotic confidence intervals for prices and for the demand sets. That means that assuming the observation of a sample (Y 1 , . . . , Y ) of the population , and computing the discrete-discrete optimal transport problem between the empirical measure and , we obtain empirical prizes z and demand sets {Lag (z )} =1 . Note that we obtain also the empirical solution of (30), which does not play an important in this problem. We assume that the population satisfies the assumptions of Theorem 4.3, which asserts that, denoting Ψ -1 the quantile function of |(M 1 , . . . , M )| ∞ , then

P |z * -z | ∞ > Ψ -1 ( ) √ -→ 1 -, ∈ (0, 1) (31) 
On the other hand, in view of Lemma 4.6, we have

lim inf P Lag (z * ) ⊂ Lag (ẑ ) + 4 Ψ -1 ( ) √ B ≥ , ∈ (0, 1) (32) with = sup y∈Lag (z )∩Lag (z * )
min ∞ ({y}, Lag (z * )), ∞ ({y}, Lag (z )) .

Let us apply it to an artificial example based on real data. The population will be the demographic distribution of Brooklyn (NYC), which was 2, 592, 149 at 2014 1 and can be modeled as a continuous probability. However, the data-set with spatial data around Brooklyn we found on internet is the "New York City Census Data", which comes from the American Community Survey 2015 and fully available on-line in https://www.kaggle.com/datasets/muonneutrino/new-york-city-census-data. Once cleaned, the data-set contains, a sample of size = 3, 129 of Brooklyn's population distribution. We suppose the existence of four different fountains, located at (-74.0, 40.6), (-73.85, 40.6), (-73.95, 40.72) and (-73.95, 40.65]) with same amount of stock. The data is displayed in Figure 3.

We compute the asymptotic confidence intervals for the norm infinity of the differences |z *z | ∞ and for the individual variation of *z , = 1, 2, 3, 4, of the prices. We obtain the following results Lemma 4.6 enables to obtain, in Figure 4, the asymptotic confidence intervals for the Hausdorff distance for each one of the demand sets by using the proposed approach. The value is assumed to be 0.19 and is approximated by taking the maximum distance between points in the empirical cell. Here we implement one favorable case for bootstrap approximation. In particular we choose the quadratic cost | • | 2 and the discrete probability = 1 7 7 =1 x , where X = {x } 7 =1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1), (0, 0, 0)}.

The continuous probability ∈ P (R 3 ) is the direct product U (-1, 1) × N (0, 1) × N (0, 1). Note that its support is connected with Lebesgue negligible boundary -we can visualize the data in Figure 6-and satisfies the assumptions of Theorem 3.2. As commented before, we can use the bootstrap procedure. In this example, it is assumed that the discrete is known and the sample, of size = 5000, comes from the continuous . Figure 7 shows the result of the bootstrap procedure for a re-sampling size of 10000. The simulations follow the asymptotic theory we provide. Now we illustrate a case where the assumptions of Theorem 3.2 are no longer fulfilled. More precisely, we consider as the continuous probability with density 1 0.008•7 7 =1 1 x +(-0.1,0.1) 3 , -this is a mixture model of uniform probabilities on small cubes centered in the points of X-we can see a 3D plot in Figure 6. To approximate the limit distribution we need first to estimate the value W 2 2 ( , ). We make it by an independent sample of size 10000 and computing the mean by Monte Carlo 100 times. Then we compute the histogram of

√ (W 2 2 ( , )-W 2 2 ( , )) 2 ( ,z )
with the original sample. The results are shown in Figure 8, we can see, clearly, that the limit is not Gaussian. Similar examples with non-Gaussian limits can be found in Figure 1 in [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF]. But Figure 8 is quite different from their experimentation since one of the probabilities is continuous and [START_REF] Sommerfeld | Inference for empirical Wasserstein distances on finite spaces[END_REF] studies only the optimal transport problem between discrete probabilities. Lemma 7.2. Under the assumptions of Theorem 2.4, we have the limit

+ ( ( , , •) -( , , •)) -→ √ X, • + √ 1 -(G ) in ℓ ∞ ( B (0)), (33) 
with (U 1 , . . . , U ) = X.

Let (B, ) be a compact metric space, Corollary 2.3 in Cárcamo, Cuevas and Rodríguez (2020), provides the directional Hadamard derivative of the functional

: ℓ ∞ (B) -→ R ↦ → ( ) = sup z∈B (z),
tangentially to C(B) (the space of continuous functions from B to R ) with respect to in a direction ∈ C(B). Recall that a function : Θ → R, defined in a Banach space, Θ, is said to be Hadamard directionally differentiable at ∈ Θ tangentially to Θ 0 ⊂ Θ if there exists a function :

Θ 0 → R such that ( + ℎ ) -( ) ----→ →∞ (ℎ)
, for all sequences 0 and ℎ → ℎ, for all ℎ ∈ Θ 0 .

If ∈ C(B) is not identically 0, the precise formula for the derivative, provided by Corollary 2.3 in Cárcamo, Cuevas and Rodríguez (2020), is

( ) = sup {z: (z)= ( ) } (z), for ∈ C(B). (34) 
In our case the compact metric space is the ball B (0), the functional correspond with ( , , •) and the set of optimal points is Opt ( , ). The following result rewrites (34) in our setting.

Lemma 7.3. Set > 0, under the assumptions of Theorem 2.4, the map is Hadamard directionally differentiable at ( , , •), tangentially to the set C( B (0)) with derivative, for ∈ C( B (0)),

( , , •) ( ) = sup z∈Opt ( , ) (z) 
.

The last step is the application of the delta-method. Let Θ be a Banach space, ∈ Θ and { } ∈N be a sequence of random variables such that : Ω → Θ and ( -) -→ for some sequence → +∞ and some random element that takes values in Θ 0 ⊂ Θ. If : Θ → R is Hadamard differentiable at tangentially to Θ 0 ⊂ Θ, with derivative (•) : Ω 0 → R, then Theorem 1 in [START_REF] Römisch | Delta Method, Infinite Dimensional In Wiley StatsRef: Statistics Reference Online[END_REF], so-called delta-method, states that ( ( ) -( )) -→ ( ). Now, it only remains to prove that the limit in (33) belongs to C( B (0)). Such a limit is a mixture of two independent processes. The first one, X, • , has clearly continuous sample paths with respect to the euclidean norm | • | in R . On the other side, G has continuous sample paths in F with respect to the semi-metric -→ 0.

Finally, Lemma 7.2 implies that + ( ( , , •) -( , , •)) has a weak limit in the Banach space ℓ ∞ ( B (0)) having a version in C( B (0)). Applying the so-called delta-method to the function and Lemma 7.3 we derive the limit

+ sup |z | ≤ ( , , z) -sup |z | ≤ ( , , z) -→ sup z∈Opt ( , ) (z) 
.

Note, that the process z ↦ → √ 1 -G inf =1,..., { (x , y) -} is Gaussian in R with covariance function Ξ . Moreover, it is independent from X, then the law of the process is the same of the process √ X, • + ( √ 1 -)G and the theorem holds.

Unfortunately, the optimal solutions need not be universally bounded. In order to go from the bounded to the unbounded case, we observe that Lemma 2.1 implies The we show that (Lag (ẑ , ) \ Lag (z * )) -→ 0, the same holds for (Lag (z * ) \ Lag (ẑ , )), yielding the limit in probability of (49) towards 0. Using (47), we have Lag (ẑ , ) \ Lag (z * ) = =1,..., Lag (ẑ , ) \ {y ∈ R : (x , y) -(x , y), < * - * }.

.

  As in the previous section, we provide an application to the CLT for Wasserstein distances. The potential costs = | • | , for > 1, satisfy (A1)-(A3), then the following result follows immediately from Theorem 3.2 and the Delta-Method for the function ↦ → | | 1 Recall that, in the potential cost cases, T ( , ) denotes the optimal transport cost and W ( , ) = T ( , )

  where Lag (z) := {y ∈ R : (x , y) -< (x , y) -, for all ≠ }.(21)2. Under assumptions (Reg), (Twist) and (QC), the function M p is twice continuously differentiable with Hessian matrix 2 z M p (z) = 2 M p (z)

  which corresponds with the Hausdorff distance, i.e. inf{ > 0 : ⊂ + B and ⊂ + B}.

Lemma 4. 6 .

 6 Under the hypotheses and notation of Theorem 4.3, we have ∞ (Lag (z * + h ), Lag (z * )) ≤ 4 |h | ∞ , for any 0 and d → d, with = sup y∈Lag (z * + h )∩Lag (z * ) min ∞ ({y}, Lag (z * )), ∞ ({y}, Lag (z * + h )) .

Figure 2 .

 2 Figure 2. Estimated upper confidence intervals for the set Lag 1 (z * ), where = 1 4 ( (0,0) + (0,1) + (1,0) + (1,1) ) is deterministic and is the empirical measure of ∼ U (0,1) 2 for different values of . Represented in yellow for = 100; in orange for = 500; in green for = 1000, in blue for = 5000 and in red for = 10000. The black square is the border of the population cell Lag 1 (z * ).

Figure 3 .

 3 Figure 3. In the left original data of the sample ( = 3, 129) of Brooklyn's population distribution. On the Right, the empirical Laguerre cells Lag (z * ) for the fountains located at (-74.0, 40.6) (blue), at (-73.85, 40.6) (orange), at (-73.95, 40.72) (green) and at (-73.95, 40.65) (red). Black points represent the fountains.

Figure 4 .

 4 Figure 4. Estimated upper confidence intervals for the set Lag (z * ). For = 1, (upper left) the fountain is located at (-74.0, 40.6); for = 2, (upper right) at (-73.85, 40.6); for = 3, (lower left) at (-73.95, 40.72) and, for = 3, (lower left) at (-73.9540.65). The empirical region (computed by solving the discrete-discrete optimal transport problem) is represented by blue points whereas the asymptotic confidence intervals for the Hausdorff distance are in yellow. Black points represent the fountains.

Figure 6 .

 6 Figure 6. 3D visualization of the data set. In blue the continuous distribution and in red the discrete one . Left: has a density with connected support and satisfies the assumptions of Theorem 3.2. Right: has a density but not a connected support.

Figure 7 .

 7 Figure 7. Illustration of Theorem 3.2 using bootstrap procedures. Histograms (left) and Q-Q plot (right) of the bootstrap estimation of √ W 2 2 ( , )-W 2 2 ( , ) 2 ( ,z ).

Figure 8 .

 8 Figure 8. Illustration of Theorem 2.4, by using Monte Carlo's method, for with disconnected support.

  to analyze the value sup |z-s |< | (G ) (z) -(G ) (s)| Note that for every ∈ F there exists some z ∈ B (0) such that (y) = inf =1,..., { (x , y) -}. Lemma 2.3 states that { , ∈ F : |zz | < } ⊂ { , ∈ F : || -|| ∞ < } ⊂ { , ∈ F : ( , ) < }. (36) Since | (G ) (z ) -(G ) (z )| = |G ( ) -G ( )|, then we have sup |z -z |< | (G ) (z ) -(G ) (z )| = sup |z -z |< |G ( ) -G ( )|,and, consequently, using (36) and (35), we obtainsup |z -z |< | (G ) (z ) -(G ) (z )| ≤ sup ( , ) < |G ( ) -G ( )|. .

∫( 1

 1 1 (ẑ , )) -(Lag 1 (ẑ , )), . . . , (Lag (ẑ , )) -(Lag (ẑ , ))) -→ (U 1 , . . . , U ).To prove it we set and observe thatLag (z) = =1,..., {y ∈ R : (x , y) -(x , y) < -},(47)which means that the class of all possible cells {Lag (z): z ∈ R } ⊂ 2 Y is contained in =1 {y ∈ R : (x , y) -(x , y) < , ∈ R} .We note that if the Vapnik-Chervonenkis (VC) dimension of{y ∈ R : (x , y) -(x , y) -< 0} : ∈ R is , the one of {Lag (z) : z ∈ R } is 2 log(3 ) (see Lemma 3.2.3. in[START_REF] Linial | Results on learnability and the Vapnik-Chervonenkis dimension[END_REF]). It is trivial to show that the VC dimension of the space of functions {y ↦ → (x , y) -(x , y) -:∈ R} is 2. Then, in view of Theorem 2.6.4 in[START_REF] Vaart | Weak convergence and empirical processes[END_REF], we haveN ( , {1 Lag (z) : z ∈ R }, 2 ( )) ≤ 1 8 log(3 ) ,which means that the class {1 Lag (z) : z ∈ R } is -Donsker. This means that, for every> u)Δ Lag (v)) = ((Lag (u) \ Lag (v)) ∪ (Lag (v) \ Lag (u))) = Lag (u) -1 Lag (v) ) 2 .First we bound (Lag (ẑ , )Δ Lag (z * )) ≤ (Lag (ẑ , ) \ Lag (z * )) + (Lag (z * ) \ Lag (ẑ , )) (49)

According to the United States Census Bureau http://www.census.gov/quickfacts/
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Simulations

First, we illustrate the precision of the upper bound in Theorem 2.6 with the following simulation. Consider the uniform measure on the unit interval (0, 1) and draw a sample of size = 2000 to obtain the empirical . Then from a uniform discretization of size of the unit interval, we obtain the discrete measure . We compute, using Monte-Carlo simulations, the empirical error |W 1 ( , ) -W 1 ( , )| for different choices for . The results are presented in Figure 5. We observe, in the left figure, that, for regular values of , the growth of |W 1 ( , ) -W 1 ( , )| is exactly of order

√

, following the bound. Yet for larger values of (right side) we observe that the order is no longer

√

. This is because √ is only an upper bound for |W 1 ( , ) -W 1 ( , )| and the true rate becomes smaller. The next part of section is devoted to illustrate empirically Theorems 2.4 and 3.2. The limit distribution depends on the true optimal transport cost between the distributions. Hence to simulate the central limit theorems, the difficulty lies in proving the consistency of its bootstrap approximation. Actually the non fully Hadamard differentiability of the functional implies that the limit in Theorem 2.4 is the supremum of Gaussian processes. In consequence, as pointed out in [START_REF] Fang | Inference on Directionally Differentiable Functions[END_REF], the bootstrap will not be consistent. However, in the framework of Theorem 3.2, the dual problem has a unique solution. In consequence, the mapping is fully Hadamard differentiable (Corollary 2.4 in Cárcamo, Cuevas and Rodríguez (2020)) which implies that the bootstrap procedure is consistent [START_REF] Fang | Inference on Directionally Differentiable Functions[END_REF]). This enables us to approximate the variance as shown in the following simulations.

Proofs

Proof of Theorem 2.4. The strategy of the proof is the following, first we start by proving the central limit theorem for bounded potentials. That means the study of the asymptotic behaviour of the sequence

The weak limit depends on the set of restricted optimal points.

Opt ( ,

Lemma 7.1. Set > 0, under the assumptions of Theorem 2.4, we have the limit

with (U 1 , . . . , U ) and G as in Theorem 2.4.

Proof of Lemma 7.1. For each > 0 we define the restricted set

{ (x , y) -}, x ∈ X, and 1 = 0, |z| ≤ , Lemma 8.1 proves that such a class is -Donsker, see Theorem 1.5.7 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF], in the sense that

where G is the Brownian bridge in F . This is a centered Gaussian process with covariance function

Let B (0) be the closure of the centered ball of radius in R . Note that the functional

is actually continuous, hence for any , ∈ ℓ ∞ (F ), we have sup

Moreover, the multivariate CLT implies √ (pp) -→ (U 1 , . . . , U ) ∼ (0, Σ(p)) , where Σ(p) is defined in (11). Since the sequences √ (pp) and √ ( -) are independent we derive the following result. and Lemma 7.1 implies the weak convergence of the second term to sup

where the equality is a direct consequence of Lemma 2.1. It only remains to prove that the first term of (37) tends to 0 in probability. Note that we have two cases.

• The first one is , ≤ * + 1, which implies that

and makes 0 the first term of (37). • The second one is , ≥ * + 1, which implies the bound

(38) Note that the right side of the inequality (38) can be rewritten as

and upper bounded by

we can conclude from (10) that

Both cases together yield the inequality

To see that the + | , - * -1|1 ( , ≥ * +1) tends to 0 in probability, we write

Note that

That proves Theorem 2.4.

Remark 7.4. When dealing with the case where the asymptotics depend only on the empirical distribution , note that Assumption (13), which depends only on

is enough to prove the CLT. Actually, the multidimensional CLT yields that

Therefore, all of the arguments above can be now repeated verbatim.

Proof of Theorem 2.6. Let Y 1 , . . . , Y be i.i.d with law . Recall that, when the cost is the euclidean distance | • |, then the optimal transport potentials are 1-Lipschitz functions. This yields trivially

where 1 ( , , z) = =1 + ∫ inf =1,..., {|x -y| -} (y). We want to bound the quantity |W 1 ( , ) -W 1 ( , )|, which can be rewritten, by (40), as

and upper bounded by sup

where

{|x -y| -}, x ∈ X, and |z| ≤ diam(X) .

We set = diam(X) in order to simplify the following formulas. Denote by ( , F 1 , || • || 2 ( ) ) the he covering number with respect to the metric 2 ( ). Lemma 4.14 in [START_REF] Massart | Concentration inequalities and model selection[END_REF] and Lemma 2.3 imply that log 2 ( ,

For the generalization to further potential costs, we observe that equation (2.5) in del Barrio, Sanz and Loubes (2021) yields

and therefore, repeating the previous argumentation, we obtain the result.

Proof of Theorem 4.1. We note that the population potential is described through (20), i.e. ∇ z M p (z * ) = 0, and the empirical by ∇ z M , p (z , ) = 0, with

where Lag , for = 1, . . . , , are defined in ( 21). This is a -estimation problem (eg. chapter 3.3 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]). The strategy is the following; we show that the population optimal transport potential is well-separated -meaning that M p (z * ) -M p (ẑ , ) ≥ |ẑ ,z * | 2 -by deriving the second order derivative of M p , then we show that the map M p -M , p is + -Lipschitz. As a consequence we obtain the tightness of + |ẑ ,z * | and, by using second derivative of M p , also its limit.

Lemma 7.5. Let Y ⊂ R be a compact -convex set, ∈ P (X) and ∈ P (Y) . Under assumptions (Reg), (Twist) and (QC) on the cost and (PW) and (Cont) on , we have that the function M p is strictly concave and twice continuously differentiable, with

Moreover, if z * ∈ 1 ⊥ ∩ Opt ( , ), there exists a positive constant such that

Proof. Note that it only remains to prove that (43) holds. But this is a direct consequence of (23).

In fact, since z * is the unique z ∈ Opt( , ), then (Lag (z * )) = for = 1, . . . , and we can conclude.

We want now to prove the tightness of + |ẑ ,z * |. Note that Lemma 7.5 implies the wellseparability property

The relations

where spam(F ) is the topological closure in C(Y) of the set of finite linear combinations of F , which is still Donsker (see Theorems 2.10.2 and 2.10.6 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]), give the Lipschitz property

Therefore, ( 44) and ( 45) give

from where we deduce the tightness of + |ẑ ,z * |. Lemma 7.5 gives the relation

Therefore, we obtain the following equation

and, since 0

The left hand side of (46) can be written as

The following result provides its weak limit.

Lemma 7.6. Suppose that the assumptions of Lemma 7.5 hold. If = ( ) is such that → ∞ and + → ∈ (0, 1), we have

Proof. From the relation

which, in view of the union bound and (47), gives

Since + |ẑ ,z * | is tight, there exists a sub-sequence of |ẑ ,z * | converging a.s. to 0. We keep the same notation for the sub-sequence. Set

Then it satisfies that for all ∈ N, there exist , > such that , -, < (x , y) -(x , y) < * - * . The a.s. limit , -, → * - * implies that (x , y) -(x , y) = * - * , which, under the assumption (Twist), is negligible for -which satisfies (Cont). Therefore, (Lag (ẑ , ) \ Lag (z * )) -→ 0 and, by symmetry,

Moreover, by repeating the same argument, we obtain that if u → v, then

Thanks to (50), ( 51) and ( 48), we are under the hypotheses of Lemma 3.3.5 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]; as a consequence we have

As was chosen arbitrarily, we obtain also

The multi-variate central limit theorem yields the limit of

as a centered Gaussian r.v. ( 1 . . . , ) with covariance

Since ( 1 -1 , . . . , -) converges weakly to a independent copy of ( 1 . . . , ), we conclude.

Lemma 7.6, ( 46) and the continuous mapping theorem conclude the proof.

Proof of Theorem 4.3. The first step is to show that (28) holds. Set ∈ {1, . . . , }. Since

the support functions of the sets

and B are respectively

Then, in view of Remark 4.5, we have

We parameterize v = (xx ), for ≥ 0, so that ℎ (v ) ∈ R and thus v = v -≠ (xx ). This gives

and ( 27) holds. The support function of the singleton {-y 0 } is given by

so that, in view of Remark 4.5, (28) holds.

The next step is to show the Hadamard differentiability of ℎ Lag (z)+{-y 0 } (v) with respect to z in a neighborhood of z * . Note that the objective function

the same holds for ℎ Lag (z)+{-y 0 } (v) . Then we only need to prove the Gateaux differentiablity. Sufficient conditions conditions are given by Proposition 4.13 in [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF], which are as follows:

1. The function (•, t) is Gateaux differentiable in R with derivative z (z, t), 2. the function is continuous in R × R -1 , and 3. there exists ∈ R and a compact set ⊂ R such that for every z near z * , the level set

is non empty and contained in .

Since the objective function is linear in z and continuous in t, (1) and ( 2) hold. To prove the compactness of the level sets we observe that, for all ≠ , (z

for some > 0. Moreover, the uniform continuity of the function z → (z), implies the existence of a neighborhood U * of z * such that (z) > 2 , for all z ∈ U * and ≠ . Evaluating at t = 0, we have

for all z ∈ U * . The set of t ∈ R -1 such that ≥ 0 and ≠ ≤ 4 plays the role of in (3), which is thus proven. The Hadamard derivative in a direction d of ℎ Lag (z)+{-y 0 } (v) in z * is thus given by inf

for any 0 and d → d. Lemma 4.6 states the existence of some > 0 such that that lim sup ∞ (Lag (z * + h ), Lag (z * )) ≤ .

The quantity ( ∞ (Lag (z * + h )) is constant w.r.t. v and dominates

Proofs of Lemmas

Proof of Lemma 2.1. First, strong duality (3) yields that

Set ( 1 , . . . , ) = ( (x ), . . . , (x )), then T ( , ) = sup (z, ) =1 + ∫ (y) (y), where the sup is taken on the set (z, ) such that + (y) ≤ (x , y) for all = 1, . . . , . Therefore, (y) ≤ inf =1,..., { (x , y) -} and T ( , ) = sup z∈R ( , , z). Since adding additive constant does not change ( , , z), we conclude.

Lemma 8.1. Under the assumptions of Theorem 2.4, the class F is -Donsker.

Proof of Lemma 8.1.

We use bracketing numbers, see Definition 2.1.6 in [START_REF] Vaart | Weak convergence and empirical processes[END_REF]. Lemma 2.3 implies that Therefore, Lemma 4.14 in [START_REF] Massart | Concentration inequalities and model selection[END_REF] implies that

The envelope function of the class F can be taken as the function defined as Using Theorem 3.7.38 in [START_REF] Giné | Mathematical Foundations of Infinite-Dimensional Statistical Models[END_REF] we obtain the result.