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We prove a Central Limit Theorem for the empirical optimal transport cost,
√
=<
=+< {T2 (%=,&<) − T2 (%,&)},

in the semi-discrete case, i.e when the distribution % is supported in # points, but without assumptions on &.
We show that the asymptotic distribution is the sup of a centered Gaussian process, which is Gaussian under
some additional conditions on the probability & and on the cost. Such results imply the central limit theorem
for the ?-Wassertein distance, for ? ≥ 1. This means that, for fixed # , the curse of dimensionality is avoided. To
better understand the influence of such # , we provide bounds of � |W ?

? (%,&<) −W
?
? (%,&) | depending on <

and # . Finally, the semi-discrete framework provides a control on the second derivative of the dual formulation,
which yields the first central limit theorem for the optimal transport potentials and Laguerre cells. The results
are supported by simulations that help to visualize the given limits and bounds. We analyse also the cases where
classical bootstrap works.

Keywords: Central limit theorem; Laguerre cells; Optimal transport; Optimal transport potentials; Semi-discrete
optimal transport

1. Introduction

A large number of problems in statistics or computer science require the comparison between his-
tograms or, more generally, measures. Optimal transport (OT) has proven to be an important tool to
compare probability measures since it enables to define a metric over the set of distributions which
conveys their geometric properties, see Verdinelli and Wasserman (2019). Moreover, together with the
convergence of the moments, it metrizes the weak convergence, see Chapter 7.1. in Villani (2003). It is
nowadays used in a large variety of fields, in probability and statistics. In particular in machine learn-
ing, OT based methods have been developed to tackle problems in fairness as in de Lara et al. (2021),
Gordaliza et al. (2019), Jiang et al. (2020), ?, in domain adaptation Shen et al. (2018), or transfer learn-
ing Gayraud, Rakotomamonjy and Clerc (2017). Hence, there is a growing need for theoretical results
to support such applications and provide theoretical guarantees on the asymptotic distribution.

The most general formulation of the optimal transport problem considers X,Y both Polish spaces.
We use the notation P(X) (resp. P(Y)) for the set of Borel probability measures on X (resp. Y).
The optimal transport problem between % ∈ P(X) and & ∈ P(Y) for the cost 2 : X ×Y → [0,∞) is
formulated as minimization problem

T2 (%,&) := inf
W∈Π(%,&)

∫
X×Y

2(x,y)3c(x,y), (1)

where Π(%,&) is the set of probability measures c ∈ P(X × Y) such that c(� × Y) = %(�) and
c(Y × �) =&(�) for all �, � measurable sets.
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If 2 is continuous and there exist two continuous functions 0 ∈ !1 (%) and 1 ∈ !1 (&) such that

for all (x,y) ∈ supp(%) × supp(&), 2(x,y) ≥ 0(x) + 1(y), (2)

then the Kantorovich problem (1) can be formulated in a dual form, as

T2 (%,&) = sup
( 5 ,6) ∈Φ2 (%,&)

∫
5 (x)3%(x) +

∫
6(y)3&(y), (3)

where Φ2 (%,&) = {( 5 , 6) ∈ !1 (%) × !1 (&) : 5 (x) + 6(y) ≤ 2(x,y)}, see for instance Theorem 5.10 in
Villani (2008). It is said that k ∈ !1 (%) is an optimal transport potential from % to & for the cost 2 if
there exists i ∈ !1 (&) such that the pair (k, i) solves (3).

This work focuses on the semi-discrete optimal transport, i.e. when one of both probabilities, let us
assume %, is supported on a discrete setX = {x1, . . . ,x# }. Lemma 2.1 shows that T2 (%,&) is equivalent
to the maximization of

62 (%,&, z) =
#∑
8=1

I8 ?8 +
∫

inf
8=1,...,#

{2(x8 ,y) − I8}3&(y), (4)

The solution z∗ (unique up to additive constant under some assumptions) of (4) defines set of Laguerre
cells

Lag: (z) := {y ∈ R3 : 2(x: ,y) − I: < 2(x8 ,y) − I8 , for all 8 ≠ :}, : = 1, . . . , #,

which are generalizations of the Voronoi cells –equivalent to Lag: (0) for the quadratic cost. From
an economical perspective semi-discrete optimal transport plays an important role. We refer to Gali-
chon´s monograph Galichon (2016) and references therein. Let us consider the example contained in
chapter 5.1, “Hotelling’s location model”, where the location of certain population is represented by a
continuous probability & and the ‘fountains’ –businesses trying to sell a product– as a discrete proba-
bility %. Here the location of the fountain 8 is x8 and the capacity is ?8 . Each inhabitant would choose
the fountain which enjoys the properties to be at the same time closer and offering a better price, i.e.
the strategy arg inf8=1,...,# {2(x8 ,y) − I8}, where I8 represents the prize of the fountain 8. The fraction of
population that prefers to consume from the fountain 8 is then Lag: (z). Under market clearing –supply
equals demand –each fountain is used to its full capacity and the problem of determining the prizes
reduces to (4).

Other important applications of the semi-discrete optimal transport are quantization and sampling
–where the goal of both is to reduce a probability distribution & into a finitely supported one. It is well
known (cf. Lemma 3.4 in Graf and Luschgy (2000) eg.) that the quantization error is the semi-discrete
optimal transport between & and its quantized version and the optimal quantizer minimizes, among
all probability measures supported in a set of # elements, the optimal transport cost. In the quadratic
case this gives the :-means clustering. Futher applications include the resolution of the incompressible
Euler equation using Lagrangian methods (Gallouët and Mérigot, 2018), non-imaging optics; matching
between a point cloud and a triangulated surface; seismic imaging (Meyron, 2019), astronomy (Lévy,
Mohayaee and von Hausegger, 2020). From a statistical point of view, Goodness-of-fit-tests based on
semi-discrete optimal transport enable to detect deviations from a density map to have % ≠&, by using
the fluctuations ofW(%=,&), see Hartmann and Schuhmacher (2020).
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1.1. Contributions

In this paper we consider observations drawn from two mutually independent samples X1, . . . ,X= and
Y1, . . . ,Y< i.i.d. with laws % and&. Let %= = 1

=

∑=
:=1 XX: and&< = 1

<

∑<
:=1 XY: be the corresponding

empirical measures. The optimal transport cost between the empirical distributions T2 (%=,&<) defines
a random variable.

We are concerned with the asymptotic behaviour of
√
=<
=+< {T2 (%=,&<) − T2 (%,&)} in a general

semi-discrete setting. We propose a new proof that relies on the framework introduced in Cárcamo,
Cuevas and Rodríguez (2020) and considers the Hadamard derivative of the sup of the process with
respect to ℓ∞ topology. The link to the CLT for optimal transport cost comes from the fact that the
dual formulation of the transport problem is, in fact, a supremum of functions. Hence if such functions
live in a Donsker class B (see Vaart and Wellner (1996)), then we can obtain the CLT by proving
differentiability of the supremum in ℓ∞ (B) and applying then the general delta-method.

Hence this paper first covers and generalizes the results of Sommerfeld and Munk (2018) for a semi-
discrete % approximated by %= and a general probability distribution & to handle all cases of the semi-
discrete framework. Moreover, the computation of T2 (%=,&) is not easy in general, see for instance
Gallouët and Mérigot (2018). Consequently, an interesting problem, also for applications, becomes
its approximation by a &<, an estimation of &. Hence we also provide the asymptotic behaviour of√
<{T2 (%,&<) − T2 (%,&)}. Surprisingly, Theorem 2.4 yields that it tends to

sup
z∈Opt2 (%,&)

G& ( inf
8=1,...,#

{2(x8 ,y) − I8}),

where Opt2 (%,&) is the set of optimal transport potentials and G& is the Brownian bridge in F  2 (both
will be defined more precisely later) with mean zero and covariance

( 5 , 6) ↦→
∫

5 (y)6(y)3&(y) −
∫

5 (y)3&(y)
∫
6(y)3&(y).

Finally we provide in Section 2 a unified general result that describes the asymptotic distribution of the
empirical transport cost between a probability % supported in the finite set X = {x1, . . . , x# } ⊂ X and
& ∈ P(Y) under the minimal assumption

∫
2(x8 ,y)3&(y) <∞, for all 8 = 1, . . . , # , for all cases:

• (One sample case for empirical discrete distribution %=)

√
= (T2 (%=,&) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

#∑
8=1

I8U8 ,

and if, additionally,
∫
2(x8 ,y)23&(y) <∞, for all 8 = 1, . . . , # , then,

• (One sample case for empirical distribution &<)
√
< (T2 (%,&<) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

G2& (z).

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1), then√

=<
=+< (T2 (%=,&<) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

(√
_

#∑
8=1

I8U8 + (
√

1 − _)G2& (z)
)
.
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The fact that the curse of dimensionality does not seem to affect the semi-discrete case for both
probabilities is quite astonishing. But it is partially hidden in the assumption that the set X has a fixed
size. For a better understanding, Theorem 2.6 provides, in the context of quadratic costs, a bound which
studies the effect of the choice of a discretization with size the one of the set X. It highlights a natural
trade-off between the discretization scheme of the distribution and the sampling of the distribution.

Moreover, in cases where %,& ∈ P(R3) with & having a Lebesgue negligible boundary and being
absolutely continuous with respect to ℓ3 , and the cost 2 satisfying conditions (A1) through (A3), the
limits can be made more explicit and the supremum in the previous limits can be computed. These re-
sults are presented in Section 3, where the transport potential is unique up to additive constants. Under
some regularity assumptions on the cost and on &, the limit is no longer a supremum but instead a
centered Gaussian random variable.

The contributions of Section 4 are two-fold. The first part studies the semi-discrete OT in manifolds
and provides, to the best of our knowledge, the first Central Limit Theorem for the solutions of the dual
problem (3). The second part studies the asymptotic distribution of the Laguerre cells. It should be
noted that these results cannot be generalized to continuous distributions. If both probabilities are con-
tinuous and the space is not one-dimensional, we cannot expect such a central limit for the potentials,
since the expected value of the transport cost estimate converges at a rate of $ (=− 1

3 ) and not $ (=− 1
2 ).

In the case where the two samples are discrete, even if such a rate is $ (=− 1
2 ), the lack of uniqueness

in the dual problem does not allow for the proof of such results. As a result, the semi-discrete case
is the only one where such results for the potentials of the OT problem in general dimension can be
expected. Regarding the Laguerre cells, we obtain the weak limits of the !? metric (see Vitale (1985)
for definition) between the empirical and population cells. Additionally, we provide asymptotic confi-
dence intervals in terms of the Hausdorff distance. In all cases, the parametric ratio is achieved. We
conjecture that the same approach would provide similar bounds for the empirical Voronoi cells, the
solutions of the :-means clustering. Finally, Remark 4.9 bounds the !1 (ℓ3) norm between empirical
and population transport maps, opening new doors of research in this direction.

The last section is dedicated to applying some of the results discussed earlier to the Hotelling’s
location model. We present asymptotic confidence intervals for prices and demand sets in a simulated
location model in Brooklyn (NYC).

1.2. Prior and current works in weak limits of optimal transport

The asymptotic distribution of the empirical transport cost T2 (%=,&<) has been explored in sev-
eral works. For the general dimensional case, a Central Limit Theorem (CLT) for the centered pro-
cess has been established using the Efron-Stein inequality. In particular, del Barrio and Loubes
(2019), del Barrio, Sanz and Loubes (2021), González-Delgado et al. (2021) have proven that√
=<
=+< (T2 (%=,&<) − ET2 (%,&)) converges to a Gaussian distribution. Mena and Niles-Weed (2019)

also proves a similar result for the regularized optimal transport cost. Under additional conditions, this
result can be extended to the semi-discrete framework. In particular, when % is finitely supported, but&
is absolutely continuous with respect to the Lebesgue measure and has a convex support, del Barrio and
Loubes (2019) shows that for the quadratic cost, the limit

√
=(T2 (%=,&) −T2 (%,&)) is Gaussian. Their

argument relies on the differentiability properties of the optimal transport problem, but it is restricted
by the assumption of uniqueness of the optimal transport potential, which is not always guaranteed
for general costs or Polish spaces. Similar results have been established for the case where both %
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and & are supported on a finite or countable set. Sommerfeld and Munk (2018) and Tameling, Som-
merfeld and Munk (2019) respectively prove that, in these settings,

√
=<
=+< (T2 (%=,&<) − T2 (%,&))

converges to a weak limit - , which is the supremum of a Gaussian process. Their proof relies on
the identification of the space of distributions supported in a finite set X = {x1, . . . ,x# } with a sub-
set of R# , and then on a proof based on the directional Hadamard differentiability of the functional
(p,q) ↦→ T2 (

∑#
8=1 ?8Xx8 ,

∑#
8=1 @8Xx8 ). The result of Sommerfeld and Munk (2018) establishes that, if %

and & are both supported in a finite set, then

√
= (T2 (%=,&) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

G(z), where G(z) :=
#∑
8=1

I8U8 .

Lately Tameling, Sommerfeld and Munk (2019) extended the same result for probabilities supported in
countable spaces. Yet this approach does not hold for probabilities non supported on finite or countable
sets.

The parametric rate obtained for the limits in the semi-discrete case is consequence of the adaptabil-
ity of the optimal transport problem to lower complexities. This was first observed by Weed and Bach
(2019). During the review process of our work, two new papers by the same authors underlined this
fact. Hundrieser, Staudt and Munk (2022) observes that the covering numbers of a class of functions
are invariant after conjugation, which is exactly what happens here for the class F 2

 
. As a consequence,

Hundrieser et al. (2022) focuses on the cases where the complexity is small enough to obtain the para-
metric rate and therefore weak limits. However, since they assume bounded costs, the semi-discrete
case is partially covered. We avoid this assumption by a control of the quantity  =,<, described above.
We believe that this technique could successfully address their case, where the bound of the potentials
could be the more accurate given in del Barrio, Sanz and Loubes (2021), eq. (2.5).

The Hadamard derivative of supremum type functionals as a way to provide weak limits of the
Wasserstein distance has been proposed also in Goldfeld et al. (2022a), Sadhu, Goldfeld and Kato
(2021) for Gaussian-convoluted measures. However, although related, this is not the Wasserstein dis-
tance –they will coincide when the variance of the convolution tends to zero. This supremum functional
derivative argument has proven to be valid in other simplifications of the transport problem; such as
sliced or Sinkhorn Goldfeld et al. (2022b). However, in these cases the same results can be obtained by
other methods, e.g. Manole, Balakrishnan and Wasserman (2022) uses the quantile representation in
the sliced model and del Barrio et al. (2022) the centered-in-expectation CLT of Mena and Niles-Weed
(2019) and a bound of the expectation.

Regarding weak limits of the optimal transport potentials, two recent pre-prints (Goldfeld et al.,
2022c, González Sanz, Loubes and Niles-Weed, 2022) obtain the weak limits of the potentials of the
Sinkhorn regularized transport problem.

1.3. Notation

For convenience, we list here the main notation that will be used throughout the document. Unless oth-
erwise stated, we denote by (Ω̃,A,P) the underlying probability space. The the probability % is always
assumed to be supported in the set X = {x1, . . . ,x# }. The notation ℓ3 is reserved for the Lebesgue
measure in R3 , whereasH 3−1 denotes the 3 − 1-dimensional Hausdorff measure. We use boldface for
the vectors, a notation that is not used, however, for their components, which will be expressed by a
sub-index. For instance, z = (I1, . . . , I# ). For the norm in a Polish space we use always the notation
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| · |, which, when there is no room for confusion and we are in R3 , will denote the Euclidean norm.

The rest of the norms will be specified in each case, i.e. |x|∞ = sup8 |G8 | and |x|? =
(∑3

8=1 |G8 |
%
) 1
?

. For

a set �, we denote its border by m�. For a measure ` ∈ P(Y) and a function 5 :Y → R3 , we denote

‖ 5 ‖!? (`) =
(∫
‖ 5 ‖?3`

) 1
?

. The functions where this last value is finite are said to belong to !? (`).

2. Central Limit Theorems for semi-discrete distributions

2.1. Semi-discrete optimal transport reframed as optimization program

Consider general Polish spaces X,Y and let P(Y) be the set of distributions on Y. Consider also a
generic finite set, X = {x1, . . . , x# } ⊂ X be such that x8 ≠ x 9 , for 8 ≠ 9 . In all this work, we consider
P(X) the set of probabilities supported in this finite set. So any % ∈ P(X) can be written as

% :=
#∑
:=1

?:Xx: , where ?8 > 0, for all 8 = 1, . . . , # , and
#∑
:=1

?: = 1. (5)

In consequence % is characterized by the vector p = (?1, . . . , ?# ) ∈ R# .

We focus on semi-discrete optimal transport cost which is defined as the optimal transport between
a finite probability % ∈ P(X) and any probability & ∈ P(Y).

The following result shows that the optimal transport problem in the semi-discrete case is equivalent
to an optimization problem over a finite dimensional parameter space. Define the following function
62 , which depends on % and & as

62 (%,&, z) =
#∑
8=1

I8 ?8 +
∫

inf
8=1,...,#

{2(x8 ,y) − I8}3&(y), z ∈ R# (6)

Lemma 2.1. Let % ∈ P(X) , & ∈ P(Y) and 2 be a non-negative cost, then the optimal transport
between % and & for the cost 2, T2 (%,&), satisfies

T2 (%,&) = sup
z∈R# , |z | ≤ ∗

62 (%,&, z). (7)

for  ∗ = 1
inf8 ?8

(
sup8=1,...,#

∫
2(y,x8)3&(y)

)
. Moreover we can assume that I1 = 0.

Remark 2.2. Consider the dual expression for T2 (%,&) and let i denote an optimal transport potential
from % to & for the cost 2, then

T2 (%,&) = 62 (%,&, (i(x1), . . . , i(x# ))).

Hence the optimal transport potentials and optimal values for (7) are linked through the expression
z = (i(x1), . . . , i(x# )).
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Note that 62 (%,&, ·) is a continuous function, a fact that follows from the next lemma. Therefore,
the sup in (7) is attained and the the class of optimal values

Opt2 (%,&) :=
{
z ∈ R# : T2 (%,&) = 62 (%,&, z)

}
(8)

and its restriction

Opt02 (%,&) :=
{
z ∈ R# : T2 (%,&) = 62 (%,&, z), I1 = 0

}
. (9)

are both non-empty.

Lemma 2.3. If 5 (y) = inf8=1,...,# {2(x8 ,y) − I8} and 6(y) = inf8=1,...,# {2(x8 ,y) − B8}, then

| 5 (y) − 6(y) | ≤ sup
8=1,...,#

{|I8 − B8 |} ≤ |z − s|. (10)

2.2. Main results : Central Limit Theorems for semi-discrete optimal transport
cost

Our aim is to study the empirical semi-discrete optimal transport cost. Let X1, . . . ,X= and Y1, . . . ,Y<
be two independent sequences of i.i.d. random variables with laws % and & respectively, since X: ∈ X
for all : = 1, . . . , =, the empirical measure %= := 1

=

∑=
:=1 XX: belongs also to P(X). In consequence it

can be written as %= :=
∑#
:=1 ?

=
:
Xx: , where ?=1 , . . . , ?

=
#

are real random variables such that ?=
8
≥ 0,

for all 8 = 1, . . . , # , and
∑=
:=1 ?

=
:
= 1. We want to study the weak limit of the following sequences

corresponding to all possible asymptotics{√
= (T2 (%=,&) − T2 (%,&))

}
=∈N ,

{√
= (T2 (%,&<) − T2 (%,&))

}
<∈N ,

and the two sample case {√
=<
=+< (T2 (%=,&<) − T2 (%,&))

}
<,=∈N

,

under the assumption <
=+< → _ ∈ (0,1).

To state the asymptotic behaviour we introduce first a centered Gaussian vector, (X1, . . . ,X# ) with
covariance matrix Σ(p) with entries

Σ(p)8, 9 = −?8 ? 9 , 8 ≠ 9 and Σ(p)8,8 = ?8 (1 − ?8). (11)

We also define a centered Gaussian process G2
&

in R# with covariance function

Ξ2& (z, s) :=
∫

inf
8=1,...,#

{2(x8 ,y) − I8} inf
8=1,...,#

{2(x8 ,y) − B8}3&(y)

−
∫

inf
8=1,...,#

{2(x8 ,y) − I8}3&(y)
∫

inf
8=1,...,#

{2(x8 ,y) − B8}3&(y).
(12)

We can now state our main theorem.



8

Theorem 2.4. Let % ∈ P(X), & ∈ P(Y), 2 be non-negative and∫
2(x8 ,y)3&(y) <∞, for all 8 = 1, . . . , <, (13)

then the following limits hold.

• (One sample case for empirical discrete distribution %=) If =→∞,

√
= (T2 (%=,&) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

#∑
8=1

I8U8 .

Suppose that ∫
2(x8 ,y)23&(y) <∞, for all 8 = 1, . . . , #. (14)

• (One sample case for empirical distribution &<) If <→∞,

√
< (T2 (%,&<) − T2 (%,&))

F−→ sup
z∈Opt02 (%,&)

G2& (z).

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<

= +< (T2 (%=,&<) − T2 (%,&))
F−→ sup

z∈Opt02 (%,&)

(√
_

#∑
8=1

I8U8 + (
√

1 − _)G2& (z)
)
.

Here (U1, . . . ,U# ) ∼ N (0,Σ(p)), with Σ(p) as in (11), and G2
&

is a centered Gaussian process with
covariance function Ξ2 (&) defined in (12). Moreover G2

&
and (U1, . . . ,U# ) are independent.

When X and Y are contained in the same Polish space (Z, 3), a particular cost that satisfies the
assumptions of Theorem 2.4 is 3 ? , for all ? ≥ 1. Then applying Theorem 2.4 to the empirical estima-
tiors of T3? (%,&) and a delta-method, enable to prove the asymptotic behaviour of the ?-Wasserstein
distanceW ?

? (%,&) = T3? (%,&) as given in the following corollary. The case % =& is a discrete opti-
mal transport, so that its asymptotic behaviour has been previously studied in Sommerfeld and Munk
(2018). Therefore, the following result assumesW? (%,&) ≠ 0.

Corollary 2.5. Let % ∈ P(X) and & ∈ P(Z) be such thatW? (%,&) ≠ 0 and
∫
3 (x0,y)?3&(y) <∞,

for some x0 ∈ X. Then, for any ? ≥ 1, the following limits hold.

• (One sample case for %) If =→∞,

√
=
(
W? (%=,&) −W? (%,&)

) F−→ 1

?
(
W? (%,&)

) ?−1 sup
z∈Opt3? (%,&)

#∑
8=1

I8U8 .

If we further assume that
∫
3 (x0,y)2?3&(y) <∞, for some x0 ∈ X, then

• (One sample case for &) If <→∞,

√
<

(
W? (%,&<) −W? (%,&)

) F−→ 1

?
(
W? (%,&)

) ?−1 sup
z∈Opt02 (%,&)

G3
?

&
(z).
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• (Two sample case) If =,<→∞, with <
=+< → _ ∈ (0,1),

√
=<
=+<

(
W? (%=,&<) −W? (%,&)

) F−→
supz∈Opt02 (%,&)

(√
_
∑#
8=1 I8U8 + (

√
1 − _)G3?

&
(z)

)
?
(
W? (%,&)

) ?−1 .

Here (U1, . . . ,U# ) follows a Gaussian distribution N(0,Σ(p)), with Σ(p) defined in (11), and G3
?

&

is a centered Gaussian process with covariance function Ξ3
? (&), defined in (12). Moreover, G3

?

&
and

(U1, . . . ,U# ) are independent.

The proof of Theorem 2.4 is provided in the supplementary material, and is restricted to the case
of two samples. The same proof verbatim applies also for the CLT for the one sample case for &. The
one sample case for % can be proven under weaker moment assumptions on & and will be commented
separately.

2.3. An upper-bound on the expectation for the Wasserstein distance

Theorem 2.4 states the central limit theorem, when one of both probabilities is supported on a finite set.
Now, we investigate the influence of the number of points of the discrete measure on the convergence
bounds. In order to better understand the influence of the number of points, we will restrict our analysis
to the Euclidean cost.

Theorem 2.6. Let % be supported on # points in X, & ∈ P(Y) be a distribution with finite second
order moment and &< its corresponding empirical version, then

� |W1 (%,&<) −W1 (%,&) | ≤ 8
√

2#√
<
 (diam(X),&)

where

 (diam(X),&) = (4 diam(X) + 2
√∫
|y|23&(y) + 2 diam(X))

(
log(2) +

√
2 diam(X) + 1

)
andW1 is the 1-Wasserstein distance for the Euclidean distance. Moreover, if diam(Y) <∞, then

�
��W ?

? (%,&<) −W ?
? (%,&)

�� ≤ 4
√

2#√
<
 (4 diam(X) diam(Y)?−1,&).

The theorem provides a control on the consistency of the empirical bias for the Wasserstein distance.
The rate becomes slower when # the number of points defining the support of the discrete measures
% increases. If % models an approximation of a continuous probability on R3 , hence the number #
required to obtain a proper approximation grows exponentially larger when the dimension 3 increases.
Hence the influence with respect to # stands for the curse of dimension.

The previous bound has a practical consequence in the following approximation problem. Assume
that & and % are probability distributions supported on a compact set Ω ⊂ R3 . Assume further that &
is unknown but observed through the empirical distribution &<. We approximate the (known) proba-
bility % by the #-points discretization %# . If we aim at approximating the true 1-Wasserstein distance
W1 (%,&) from the empirical semi-discrete distanceW1 (%# ,&<) (which is what can be indeed com-
puted), Theorem 2.6 and the triangle inequality give the following upper bound

�
��W1 (%# ,&<) −W1 (%,&)

�� ≤ 8
√

2#√
<
 (Ω,&) +

��W1 (%# ,&) −W1 (%,&)
��.
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We can see that there is a trade-off between the size of the sample and the size of the discretization: the
first term requires #/< to be small while the second term is only driven by # the discretization, being
smaller when the number of points is larger.

We point out that previous upper bound is optimal, up to logarithmic factors, as specified in (Bing,
Bunea and Niles-Weed, 2022, Theorem 5), where is proved the faster convergence rate at which a
function of the sample can approximate the population Wasserstein distance between discrete measures.
The lower bound they provide is

diam(X)max

(
minx≠x′∈X |x − x′ |2

maxx,x′∈X |x − x′ |2

√
#

< log(#)2
,

√
1
<

)
.

It follows directly from Theorem 2.6 that the empirical Wasserstein distance is an estimator that
achieves an optimal convergence rate up to logarithmic factors, even in cases where one of the un-
derlying probabilities is continuous.

3. Asymptotic Gaussian distribution optimal transport cost

Theorem 2.4 is valid for generic Polish spaces. When X,Y are subsets of R3 , the limit distribution in
the CLT can be specified. Under the following regularity assumptions, we prove in this section that the
limit distribution is Gaussian.

Let& ∈ P(R3) be a probability measure absolutely continuous with respect to the Lebesgue measure
in R3 . Assume that 2(x,y) = ℎ(x − y) where ℎ : R3→ [0,∞) is a non negative function satisfying:

(A1): ℎ is strictly convex on R3 .
(A2): Given a radius A ∈ R+ and an angle \ ∈ (0, c), there exists some " := " (A, \) > 0 such that

for all |p| > " , one can find a cone

 (A, \, z,p) :=
{
x ∈ R3 : |x − p| |z| cos(\/2) ≤ 〈z,x − p〉 ≤ A |z|

}
, (15)

with vertex at p on which ℎ(x) attains its maximum at p.
(A3): lim |x |→0

ℎ (x)
|x | =∞.

Under such assumptions, Gangbo and McCann (1996) shows the existence of an optimal transport map
) solving

T2 (%,&) := inf
)

∫
2(y,) (y))3&(y), and )#& = %, (16)

where )#& denotes the push-forward measure, defined for each measurable set � by )#&(�) :=
&()−1 (�)). The minimizer in (16) is an optimal transport map from % to &. Moreover, it is defined as
the unique Borel function satisfying

) (x) = x − ∇ℎ∗ (∇i(x)), where i solves (3). (17)

Here ℎ∗ denotes the convex conjugate of ℎ, see Rockafellar (1970). Such uniqueness enabled del Barrio,
Sanz and Loubes (2021) to deduce the uniqueness, under additive constants, of the solutions of (3) in i.
They assumed (A1)-(A3) to show that if two solutions of (3) have the same gradient almost everywhere
for ℓ3 in a connected open set, then both are equal, up to an additive constant. In consequence, assuming



CLT for semi-discrete Wasserstein Distances 11

that ℎ is differentiable, the interior of the support of & is connected and with Lebesgue negligible
boundary, that is, ℓ3 (m supp(&)) = 0, the uniqueness, up to additive constants, of the solutions of (3)
holds. The proof of the main theorem in this section is a direct consequence of Lemma 3.1, which
proves that there exists a unique, up to an additive constant, z ∈ Opt(%,&). We use within this section
the notation 1 := (1, . . . ,1).

Lemma 3.1. Let % ∈ P(X) and & ∈ P(R3) be such that & � ℓ3 and its support is connected with
Lebesgue negligible boundary. If the cost 2 satisfies (A1)-(A3), is differentiable and∫

2(x8 ,y)3&(y) <∞, for all 8 = 1, . . . , # .

Then the set Opt02 (%,&) is a singleton.

The following theorem states, under the previous assumptions, that the limit distribution de-
scribed in Theorem 2.4 is the centered Gaussian variable

(√
_
∑#
8=1 I8U8 + (

√
1 − _)G2

&
(z)

)
where

{z} =Opt02 (%,&). Note that
∑#
8=1 I8U8 is Gaussian and centered, with variance

f2 (%, z) =Var(
#∑
8=1

I8U8) and (U1, . . . ,U# ) ∼ N (0,Σ(p)), (18)

where Σ(p) is defined in (11). On the other side G2
&
(z) follows the distribution N(0, f2

2 (&, z)), where

f2
2 (&, z) =

∫
inf

8=1,...,#
{2(x8 ,y) − I8}23&(y) −

(∫
inf

8=1,...,#
{2(x8 ,y) − I8}3&(y)

)2

. (19)

Since, for every _ ∈ R, we have that f2 (%, z) = f2 (%, z+_1), then the asymptotic variance obtained in
the following theorem is well defined.

Theorem 3.2. Let % ∈ P(X) and & ∈ P(R3) be such that & � ℓ3 and its support is connected with
Lebesgue negligible boundary. If the cost 2 satisfies (A1)-(A3), is differentiable and

∫
2(x8 ,y)3&(y) <

∞, for all 8 = 1, . . . , # , then the following limits hold.

• (One sample case for %) If =→∞,

√
= (T2 (%=,&) − T2 (%,&))

F−→ - ∼N(0, f2 (%, z)).

If, additionally,
∫
2(x8 ,y)23&(y) <∞, for all 8 = 1, . . . , # , then the following limits hold.

• (One sample case for &) If =→∞,

√
< (T2 (%,&<) − T2 (%,&))

F−→. ∼N(0, f2
2 (&, z)).

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+< (T2 (%=,&<) − T2 (%,&))

F−→
√
_- + (

√
1 − _). .

Here, f2 (%, z) and f2
2 (&, z) are defined in (18) and (19) and, moreover, - and . are independent.
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As in the previous section, we provide an application to the CLT for Wasserstein distances. The
potential costs 2? = | · |? , for ? > 1, satisfy (A1)-(A3), then the following result follows immediately

from Theorem 3.2 and the Delta-Method for the function C ↦→ |C |
1
? . Recall that, in the potential cost

cases, T? (%,&) denotes the optimal transport cost and W? (%,&) =
(
T? (%,&)

) 1
? the ?-Wasserstein

distance.

Corollary 3.3. Let % ∈ P(X) be as in (5) and & ∈ P(R3) be such that & � ℓ3 , has finite moments
of order ? and its support is connected with Lebesgue negligible boundary. Then, for every ? > 1, the
following limits hold.

• (One sample case for %) If =→∞,

√
=
(
T? (%=,&) − T? (%,&)

) F−→N(0, f2 (%, z)),

and

√
=
(
W? (%=,&) −W? (%,&)

) F−→N
(
0,

f2 (%, z)
?2W? (%,&)2?−2

)
.

Suppose that & has finite moments of order 2?, then, as <→∞,

• (One sample case for &)

√
<

(
T? (%,&<) − T? (%,&)

) F−→N(0, f2
? (&, z)),

and

√
<

(
W? (%,&<) −W? (%,&)

) F−→N
(
0,

f2
? (&, z)

?2W? (%,&)2?−2

)
.

• (Two sample case) If, moreover, =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+<

(
T? (%=,&<) − T? (%,&)

) F−→N(0, _f2 (%, z) + (1 − _)f2
? (&, z)),

and √
=<
=+<

(
W? (%=,&<) −W? (%,&)

) F−→N
(
0,
_f2 (%, z) + (1 − _)f2

? (&, z)
?2W? (%,&)2?−2

)
.

Here, f2 (%, z) and f2
? (&, z) are defined in (18) and (19) for z ∈ Opt | · |? (%,&) and the cost | · |? .

We observe that, since % is discrete and & is continuous,W? (%,&) > 0 and the limit distribution of
Corollary 3.3 is always well defined. We note also that Corollary 3.3 is a particular case of Corollary 2.5
in the cases where the optimal transport potential is unique –the hypotheses of Theorem 3.2 hold–
which is the reason why the case ? = 1 can not be considered. Concerning other potential costs, ? > 1,
it is straightforward to see that the hypotheses (A1)-(A3) hold, see for instance del Barrio, Sanz and
Loubes (2021) or Gangbo and McCann (1996).



CLT for semi-discrete Wasserstein Distances 13

Remark 3.4. Note that in this Gaussian limit case the variance of the limit can be consistently esti-
mated. Let ẑ=,< be a solution of Opt02 (%=,&<). del Barrio, Sanz and Loubes (2021) proves that

f2
=,< (%,&) = =<

=+<

( ∫
(I=,<
8
)2%= (xi) −

( ∫
I
=,<
8

%= (xi)
)2
+∫

( inf
8=1,...,#

{2(x8 ,y) − I=,<8 })23&< (y) −
( ∫

inf
8=1,...,#

{2(x8 ,y) − I=,<8 }3&< (y)
)2)

is a consistent estimator of _f2 (%, z) + (1 − _)f2
? (&, z), in the two sample case. The same holds for

the one sample cases. We underline that the value inf8=1,...,# {2(x8 ,y) − I=,<8 } should not be computed
in the two sample case –it is the solution of the (discrete-discrete) empirical dual problem.

4. Central Limit theorems for the potentials and Laguerre cells

4.1. A central Limit theorem for the potentials

The aim of this section is to provide a CLT for the empirical potentials, defined as the solutions of the
empirical version of the dual formulation of the Monge-Kantorovich problem (3). In the semi-discrete
case the potentials are pairs formed by z = (I1, . . . , I# ) ∈ Opt2 (%,&) and i(y) := inf8=1,...,# {2(x8 ,y) −
I8}. Note that potentials are defined up to a constant in the sense that if (k, i) solves (3) then (k +
�, i − �) also solves (3), for any constant �. Hence we will study the properties of the following
functional, defined in 〈1〉⊥ which denotes the orthogonal complement of the vector space generated by
1 = (1, . . . ,1)

Mp : 〈1〉⊥ −→ R

z ↦→ 62 (%,&, z),

where 62 (%,&, z) is defined as in (6).
In this section we will use some framework developed in Kitagawa, Mérigot and Thibert (2019).

Hence, we make some slight changes in the notation, yet maintaining as much coherence as possible
with the previous one. First we will assume that Y is an open domain of a 3-dimensional Rieman-
nian manifold R endowed with the volume measure V3

6 and metric 6. We consider C(Y), C1 (Y)
and C1,1 (Y) the spaces of real valued continuous functions, real valued continuously differentiable
functions and the space of real valued continuously differentiable functions with Lipschitz derivatives,
respectively.

Following the approach in Kitagawa, Mérigot and Thibert (2019), we assume that the cost satisfies
the following assumptions

2(x8 , ·) ∈ C1,1 (Y), for all 8 = 1, . . . , # , (Reg)

�y2(x8 ,y) :Y→ )∗y (Ω) is injective as a function of y, for all 8 = 1, . . . , #, (Twist)

where �y2 denotes the partial derivative of 2 w.r.t. the second variable and )∗y (Y) the tangent space.
For every 8 ∈ {1, . . . , #} there exists Y8 ⊂ R3 open and convex set, and a C1,1 diffeomorphism exp2

8
:
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Y8→Y such that the functions

Y8 3 p ↦→ 58, 9 (p) := 2(x8 , exp28 p) − 2(x 9 , exp28 p) are quasi-convex for all 9 = 1, . . . , # . (QC)

Here quasi-convex, according to Kitagawa, Mérigot and Thibert (2019), means that for every _ ∈ R the
sets 5 −1

8, 9
( [−∞, _]) are convex.

Besides the assumptions on the cost, we assume that the probability is supported in a 2-convex set Y,
which means that (exp2

8
)−1 (Y) is convex, for every 8 = 1, . . . , # . Formally, let Y ⊂ R be a compact

2-convex set, % ∈ P(X) be as in (5) and suppose that

& ∈ P(Y) satisfies &�V3
6 with density @ ∈ C(Y). (Cont)

The last required assumption in Kitagawa, Mérigot and Thibert (2019) is that & satisfies a Poincaré-
Wirtinger inequality with constant �%, : a probability measure & supported in a compact set Y ⊂ R
satisfies a Poincaré-Wirtinger inequality with constant �%, if for every 5 ∈ C1 (Y) we have that for
. ∼&

� ( | 5 (. ) − � ( 5 (. )) |) ≤ �%, � ( |∇ 5 (. ) |). (PW)

In order to clarify the feasibility of such assumptions, we will provide some insights on them at the end
of the section. Kitagawa, Mérigot and Thibert (2019) proved the following assertions.

1. Under assumptions (Reg) and (Twist) the function Mp (z) is concave and differentiable with
derivative

∇zMp (z) = (−&(Lag1 (z)) + ?1, . . . ,−&(Lag# (z)) + ?# ), (20)

where

Lag: (z) := {y ∈ R3 : 2(x: ,y) − I: < 2(x8 ,y) − I8 , for all 8 ≠ :}. (21)

2. Under assumptions (Reg), (Twist) and (QC), the functionMp is twice continuously differentiable

with Hessian matrix �2
zMp (z) =

(
m2Mp
mI8mI 9

(z)
)
8, 9=1,...,#

and partial derivatives

m2

mI8mI 9
Mp (z) =

∫
Lag: (z)∩Lag: (z)

@(y)
|∇y2(x8 ,y) − ∇y2(x 9 ,y) |

3V3−1
6 (y), if 8 ≠ 9 ,

m2

m2I8
Mp (z) = −

∑
9≠8

m2

mI8mI 9
Mp (z).

(22)

3. Under assumptions (Reg),(Twist) and (QC), and if & satisfies (PW), there exists a positive con-
stant � such that

〈�2
zMp (z)v,v〉 ≤ −�n3 |v|2, for all z ∈ K n and v ∈ 〈1〉⊥, (23)

where

K n := {z ∈ R3 : &(Lag8 (z)) > n, for all 8 = 1, . . . , #}.

Under this assumptions we can state the main result of the section: a CLT for the OT potentials.

Theorem 4.1. Let Y ⊂ R be a compact 2-convex set, % ∈ P(X) and & ∈ P(Y). Under Assumptions
(Reg), (Twist) and (QC) on the cost 2, and (PW) and (Cont) on &, then the following limits hold.
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• (One sample case for %) If =→∞,

√
=(ẑ= − z∗) F−→−(�2Mp (z∗))−1 ((U1, . . . ,U# )).

• (One sample case for &) If <→∞,

√
<(ẑ< − z∗) F−→−(�2Mp (z∗))−1 ((U1, . . . ,U# )).

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+< (ẑ

=,< − z∗) F−→−(�2Mp (z∗))−1 ((U1, . . . ,U# )).

Here z∗ ∈ 〈1〉⊥ ∩ Opt2 (%,&), ẑ= ∈ 〈1〉⊥ ∩ Opt2 (%=,&), ẑ< ∈ 〈1〉⊥ ∩ Opt2 (%,&<) ẑ=,< ∈ 〈1〉⊥ ∩
Opt2 (%=,&<) and (U1, . . . ,U# ) ∼ N (0,Σ(p)), for Σ(p) defined in (11).

For z∗ defined as in Theorem 4.1, set

i(y) := inf
8=1,...,#

{2(x8 ,y) − I∗8 } (24)

and note that it is an optimal transport map from & to %. Set also the value 8(y) ∈ {1, . . . , #}, where
the infumum of (24) is attained. As before, we can define their empirical counterparts

i=,< (y) := inf
8=1,...,#

{2(x8 ,y) − Î=,<8 }, i= (y) := inf
8=1,...,#

{2(x8 ,y) − Î=8 },

and i< (y) := inf
8=1,...,#

{2(x8 ,y) − Î<8 }, (25)

which are the other empirical OT potentials, and 8=,< (y) denotes the index where the infimum of (25)
is attained for the two sample case. Then we have√

=<
=+< ( Î

=,<

8=,< (y) − I
∗
8=,< (y) ) ≤

√
=<
=+< (i=,< (y) − i(y)) ≤

√
=<
=+< ( Î

=,<

8 (y) − I
∗
8 (y) ). (26)

We can take supremum over y in both sides of (26) and obtain√
=<
=+< sup

8=1,...,#
( Î=,<
8
− I∗8 ) =

√
=<
=+< sup

y∈Y
(i=,< (y) − i(y)).

By symmetry we have that√
=<
=+< | Î

=,<
8
− I∗8 | =

√
=<
=+< sup

y∈Y
|i=,< (y) − i(y) |,

which implies the following corollary.

Corollary 4.2. Under the hypotheses and notation of Theorem 4.1, for i, i=, i< and i=,< defined in
(24) and (25), we have the following limits.

• (One sample case for %) If =→∞
√
= sup

y∈Y
|i= (y) − i(y) |

F−→
��(�2Mp (z∗))−1 ((U1, . . . ,U# ))

��
∞.
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• (One sample case for &) <→∞
√
< sup

y∈Y
|i< (y) − i(y) |

F−→
��(�2Mp (z∗))−1 ((U1, . . . ,U# ))

��
∞.

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+< sup

y∈Y
|i=,< (y) − i(y) |

F−→
��(�2Mp (z∗))−1 ((U1, . . . ,U# ))

��
∞.

We will conclude by some comments on the assumptions made in this section.

1. Under the hypotheses of Theorem 4.1, the optimal potential is unique once we set its value at a
given point. Then Corollary 4.2 provides a uniform confidence band for this optimal potential,
namely, [

i= (y) ± ΔU√
=

]
y∈Y

,

where ΔU is the 1 − U quantile of the limit distribution.
2. Note that if we consider R = R3 and the quadratic cost, then (Reg), (Twist) and (QC) are obviously

satisfied, by taking the function exp 9 as the identity. Actually the map y ↦→ |x 9 − y|2 is C∞ (R3)
and y − x 9 is its derivative w.r.t. y. Finally note that the function

R3 3 p ↦→ |x8 − p|2 − |x 9 − p|2 = |x8 |2 − |x 9 |2 + 〈x 9 − x8 ,p〉

is linear in p and consequently quasi-convex.
3. Assumption (PW) on the probability & has been widely studied in the literature for its implica-

tions in PDEs, see Acosta and Durán (2004). They proved that (PW) holds for a uniform distribu-
tion on a convex set Y. (Rathmair, 2019, Lemma 1) claims that (PW) is equivalent to the bound
of infC ∈R � ( | 5 (. ) − C |), for every 5 ∈ C1 (Y). Let . ∼& be such that there exists a C1 (Y) map )
satisfying the relation ) (*) =. , where* follows a uniform distribution on a compact convex set
�. Since 5 ◦ ) ∈ C1 (�), by the powerful result of Acosta and Durán (2004), there exists �� > 0
such that

inf
C ∈R

� ( | 5 (. ) − C |) = inf
C ∈R

� ( | 5 () (*)) − C |) ≤ ��� ( |∇ 5 () (*)) | · | |) ′(*) | |2)

≤ �� sup
u∈�
| |) ′(u) | |2� ( |∇ 5 () (*)) |),

where | |) ′(*) | |2 denotes the matrix operator norm. We conclude that, in such cases, (PW) holds.
Note that the existence of this map relies on the well known existence of continuously differen-
tiable optimal transport maps, which is treated by Caffarelli’s theory. This is the case, for instance
of log-concave probability measures (see Caffarelli (1996)). As pointed out by an anonymous
reviewer, we can arrive directly to this conclusion using Milman (2007). We refer to the most re-
cent work Cordero-Erausquin and Figalli (2019) and references therein. However, as pointed out
in Kitagawa, Mérigot and Thibert (2019), more general probabilities can satisfy that assumption
such as radial functions on R3 with density

?( |x|)
|x|3−1 , for |x| ≤ ', with ? = 0 in [0, A] and concave in [A, '].
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Moreover the spherical uniform U3 , used in del Barrio, González Sanz and Hallin (2022), Hallin
et al. (2021) to generalize the distribution function to higher dimension, also satisfies (PW). This
can be proved by using previous argument with the function) (x) = x|x|3−1, which is continuously
differentiable. But note that this probability measure does not satisfy (Cont). We conjecture that
Theorem 4.1 still holds in this case, but some additional, that we leave for future work is needed.
Similarly, the regularity of the transport can be obtained in the continuous case by a careful treat-
ment of the Monge-Ampére equation, see del Barrio, González Sanz and Hallin (2020).

Figure 1. Bootstrap approximation of # (0,Σ(z∗)) . Here % is supported in tree points % = 1
3 (x1 + x2 + x3), and

& is uniform on (0,1)6. We assume that %= is deterministic, we compute the empirical potentials ẑ for a sample
of 10,000 points and the Bootstrap potentials ẑB , for B = 1, . . . ,10,000. Both –the empirical and the bootstrap– are
projected to the space 〈1〉⊥. Since the space 〈1〉⊥ is, in this case, 2−dimensional, we can plot the 2� distribution
of (ẑ − ẑB)

√
10000 (left). The qq-plot of the projection to the second coordinate is in the right hand side.

4. The limit distribution described in 4.1 is not easy to derive, even knowing the exact probabilities
% and&. But note that the limits are consequence of its transformation as a /-estimation problem
(eg. chapter 3.3 in Vaart and Wellner (1996)), as the limit is a #-dimensional Gaussian, using
example 3.9.35 in Vaart and Wellner (1996) we obtain the consistency of the parametric bootstrap.
Hence a bootstrap procedure can be used to approximate the limit distribution. The approximation
will be consistent as in Fang and Santos (2018). In Figure 1 we compute such an approximation
by using bootstrap where % is supported on three points in R6 and & is the uniform on (0,1)6.

4.2. A central Limit theorem for the Laguerre cells and square-Euclidean cost

A natural question for semi-discrete problems is the convergence of the Laguerre tessellations. Ac-
tually, the semi-discrete framework is mainly applied to quantization, sampling or resource allocation
problems. The Laguerre cells represent the optimal cluster (quantization or sampling) or the population
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choosing certain product in a resource allocation problems. Therefore, our objective will be to infer the
population Laguerre cell from the empirical one.

Note that, although we are working with probabilities supported on a compact set, the cells may
not be bounded. Hence for 0 < ' < +∞, define 'B3 the ball with radius '. We will consider in the
following, the restricted version of Laguerre cell

Lag'8 (z) = Lag8 (z) ∩ 'B3 ,

which is compact. As a consequence, the distances between the empirical and the population can be
measured by means of the support functions. Recall (cf. p. 317 in Rockafellar and Wets (1998) eg.) that
the support function of a set � ⊂ R3 is defined as the functional in the unit sphere

S3−1 3 v→ ℎ�(v) := sup
y∈A
〈v,x〉.

Due to purely geometrical reasons, we are forced to restrict ourselves to the Euclidean case with
quadratic cost –otherwise the following argument cannot be applied (Bansil and Kitagawa, 2020, Re-
mark 5.1)).

To give a characterization of the convergence of sets usually the !? metrics, with ? ∈ [1,∞],
are used. Recall that, for ? ∈ [1,∞) the !? metric is defined for two sets �, � as 3? (�, �) :=

(
∫
|ℎ�−ℎ� |?3H3−1)

1
? , whereH3−1 is the Hausdorff measure in S3−1. The case ? =∞ is 3∞ (�, �) =

supE∈S3−1 |ℎ� − ℎ� |, which corresponds with the Hausdorff distance, i.e.

inf{n > 0 : � ⊂ � + nB and � ⊂ � + nB}.

Note that all these norms are equivalent for compact convex sets (see Vitale (1985)), which is our case.
For any interior point y0 of Lag'

:
(z∗), we set the notation

Sol(z∗,v,y0) := arg min
C 9>0

{∑
9≠:

C 9k 9 + ' |v −
∑
9≠:

C 9 (x: − x 9 ) | − 〈v −
∑
9≠:

C 9 (x: − x 9 ),y0〉
}
,

where k 9 (z∗) = ( |x: |2 − |x 9 |2 − I∗: + I
∗
9
) − 〈x: − x 9 ,y0〉 and z∗ ∈ 〈1〉⊥ ∩Opt | · |2 (%,&), for the quadratic

cost | · |2. With this notation, the following result provides the weak limit, with parametric rate, of the
!? distance, for ? ∈ [0,∞), between the empirical and population Laguerre cells.

Theorem 4.3. Let Y ⊂ R3 be a compact convex set such that Y ⊂ 'B3 , % ∈ P(X) and & ∈ P(Y).
Under Assumptions (PW) and (Cont) on & and considering the quadratic cost | · |2, we have the fol-
lowing limits, for ? ∈ (1,∞).

• (One sample case for %) If =→∞

√
=3? (Lag': (ẑ

=),Lag': (z
∗)) F−→

( ∫ ��� inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}���?3H3−1

) 1
?
.

• (One sample case for &) If <→∞,

√
<3? (Lag': (ẑ

<),Lag': (z
∗)) F−→

( ∫ ��� inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}���?3H3−1

) 1
?
.
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• (Two sample case) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+<3? (Lag': (ẑ

=,<),Lag': (z
∗)) F−→

( ∫ ��� inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}���?3H3−1

) 1
?
.

Here z∗ ∈ 〈1〉⊥ ∩Opt | · |2 (%,&), for the quadratic cost | · |2 and

(M1, . . . ,M# ) =
(
�2Mp (z∗)

)−1
(U1, . . . ,U# ),

where (U1, . . . ,U# ) ∼ N (0,Σ(p)), for Σ(p), is defined in (11).

The proof is based on the following description of the support functions of Laguerre’s cells

ℎLag'
:
(z) (v) =min

C 9>0

{∑
9≠:

C 9 ( |x: |2 − |x 9 |2 − I: + I 9 ) + ' |v −
∑
9≠:

C 9 (x: − x 9 ) |
}
, (27)

which allows to apply standard arguments to handle Hadamard derivative of the infimum. However,
the compactness of the solution-set of (27) is not guaranteed. Note that the same problem happens in
Bansil and Kitagawa (2020). Therefore we adopt the same reparation strategy (cf. Remark 5.1 in Bansil
and Kitagawa (2020)). This consists in setting an interior point y0 and observing that Remark 4.5 below
implies that

ℎLag'
:
(ẑ=,<) (v) − ℎLag'

:
(z∗) (v) = ℎLag'

:
(ẑ=,<)+{−y0 } (v) − ℎLag'

:
(z∗)+{−y0 } (v).

In such a case

ℎLag'
:
(z∗)+{−y0 } (v) =min

C 9>0

{∑
9≠:

C 9k 9 (z∗) + ' |v −
∑
9≠:

C 9 (x: − x 9 ) | − 〈v −
∑
9≠:

C 9 (x: − x 9 ),y0〉
}
, (28)

where, for all 9 ≠ : , k 9 (z∗) = ( |x: |2 − |x 9 |2 − I∗: + I
∗
9
) − 〈x: − x 9 ,y0〉 ≥ 0 > 0, for some 0 > 0. This

uniform bound implies the compactness of Sol(z∗,v,y0) and gives, as an intermediate step, the point-
wise limit of the support functions.

Lemma 4.4. Let Y ⊂ R3 be a compact convex set such that Y ⊂ 'B3 , % ∈ P(X) and & ∈ P(Y).
Under Assumptions (PW) and (Cont) on &, we have the following limits.

• (One sample case for %) If =→∞,

√
=(ℎLag'

:
(ẑ=) (v) − ℎLag'

:
(z∗) (v))

F−→ inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}
.

• (One sample case for &) If <→∞,

√
<(ℎLag'

:
(ẑ<) (v) − ℎLag'

:
(z∗) (v))

F−→ inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}
.

• (Two sample case ) If =,<→∞, with <
=+< → _ ∈ (0,1),√

=<
=+< (ℎLag'

:
(ẑ=,<) (v) − ℎLag'

:
(z∗) (v))

F−→ inf
t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}
.
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Here (M1, . . . ,M# ) =
(
�2Mp (z∗)

)−1
((U1, . . . ,U# )), where (U1, . . . ,U# ) ∼ N (0,Σ(p)), for Σ(p),

is defined in (11).

Remark 4.5. Let us recall some basic properties of the support function (see Corollary 11.24 in Rock-
afellar and Wets (1998) eg.). Let �, � ⊂ R3 be non empty sets and _ > 0, then:

• ℎ_� = _ℎ�,
• ℎ�+� = ℎ� + ℎ�,
• ℎ�∪� =max(ℎ�, ℎ�),
• and, if � and � are convex � ∩ � ≠ ∅, then ℎ�∩� (v) = infu+w=v (ℎ�(u) + ℎ� (w)).

Remark 4.5 is important for the proof of Theorem 4.3. It also has been extracted here because of
the interpretation it gives of the limits. Note that thanks to it we can obtain, equivalently, the following
limit:

3?

(√
=<
=+< Lag': (ẑ

=,<),
√
=<
=+< Lag': (z

∗)
)

F−→
( ∫ ��� inf

t∈Sol(z∗ ,v,y0)

{∑
9≠:

C 9 (M: −M 9 )
}���?3H3−1

) 1
?
. (29)

To go from point-wise convergence to !? convergence, the proof of Theorem 4.3 uses the following
result, which is direct consequence of Remark 5.1 in Bansil and Kitagawa (2020) and Theorem 3.9 in
Segers (2022) (see also Theorem 3.4 in del Barrio, Sanz and Loubes (2021)).

Lemma 4.6. Under the hypotheses and notation of Theorem 4.3, we have

C=3∞ (Lag': (z
∗ + C=h=),Lag': (z

∗)) ≤ 4'
X=
|h= |∞,

for any C=↘ 0 and d=→ d, with

X= = sup
y∈Lag'

:
(z∗+C=h=)∩Lag'

:
(z∗)

min
(
3∞ ({y}, m Lag': (z

∗)), 3∞ ({y}, m Lag': (z
∗ + C=h=))

)
.

Moreover, if u + 20B3 ⊂ Lag'
:
(z∗), then lim inf= X= ≥ 0.

Lemma 4.6 gives confidence intervals for the Hausdorff distance between the cells –uncovered in
Theorem 4.3. Note that Lemma (4.6) implies that

P
(
Lag': (z

∗) ⊂ Lag': (ẑ
<) + 4'Ψ−1 (U)

0
√
<
B3

)
≥ P

(
3∞ (Lag': (z

∗),Lag': (ẑ
<)) ≤ 4'Ψ−1 (U)

0
√
<

)
≥ P

(
4' | (M1 ,...,M# ) |∞

X<
≤ 4'Ψ−1 (U)

0
√
<

)
= P

(
0
√
< | (M1 ,...,M# ) |∞

X<
≤ Ψ−1 (U)

)
,

where, taking inferior limits, we obtain the following result.

Remark 4.7. Let (M1, . . . ,M# ) =
(
�2Mp (z∗)

)−1
((U1, . . . ,U# )) be as in Theorem 4.3 and Ψ−1 be

the quantile function of | (M1, . . . ,M# ) |∞. Under the assumptions of Theorem 4.3, if u + 20B3 ⊂
Lag'

:
(z∗), then

lim inf
<
P

(
Lag': (z

∗) ⊂ Lag': (ẑ
<) + 4'Ψ−1 (U)

0
√
<
B3

)
≥ U.
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Figure 2. Estimated upper confidence intervals for the set Lag'1 (z
∗), where % = 1

4 (X (0,0) +X (0,1) +X (1,0) +X (1,1) )
is deterministic and &< is the empirical measure of & ∼U(0,1)2 for different values of <. Represented in yellow
for < = 100; in orange for < = 500; in green for < = 1000, in blue for < = 5000 and in red for < = 10000. The
black square is the border of the population cell Lag'1 (z

∗).

We notice that we need to approximate the distribution Ψ. In the previous section we justi-
fied the consistency of the parametric bootstrap to approximate the distribution of (M1, . . . ,M# ) =(
�2Mp (z∗)

)−1
(U1, . . . ,U# ). More precisely, let Y�1 , . . . ,Y

�
< be a bootstrap sample of i.i.d. (condi-

tionally given the sample Y1, . . . ,Y<) with common law &<. We assume that the empirical process√
< (&�< − &< ) of Y�1 , . . . ,Y

�
< converges conditionally given Y1, . . . ,Y< in distribution to a tight

random element G. Lemma 3.9.34 and Theorem 3.9.11 in Vaart and Wellner (1996) give

sup
5 ∈�! (R# )

|E( 5 (
√
<((ẑ<)� − z∗)) |Y1, . . . ,Y<) − 5 ((M1, . . . ,M# )) |

%−→ 0,

where the set �! (R# ) is the set of Bounded Lipschitz functions (see eg. p.73 in Vaart and Wellner
(1996)) and (ẑ<)� is the solution of (7) for &�< and %. Any function of the form 6 ◦ | · |∞, with
6 ∈ �! (R), belongs to �! (R# ), so that

sup
6∈�! (R)

|E( 5 ( |
√
<((ẑ<)� − z∗ |∞)) |Y1, . . . ,Y<) − 5 ( | (M1, . . . ,M# |∞) |

%−→ 0.

We can thus estimate the distribution of | (M1, . . . ,M# ) |∞ by means of the bootstrap sample.

We consider now a synthetic example to illustrate the usefulness of Remark 4.7. Let& be the uniform
law on the unit square and % = 1

4 (X (0,0) + X (0,1) + X (1,0) + X (1,1) ). We easily see that population cells are

Lag1 (z∗) = [0, 1
2 ]

2, Lag2 (z∗) = [ 12 ,1] × [0,
1
2 ], Lag3 (z∗) = [ 12 ,1]

2, Lag4 (z∗) = [0, 1
2 ] × [

1
2 ,1] .
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We analyze the behavior of the first cell. In Figure 2 we plot, for sample sizes < = 100,500,1000,5000,
10000, the values of Lag'1 (ẑ

<) + 4' (Ψ−1)� (0.05)
0
√
<

B3 . Here (Ψ−1)� denotes the quantile of the bootstrap
approximation.

Remark 4.8. The same technique can be applied to the Voronoi cells, i.e.

Vor: (z) := {y ∈ R3 : |c: − y|2 < |c8 − y|2, for all 8 ≠ :}, : = 1, . . . , #,

where {c8}#8=1 ∈ arg min{a8 }#8=1⊂R#
∫

min0≤8≤# |a8 − y|23&(y) is the solution of the #-means cluster-

ing. Indeed, under certain uniqueness conditions of the minimum, the weak limit of
√
=(c=

8
− c8) exists

(see Pollard (1982)) and the rewriting of the cells as in (27) can be made, which yields the differentia-
bility.

Remark 4.9. Note that Theorem 4.1 and the following upper bound

ℓ3 (Lag8 (z) \ Lag8 (z′)) ≤ �‖z − z′‖∞,

proved in (Bansil and Kitagawa, 2020, Lemma 5.5), suggest that
√
=<
=+< ()̂

=,< − )) is stochastically
bounded in norm !1 (ℓ3), where ℓ3 denotes the 3-dimensional Lebesgue measure. Here )̂=,< denotes
(when exists) the optimal transport map from &< and %= and ) is defined in (17). In order to provide
an insight into this claim, we can bound∫

‖)̂=,< −) ‖3ℓ3 ≤ # sup
8=1,...,#

‖x8 ‖
(
ℓ3 (Lag8 (z∗) \ Lag8 (ẑ=,<)) + ℓ3 (Lag8 (ẑ=,<) \ Lag8 (z∗))

)
≤ 2�# ‖ẑ=,< − z∗‖∞ sup

8=1,...,#
‖x8 ‖.

As a consequence, Theorem 4.1 states that
√
=<
=+<

∫
‖)̂=,< − ) ‖3ℓ3 is stochastically bounded. This

bound holds for the estimator )̂=,<. The recent pre-print Pooladian, Divol and Niles-Weed (2023)
provides a bound on the !2 (&) distance between an estimator based on the Sinkhorn relaxation and
) . Research on the possible weak limits of

√
=<
=+< ()̂

=,< −)) will be the scope of further research.

5. Applications to Hotelling’s location model

As mentioned in the introduction and driven by the application described in Galichon (2016), the equi-
librium of the Hotelling’s location model becomes

sup
z

#∑
8=1

I8 ?8 +
∫

inf
8=1,...,#

{|x8 − y|2 − I8}3&(y), (30)

where the distribution & models the location of the population, the distribution % the fountains and I8
the prize of the fountain 8. Denote z∗ the solution of (30). The set of population that prefers to consume
from the fountain 8 –called demand set– is Lag8 (z).
In this section we apply the methodology developed in previous section to provide asymptotic con-
fidence intervals for prices and for the demand sets. That means that assuming the observation of a
sample (Y1, . . . ,Y<) of the population &, and computing the discrete-discrete optimal transport prob-
lem between the empirical measure &< and %# , we obtain empirical prizes z< and demand sets
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{Lag8 (z<)}#8=1. Note that we obtain also the empirical solution of (30), which does not play an impor-
tant in this problem. We assume that the population & satisfies the assumptions of Theorem 4.3, which
asserts that, denoting Ψ−1 the quantile function of | (M1, . . . ,M# ) |∞, then

P
(
|z∗ − z< |∞ > Ψ−1 (U)√

<

)
−→ 1 − U, U ∈ (0,1) (31)

On the other hand, in view of Lemma 4.6, we have

lim inf
<
P

(
Lag': (z

∗) ⊂ Lag': (ẑ
<) + 4'Ψ−1 (U)

X<
√
<
B3

)
≥ U, U ∈ (0,1) (32)

with

X< = sup
y∈Lag'

:
(z<)∩Lag'

:
(z∗)

min
(
3∞ ({y}, m Lag': (z

∗)), 3∞ ({y}, m Lag': (z
<))

)
.

Let us apply it to an artificial example based on real data. The population & will be the demographic
distribution of Brooklyn (NYC), which was 2,592,149 at 20141 and can be modeled as a continuous
probability. However, the data-set with spatial data around Brooklyn we found on internet is the “New
York City Census Data”, which comes from the American Community Survey 2015 and fully available
on-line in https://www.kaggle.com/datasets/muonneutrino/new-york-city-census-data. Once cleaned,
the data-set contains, a sample of size < = 3,129 of Brooklyn’s population distribution. We suppose
the existence of four different fountains, located at (−74.0,40.6), (−73.85,40.6), (−73.95,40.72) and
(−73.95,40.65]) with same amount of stock. The data is displayed in Figure 3.

We compute the asymptotic confidence intervals for the norm infinity of the differences |z∗ − z< |∞
and for the individual variation of I∗

8
− z<

8
, 8 = 1,2,3,4, of the prices. We obtain the following results

1According to the United States Census Bureau http://www.census.gov/quickfacts/

Figure 3. In the left original data of the sample (< = 3,129) of Brooklyn’s population distribution. On the Right,
the empirical Laguerre cells Lag'

8
(z∗) for the fountains located at (−74.0,40.6) (blue), at (−73.85,40.6) (orange),

at (−73.95,40.72) (green) and at (−73.95,40.65) (red). Black points represent the fountains.
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z∗ = z< + [0,5.217 · 10−04]4, I∗1 = I
<
1 + 10−04 [−4.302,4.242], I∗2 = I

<
2 + 10−04 [−5.260,5.486], I∗3 =

I<3 + 10−04 [−5.260,5.486], I∗4 = I
<
4 + 10−04 [−1.814,1.416]. Here I∗

8
represents, for 8 = 1 the prices of

the fountain located at (−74.0,40.6); for 8 = 2, at (−73.85,40.6); for 8 = 3, at (−73.95,40.72) and, for
8 = 3, at (−73.95,40.65). The same notation is shared by I<

8
.

Lemma 4.6 enables to obtain, in Figure 4, the asymptotic confidence intervals for the Hausdorff
distance for each one of the demand sets by using the proposed approach. The value ' is assumed to
be 0.19 and X= is approximated by taking the maximum distance between points in the empirical cell.

Figure 4. Estimated upper confidence intervals for the set Lag'
8
(z∗). For 8 = 1, (upper left) the fountain is located

at (−74.0,40.6); for 8 = 2, (upper right) at (−73.85,40.6); for 8 = 3, (lower left) at (−73.95,40.72) and, for 8 = 3,
(lower left) at (−73.9540.65). The empirical region (computed by solving the discrete-discrete optimal transport
problem) is represented by blue points whereas the asymptotic confidence intervals for the Hausdorff distance are
in yellow. Black points represent the fountains.
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6. Simulations

First, we illustrate the precision of the upper bound in Theorem 2.6 with the following simulation.
Consider the uniform measure on the unit interval * (0,1) and draw a sample of size < = 2000
to obtain the empirical *<. Then from a uniform discretization of size # of the unit interval, we
obtain the discrete measure %# . We compute, using Monte-Carlo simulations, the empirical error
� |W1 (%# ,*<) −W1 (%# ,*) | for different choices for # . The results are presented in Figure 5. We
observe, in the left figure, that, for regular values of # , the growth of � |W1 (%# ,*<) −W1 (%# ,*) |
is exactly of order

√
# , following the bound. Yet for larger values of # (right side) we observe that the

order is no longer
√
# . This is because

√
# is only an upper bound for � |W1 (%# ,*<) −W1 (%# ,*) |

and the true rate becomes smaller.

Figure 5. Plot, in double logarithmic scale, of � |W1 (%# ,*<) −W1 (%# ,*) | (H axis) with respect to # (G axis).

The next part of section is devoted to illustrate empirically Theorems 2.4 and 3.2. The limit dis-
tribution depends on the true optimal transport cost between the distributions. Hence to simulate the
central limit theorems, the difficulty lies in proving the consistency of its bootstrap approximation. Ac-
tually the non fully Hadamard differentiability of the functional implies that the limit in Theorem 2.4
is the supremum of Gaussian processes. In consequence, as pointed out in Fang and Santos (2018), the
bootstrap will not be consistent. However, in the framework of Theorem 3.2, the dual problem has a
unique solution. In consequence, the mapping is fully Hadamard differentiable (Corollary 2.4 in Cár-
camo, Cuevas and Rodríguez (2020)) which implies that the bootstrap procedure is consistent (Fang
and Santos (2018)). This enables us to approximate the variance as shown in the following simulations.
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Here we implement one favorable case for bootstrap approximation. In particular we choose the
quadratic cost | · |2 and the discrete probability % = 1

7
∑7
8=1 Xx8 , where

X = {x8}78=1 = {(1,0,0), (0,1,0), (0,0,1), (−1,0,0), (0,−1,0), (0,0,−1), (0,0,0)}.

The continuous probability& ∈ P(R3) is the direct productU(−1,1) ×N (0,1) ×N (0,1). Note that its

Figure 6. 3D visualization of the data set. In blue the continuous distribution& and in red the discrete one %. Left:
& has a density with connected support and satisfies the assumptions of Theorem 3.2. Right: & has a density but
not a connected support.

support is connected with Lebesgue negligible boundary –we can visualize the data in Figure 6– and
satisfies the assumptions of Theorem 3.2. As commented before, we can use the bootstrap procedure.
In this example, it is assumed that the discrete % is known and the sample, of size < = 5000, comes
from the continuous &. Figure 7 shows the result of the bootstrap procedure for a re-sampling size of
10000. The simulations follow the asymptotic theory we provide.

Now we illustrate a case where the assumptions of Theorem 3.2 are no longer fulfilled. More pre-
cisely, we consider & as the continuous probability with density 1

0.008·7
∑7
8=1 1x8+(−0.1,0.1)3 , –this is a

mixture model of uniform probabilities on small cubes centered in the points of X– we can see a 3D
plot in Figure 6. To approximate the limit distribution we need first to estimate the valueW2

2 (%,&).
We make it by an independent sample of size 10000 and computing the mean by Monte Carlo 100

times. Then we compute the histogram of
√
<
(W2

2 (%,&<)−W
2
2 (%,&))

f2 (&< ,z<) with the original sample. The
results are shown in Figure 8, we can see, clearly, that the limit is not Gaussian. Similar examples with
non-Gaussian limits can be found in Figure 1 in Sommerfeld and Munk (2018). But Figure 8 is quite
different from their experimentation since one of the probabilities is continuous and Sommerfeld and
Munk (2018) studies only the optimal transport problem between discrete probabilities.
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Figure 7. Illustration of Theorem 3.2 using bootstrap procedures. Histograms (left) and Q–Q plot (right) of the

bootstrap estimation of
√
<

(
W2

2 (%,&<)−W
2
2 (%,&)

)
f2 (&< ,z<) .

Figure 8. Illustration of Theorem 2.4, by using Monte Carlo’s method, for & with disconnected support.
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7. Proofs

Proof of Theorem 2.4. The strategy of the proof is the following, first we start by proving the central
limit theorem for bounded potentials. That means the study of the asymptotic behaviour of the sequence√

=<

= +<

(
sup
|z | ≤ 

62 (%=,&<, z) − sup
|z | ≤ 

62 (%,&, z)
)
=,<

.

The weak limit depends on the set of restricted optimal points.

Opt 2 (%,&) :=

{
z : sup
|s | ≤ 

62 (%,&, s) = 62 (%,&, z), I1 = 0

}
.

Lemma 7.1. Set  > 0, under the assumptions of Theorem 2.4, we have the limit√
=<

= +<

(
sup
|z | ≤ 

62 (%=,&<, z) − sup
|z | ≤ 

62 (%,&, z)
)
F−→ sup

z∈Opt 2 (%,&)

(
√
_

#∑
8=1

I8U8 + (
√

1 − _)G2& (z)
)
,

with (U1, . . . ,U# ) and G2
&

as in Theorem 2.4.

Proof of Lemma 7.1. For each  > 0 we define the restricted set

F  2 =

{
y ↦→ inf

8=1,...,#
{2(x8 ,y) − I8}, x8 ∈ X, and I1 = 0, |z| ≤  

}
,

Lemma 8.1 proves that such a class is &-Donsker, see Theorem 1.5.7 in Vaart and Wellner (1996), in
the sense that

√
<(&< −&)

F−→G& in ℓ∞ (F  2 ),

where G& is the Brownian bridge in F  2 . This is a centered Gaussian process with covariance function

( 5 , 6) ↦→
∫

5 (y)6(y)3&(y) −
∫

5 (y)3&(y)
∫
6(y)3&(y).

Let B̄ (0) be the closure of the centered ball of radius  in R# . Note that the functional

� : ℓ∞ (F  2 ) −→ ℓ∞ (B̄ (0))

5 ↦→
(
z ↦→ 5

(
inf

8=1,...,#
{2(x8 ,y) − I8}

))
is actually continuous, hence for any 5 , 6 ∈ ℓ∞ (F  2 ), we have

sup
z∈B (0)

���� 5 (
inf

8=1,...,#
{2(x8 ,y) − I8}

)
− 6

(
inf

8=1,...,#
{2(x8 ,y) − I8}

)���� = sup
q∈ℓ∞ (F 2 )

| 5 (q) − 6(q) |.

Moreover, the multivariate CLT implies
√
= (p= − p) F−→ (U1, . . . ,U# ) ∼ # (0,Σ(p)) , where Σ(p) is

defined in (11). Since the sequences
√
=(p= − p) and

√
<(&< − &) are independent we derive the

following result.



32

Lemma 7.2. Under the assumptions of Theorem 2.4, we have the limit√
=<

= +< (62 (%=,&<, ·) − 62 (%,&, ·))
F−→
√
_〈X, ·〉 +

√
1 − _� (G&) in ℓ∞ (B̄ (0)), (33)

with (U1, . . . ,U# ) =X.

Let (B, 3) be a compact metric space, Corollary 2.3 in Cárcamo, Cuevas and Rodríguez (2020),
provides the directional Hadamard derivative of the functional

X : ℓ∞ (B) −→ R

� ↦→ X(�) = sup
z∈B

� (z),

tangentially to C(B) (the space of continuous functions from B to R ) with respect to � in a direction
� ∈ C(B). Recall that a function 5 : Θ→ R, defined in a Banach space, Θ, is said to be Hadamard
directionally differentiable at \ ∈ Θ tangentially to Θ0 ⊂ Θ if there exists a function 5 ′

\
: Θ0→ R such

that

5 (\ + C=ℎ=) − 5 (\)
C=

−−−−→
=→∞

5 ′\ (ℎ), for all sequences C=↘ 0 and ℎ=→ ℎ, for all ℎ ∈ Θ0.

If � ∈ C(B) is not identically 0, the precise formula for the derivative, provided by Corollary 2.3 in
Cárcamo, Cuevas and Rodríguez (2020), is

X′� (�) = sup
{z: � (z)=X (� ) }

� (z), for � ∈ C(B). (34)

In our case the compact metric space is the ball B̄ (0), the functional � correspond with 62 (%,&, ·)
and the set of optimal points is Opt 2 (%,&). The following result rewrites (34) in our setting.

Lemma 7.3. Set  > 0, under the assumptions of Theorem 2.4, the map X is Hadamard directionally
differentiable at 62 (%,&, ·), tangentially to the set C(B̄ (0)) with derivative, for � ∈ C(B̄ (0)),

X′
62 (%,&, ·) (�) = sup

z∈Opt 2 (%,&)
� (z).

The last step is the application of the delta-method. Let Θ be a Banach space, \ ∈ Θ and {/=}=∈N
be a sequence of random variables such that /= : Ω=→ Θ and A= (/= − \)

F−→ / for some sequence
A=→+∞ and some random element / that takes values in Θ0 ⊂ Θ. If 5 :Θ→ R is Hadamard differen-
tiable at \ tangentially to Θ0 ⊂ Θ, with derivative 5 ′

\
(·) :Ω0→ R, then Theorem 1 in Römisch (2014),

so-called delta-method, states that A= ( 5 (/=) − 5 (\))
F−→ 5 ′

\
(/).

Now, it only remains to prove that the limit in (33) belongs to C(B̄ (0)). Such a limit is a mixture
of two independent processes. The first one, 〈X, ·〉, has clearly continuous sample paths with respect to
the euclidean norm | · | in R# . On the other side, G& has continuous sample paths in F  2 with respect
to the semi-metric

d& ( 5 ) =
∫

5 (y)23&(y) −
(∫

5 (y)3&(y)
)2

,
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in the sense that, see pag 89 in Vaart and Wellner (1996), there exists some sequence X=↘ 0 such that

sup
5 ,6∈F 2 , d& ( 5 ,6)<X=

|G& ( 5 ) −G& (6) |
0.B.−→ 0. (35)

We want now to analyze the value sup |z−s |<X= |� (G&) (z) −� (G&) (s) | Note that for every 5 ∈ F  2
there exists some z 5 ∈ B̄ (0) such that 5 (y) = inf8=1,...,<{2(x8 ,y) − I 58 }. Lemma 2.3 states that

{ 5 , 6 ∈ F  2 : |z 5 − z6 | < X} ⊂ { 5 , 6 ∈ F  2 : | | 5 − 6 | |∞ < X} ⊂ { 5 , 6 ∈ F  2 : d& ( 5 , 6) < X}. (36)

Since |� (G&) (z 5 ) −� (G&) (z6) | = |G& ( 5 ) −G& (6) |, then we have

sup
|z 5 −z6 |<X=

|� (G&) (z 5 ) −� (G&) (z6) | = sup
|z 5 −z6 |<X=

|G& ( 5 ) −G& (6) |,

and, consequently, using (36) and (35), we obtain

sup
|z 5 −z6 |<X=

|� (G&) (z 5 ) −� (G&) (z6) | ≤ sup
d& ( 5 ,6)<X=

|G& ( 5 ) −G& (6) |
0.B.−→ 0.

Finally, Lemma 7.2 implies that
√
=<
=+< (62 (%=,&<, ·) − 62 (%,&, ·)) has a weak limit / in the Banach

space ℓ∞ (B̄ (0)) having a version in C(B̄ (0)). Applying the so-called delta-method to the function
X and Lemma 7.3 we derive the limit√

=<

= +<

(
sup
|z | ≤ 

62 (%=,&<, z) − sup
|z | ≤ 

62 (%,&, z)
)
F−→ sup

z∈Opt 2 (%,&)
/ (z).

Note, that the process z ↦→
√

1 − _G&
(
inf8=1,...,# {2(x8 ,y) − I8}

)
is Gaussian in R# with covariance

function Ξ2
&

. Moreover, it is independent from X, then the law of the process / is the same of the

process
√
_〈X, ·〉 + (

√
1 − _)G2

&
and the theorem holds.

Unfortunately, the optimal solutions need not be universally bounded. In order to go from the
bounded to the unbounded case, we observe that Lemma 2.1 implies

T2 (%=,&<) = sup
z∈R#

62 (%=,&<, z) = sup
|z | ≤ =,<

62 (%=,&<, z),

for  =,< = 1
inf8 ?=8

(
sup8=1,...,#

∫
2(y,x8)3&< (y)

)
. Let  ∗ be the constant provided in Lemma 2.1 for %

and& (that means  ∗ = 1
inf8 ?8

(
sup8=1,...,#

∫
2(y,x8)3&(y)

)
). The strong law of large numbers implies

the a.s. convergence of inf8 ?=8 to inf8 ?8 , and, assuming (14), we have that the sequence
√
<

(
 =,< −  ∗

)
is stochastically bounded. Finally, the difference

√
=<
=+< (T2 (%=,&<) − T2 (%,&)) is equal to√

=<

= +<

(
T2 (%=,&<) − sup

|z | ≤ ∗+1
62 (%=,&<, z)

)
+
√

=<

= +<

(
sup

|z | ≤ ∗+1
62 (%=,&<, z) − T2 (%,&)

)
,

(37)
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and Lemma 7.1 implies the weak convergence of the second term to

sup
z∈Opt 

∗+1
2 (%,&)

(
√
_

#∑
8=1

I8U8 + (
√

1 − _)G2& (z)
)
= sup

z∈Opt02 (%,&)

(
√
_

#∑
8=1

I8U8 + (
√

1 − _)G2& (z)
)
,

where the equality is a direct consequence of Lemma 2.1. It only remains to prove that the first term of
(37) tends to 0 in probability. Note that we have two cases.

• The first one is  =,< ≤  ∗ + 1, which implies that

T2 (%=,&<) = sup
|z | ≤ =,<

62 (%=,&<, z) = sup
|z | ≤ ∗+1

62 (%=,&<, z) ≤ T2 (%=,&<),

and makes 0 the first term of (37).
• The second one is  =,< ≥  ∗ + 1, which implies the bound

0 ≤ T2 (%=,&<) − sup
|z | ≤ ∗+1

62 (%=,&<, z) ≤ sup
|z | ≤ =,<

62 (%=,&<, z) − sup
|z | ≤ ∗+1

62 (%=,&<, z).

(38)
Note that the right side of the inequality (38) can be rewritten as

sup
|z | ≤ =,<

62 (%=,&<, z) − sup
|z | ≤ ∗+1

62 (%=,&<, z)

= sup
|z | ≤ =,<

inf
|z′ | ≤ ∗+1

62 (%=,&<, z) − 62 (%=,&<, z′)

and upper bounded by

sup
|z | ≤ =,<

inf
|z′ | ≤ ∗+1

|62 (%=,&<, z) − 62 (%=,&<, z′) |.

Since

|62 (%=,&<, z) − 62 (%=,&<, z′) |

≤
#∑
8=1

|I8 − I′8 |?=8 +
∫
| inf
8=1,...,#

{2(x8 ,y) − I8} − inf
8=1,...,#

{2(x8 ,y) − I′8}|3&< (y),

we can conclude from (10) that

0 ≤ T2 (%=,&<) − sup
|z | ≤ ∗+1

62 (%=,&<, z) ≤ 2 sup
|z | ≤ =,<

inf
|z | ≤ ∗+1

|z − z′ | ≤ | =,< −  ∗ − 1|.

Both cases together yield the inequality

0 ≤ T2 (%=,&<) − sup
|z | ≤ ∗+1

62 (%=,&<, z) ≤ | =,< −  ∗ − 1|1( =,<≥ ∗+1) . (39)

To see that the
√
=<
=+< | =,< −  

∗ − 1|1( =,<≥ ∗+1) tends to 0 in probability, we write

| =,< −  ∗ − 1|1( =,<≥ ∗+1) =max(0,  =,< −  ∗ − 1).
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Note that √
=<

= +< max(0,  =,< −  ∗ − 1) =max(0,
√

=<

= +<
(
 =,< −  ∗ − 1

)
).

Since
√
=<
=+<

(
 =,< −  ∗

)
is stochastically bounded implies that

√
=<
=+<

(
 =,< −  ∗ − 1

)
converges to

−∞ in probability and√
=<

= +< | =,< −  
∗ − 1|1( =,<≥ ∗+1) =max(0,

√
=<

= +<
(
 =,< −  ∗ − 1

)
) %−→ 0.

That proves Theorem 2.4.

Remark 7.4. When dealing with the case where the asymptotics depend only on the empirical distri-
bution %=, note that Assumption (13), which depends only on &∫

2(x8 ,y)3&(y) <∞, for all 8 = 1, . . . , <,

is enough to prove the CLT. Actually, the multidimensional CLT yields that

√
= (62 (%=,&, ·) − 62 (%,&, ·))

F−→ 〈X, ·〉 in ℓ∞ (B̄ (0)),

with (U1, . . . ,U# ) =X. Therefore, all of the arguments above can be now repeated verbatim.

Proof of Theorem 2.6. Let Y1, . . . ,Y< be i.i.d with law &. Recall that, when the cost 2 is the eu-
clidean distance | · |, then the optimal transport potentials are 1-Lipschitz functions. This yields trivially

W1 (%,&) = sup
z∈R#

61 (%,&, z) = sup
|z | ≤diam(X)

61 (%,&, z), (40)

where 61 (%,&, z) =
∑#
8=1 I8 ?8 +

∫
inf8=1,...,# {|x8 − y| − I8}3&(y). We want to bound the quantity

� |W1 (%,&<) −W1 (%,&) |, which can be rewritten, by (40), as

�

����� sup
|z | ≤diam(X)

61 (%,&, z) − sup
|z | ≤diam(X)

61 (%,&<, z)
����� ,

and upper bounded by �
���sup 5 ∈F1

∫
5 (y) (3&< (y) − 3&(y))

��� , where

F1 =

{
y ↦→ inf

8=1,...,#
{|x8 − y| − I8}, x8 ∈ X, and |z| ≤ diam(X)

}
.

We set � = diam(X) in order to simplify the following formulas. Denote by # (n,F1, | | · | |!2 (&<) ) the
he covering number with respect to the metric !2 (&<). Lemma 4.14 in Massart and Picard (2007) and
Lemma 2.3 imply that√

log
(
2# (n,F1, | | · | |!2 (&<) )

)
≤

√
# log

(
2�
n
+ 1

)
+ log(2).
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Let denote as 0# ,< the (random) quantity 0# ,< = 2
√∫

sup8=1,...,# |x8 − y|23&< (y), then∫ 2�+0#,<

0

√
log

(
2# (n,F1, | | · | |!2 (&<) )

)
3n ≤
√
#

∫ 2�+0#,<

0

√
log

(
2�
n
+ 1

)
3n

+ 2� + 0# ,< log(2).

(41)

Now recall by Theorem 3.5.1 in Giné and Nickl (2015) that

√
<�

����� sup
5 ∈F1

∫
5 (y) (3&< (y) − 3&(y))

�����
≤ 8
√

2�

�����∫ 2�+0#,<

0

√
log

(
2# (n,F1, | | · | |!2 (&<) )

)
3n

�����
≤ 8
√

2
√
#�

∫ 2�+0#,<

0

√
log

(
2�
n
+ 1

)
3n + 8

√
2� (2� + 0# ,<) log(2),

where the last inequality is consequence of (41). Therefore, using Jensen’s inequality, we obtain∫ 2�+0#,<

0

√
log

(
2�
n
+ 1

)
3n

≤ (2� + 0# ,<)

√√√
2� log(2� + 0# ,<) + (4� + 0# ,<) log

(
4�+0#,<
2�+0#,<

)
2� + 0# ,<

≤

√
2� (2� + 0# ,<) log(2� + 0# ,<) + (4� + 0# ,<) (2� + 0# ,<) log

(
4� + 0# ,<
2� + 0# ,<

)
.

The mean value theorem yields log
(

4�+0#,<
2�+0#,<

)
≤ 2�

2� = 1, and in consequence the following inequality

∫ 2�+0#,<

0

√
log

(
2�
n
+ 1

)
3n ≤ (4� + 0# ,<)

√
2� + 1.

Finally we can derive the bound

√
<�

����� sup
5 ∈F�2

∫
5 (y) (3&< (y) − 3&(y))

����� ≤ 8
√

2
√
#�{(4� + 0# ,<)

(
log(2) +

√
2� + 1

)
}.

Using triangle inequality, we have

�0# ,< = �

(
2

√∫
sup

8=1,...,#
|y − x8 |23&< (y)

)
≤ 2

√∫
|y|23&(y) + 2�,

which proves the result.
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For the generalization to further potential costs, we observe that equation (2.5) in del Barrio, Sanz
and Loubes (2021) yields

|I∗8 | ≤ |x0 − x8 |4 diam(Y)?−1

and therefore, repeating the previous argumentation, we obtain the result.

Proof of Theorem 4.1.
We note that the population potential is described through (20), i.e. ∇zMp (z∗) = 0, and the empirical
by ∇zM=,<

p (z=,<) = 0, with

∇zM=,<
p (z) = (−&< (Lag1 (z)) + ?=1 , . . . ,−&< (Lag# (z)) + ?=# ), (42)

where Lag: , for : = 1, . . . , # , are defined in (21). This is a /-estimation problem (eg. chapter 3.3 in
Vaart and Wellner (1996)). The strategy is the following; we show that the population optimal transport
potential is well-separated –meaning thatMp (z∗) −Mp (ẑ=,<) ≥ 2 |ẑ=,<− z∗ |2– by deriving the second

order derivative ofMp, then we show that the mapMp−M=,<
p is

√
=+<
=<
−Lipschitz. As a consequence

we obtain the tightness of
√
=<
=+< |ẑ

=,< − z∗ | and, by using second derivative ofMp, also its limit.

Lemma 7.5. Let Y ⊂ R be a compact 2-convex set, % ∈ P(X) and & ∈ P(Y) . Under assumptions
(Reg), (Twist) and (QC) on the cost 2 and (PW) and (Cont) on &, we have that the function Mp is
strictly concave and twice continuously differentiable, with

∇Mp (z) = ∇zMp (z) | 〈1〉⊥ ,

�2Mp (z) = �2
z∗Mp (z) | 〈1〉⊥ .

Moreover, if z∗ ∈ 〈1〉⊥ ∩Opt2 (%,&), there exists a positive constant � such that

〈�2Mp (z∗)v,v〉 ≤ −� inf
8=1,...,#

|?8 |3 |v|2, for all v ∈ 〈1〉⊥. (43)

Proof. Note that it only remains to prove that (43) holds. But this is a direct consequence of (23).
In fact, since z∗ is the unique z ∈ Opt(%,&), then &(Lag: (z∗)) = ?: for : = 1, . . . , # and we can
conclude.

We want now to prove the tightness of
√
=<
=+< |ẑ

=,< − z∗ |. Note that Lemma 7.5 implies the well-
separability property

Mp (z∗) −Mp (ẑ=,<) ≥ 2 |ẑ=,< − z∗ |2, for some 2 > 0. (44)

The relations

|Mp (z∗) −Mp (ẑ=,<) −M=,<
p (z∗) +M=,<

p (ẑ=,<) |

=

���� #∑
:=2

(?: − ?=: ) (I: − Î
=
: ) +

∫
( inf
8=2,...,#

{2(x8 ,y) − I8} − inf
8=2,...,#

{2(x8 ,y) − Î=8 })(3& − 3&<) (y)
����,

≤ |p= − p|2 |z∗ − ẑ=,< |2 + ‖ inf
8=2,...,#

{2(x8 , ·) − I8} − inf
8=2,...,#

{2(x8 , ·) − Î=8 }‖∞‖& −&<‖spam(F2) ,
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where spam(F2) is the topological closure in C(Y) of the set of finite linear combinations of F2 ,
which is still Donsker (see Theorems 2.10.2 and 2.10.6 in Vaart and Wellner (1996)), give the Lipschitz
property

|Mp (z∗) −Mp (ẑ=,<) −M=,<
p (z∗) −M=,<

p (ẑ=,<) | ≤ �
√
= +<
=<
|z∗ − ẑ=,< |, for some � > 0. (45)

Therefore, (44) and (45) give

�

√
= +<
=<
|z∗ − ẑ=,< | ≥ Mp (z∗) −Mp (ẑ=,<) −M=,<

p (z∗) +M=,<
p (ẑ=,<)

≥ Mp (z∗) −Mp (ẑ=,<) ≥ 2 |ẑ=,< − z∗ |2,

from where we deduce the tightness of
√
=<
=+< |ẑ

=,< − z∗ |.
Lemma 7.5 gives the relation

∇zMp (z∗) − ∇zMp (z) = �2Mp (z∗) (z − z∗) +$ ( |z − z|2).

Therefore, we obtain the following equation

∇zMp (ẑ=,<) − ∇zMp (z∗) = �2Mp (z∗) (ẑ=,< − z∗) +$% ( |ẑ=,< − z∗ |2),

and, since 0 = ∇zMp (z∗) = ∇zM=,<
p (z=,<), also

∇zMp (ẑ=,<) − ∇zM=,<
p (ẑ=,<) = �2Mp (z∗) (ẑ=,< − z∗) +$% ( |ẑ=,< − z∗ |2). (46)

The left hand side of (46) can be written as

(&< (Lag1 (ẑ=,<)) −&(Lag1 (ẑ=,<)) + ?1 − ?=1 , . . . ,

&< (Lag# (ẑ=,<)) −&(Lag# (ẑ=,<)) + ?# − ?=# ),

The following result provides its weak limit.

Lemma 7.6. Suppose that the assumptions of Lemma 7.5 hold. If < = <(=) is such that =→∞ and
<
=+< → _ ∈ (0,1), we have√

=<

= +<

(
∇zMp (ẑ=,<) − ∇zM=,<

p (ẑ=,<)
)
F−→ (U1, . . . ,U# ).

Proof. From the relation

∇zMp (ẑ=,<) − ∇zM=,<
p (ẑ=,<)

= (&< (Lag1 (ẑ=,<)) −&(Lag1 (ẑ=,<)) + ?1 − ?=1 ,

. . . ,&< (Lag# (ẑ=,<)) −&(Lag# (ẑ=,<)) + ?# − ?=# )
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and the multivariate central limit theorem, we claim the convergence

√
<(&< (Lag1 (ẑ=,<)) −&(Lag1 (ẑ=,<)), . . . ,&< (Lag# (ẑ=,<)) −&(Lag# (ẑ=,<)))

F−→ (U1, . . . ,U# ).

To prove it we set : and observe that

Lag: (z) =
⋂

8=1,...,#

{y ∈ R3 : 2(x: ,y) − 2(x8 ,y) < I: − I8}, (47)

which means that the class of all possible cells {Lag: (z) : z ∈ R# } ⊂ 2Y is contained in{
#⋂
8=1

{y ∈ R3 : 2(x: ,y) − 2(x8 ,y) < B: , B: ∈ R}
}
.

We note that if the Vapnik-Chervonenkis (VC) dimension of{
{y ∈ R3 : 2(x: ,y) − 2(x8 ,y) − B < 0} : B ∈ R

}
is �, the one of {Lag: (z) : z ∈ R# } is 2#� log(3#) (see Lemma 3.2.3. in Linial, Mansour and Rivest
(1991)). It is trivial to show that the VC dimension of the space of functions {y ↦→ 2(x: ,y)−2(x8 ,y)−B :
B ∈ R} is 2. Then, in view of Theorem 2.6.4 in Vaart and Wellner (1996), we have

N(n, {1Lag: (z) : z ∈ R# }, !2 (&)) ≤ �
1

n8# log(3# ) ,

which means that the class {1Lag: (z) : z ∈ R# } is &−Donsker. This means that, for every n > 0

lim
X→0

lim sup
<→∞

P

(
sup

& (Lag: (u)ΔLag: (v))<X

����√<∫
1Lag: (u) − 1Lag: (v)3 (&< −&)

���� > n) = 0, (48)

where

&(Lag: (u)ΔLag: (v)) =&((Lag: (u) \ Lag: (v)) ∪ (Lag: (v) \ Lag: (u)))

=

∫
(1Lag: (u) − 1Lag: (v) )

23&.

First we bound

&(Lag: (ẑ=,<)ΔLag: (z∗)) ≤ &(Lag: (ẑ=,<) \ Lag: (z∗)) + &(Lag: (z∗) \ Lag: (ẑ=,<)) (49)

The we show that &(Lag: (ẑ=,<) \ Lag: (z∗))
%−→ 0, the same holds for &(Lag: (z∗) \ Lag: (ẑ=,<)),

yielding the limit in probability of (49) towards 0. Using (47), we have

Lag: (ẑ=,<) \ Lag: (z∗) =
⋃

8=1,...,#

Lag: (ẑ=,<) \ {y ∈ R3 : 2(x: ,y) − 2(x8 ,y), < I∗: − I
∗
8 }.
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which, in view of the union bound and (47), gives

&
(
Lag: (ẑ=,<) \ Lag: (z∗)

)
≤

#∑
8=1

&(Lag: (ẑ=,<) \ {y ∈ R3 : 2(x: ,y) − 2(x8 ,y) < I∗: − I
∗
8 })

≤
#∑
8=1

&({y ∈ R3 : I=,<
:
− I=,<

8
< 2(x: ,y) − 2(x8 ,y) < I∗: − I

∗
8 }).

Since
√
=<
=+< |ẑ

=,< − z∗ | is tight, there exists a sub-sequence of |ẑ=,< − z∗ | converging a.s. to 0. We keep
the same notation for the sub-sequence. Set

y ∈
⋂
;∈N

⋃
=,<>;

{y ∈ R3 : I=,<
:
− I=,<

8
< 2(x: ,y) − 2(x8 ,y) < I∗: − I

∗
8 }.

Then it satisfies that for all ; ∈ N, there exist =,< > ; such that

I
=,<

:
− I=,<

8
< 2(x: ,y) − 2(x8 ,y) < I∗: − I

∗
8 .

The a.s. limit I=,<
:
− I=,<

8
→ I∗

:
− I∗

8
implies that 2(x: ,y) − 2(x8 ,y) = I∗: − I

∗
8
, which, under the assump-

tion (Twist), is negligible for & –which satisfies (Cont). Therefore, &(Lag: (ẑ=,<) \ Lag: (z∗))
%−→ 0

and, by symmetry,

&(Lag: (ẑ=,<)ΔLag: (z∗))
%−→ 0. (50)

Moreover, by repeating the same argument, we obtain that if u→ v, then

&(Lag: (u)ΔLag: (u)) → 0 (51)

Thanks to (50), (51) and (48), we are under the hypotheses of Lemma 3.3.5 in Vaart and Wellner (1996);
as a consequence we have

√
< |&< (Lag: (ẑ=,<)) −&(Lag: (ẑ=,<)) − (&< (Lag: (z∗)) −&(Lag: (z∗))) |

=
√
< |

∫
1Lag: (ẑ=,<) − 1Lag: (z∗)3 (&< −&) |

%−→ 0.

This implies
√
<(&< (Lag1 (ẑ=,<)) −&(Lag1 (ẑ=,<)) =

√
<(&< (Lag: (z∗)) −&(Lag: (z∗)) + >% (1).

As : was chosen arbitrarily, we obtain also

√
<(&< (Lag1 (ẑ=,<)) −&(Lag1 (ẑ=,<)), . . . ,&< (Lag# (ẑ=,<)) −&(Lag# (ẑ=,<)))

√
<(&< (Lag1 (ẑ∗)) −&(Lag1 (ẑ∗)), . . . ,&< (Lag# (ẑ∗)) −&(Lag# (ẑ∗))) + >% (1).

The multi-variate central limit theorem yields the limit of
√
<(&< (Lag1 (ẑ∗)) −&(Lag1 (ẑ∗)), . . . ,&< (Lag# (ẑ∗)) −&(Lag# (ẑ∗)))
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as a centered Gaussian r.v. (-1 . . . , -# ) with covariance

� (-8- 9 ) =&(Lag8 (ẑ∗) ∩ Lag 9 (ẑ∗)) −&(Lag8 (ẑ∗))&(Lag 9 (ẑ∗)) = 18= 9 ?2
8 − ?8 ? 9 .

Since (?1 − ?=1 , . . . , ?# − ?
=
#
) converges weakly to a independent copy of (-1 . . . , -# ), we conclude.

Lemma 7.6, (46) and the continuous mapping theorem conclude the proof.

Proof of Theorem 4.3.
The first step is to show that (28) holds. Set : ∈ {1, . . . , #}. Since

Lag': (z) = 'B3
⋂

8=1,...,#

{y ∈ R3 : 2〈x: − x8 ,y〉 ≥ |x: |2 − |x8 |2 − I: + I8} ∩ 'B3 ,

the support functions of the sets

{y ∈ R3 : 2〈x: − x8 ,y〉 ≥ |x: |2 − |x8 |2 − I: + I8}

and 'B3 are respectively

ℎ8 (v) =
{
C (−|x: |2 + |x8 |2 + I: − I8) if v = C (x8 − x: ), C ≥ 0
+∞ otherwise

and ℎ'B3 (v) = ' |v|. Then, in view of Remark 4.5, we have

ℎLag'
:
(z) (v) = inf

{
' |v: | +

∑
8≠:

ℎ8 (v8) :
#∑
8=1

v8 = v

}
.

We parameterize v8 = C8 (x8 − x: ), for C8 ≥ 0, so that ℎ8 (v8) ∈ R and thus v: = v−∑
8≠: C8 (x8 − x: ). This

gives

ℎLag'
:
(z) (v) = inf

{
' |v −

∑
8≠:

C8 (x8 − x: ) | +
∑
8≠:

C8 (−|x: |2 + |x8 |2 + I: − I8) : C8 ≥ 0

}
and (27) holds. The support function of the singleton {−y0} is given by

ℎ{−y0 } (v) = −〈y0,v〉 = −〈v −
∑
9≠:

C 9 (x: − x 9 ),y0〉 − 〈
∑
9≠:

C 9 (x: − x 9 ),y0〉,

so that, in view of Remark 4.5, (28) holds.

The next step is to show the Hadamard differentiability of ℎLag'
:
(z)+{−y0 } (v) with respect to z in a

neighborhood of z∗. Note that the objective function

(z, t) ↦→ � (z, t) =
∑
9≠:

C 9k 9 (z) + ' |v −
∑
9≠:

C 9 (x: − x 9 ) | − 〈v −
∑
9≠:

C 9 (x: − x 9 ),y0〉)
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is 2#-Lipschitz w.r.t. z –it is immediate to check out that |� (z, t) − � (z′, t) | ≤ 2# |z − z′ |∞– and by
the relation

| inf
t
� (z, t) − inf

t
� (z′, t) | ≤ sup

t
|� (z, t) − � (z′, t) | ≤ 2# |z − z′ |∞,

the same holds for ℎLag'
:
(z)+{−y0 } (v) . Then we only need to prove the Gateaux differentiablity. Suffi-

cient conditions conditions are given by Proposition 4.13 in Bonnans and Shapiro (2000), which are as
follows:

1. The function � (·, t) is Gateaux differentiable in R# with derivative �z� (z, t),
2. the function � is continuous in R# ×R#−1, and
3. there exists U ∈ R and a compact set � ⊂ R# such that for every z near z∗, the level set

LevU � (z, ·) = {t ∈ R#−1 : C8 ≥ 0, � (z, t) ≤ U}

is non empty and contained in �.

Since the objective function is linear in z and continuous in t, (1) and (2) hold. To prove the compactness
of the level sets we observe that, for all 9 ≠ : , k 9 (z∗) = ( |x: |2 − |x 9 |2 − I∗: + I

∗
9
) − 〈x: − x 9 ,y0〉 ≥ 0 > 0,

for some 0 > 0. Moreover, the uniform continuity of the function z→ k 9 (z), implies the existence of
a neighborhood U∗ of z∗ such that k 9 (z) > 0

2 , for all z ∈ U∗ and 9 ≠ : . Evaluating at t = 0, we have
� (z∗, ·) = ' − 〈v,y0〉 ≤ 2'. As a consequence,

0

2

∑
9≠:

C 9 ≤
∑
9≠:

C 9k 9 (z) ≤ ℎLag'
:
(z)+{−y0 } (v) ≤ 2',

for all z ∈ U∗. The set of t ∈ R#−1 such that C 9 ≥ 0 and
∑
9≠: C 9 ≤ 4'

0
plays the role of � in (3), which

is thus proven. The Hadamard derivative in a direction d of ℎLag'
:
(z)+{−y0 } (v) in z∗ is thus given by

inf
t∈Sol(z∗ ,v,y0)


∑
9≠:

C 9 (3: − 3 9 )
 .

Set d ∈ R# . Now we claim that(∫ ���ℎLag'
:
(z∗+C=d=) (v) − ℎLag'

:
(z∗) (v)

���? 3H 3−1 (v)
) 1
?

C=

−→ ©­«
∫ ������ inf

t∈Sol(z∗ ,v,y0)


∑
9≠:

C 9 (3: − 3 9 )

������
?ª®¬

1
?

, (52)

for any C=↘ 0 and d=→ d. Lemma 4.6 states the existence of some " > 0 such that that

lim sup
=
C=3∞ (Lag': (z

∗ + C=h=),Lag': (z
∗)) ≤ ".

The quantity (C=3∞ (Lag'
:
(z∗ + C=h=))? is constant w.r.t. v and dominates���ℎLag'

:
(z∗+C=d=) (v) − ℎLag'

:
(z∗) (v)

���?
C=

,
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for all v ∈ S3−1. In view of the dominated convergence theorem and the point-wise Hadamard differ-
entiablitiy (previous step), (52) holds. Finally, following verbatim the proof of Theorem 1 in Römisch
(2014), we conclude.

8. Proofs of Lemmas

Proof of Lemma 2.1.
First, strong duality (3) yields that

T2 (%,&) = sup
( 5 ,6) ∈Φ2 (%,&)

∫
5 (x)3%(x) +

∫
6(y)3&(y)

= sup
( 5 ,6) ∈Φ2 (%,&)

#∑
8=1

5 (xi)?8 +
∫
6(y)3&(y).

Set (I1, . . . , I# ) = ( 5 (x8), . . . , 5 (x# )), then T2 (%,&) = sup(z,6)
∑#
8=1 I8 ?8 +

∫
6(y)3&(y), where the

sup is taken on the set (z, 6) such that I8 + 6(y) ≤ 2(x8 ,y) for all 8 = 1, . . . , #. Therefore, 6(y) ≤
inf8=1,...,# {2(x8 ,y) − I8} and T2 (%,&) = supz∈R# 62 (%,&, z).

Let z∗ = (I∗1, . . . , I
∗
#
) ∈ R# be such that T2 (%,&) = 62 (%,&, z∗). Denote as ; = arg inf8 I∗8 and D =

arg sup8 I
∗
8
, which are different –otherwise the potentials are constant and we conclude that  = 0.

Therefore

T2 (%,&) ≤
#∑
8=1

I∗8 ?8 +
∫
{2(y,xD) − I∗D}3&(y)

≤ (1 − ?;)I∗D + ?;I∗; +
∫
{2(y,xD) − I∗D}3&(y)

≤ −?;I∗D + ?;I∗; +
∫
2(y,xD)3&(y)

≤ ?; (I∗; − I
∗
D) +

∫
2(y,xD)3&(y),

which implies ?; (I∗D − I∗; ) ≤
∫
2(y,xD)3&(y) − T2 (%,&) and

sup
8, 9=1,...,#

|I∗8 − I∗9 | ≤
1

inf8 ?8

(
sup

8=1,...,#

∫
2(y,x8)3&(y) − T2 (%,&)

)
.

Since adding additive constant does not change 62 (%,&, z), we conclude.

Lemma 8.1. Under the assumptions of Theorem 2.4, the class F  2 is &-Donsker.

Proof of Lemma 8.1.

We use bracketing numbers, see Definition 2.1.6 in Vaart and Wellner (1996). Lemma 2.3 implies
that

# [] (2n,F  2 , | | · | |!2 (&) ) ≤ # (n,B (0), | · |).
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Therefore, Lemma 4.14 in Massart and Picard (2007) implies that∫ ∞

0

√
log

(
# [] (n,F  2 , | | · | |!2 (&) )

)
3n <∞. (53)

The envelope function of the class F  2 can be taken as the function � defined as

� (y) = sup
8=1,...,<

2(x8 ,y) +  .

Note that ∫
� (y)23&(y) ≤ 2 + 2

∫
sup

8=1,...,<
2(x8 ,y)23&(y) <∞.

Using Theorem 3.7.38 in Giné and Nickl (2015) we obtain the result.
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