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We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH)
method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions.
Specifically, we successfully obtain energies, entanglement entropies, and orientational correlations that are in agreement
with the Density Matrix Renormalization Group (DMRG), which has been previously used for this system. We find
that the entropies calculated by ML-MCTDH for the larger system sizes contain a nonmonotonicity, as expected in the
vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that this
effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is
not sensitive to the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case,
ML-MCTDH (as implemented in the Heidelberg MCTDH package) requires more computational time and memory,
although the requirements are still within reach of commodity hardware. The numerical convergence and computational
demand of two practical implementations of ML-MCTDH and DMRG are presented in detail for various combinations
of system parameters.

I. INTRODUCTION

With the possibility to control material processes at their
most elementary level, it becomes even more necessary to de-
velop new algorithms to numerically solve the Schrödinger
equation1. In the field of molecular quantum dynamics,
the Multi-Configuration Time-Dependent Hartree (MCTDH)
approach2–6 has been applied to many different fields by var-
ious groups in the world: heterogeneous catalysis, reactive
or non-reactive collisions, infrared spectroscopy, ultraviolet
spectroscopy possibly involving non-Born-Oppenheimer pro-
cesses, photochemistry, processes guided by laser pulses, op-
timal control, etc. MCTDH can be understood as a method
that employs fully flexible time-dependent functions that fol-
low the variational equations derived from the Dirac-Frenkel
principle4. The method converges to the exact solution and
can treat more Degrees Of Freedom (DOFs) than the quantum
dynamics approaches relying on fixed time-independent func-
tions. For instance, a standard benchmark case with MCTDH
is the computation of the absorption spectrum of pyrazine
taking into account all 24 DOFs and two excited electronic
states7. Another noteworthy application of MCTDH is the
computation of the infrared (IR) absorption spectrum of the
zundel cation8–10, H5O+

2 , and its isotopomeres11–13. Finally,
the MCTDH algorithm has been extended to solve the time-
independent Schrödinger equation to calculate eigenstates of a
system with the so-called “improved relaxation” method14,15.
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More recently, the Multi-Layer (ML) variant of
MCTDH16–21 has been developed, which is able to treat
quantum mechanically even higher-dimensional systems with
more than 1000 DOFs22–32. In ML-MCTDH, one makes a
selection of layered effective modes through which MCTDH is
applied in a recursive manner: the wavefunction is expressed
in terms of time-dependent functions (first layer) that follow
equations derived from the Dirac-Frenkel variational principle,
but instead of expressing these functions in terms of time-
independent basis functions, they are themselves expressed in
terms of lower-dimensional time-dependent functions (second
layer) that also follow equations derived from the variational
principle. The latter functions can themselves be expressed
in terms of even lower time-dependent functions (next layer)
or in terms of time-independent functions when we reach the
last layer. In doing so, a very high flexibility is given to the
MCTDH ansatz, and a very compact form of the wavefunction
is obtained.

As it stands, the improved relaxation has already been com-
bined with ML-MCTDH33,34, but has not yet been imple-
mented in the Heidelberg package, which we use here. How-
ever, the ground state of a Hamiltonian can still be obtained
by a propagation in imaginary time. To that end, we use the
Heidelberg MCTDH package35, which contains an implemen-
tation of ML-MCTDH. The recursive tree structure of the
ML-MCTDH ansatz can be viewed as a hierarchical Tucker
decomposition, a kind of tensor decomposition (see Ref. 36
and references therein).

Another well-established tensor-based method is the Density
Matrix Renormalization Group (DMRG), which is a numerical
variational technique devised to study the low-energy physics
of quantum many-body systems with high accuracy. Intro-
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duced by White in 199237, DMRG has been proven to be
particularly successful in condensed matter physics38,39, quan-
tum chemistry40–42, and molecular physics43. DMRG has been
successfully applied to systems with more than one spatial
dimension44 and to real-time evolution45–47, but it is most effi-
cient for computing ground states of long, one-dimensional sys-
tems. Note that the matrix product ansatz used in the DMRG
method can be considered as a special case of the ansatz used
in the ML-MCTDH method36. Despite the methods’ shared
tensor-based nature, there has been very little overlap between
the communities working on ML-MCTDH and DMRG. A
more systematic comparison of the two methods is appealing
and could lead to important improvements for the simulations
of molecular quantum systems36. The aim of the present pa-
per is twofold: to compare the viability of these two methods
for the calculation of rotational ground states; and to promote
cross-pollination of the theory and implementation between
ML-MCTDH and DMRG in the context of quantum molec-
ular dynamics. We compare here the relative computational
merits of ML-MCTDH and DMRG using two practical imple-
mentations of the two methods: we use two different program
packages with different implementations. However, the com-
parison has a general scope. DMRG is an emerging method
for quantum molecular dynamics (in particular the first appli-
cation to chains of rotating dipolar molecules is very recent48),
and the comparison to ML-MCTDH validates its relevance
since MCTDH can be considered as the current standard for
wavefunction based quantum molecular dynamics of large
systems49.

In Ref. 48, DMRG was used to compute ground states of
chains of rotors describing endofullerene “peapod” nanomolec-
ular assemblies (NMAs), carbon nanotubes which contain
fullerene cages with atoms or molecules trapped inside. By
treating these nanomolecular assemblies as rigid 1D chains,
it is possible to study the motion of the molecules enclosed
inside. This approach has subsequently been applied to bench-
mark the Path Integral Ground State (PIGS) method for the
computation of Rényi entanglement entropies in rotor chains
using the replica trick50, and also to train neural network repre-
sentations of the many-body states of interacting rotors using
Restricted Boltzmann Machines (RBMs)51.

In the following, we calculate three physical properties (en-
ergy, entanglement entropy, and orientational correlation) for
systems of N = 10, 25, and 50 linear rotors with dipolar in-
teractions using both ML-MCTDH and DMRG. Moreover,
method-dependent properties (like memory usage and elapsed
time) are compared between the two methods. The remainder
of the paper is organized as follows: in section II, an overview
of the two numerical methods is given, followed by the form of
the Hamiltonian in section III. Section IV presents the results,
and we conclude with a brief summary in section V.

II. THEORY

We present in this section the essential aspects of the DMRG
and ML-MCTDH methods used in our comparative study.

A. DMRG

The DMRG approach used in this work is described in detail
in Ref. 48. In our implementation, the many-body wavefunc-
tion for a chain of quantum dipolar rotors has the form of a
matrix product state (MPS) ansatz38,39. We use the DMRG
implementation from the ITensor package, where the Hamil-
tonian is treated as a matrix product operator (MPO)52. In a
finite basis, the N -body wavefunction can be represented as a
vector, Cn = 〈n|ψ〉, with multi-index n = (n1, n2, . . . , nN );
see Fig. 1a for a schematic representation of a 10-dimensional
tensor, corresponding to a wavefunction for 10 rotors. This
vector can be written as an exact expansion in terms of products
of matrices:

〈n|ψ〉 = A(1),n1A(2),n2 · · ·A(N),nN . (1)

This MPS representation of |ψ〉 is formed from a set of matrices
{A(k),nk}, where the index nk is associated with the physical
site k, while the row and column indices of the matrices are
referred to as bond indices. The so-called “bond dimension”
is the common size between two adjacent matrices A(k),nk

and A(k+1),nk+1 . Note that the first matrix, A(1),n1 , acts as a
row vector and the last one, A(N),nN , acts as a column vector;
the end tensors A(1) and A(N) may be interpreted as either 2-
or 3-dimensional tensors, depending on the context. An MPS
for 10 rotors is shown diagrammatically in Fig. 1b. The final
bond dimensions for the results presented below are given in
the Supplementary Material.

The result of the matrix product is the scalar 〈n|ψ〉, and
the MPS expansion can be exact in principle. However, this
is typically not desired, as it leads to the same exponential
scaling one gets when using the full tensor. Instead, an ap-
proximation is introduced into the state by reducing the bond
dimension. Although this reduction decreases the amount of
entanglement that the state can contain, in practice one finds
a balance between the level of approximation and the com-
putational cost. In particular, certain states, such as area law
states in one spatial dimension53, have entanglement that is
independent of system size. For these states, the size of the
MPS grows linearly with the number of sites, and DMRG is
incredibly efficient.

A key aspect of the DMRG procedure is the Schmidt decom-
position associated with a given partitioning of the system into
parts A and B,

|ψ〉 =
∑
i

√
λi |ξAi 〉 ⊗ |ξBi 〉 , (2)

where each λi is a non-negative real number, and {|ξAi 〉} and
{|ξBi 〉} are orthonormal bases for A and B. Numerically, these
pieces may be obtained using the singular value decomposition
(SVD), in which case the expansion coefficients are referred to
as “singular values”. An illustration of this decomposition is
given in Fig. 1c, whereA andB are shown to contain three and
seven rotors, respectively. The DMRG procedure iteratively
optimizes the MPS using a series of sweeps across every pair of
adjacent sites, for which an effective Hamiltonian is diagonal-
ized. Crucially, the result of each diagonalization is processed
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b)

A Bc)

FIG. 1. Schematic depictions of tensor-based representations of a
10-rotor wavefunction. a) The full 10-dimensional tensor, Cn, with
vertical line segments corresponding to rotors. b) The matrix product
state in Eq. (1), with circles representing the 3-dimensional tensors,
A(k). Horizontal line segments imply tensor contraction along the
bond indices (i.e. matrix multiplication). c) The Schmidt decompo-
sition in Eq. (2), with the diamond denoting the diagonal matrix of
singular values.

using the SVD by truncating singular values according to a
cutoff criterion, such as ∑

i

λi ≤ ε, (3)

where the sum runs over the truncated values. This truncation is
vital to limiting the growth of the bond dimension. In the same
way as an MPS, an MPO may also be compressed using the
SVD, although improved approaches have been devised54,55.

B. ML-MCTDH

The wavepacket propagation calculations reported in
this article are performed with the Heidelberg MCTDH
package35. The MCTDH and ML-MCTDH methods are well
documented2–5,16–20 and are described here only briefly. As-
suming that the system under consideration has f degrees
of freedom with coordinates q1, . . . , qf , the ansatz for the
MCTDH wavefunction reads:

Ψ(q1, . . . , qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1···jf (t)

f∏
κ=1

ϕ
(κ)
jκ

(qκ, t).

(4)
Here Aj1···jf denotes the MCTDH expansion coefficients, and
ϕ(κ)(qκ, t) are the so-called single-particle functions (SPFs)
for the degree of freedom κ. The SPFs are expressed in primi-
tive basis sets or Discrete Variable Representation (DVR) grids:

ϕ
(κ)
jκ

(qκ, t) =

Nκ∑
iκ=1

c
(κ)
iκjκ

(t)χ
(κ)
iκ

(qκ) , (5)

where χ(κ)
iκ

are orthonormal time-independent primitive basis
functions of the κth DOF. In our problem, f = 2N with N
being the number of rotors (the number used to designate the
N -body wavefunction in DMRG) since there are two spherical
angles to describe the rotation of each rotor.

The equations of motion for the A-coefficients and for the
SPFs are derived2–5 from the Dirac-Frenkel variational prin-
ciple. These differential equations are non-linear and compli-
cated, but the size of this set of coupled equations is in general
much smaller than the set of equations obtained by expressing
the wavefunction directly in a time-independent basis set.

Thus, the MCTDH method propagates a wavepacket on a
small, time-dependent, variationally optimized basis set of
single-particle functions, which in turn are defined on a time-
independent primitive basis sets with Nκ functions for the κth

degree of freedom. In the limit nκ → Nκ, MCTDH becomes
a numerically exact method to solve the Schrödinger equation
within the primitive basis set. The SPFs are not restricted to
be one-dimensional functions: they may depend on several
coordinates, and in this case qκ is to be interpreted as a multi-
dimensional variable and f in Eq. (4) is to be replaced by the
number of MCTDH particles, i.e. the number of combined
modes.

The Multi-Layer (ML) variant16–20 of MCTDH provides a
very efficient algorithm capable of treating quantum mechan-
ically even higher-dimensional systems22–28. The key idea
behind ML-MCTDH is to give more flexibility to the MCTDH
ansatz by making an optimal choice of layered effective modes
through which the MCTDH method is applied in a recursive
manner. The ML approach enables one to represent the wave-
function in a very compact way. The particular structure of
a ML-wavefunction, which has to be defined by the user, is
given by a so called ML-tree. Through the ML-tree, one de-
fines which modes of one layer are to be combined to build a
mode of the layer above (see Fig. 2). Thus, the ML-MCTDH
method uses trees, whereas DMRG conventionally uses an
MPS. An MPS can be viewed as a very special tree, where
the only flexibility within an MPS-tree is the ordering of the
DOFs. An ML-tree, on the other hand, is very flexible36,56,57

and its topology can be adjusted to the system. Note however
that DMRG is not limited to MPSs36,58–60.

III. THE HAMILTONIAN

Let us consider a system withN identical rotors with rotational
constant B and dipole moment µ, whose Hamiltonian reads:

Ĥ =
B

h̄2

N∑
i=1

ˆ̀2
i +

µ2

4πε0

N∑
i=2

i−1∑
j=1

V̂ij
r3ij

, (6)

where rij is the distance between rotors i and j, V̂ij is the
corresponding dipole-dipole potential operator, and ˆ̀

i is the
angular momentum operator of the ith rotor. Our goal is to de-
scribe a carbon nanotube peapod assembly, which is inherently
linear. Thus, we may place the rotors along one axis, let’s say
the z axis, and express the potential operator compactly as

V̂
(z)
ij = x̂ix̂j + ŷiŷj − 2ẑiẑj , (7)

where (xi, yi, zi) denotes a unit vector pointing in the direction
of the ith dipole. Due to the regular structure of a peapod NMA,
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we can position the rotors evenly with a lattice spacing, r, and
write the nondimensionalized Hamiltonian as

Ĥ

B
=

N∑
i=1

ˆ̀2
i

h̄2
+ g

N∑
i=2

i−1∑
j=1

V̂
(z)
ij

(i− j)3
, (8)

where the dimensionless parameter

g =
µ2

4πε0r3B
(9)

gives the strength of the dipole-dipole interaction.
As explained in Ref. 48 (see Figures 4 and 5 therein), this

system appears to undergo a quantum phase transition when
varying the parameter g: two domains appear, correspond-
ing to strongly and weakly interacting systems. The origin
of this second-order phase transition between disordered and
ordered phases has been suggested to arise from breaking of
the rotational symmetry61.

As the above Hamiltonian contains all pairwise interactions,
we refer to its realizations by the label “All”. In addition, we
consider the simplified Hamiltonian

Ĥ

B
=

N∑
i=1

ˆ̀2
i

h̄2
+ g

N∑
i=2

V̂
(z)
i,i−1, (10)

which retains only the nearest-neighbor couplings; its realiza-
tions are given the label “NN”. Since it contains fewer terms,
the NN Hamiltonian is computationally less taxing than the All
Hamiltonian, but preserves the symmetries of the latter. Hence,
we expect to see evidence of a quantum phase transition for
the NN systems as well.

IV. RESULTS AND DISCUSSION

We compare several quantities for the ground states of the
systems defined by Eq. (8) and Eq. (10), as obtained by ML-
MCTDH and DMRG. In Ref. 48, the dependence of the ground
state energy on the number of rotors, N , obtained with DMRG
is given in the form of chemical potentials; in the present paper
we give the absolute energy values, E, for different choices of
N and g. We also compute the von Neumann entanglement
entropy, defined as

SvN = −
∑
j

λj lnλj , (11)

where the λj are the squares of the coefficients of the Schmidt
decomposition in Eq. 2. For systems with an even number of
rotors (N = 10 and 50), we use a symmetric splitting of the
system into A and B; for N = 25, it is instead partitioned into
13 and 12 rotors.

As in Ref. 48, we have additionally calculated the expecta-
tion value of the “orientational correlation” (OC) operator:

2

N(N − 1)

N∑
i=2

i−1∑
j=1

êi · êj , (12)

where the unit vector ei = (xi, yi, zi) describes the orientation
of the ith rotor. Both the von Neumann entanglement entropy
and the orientational correlation measure the correlations that
are present in the system, but the former experiences a diver-
gence with system size near g = 1.0.

We first present highly converged ground state properties
computed using DMRG (with the basis of spherical harmon-
ics limited to ` ≤ `max and making use of quantum number
conservation48) in order to provide a benchmark for the com-
parison with ML-MCTDH. These results, presented in Tables I
and II, have the highest level of convergence achieved in the
present work, and were consequently quite computationally
demanding to obtain. Note that in the case of only nearest-
neighbor couplings, the entanglement entropy still peaks at
g = 1.5 for the two larger system sizes, indicating that this
phenomenon is likely driven by the symmetries of the Hamilto-
nian rather than its microscopic details, and providing further
evidence of a quantum phase transition.

A. Energies and orientational ordering

The orientation of each rotor can be parameterized by two
spherical coordinates: θi and φi for the ith rotor. For the
ML-MCTDH calculations, we used a two-dimensional Ex-
tended Legendre62 Discrete Variable Representation (DVR)
for each rotor (a DVR associated with spherical harmonics,
called PLeg). With ML-MCTDH, several choices of layers
are possible. In order to give the explicit ansatz of the ML-
MCTDH wavefunction, we display a graphical representation
usually referred to as a tree. Fig. 2 depicts a 10-rotor chain
described by a four-layer wavefunction. Each node (i.e. circle)
represents a set of vectors of coefficients. A circle stands for
a set of time-dependent expansion coefficients and a rectan-
gle for a set of time-independent primitive basis functions (or
DVR grids). The number next to each leg is the number of
SPFs used in the calculation with g = 1.0. Depending on the
number of rotors and the value of g, the number of SPFs has
been chosen to try to find a compromise between accuracy and
Central Processing Unit (CPU) time for the calculations. At
the top node we split the tree symmetrically into two halves to
simplify the evaluation of the entanglement entropy: the λj in
Eq. (11) are given by the natural populations4 (i.e. eigenvalues
of the reduced density matrix) of the top node. Then we mostly
perform binary splittings, but in few cases a node has three
children. We use 6 grid points for θi and 7 for φi (i.e. ` ≤ 5
and m ≤ 3). We could have used smaller grid sizes for the low
coupling cases, but in ML-MCTDH the computational effort
depends only weakly on the grid sizes (although strongly on
the numbers of SPFs), so that we decided to use identical grids
throughout. Figures of trees for the 25- and 50-rotor problems
as well as additional details on the ML-MCTDH and DMRG
calculations are provided in the Supplementary Material.

In general, the dimensionality of the SPFs increases when
one climbs up the tree and one expects that the numbers of
SPFs needed for convergence should increase towards the top,
but we see in Fig. 2 that this is not the case here. The reason is
that another important factor is the effective coupling strength.
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TABLE I. DMRG parameters, results, and corresponding computational effort for systems with nearest-neighbor interactions (NN). Wall-times
are given in hours “h”, minutes “m”, and seconds “s”. Maximum memory usage and ground state MPS size are reported in MB.

N g `max ε E SvN OC Time Memory Size

10

0.5 5 10−14 −0.378 109 174 4 0.069 105 639 0.005 338 42 12m30s 54 1
1.0 6 10−14 −1.559 705 410 9 0.245 605 5 0.036 955 76 42m59s 261 2
1.5 7 10−14 −3.790 994 865 0 0.618 05 0.184 790 2h41m25s 1036 4
2.0 8 10−14 −7.383 621 680 0.772 442 9 0.369 532 4h41m11s 1500 6

25

0.5 5 10−14 −1.009 392 863 0.069 105 77 0.002 357 2 39m18s 55 2
1.0 6 10−14 −4.184 455 427 0.246 570 55 0.018 761 3 3h14m17s 370 6
1.5 7 10−14 −10.491 188 621 0.786 916 0.246 787 1 22h18m29s 2398 25
2.0 8 10−14 −20.775 486 204 0.778 013 16 0.415 430 72 23h15m03s 1861 23

50

0.5 5 10−14 −2.061 532 344 0.069 105 77 0.001 212 53 1h26m23s 57 3
1.0 6 10−14 −8.559 041 298 0.246 572 59 0.010 022 3 7h33m51s 431 14
1.5 7 10−13 −21.733 640 18 0.821 345 5 0.278 875 8 43h19m25s 2259 43
2.0 8 10−14 −43.103 080 319 0.778 014 411 0.430 220 817 60h58m57s 2059 52

TABLE II. DMRG parameters, results, and corresponding computational effort for systems with all pairwise interactions (All). Wall-times are
given in hours “h”, minutes “m”, and seconds “s”. Maximum memory usage and ground state MPS size are reported in MB.

N g `max ε E SvN OC Time Memory Size

10

0.5 5 10−14 −0.398 960 623 0.079 905 618 0.009 699 51 24m35s 441 2
1.0 7 10−14 −1.800 214 523 0.396 354 3 0.092 683 85 3h40m56s 3958 9
1.5 8 10−14 −5.065 659 016 0.743 557 76 0.334 380 701 9h30m29s 9930 17
2.0 8 10−14 −9.869 695 663 0.744 232 934 0.447 721 340 9h28m06s 8838 16

25

0.5 6 10−14 −1.071 398 284 0.080 164 62 0.004 763 804 4h32m37s 1613 11
1.0 7 10−14 −5.036 369 456 0.557 879 8 0.110 031 5 58h48m22s 13 271 80
1.5 8 10−14 −15.219 922 215 0.748 988 662 0.391 279 03 102h11m09s 17 940 93
2.0 8 10−14 −29.046 243 26 0.741 768 134 0.488 266 18 76h55m59s 14 742 75

50

0.5 5 10−14 −2.192 131 00 0.080 169 146 0.002 530 7 6h29m22s 1175 23
1.0 7 10−13 −10.485 452 72 0.712 649 0.131 992 5 162h36m00s 16 952 167
1.5 7 10−14 −32.221 843 4 0.748 561 70 0.409 262 540 158h38m18s 15 255 204
2.0 8 10−13 −61.100 250 5 0.741 509 44 0.501 843 54 109h29m11s 8055 95

Here, the effective coupling strength decreases towards the
ends of the chain, because at the ends, the rotors are less
oriented than in the middle (this is why different groups have
very different numbers of SPFs: for example, 20 versus 56 for
the second layer in Fig. 2). At the top node, we always have
comparatively few SPFs.

In order to have a comparable accuracy between ML-
MCTDH and DMRG, and to provide a meaningful comparison
of the computational effort, the DMRG results are computed
at a lower level of convergence than in Tables I and II; for
example, these DMRG calculations use `max ≤ 4. The DMRG
parameters were chosen to match the ML-MCTDH energies,
and it can be seen in Table III that they are in close agreement.
The difference is due to a small lack of convergence in ML-
MCTDH. Note that ML-MCTDH and DMRG simulations do
not use the same primitive bases. As aforementioned, DMRG
uses a basis set of spherical harmonics and ML-MCTDH uses
a DVR based on spherical harmonics. They are thus different,
but very similar. These DMRG calculations required between
9 and 25 primitive functions, making up a smaller local basis

than the 42-point grid used by ML-MCTDH. The slower, but
more converged benchmark DMRG calculations shown above
included up to 81 basis functions.

The von Neumann entanglement entropies are given in Ta-
ble IV and the expectation values of the orientational corre-
lation operator are given in Table V. That these values are
nearly equal implies that both tensor decompositions are capa-
ble of faithfully representing these ground states. Following
the DMRG results, the ML-MCTDH calculations quantita-
tively reproduce the conversion from ordered to disordered
states: the von Neumann entropy and orientational correlation
decrease to nearly zero with decreasing g, although the entropy
occasionally does so nonmonotonically, as expected.

As always, we see that properties (like von Neumann en-
tropy and orientational correlation) converge much slower than
eigen-energies. Not surprisingly, the most difficult system for
DMRG, with N = 50, g = 1.0, and all interactions (see Ta-
ble II), is also very challenging for ML-MCTDH. Although
the DMRG and ML-MCTDH energies differ by only a small
fraction of a percent, the entanglement entropies and orienta-
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FIG. 2. Tree structure of the ML-MCTDH wavefunction for 10 rotors
and g = 1.0. As in Fig. 1, we have 10 rotors, but the rotation of each
one is described by two angles θ and ϕ. In DMRG, as shown in Fig.
1 (c), the system of rotors is partitioned into two parts A and B and a
procedure iteratively variationally optimizes the MPS using a series
of sweeps across every pair of adjacent sites. In ML-MCTDH, the
time-dependent SPFs are gathered in a tree: they depend on groups of
coordinates that are fixed in the tree and are optimized variationally
during the imaginary propagation.

tional correlations for this system disagree more strongly, by
about 3 % and 11 %.

B. Computational effort

Tables VI to VII outline the computational demands for the
calculations performed with ML-MCTDH and DMRG. The
ML-MCTDH calculations were done on a PC with an Intel
I5-8500 CPU with 4 cores with a speed-up by about a factor of
3. The runs used all 4 cores via shared memory OpenMP par-
allelization, and the compiler was GCC 8.3.1 (gfortran). The
three largest calculations, i.e. those with N=50, g ≥ 1.0 and
all pairwise interactions, would take several days on the PC,
so they were run on a workstation. However, for better com-
parison, the wall-times of these calculations were rescaled to
represent the 4-core PC wall-times. The DMRG code was built
with the Intel MKL using GCC 8.3.0. For the ITensor library,
we used the default -O2 setting for optimizations. Each calcu-
lation was run on a single Intel Xeon E5-2683 v4 core. For the
sake of completeness, we have redone all the calculations with
ML-MCTDH with the Intel Xeon E5-2683 v4 core for N = 10:
the ML-MCTDH are roughly twice as slow. It shows that the
choice of the computer is of importance in practice, but does
not change the general trends observed below.

Table VI shows that we need greater wall-times to obtain
ML-MCTDH results, and in fact much greater wall-times when
all pairwise interactions are included (see the Supplementary
Material for a brief discussion on this outcome). Note that
no parallelization was used for the DMRG calculations. It
appears that the ITensor implementation of DMRG is highly
efficient for the present problem. Nevertheless, the present
results show that ML-MCTDH can capture the main physics
with reasonable wall-times. In particular, if the primary goal is
to study the peak in the entanglement entropy, one may use the
NN Hamiltonian, which requires wall-times that are more in
line with those needed for DMRG.

The maximal memory usage data is presented in Table VII.
We observe that, with the exception of some small systems,
the memory requirements of DMRG are systematically less

than those of ML-MCTDH. In addition, the sizes of the final
eigenstates are outlined in Table VIII, and we find that the ML-
MCTDH wavefunctions are not as compact as the equivalent
MPSs. This is rather surprising since trees generally lead to
more compact wavefunctions than MPS36,56,57. This probably
shows that the one-dimensional rotor-chain problem fits very
well to the DMRG algorithm.

TABLE III. Comparison of the (dimensionless) energies calculated
with (a) ML-MCTDH and (b) DMRG for the ground state.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) -0.3781 -1.0093 -2.0611 -0.3989 -1.0713 -2.1912
0.5(b) -0.3781 -1.0093 -2.0614 -0.3989 -1.0713 -2.1919

1.0(a) -1.5597 -4.1836 -8.5573 -1.8002 -5.0351 -10.480
1.0(b) -1.5597 -4.1844 -8.5590 -1.8002 -5.0362 -10.485

1.5(a) -3.7908 -10.490 -21.726 -5.0654 -15.219 -32.218
1.5(b) -3.7910 -10.491 -21.734 -5.0656 -15.220 -32.222

2.0(a) -7.3836 -20.774 -43.095 -9.8696 -29.045 -61.096
2.0(b) -7.3836 -20.775 -43.103 -9.8695 -29.046 -61.099

TABLE IV. Comparison of the von Neumann entanglement entropies
calculated with (a) ML-MCTDH and (b) DMRG for the ground state.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0.0691 0.0691 0.0688 0.0799 0.0800 0.0793
0.5(b) 0.0691 0.0691 0.0691 0.0799 0.0801 0.0801

1.0(a) 0.246 0.245 0.246 0.396 0.542 0.660
1.0(b) 0.246 0.247 0.247 0.396 0.558 0.712

1.5(a) 0.618 0.782 0.818 0.743 0.749 0.748
1.5(b) 0.618 0.787 0.821 0.744 0.749 0.749

2.0(a) 0.772 0.777 0.776 0.744 0.742 0.741
2.0(b) 0.772 0.778 0.778 0.744 0.742 0.742

TABLE V. Comparison of the orientational correlation (see Eq. (12))
calculated with (a) ML-MCTDH and (b) DMRG for the ground state.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0.00534 0.00235 0.00121 0.009692 0.00477 0.00250
0.5(b) 0.00533 0.00235 0.00121 0.009689 0.00476 0.00253

1.0(a) 0.0369 0.0183 0.0100 0.0926 0.110 0.118
1.0(b) 0.0370 0.0188 0.0100 0.0927 0.110 0.132

1.5(a) 0.183 0.244 0.279 0.334 0.391 0.409
1.5(b) 0.185 0.247 0.279 0.334 0.391 0.409

2.0(a) 0.369 0.415 0.430 0.448 0.488 0.502
2.0(b) 0.370 0.415 0.430 0.448 0.488 0.502
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TABLE VI. Comparison of the wall-times (in hours “h”, minutes
“m”, and seconds “s”) needed to converge the ground state with (a)
ML-MCTDH and (b) DMRG.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0m32s 4m36s 7m25s 2m25s 1h11m 4h32m
0.5(b) 0m37s 1m44s 3m21s 0m39s 2m21s 4m41s

1.0(a) 2m06s 9m22s 1h09m 11m34s 5h00m 69h38m
1.0(b) 2m32s 7m11s 15m46s 3m09s 12m24s 40m52s

1.5(a) 2m48s 51m07s 2h08m 12m26s 12h09m 87h23m
1.5(b) 7m11s 25m22s 1h02m 9m27s 30m52s 1h07m

2.0(a) 11m19s 48m49s 1h56m 40m21s 12h49m 60h10m
2.0(b) 7m08s 25m09s 52m29s 8m57s 32m35s 1h09m

TABLE VII. Comparison of the maximum amount of memory (in
MB) required during the calculations with (a) ML-MCTDH and (b)
DMRG.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 29 94 149 30 100 198
0.5(b) 17 17 17 26 30 32

1.0(a) 64 142 448 65 165 555
1.0(b) 28 29 31 73 141 259

1.5(a) 64 275 536 65 281 595
1.5(b) 48 93 118 172 197 224

2.0(a) 145 278 548 147 292 619
2.0(b) 66 78 77 174 194 210

TABLE VIII. Comparison of the size (in MB) of the ground state
wavefunction with (a) ML-MCTDH and (b) DMRG.

NN All
g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 1.4 4.3 6.4 1.4 4.3 6.4
0.5(b) 0.03 0.1 0.2 0.07 0.3 0.6

1.0(a) 3.1 6.8 21.4 3.1 7.6 24.3
1.0(b) 0.1 0.4 0.9 0.3 2.1 7.2

1.5(a) 3.1 13.5 25.7 3.1 13.5 25.8
1.5(b) 0.4 1.8 4.9 0.7 3.0 7.0

2.0(a) 7.2 13.6 25.9 7.2 14.1 27.1
2.0(b) 0.4 1.4 3.2 0.7 2.4 5.3

V. SUMMARY AND OUTLOOK

We have performed a systematic comparison between two
different numerical methods for calculating the ground states
of a linear rotor model describing a nanomolecular assem-
bly: the Multi-Layer (ML) variant of MCTDH and DMRG.
The numerical performance and overall quality have been dis-
cussed for different values of the coupling strength and of the

number of rotors involved in the chains. At present, the ML-
MCTDH method is both more memory- and time-consuming
than DMRG, in some cases by more than one order of magni-
tude.

There are several factors working against ML-MCTDH for
the dipolar rotor chain system. Firstly, ML-MCTDH is primar-
ily a time-propagation method. As such, all variables are taken
to be complex, whereas an eigensolver (such as the one used by
DMRG) can be written using real arithmetic. Real arithmetic
versus complex arithmetic inflates the memory demand by a
factor of 2 and the computation time by almost a factor of 4.
Secondly, the relaxation method, i.e. propagation in imaginary
time, is not a very efficient method to generate ground states,
in particular when high accuracy is desired. Thirdly, as it is
based on the MPS ansatz, DMRG is most efficient for comput-
ing grounds states of one-dimensional systems, as is the case
here (as mentioned in the introduction DMRG can also be very
efficient for excited states and time propagation). However,
this efficiency may not generalize to higher dimensions. If one
considered a 3D arrangement of rotors with e.g. 5 rotors in
each direction, yielding 125 rotors altogether, then it is possible
that ML-MCTDH will perform similarly as here, but DMRG
could be more challenging to converge. As we point out in
the Supplementary Material, several technical improvements
are available, but they have yet to be implemented in the Hei-
delberg MCTDH software package which was used for the
calculations in the present work. We hope that this contrast
between the current capabilities of ML-MCTDH and DMRG
motivates the development of these improvements.

Despite the difficulties faced by ML-MCTDH, it is able to
capture the fundamental physics of the ground states of up to
50 rotors across a broad range of coupling strengths, which
is per se an important result. This includes the entanglement
entropy, whose nonmonotonic behaviour even in the NN case
suggests the presence of a second-order quantum phase transi-
tion between ordered and disordered phases.

As explained by Larsson36, more systematic comparisons
between ML-MCTDH and DMRG are highly desirable. Al-
though the two methods have their own strengths, they are
both based on tensor decompositions of the wavefunction, and
the development of hybrid methods may be advantageous; for
instance it could be profitable to use ML-MCTDH for time-
dependent simulations of a DMRG-optimized ground state. In
addition, the combination of the experience of the two com-
munities working on these two methods, and the techniques
they have developed to solve the Schrödinger equation, may
lead to a more efficient treatment of large quantum systems.
In particular, more flexibility in the choice of the wavefunc-
tion representations for both methods could prove to be very
helpful.

VI. SUPPLEMENTARY MATERIAL

The supporting material provides the ML-trees for N =
25 and 50 as well as some information about the integration
scheme used for ML-MCTDH. It also presents a discussion
about the Hamiltonian formats used for ML-MCTDH and
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DMRG and their impact on the efficiency of the two methods
and how the form of the operator could be changed to improve
the efficiency of ML-MCTDH. In addition, it gives some tech-
nical information about the DMRG calculations such as the
size of the basis set, the truncation parameters and the final
MPS bond dimensions.
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