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ABSTRACT

Numerous sound absorbers dedicated to noise reduction
at low frequencies are based on nonlinear properties.
Impedance is classically used to describe the behaviour
of a sound passive linear absorber, considered as a one-
port acoustic system, and measurement methods are avail-
able. The objective of this work is to develop identifica-
tion techniques to characterize nonlinear elements at low
frequencies and high levels. We used a specific set-up
of impedance tube named ”Short Kundt’s Tube”, with a
swept-sine as excitation and one pressure measurement in-
side the tube. Different approaches are discussed. The first
one is defined as a linearisation method and gives access
to the acoustic impedance quantities. The second one is
based on a nonlinear model wich is able to characterize en-
ergy transfer to higher harmonics. This appraoch is defined
as a scattering matrix linking the harmonic components of
the incident and reflected pressure wave amplitudes. These
two approaches are defined in frequency domain. Finally
the first step of a third approach is considered. It is based
on an Hammerstein model, and permits to obtain a nonlin-
ear relation between the incident and the reflected pressure
waves in time domain reducing in the favourable case the
dependency with respect the excitation level. Finally, these
techniques are illustrated characterizing nonlinear vibroa-
coustic absorbers.

1. INTRODUCTION

Sound absorbers like nonlinear Helmholtz resonators or
nonlinear vibroacoustic absorbers, based on nonlinear
properties, permit to reduce noise at low frequencies.
These absorbers, also known as NES for Nonlinear Energy
Sink, consist in a thin structure submitted to large defor-
mations and present nonlinear resonances which permit to
absorb sound energy [1, 2]. To improve the knowledge of
a NES as an acoustic device with absorbing properties we
need to develop specific tools.

Two approaches to measure the acoustic characteris-
tics, dependent of the excitation level and developed in
frequency domain, are first discussed in this work. The
first one, named ”linearisation method”, gives access to the
acoustic impedance and/or the reflection coefficient. The
second one, named ”nonlinear model”, permits to charac-

terize energy transfer between harmonics. It is defined as a
scattering matrix [3] relating the harmonic components of
the incident pressure wave amplitudes with the harmonic
components of the reflected pressure wave amplitudes.

A third approach, developed in time domain, permits to
have a direct relation between the incident and the reflected
pressure waves. Many methods of identification are avail-
able in time domain (as MISO, Volterra...) and we have
chosen here a Hammerstein model for its simplicity of im-
plementation.

Data needed in the proposed approaches were obtained
from a non standard equipment named ”Short Kundt’s
Tube” able to reach very high levels at low frequencies.
The absorbers are excited by a synchronized swept-sine ex-
hibiting an exponential instantaneous frequency. We mea-
sure the acoustic pressure inside the tube, at one point only,
in front of the device under study. This set-up needs also
a prior calibration of the source from measurements of
known acoustic loads (i.e. characteristics are known an-
alytically).

This paper is organized as follows : Section 2 presents
the measurement set-up. In Section 3, the linear impedance
model which permits to have a first linearized characteri-
zation of nonlinear absorbers is described. The source cal-
ibration is also presented. Section 4 is dedicated to the
nonlinear impedance model which takes into account the
nonlinearities present in the system. These techniques are
applied for the characterization of a nonlinear acoustic ab-
sorber, made of a loudspeaker membrane.

2. MEASUREMENT SET-UP : SHORT KUNDT’S
TUBE (SKT)

We use the measurement set-up developped in [4] (see Fig.
1). It is composed of a sound source, a short tubular section
and a device under study (DUT), not shown on the figure.
The source and the DUT are connected through the tubular
section having a rear length of xrear = 0.13 m, a front
length of xfront = 0.35 m and a diameter Dt = 0.175 m.
The rear side is closed by an air-tight disc placed inside the
section. The acoustical scheme of this set-up is represented
Fig. 2.

The source is composed of four loudspeakers (type
Beyma 10LW30/N, diam 0.25 m) controlled by voltage
u(t) (or U(f) in frequency domain) connected perpendic-
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ularly at the tubular section by smooth 3D-printed horns
with initial diameter 0.25 m and final diameter 0.1 m. The
rear face of each loudspeaker is enclosed in a 37 ` air-tight
box. The four loudspeakers are connected at the same ab-
scissa and contribute equally to the volume velocity of the
source. A microphone (G.R.A.S 40BH 1/4”) is localized
inside the right section at 0.035 m away from the DUT
(xm = 0.035 m).

Figure 1. Picture of the source

Figure 2. Scheme of (a) the experimental set-up and
(b) the equivalent electroacoustic circuit of the one-
microphone identification method

Assuming plane wave mode, the source was designed
[4] for a low frequency range, between 10 to 700 Hz, in or-
der to expose the DUT to high pressure levels (> 300 Pa).

The air-tightness of the source is critical and has been
checked.

The source can be used with different types of excitation
signals (white noise, sine, swept-sine). In a first time, we
have made the choice to use a stepped-sine allowing us to
have informations frequency by frequency. A second type
of signal has been used, the swept-sine, in order to reduce
the experimentation time and obtain a characterization of a
DUT for all the frequencies from one run.

3. LINEAR IMPEDANCE MODEL

This approach permits to obtain a ”linear” characterization
of nonlinear absorbers in terms of apparent impedance and
apparent reflection coefficient. The dependency of these
quantities with respect, for example, to the excitation level
gives interesting information on the nonlinear behaviour
of the DUT (softening or hardening effects, energy dissi-
pation).

3.1 Principe of the method

Classically (i.e. under linear assumption), the impedance
permits to describe the behaviour of an acoustic load and
measurement methods are available. The impedance is de-
fined, for any cross-section of the tube, as the ratio between
the mean acoustic pressure and the volume velocity. It is
also possible to equivalently characterize the acoustic load
using the reflection coefficient.

We consider a DUT connected to the SKT, in plane
waves hypothesis. We assume that the DUT is character-
ized by its impedance ZT(f). If the DUT is nonlinear, the
impedance ZT corresponds to a linear approximation of
the relationship between the fundamental components of
the spectra of the pressure p(t) measured by the micro-
phone and the associated volume velocity. We will show
that ZT can be obtained through a calibration set from the
measured pressure p(t).

Assuming the source and the DUT linear and time-
invariant, the coupled system SKT+DUT can be repre-
sented by the electro-acoustic scheme shown in Fig. 2(b).
The source is characterized by its impedanceZS(f) and the
transfer function Hae(f) between the acoustic volume ve-
locityQ(f) and the control voltage U(f) of the loudspeak-
ers as Q(f) = Hae(f) U(f). The equivalent impedance
Z(f) loading the volume velocity source is defined by

Z(f) =
ZT(f)Zs(f)

ZT(f) + Zs(f)
=
Hm(f)

Hae(f)
(1)

where Hm(f) is the transfer function between the mea-
sured control voltage U(f) of the source and the measured
acoustic pressure P (f) at the microphone.

It follows that the impedance ZT(f) of the DUT can be
expressed as

ZT(f) =
Hm(f)Zs(f)

Hae(f)Zs(f)−Hm(f)
(2)

and the reflection coefficient RT(f) as

RT(f) =
Hm(f)Zs(f)− Zc(f)(Zs(f)Hae(f)−Hm(f))

Hm(f)Zs(f) + Zc(f)(Zs(f)Hae(f)−Hm(f))
.

(3)

where Zc = ρc/S is the specific acoustic impedance of
air, ρ is the density of air, c the sound wave velocity and S
the area of the waveguide section of the SKT.

To obtain ZT(f) and RT(f), one measurement of the
transfer function Hm(f) is required if the source charac-
teristics Hae(f) and Zs(f) are known. These quantities
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can be estimated fromHm(f) measured for several known
acoustic loads. This step is named set-up calibration of the
source. From Eqn. (2) and (3), a set-up calibration based
on two different known loads is theoretically sufficient to
determineHae(f) andZs(f). An over-determination of the
calibration data is wisest to have a better estimation of this
coefficients [5].

The modulus (respectively argument) of Hae(f) and
Zs(f) are reported Fig. 3 and Fig. 4 (respectively Fig. 5 and
Fig. 6). These quantities have been obtained from a set-up
calibration involving a logarithmic swept-sine excitation of
duration 16 s from f1 = 10 Hz to f2 = 730 Hz and for an
excitation level of a = 6.5 V (see Eqn. (19)). We can ob-
serve a resonance pic (Fig. 3) on Hae(f) at f = 577 Hz
corresponding to a zero of Zs(f) (associated to rotation
phases on arg(Hae(f)) and arg(Zs(f))) at the same fre-
quency. This frequency corresponds to a zero pressure in-
side the tube. Attention was paid to shift this resonance to-
wards high frequencies by decreasing the length of the rear
tube. In the same way, the zero of Hae(f) at f = 495 Hz
corresponds to a maximum ofZs(f). We have checked that
Hae(f) and Zs(f) do not depend on the excitation level.
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Figure 3. Hae estimated from six known acoustic loads
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Figure 4. Zs estimated from six known acoustic loads

3.2 Application to a nonlinear vibroacoustic absorber

We illustrated here the estimation of ZT (f) considering a
nonlinear device. The nonlinear device consists in a loud-
speaker membrane used as a NES, as described in [1]. Fig.
7. shows the modulus of impedance ZT and Fig. 8 the
reflection coefficient RT . These two quantities (obtained
from Eqns. (2 ) and (3) knowing Hae(f) and Zs(f)) have
been measured for six excitation levels using a logarithmic
sweep excitation source from f1 = 10 to f2 = 100 Hz.
We can first remark that the estimated functions ZT (f) are
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Figure 5. Angle ofHae estimated from six known acoustic
loads
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Figure 6. Angle of Zs estimated from six known acoustic
loads

not so smooth as in the linear case. The curves are smooth
from f = f1 to f = 2f1. For f greater than 2f1, os-
cillations appear and increase at each harmonic of f1 (i.e
2f1, 3f1, · · · ). This phenomenon is due to the nonlinear
behaviour of the DUT and the global analysis in time of
the Fourier transform. However, the hardening nature of
the DUT can be observed Fig. 7 where the resonance fre-
quency clearly increases with the excitation level.

Although same comments can be made on the reflection
coefficient Fig. 8 (and also explain the reflection coefficient
higher than 1 from f = 50 Hz), the reflection coefficient
allows to compare the amount of energy removed out of
the system by the absorber to the case of a total energy re-
flection |RT |2 = 1. We can see on Fig. 8 that the energy is
extracted by the absorber over a frequency range widening
with the increase of the excitation level. Note that only a
part of extracted energy is absorbed by the NES while an-
other part is radiated by the outward face of the membrane
or converted to other frequencies.

An other linear estimation would be possible taking into
account only the fundamental harmonic of P (f) andU(f).
Results are not shown here.

4. NONLINEAR IMPEDANCE MODEL

The linear impedance model is not sufficient to obtain a
complete characterisation of nonlinear absorbers. To take
into account nonlinearities, we develop a model taking into
account the energy transfer between harmonics.
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Figure 7. Estimation of impedance for a loudspeaker
membrane

20 40 60 80 100

f [Hz]

0.4

0.6

0.8

1

|R
T
|

Figure 8. Estimation of reflection coefficient for a loud-
speaker membrane

4.1 Scattering matrix modelling

4.1.1 Nonlinear model

We assume here that the acoustic source generates an exci-
tation at only one frequency f (named excitation frequency
or fundamental frequency). A multi-port model proposed
in [3] consists of, in terms of impedance formulation, char-
acterizing the relationship between the harmonic compo-
nents Pn(f) of the acoustic pressure at the microphone
position and the harmonic components Qk(f) of the cor-
responding acoustic volume velocity as

Pn(f) =

∞∑
k=1

Znk(f, |P1(f)|)Qk(f) for n = 1, 2, · · ·

(4)
where the impedance term Znk(f, |P1(f)|) represents

the opposition at the frequency nf that the acoustic load
(the DUT) presents to the acoustic flow at the frequency
kf from the fundamental excitation frequency f . It is as-
sumed that Znk(f, |P1(f)|) depends only on the excitation
frequency f and the amplitude level of the fundamental

component |P1(f)|. Eqn. (4) corresponds to an extension
of the linear formulation involving ZT .

Nonlinearities can also be equivalently characterized by
a scattering matrix approach as

P−n (f) =

∞∑
k=1

Snk(f, |P1(f)|)P+
k (f) for n = 1, 2, · · ·

(5)
where P−n (f) (respectively P+

k (f)) denotes the nth

harmonic of the reflected (respectively incident) acous-
tic wave p−(t) (respectively p+(t)). The term
Snk(f, |P1(f)|) represents the transfer of energy from the
harmonic term (P+

n (f)) of the acoustic pressure at the mi-
crophone position to the harmonic term (P−k (f)).

A simplified formulation of Eqns. (4) and (5) can be
obtained assuming that :

- energy exchange can occur only from low to high
frequency (Snk(f, |P1(f)|) = 0 for n < k)

- the DUT satisfies the harmonic superposition princi-
ple [6] (Snk(f, |P1(f)|) = 0 for 1 < k < n).

which takes, for example for Eqn. (5), the following
form in matrix formulation


P−1 (f)
P−2 (f)
P−3 (f)

...

 =


S11(f) 0 0 · · ·
S21(f) S22(f) 0 · · ·
S31(f) 0 S33(f) · · ·

...
...



P+
1 (f)
P+
2 (f)
P+
3 (f)

...


(6)

To simplify the notations, we have omitted the depen-
dence on |P1(f)| on the notations of Snk(f, |P1(f)|).

Note that when the acoustic system is linear, only the
terms Znn(f) and Snn(f) are not equal to zero (where
k = n). They correspond respectively to the impedance
and reflection coefficient of the acoustic load as introduced
in Section 3. We supposed that Znn(nf) = Z11(f) and
Snn(nf) = S11(f).

We will now explain how to obtain the non zero terms
of the scattering matrix (6).

4.1.2 Measurement procedure

As in the linear method, a calibration of SKT source is
necessary to obtain its impedance Zs(f) and its transfer
function Hae(f).

The measurement procedure is based on different runs
during which it is measured the pressure p(t) inside the
tube by the microphone and the loudspeaker voltage re-
sponse u(t).

The scattering matrix (6) is then obtained row by row.
Each row needs a measurement run. Basically, we measure
S11 from a first run excited at the fundamental frequency,
which gives also responses at harmonic frequencies. With
a second run we measure S22 at a proper pressure level,
which permits to get S21 from the first measurement.

Row 1: A run is carried out choosing a range of fre-
quency from f1 to f2 and an excitation level a = A. Using
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the first harmonic terms U1(f,A) and P1(f,A) of u(t) and
p(t) respectively, S11(f,A)|) can be obtained from (3) as

S11(f,A)) =
Hm(f)Zs(f)− Zc(f)(Zs(f)Hae(f)−Hm(f))

Hm(f)Zs(f) + Zc(f)(Zs(f)Hae(f)−Hm(f))
(7)

where

Hm(f) =
P1(f,A)

U1(f,A)
. (8)

Moreover, combining the following two relations

P1(f,A) = P−1 (f,A) + P+
1 (f,A) (9)

and

S11(f,A) =
P−1 (f,A)

P+
1 (f,A)

(10)

give the reflected, P−1 (f,A), and incident, P+
1 (f,A),

contributions which are used in the next steps.
We need also to compute for each harmonic n, n > 1,

P−n (f,A) and P+
n (f,A) from Pn(f,A). To do this the two

following equations have to be solved

Pn(f,A) = P−n (f,A) + P+
n (f,A) (11)

−Pn(f,A)

Zs(nf)
=

1

ρc
(P−n (f,A)− P+

n (f,A)). (12)

The second equation expresses the nth harmonic term
QTn

(f,A) of the acoustic volume velocity with respect to
P−n (f,A) and P+

n (f,A). The left hand side of Eqn. (12)
is obtained applying the equivalent electroacoustic circuit
(Fig. 2) at harmonics n and assuming Qan(f,A) = 0 giv-
ing QTn

(f,A) = −Qsn(f,A) = −Pn(f,A)/Zs(nf).
Row 2: A run is carried out choosing a range of fre-

quency from nhmin×fmin to nhmax×fmax and a lowest
excitation level a = A/10. nhmin corresponds to the first
harmonic studied and nhmax to the last harmonic studied.

Using the first harmonic terms, U1(2f, a) and
P1(nf,A2), S22(f,A2) can be obtained from (3) as

S22(f, A) =
Hm(2f)Zs(2f) − Zc(2f)(Zs(2f)Hae(2f) − Hm(2f))

Hm(2f)Zs(2f) + Zc(2f)(Zs(2f)Hae(2f) − Hm(2f))
(13)

where

Hm(nf) =
P1(nf,A2)

U1(nf,A2)
. (14)

Finally the second term S21(f, |P1(f,A)|) is obtained
from the second equation of (6) as

S21(f,A) =
P−2 (f,A)− S22(f,A/10)P−2 (f,A)

P−1 (f,A)
. (15)

The formulas can be extended to the other rows (har-
monics).

Different excitation signals can be used in this proce-
dure.

Excitation by stepped-sine In this first case, the system
is excited by a stepped-sine, defined as

e(t) = asin(2πft+ φ) (16)

where f is the excitation frequency and a is the asso-
ciated amplitude. The phase φ is introduced arbitrarily by
the signal generator. Each experiment is done with con-
stant values for a and f . The harmonics components of
measured p(t) and u(t) are defined by

p(t) = Re(

nh∑
k=1

Pk(f, a)e−j2πkft) (17)

u(t) = Re(

nh∑
k=1

Uk(f, a)e−j2πkft) (18)

where nh represents the number of harmonics taken
into account and extracted by signal processing. The terms
Uk(f, a) for k > 1 are insignificant and have been ne-
glected.

Excitation by swept-sine The source is excited by a syn-
chronized swept-sine defined in [7] as

e(t) = asin(φ(t)) (19)

where a is the excitation amplitude and φ(t) =
2πf1e

t/L the phase with f1 the initial instantaneous fre-
quency.

L = 1
f1
round

(
Tf1

ln(
f2
f1

)

)
represents the rate of fre-

quency increase with round the rounding to the nearest in-
teger, f2 the final instantaneous frequency and T the length
of the signal e(t).

The response of a nonlinear system excited with a syn-
chronized sweep excitation is considered as a sum of har-
monics of the input signal e(t) convoluted by the impulse
responses hn(t). During a measurement run, the loud-
speaker voltage response u(t) and the acoustic pressure
p(t) are recorded simultaneously. Their response is ex-
pressed as 

p(t) =

∞∑
n=1

hpn(t+ ∆tn) ∗ e(t)

u(t) =

∞∑
n=1

hun(t+ ∆tn) ∗ e(t)
(20)

The total impulse response h(t) of the non-linear sys-
tem is obtained from the input e(t) and the output p(t) as{

hp(t) = p(t) ∗ ẽ(t)
hu(t) = u ∗ ẽ(t)

(21)

with ẽ(t) denotes the inverse filter of the input signal.
In the frequency domain, the total impulse response h(t) is
expressed as
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hp(t) = F−1

[
F [p(t)]Ẽ(f)

]
hu(t) = F−1

[
F [u(t)]Ẽ(f)

] (22)

with F and F−1 respectively the transform and the in-
verse Fourier transform. Ẽ(f) is the analytical expression
of the inverse filter of the input signal.

A temporal windowing will allow to select each har-
monic hpn(t) and hun(t) in the total impulse response hp(t)
and hu(t). These harmonics are directly linked to the har-
monics of the pressure Pn(f) present in the SKT as{

Pn(f) = a×Hp
n(f)

Un(f) = a×Hu
n(f)

(23)

and the coefficients of the scattering matrix can be cal-
culated.

4.2 Application to a passive nonlinear absorber

This method is applied to an adjustable nonlinear acoustic
absorber, made of a loudspeaker membrane described in
[1]. Three excitation levels are considered in a frequency
range from f = 10 Hz to f = 60 Hz and we limit the
study to the 7 first harmonics. The absorber is excited with
two differents signal : a stepped-sine as described by Eqn.
(16) and a swept-sine as described by Eqn. (19). Note that
these two signals are different and the absorbers will not
have the same behavior depending on the excitation signal
chosen.

The first coefficients of the scattering matrix are re-
ported Fig. 9, 10 and 11 .

The term |S11| presents a characteristic curve of reflec-
tion coefficient (see Fig. 9) for the three excitations, with
|S22| its continuation at nf and at the lowest level (see Fig.
10). Its behaviour is similar to the linear estimation of RT
in Fig. 8. |S21| show the presence of energy transfer be-
tween the fundamental and the second harmonics, which
increases with the excitation level (see Fig. 11).
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Figure 9. Estimation of the term S11 of the scattering ma-
trix for an excitation stepped-sine (dash line) and swept-
sine (full line) at same command level a

Focusing on the excitation by swept-sine, it is possible
to plot the harmonic distortion to evaluate the energy intake
of each harmonics. This indicator is defined as
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Figure 10. Estimation of the term S22 of the scattering
matrix for an excitation stepped-sine (dash line) and swept-
sine (full line) same command level a
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Figure 11. Estimation of the term S21 of the scattering
matrix for an excitation stepped-sine (dash line) and swept-
sine (full line) same command level a

DHh = 100× |Pn(f)|√∑nh
n=1 |Pn(f)|2

(24)

Fig. 12 represents the contribution of Pn(f) in the to-
tal measured signal, considering seven harmonics. We see
that the contribution of the harmonics is higher when the
excitation level is important : for A = 0.7 V only the two
first harmonics have an impact against all the harmonics
for A = 6.5 V. We also see that, for the higher excitation
level, the third harmonic have more impact that the second
one, due to the cubic nonlinearity of the absorber.

20 40 60 80 100
f [Hz]

0

50

100

T
D

H
 (

%
)

A = 0.7 V

Nh=1

Nh=2

Nh=3

Nh=4

Nh=5

Nh=6

Nh=7

20 40 60 80 100
f [Hz]

0

50

100
A = 6.5 V

Figure 12. Harmonic distortion calculated for two differ-
ent excitation level
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5. ESTIMATION BY HAMMERSTEIN MODEL

The first step of a third approach is now discussed. We con-
sider here impedance as the response of a particular nonlin-
ear system to a harmonic excitation and we try to identify
it in time domain. A cascade of Hammerstein models is
used [8]. In a cascade of N Hammerstein models, each
branch is composed of one non-linear static polynomial el-
ement xk (with zero memory) followed by a linear sys-
tem representing the memory of the entire studied system
Gk(f) (see Fig. 14 for example).

In our case, the coupled system SKT+DUT can be de-
composed as shown Fig. 13 where the subsystem between
the incident pressure wave p+(t) and the reflected pressure
wave p−(t) is modelled using a cascade of Hammerstein
models.

Figure 13. System visualization by Hammerstein model

The cascade of Hammerstein model is is represented by
the diagram in Fig. 14

Figure 14. Block diagram of Hammerstein model

As in [8], the model is estimated using a synchronized
swept-sine excitation.

The identification of the model consists to estimate the
N linear filters Gn(f) from the measurement of p+(t) and
p−(t), knowing e(t). In the same way as p(t) and u(t) are
given in Eqn. (22), p+(t) and p−(t) are written from their
impulse responses as

p+(t) =

∞∑
n=1

hp
+

n (t+ ∆tn) ∗ u(t)

p−(t) =

∞∑
n=1

hp
−

n (t+ ∆tn) ∗ u(t)

(25)

Recalling that incident and reflected waves are linked,
in plane waves hypothesis, to the pressure and the acoustic
flow as 

p(t) = p+(t) + p−(t)

q(t) =
S

ρc
(p+(t)− p−(t))

(26)

and combining Eqns. (22), (25) and (26), we obtained
hpn(t) = hp

+

n (t) + hp
−

n (t)

hqn(t) =
S

ρc

(
hp

+

n (t)− hp
−

n (t)
) (27)

where hqn(t) = z̃(t)hpn(t) with z̃(t) the inverse Fourier
of Zs(nf)−1 (see Eqn. (12)). Finally solving Eqns (27),
we deduce hp

+

n (t) and hp
−

n (t).
Writing Eqn. (22) for p+(t) and p−(t), it is possible as

in [7] to obtain from the Hammerstein model the following
relation written in matrix form


Hp−

1 (f)

Hp−

2 (f)
...

 =


Hp+

1 (f) Hp+
2

1 (f) · · ·
Hp+

2 (f) Hp+
2

2 (f) · · ·
...

...


G1(f)
G2(f)

...


(28)

where Hp+

n (f) (respectively Hp−

n (f)) is the Fourier
transform of p+n (t) (respectively p−n (t)). This equation can
be solved with respect to theGn(f) characterizing thus the
Hammerstein model.

The estimation of Gn(f) for the fundamental and the
second harmonic are given in Fig. 15.
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Figure 15. Estimated linear filters Gn(f)

To verify the reliability of the results, it was plotted on
Fig. 16 a comparison between the measured reflected pres-
sure, obtained by (27) in frequency domain, and the recon-
structed reflected pressure with Gn(f) filters as

P−(f) =

Nh∑
n=1

P+(f)nGn(f) (29)

The two curves are fitting well in terms of level and
frequencies.

This reconstruction of P−(f) knowing P+(f) using
the Hammersien model will permit in a future work to ob-
tain directly the scattering matrix with a single run test.
This will be a part of future work.

6. CONCLUSION

We were able here to obtain the acoustic characteriza-
tion of a nonlinear vibroacoustic absorber, for low fre-
quency and high sound level using a short impedance tube
named ”Short Kundt’s Tube” and with various approaches.
The first one is based on the measure of the apparent
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Figure 16. Comparison between the measured reflected
pressure and the reconstructed reflected pressure thanks to
Gn(f) filters

impedance. Impedance and reflection coefficients can be
obtained by using a pressure measurement inside the tube
and a prior characterization of the source. The second
one permits to take into account the nonlinear behaviour
of absorbers. It gives information about nonlinear energy
transfer to higher harmonics under the form of a scattering
matrix, coupling the harmonic terms of the incident and
reflected acoustic pressures. This matrix can be obtained
for a given excitation level by two different excitations: a
stepped-sine treated by signal processing and a synchro-
nized swept-sine whose impulse responses are processed.
The results show a nonlinear behaviour of the different
absorbers and the nonlinear representation of the system
shows an energy transfer to higher harmonics. An other
method based on Hammerstein model permits to have ac-
cess to components of incident and reflected waves regard-
less of the excitation level.

In futur works, the scattering matrix will be obtain from
the Hammersteinn model and compared to the other re-
sults. Tests will be realized on other absorbers. Numerical
simulations will be performed to validate these experimen-
tal results.
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