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ABSTRACT

Several realizations of electroacoustic MEMS transducers
where the moving electrode is perforated for technological
reasons have been published recently. Since the presence
of the holes changes the vibration characteristics of the
plate (in terms of eigenmodes) and the coupling between
the incident acoustic pressure and the pressure inside the
transducer through these holes influences significantly the
behaviour of the transducer, a precise modelling of such
devices is of interest. The modelling approach proposed
herein employs an approximated expression of the eigen-
functions of the perforated clamped plate in form of two-
dimensional series expansion over the system of functions
related to the solution for one-dimensional beam clamped
at both ends, the coefficients of the series being calculated
from the numerical solution for the eigenfunctions of the
perforated clamped plate. The convergence issues and the
dependence of the approximation error on the number of
terms in the series are discussed. An integral formulation
providing the acoustic pressure field inside the air gap be-
tween the moving electrode and the fixed one is then pro-
posed. It takes into account the strong coupling between
the acoustic pressure field in the air gap and the displace-
ment field of the plate, the thermal and viscous boundary
layer effects and the acoustic short circuit between both
sides of the perforated plate through the holes.

1. INTRODUCTION

The current progress in the domain of the techniques of
microfabrication enables to focus on new structures of
MEMS devices. The fact that the realisations of electroa-
coustic MEMS transducers with moving electrode in form
of perforated rectangular plate clamped at all edges have
appeared recently [1, 2] rises the attention paid on the the-
oretical modelling of such devices.

The modelling approach presented herein employs an
integral formulation for the acoustic pressure in the fluid
gap between the perforated plate and fixed backplate [3,4].
Such formulation requires the use of analytically expressed
eigenfunctions of the moving electrode. Since it is a very
hard task (to our knowledge) to find the analytical expres-
sion for the eigenfunctions of the perforated rectangular
clamped plates, an approximated solution based on the ex-

Figure 1. Geometry of the transducer: a) the dimensions
of the perforated plate, b) 3D cut view of the transducer in
the 1st quadrant

pressions of the eigenfunctions in the form of truncated se-
ries expansion calculated from the numerical solution has
been used herein. This method has been previously verified
on the non-perforated rectangular clamped plates [5, 6].

2. DESCRIPTION OF THE DEVICE

The Fig. 1 shows the geometry of the transducer, which
consists a of moving electrode in form of a perforated
square clamped plate with a halfside a and square holes,
a backplate being separated from the perforated electrode
by a thin fluid-gap of thickness hg and a peripheral cavity
of volume Vc.
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3. EIGENFUNCTIONS OF PERFORATED
SQUARE CLAMPED PLATE

This section deals with the approximate expression of the
eigenfunctions of the perforated plate. Such an expression
is obtained as a truncated series expansion of a numeri-
cal (FEM) solution. The numerical results have been cal-
culated using Comsol Multiphysics software, version 5.4.
with help of the Structural Mechanics Module for 3D ge-
ometry [7]. This module offers the eigenfunction study,
the results of which are used below.

3.1 Analytical approximation of the eigenfunctions

Present analytical expression of eigenfunctions ψmn is
based on an approximation employing the known symmet-
ric eigenfunctions of the 1D beam as the basis of the series
in the following manner:

ψmn (x, y) =

N∑
q=1

N∑
r=1

c(qr),(mn)φq (x)φr (y) , (1)

where

φq (x) =
1√
2a

[
cos

(
αs
qx

)
cos

(
αs
qa
) −

cosh
(
αs
qx
)

cosh
(
αs
qa
)
]
, (2)

φr (y) having the same form as φq (x). The coefficients
c(qr),(mn) have been calculated from the numerically cal-
culated eigenfunctions nψmn as follows

c(qr),(mn) =
1

2a2

∫ a

−a

∫ a

−a

nψmnφq (x)φr(y)dxdy. (3)

The analytical approximation of the eigenfunction has
been compared with numerically calculated solution for
the 1st mode obtained from FEMmodel as shown in Fig. 2,
leading to findings on accuracy of proposed method.

Figure 2. a) Numerical solution and b) analytical approxi-
mation of ψ11(x, y).

Fig. 3 shows the differences between numerical solu-
tions and present analytical approximations for an example
of 4 different modes in regard to the summation limit N in
Eqn. (1) (the number of terms in the series beingN2).

To further analyze and verify the solution proposed
herein the mean error of the approximation was calculated
as follows:

Err =

√√√√∑M

i=1(ψmni − nψmni)
2∑M

i=1
nψmn

2
i

· 100% (4)

Figure 3. Differences between the numerical solution and
the present analytical approximation.

where ψmni
is the value of the approximated eigenfunction

ψmn at the i-th node of the mesh used to obtain the numer-
ical eigenfunctions nψmn andM is the total number of the
mesh nodes. Fig. 4 shows clearly that the mean error is de-
creasing with increasing number of terms of the series, but
the value of error is different for different modes.
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Figure 4. Mean error of the approximation of ψmn(x, y).

4. COUPLING BETWEEN THE PLATE
DISPLACEMENT AND THE ACOUSTIC
PRESSURE IN THE THIN FLUID LAYER

The displacement field of the rectangular clamped plate
plate can be written as an expansion over the orthonormal
eigenfunctions [4–6]

ξ (x, y) =
∑
mn

ξmnψmn (x, y) , (5)

where the approximated eigenfunctions from the section
3.1 can be used in case of the perforated plate. The modal
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coefficients ξmn are given by

ξmn =
1

D
[(
k2xm + k2yn

)2 − k4p

] ·

·
∫ a

−a

∫ a

−a

ψmn(x, y)[p(x, y)− pinc] dxdy,

(6)

where D =
Eh3

p

12(1−ν2) is the flexural rigidity, ν being the
Poisson’s ratio,E the Young’smodulus, hp is the thickness
of the plate, k4p = Ms

D
ω2, Ms = hpρp is the mass per unit

area, ρp being the density of the plate.
The wave equation govering the propagation of the

acoustic pressure in the air gap is expressed as
(
∂2
xx + ∂2

yy + χ2
)
p (x, y) = −U (x, y) , (7)

where the complex wavenumber χ accounts for the
thermo-viscous effects in the air gap, the source term
U(x, y) contains the plate displacement ξ(x, y) and the in-
cident acoustic pressure pinc (since the acoustic pressure
in the air gap is coupled with the incident acoustic pres-
sure through the holes in the perforated plate) and both of
them include the perforation ratio R = NhSh

4a2 that reflects
how much of the plate surface is occupied by holes (Nh

being the number of holes and Sh the cross-section of one
hole).

The acoustic pressure field in the small cavity pc is as-
sumed to be uniform. The solution of the Eqn. (7) can be
expressed as follows:

p (x, y) =

∫ a

−a

∫ a

−a

G (x, x0; y, y0)U (x0, y0) dx0dy0+

pcIG (x, y) ,
(8)

and where the Green function can be chosen as

G(x, x0; y, y0) = g(x, x0; y, y0) + g(x,−x0; y, y0)+

g(x, x0; y,−y0) + g(x,−x0; y,−y0),
(9)

with

g(x, x0; y, y0) = −iH−

0

(
χ

√
(x− x0)

2 + (y − y0)
2

)
,

(10)
H−

0 denoting the Hankel function of the second kind of
order 0.

Substituting the acoustic pressure from Eqn. (8) to
Eqn. (5), the latter can be than reformulated in a matrix
form

[−A+ B] (Ξ) = (C), (11)

where (Ξ) and (C) are the column vectors of elements ξmn

and cmn = −pinc
∫ a

−a

∫ a

−a
ψmn(x, y)dxdy respectively,B

is a diagonal matrix of elements D
[(
k2xm + k2yn

)2 − k2p

]
and the elements of the matrix A can be found by sub-
stituting expression for pressure Eqn. (8) into the integral∫ a

−a

∫ a

−a
ψmn(x, y)p(x, y) dxdy.

5. RESULTS AND DISCUSSION

In this section the results of the analytical procedure de-
scribed herein are compared with the results of the full 3D
FEM simulation of the transducer behaviour. The dimen-
sions and other parameters of the transducer are summa-
rized in Tab. 1, the properties of the air are given in Tab. 2.

Parameter Value Unit
Plate halfside a 0.5× 10−3 m
Plate thickness hp 10× 10−6 m
Square hole side ah 5× 10−6 m
Number of holesNh 100 -
Cavity volume Vc 1× 10−10 m3

Airgap thickness hg 10× 10−6 m
Density (silicon) ρb 2329 kg/m3

Plate Young’s modulus E 160× 109 Pa
Poisson’s ratio ν 0.27 -

Table 1. Dimensions and other parameters of the trans-
ducer.

Parameter Value Unit
Static pressure P0 101330 Pa
Static temperature T0 293.15 K
Density ρ0 1.204 kg/m3

Adiabatic speed of sound
c0

343.2 m/s

Shear dynamic viscosity
μ

1.814× 10−5 Pa s

Bulk dynamic viscosity
μB

1.088× 10−5 Pa s

Thermal conductivity λh 25.77× 10−3 W/(mK)
Ratio of specific heats γ 1.400 -
Specific heat coefficient
at constant pressure per
unit of mass CP

1005 J/(kgK)

Table 2. Parameters of the thermo-viscous fluid (air).

Fig. 5 shows the frequency dependency of the mean dis-
placement ξmean =

∫∫
a×a

ξ(x, y)dxdy/a2, which is the
variable of interest in the domain of acoustic receivers. A
good agreement can be noted between the result of the
present model (blue curve) and the reference numerical
(FEM) one (black points) except for very low frequencies
where the discrepancy is likely due to the lack of precision
of the numerical integration when calculating the members
of the matrix A (the pressure difference at both sides of the
plate being very low at low frequencies hence the accuracy
of the numerical integration becoming more important).

6. CONCLUSIONS

An analytical model of the miniaturized transducer
with moving electrode in form of perforated rectangular
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Figure 5. Magnitude (upper figure) and phase (lower fig-
ure) of the mean displacement of the perforated plate as a
moving electrode of the MEMS transducer: Comparison
between the present model (blue curve) and the reference
FEM model (black dots).

clamped plate has been developed. The approximate an-
alytical expression of the eigenfunctions of the perforated
plate in form of truncated series expansion has been found
and used in an analytical procedure employing an integral
formulation for the acoustic pressure in the air gap loading
the moving plate. A good agreement between the results
of the presented model and the reference FEM solution has
been found, the discrepancies at low frequency range being
likely related to the precision of the numerical integration.
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