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. Numerical experiments corroborate these theoretical results.

Introduction

This paper prospects the stability conditions coming from the von Neumann stability analysis of the transport equation with various finite difference discretizations. It provides a large variety of CFL-like stability conditions. These conditions observed in finite difference methods [START_REF] Deriaz | Direct numerical simulation of turbulence using divergence-free wavelets[END_REF] also apply to other numerical methods such as Discontinuous Galerkin [START_REF] Yuan | The L 2 -norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations[END_REF], Continuous Finite Elements [START_REF] Deriaz | Magnetic equations with FreeFem++: the Grad-Shafranov equation & the current hole[END_REF][START_REF] Grote | Methods and algorithms for scientific computing Runge-Kuttabased explicit local time-stepping methods for wave propagation[END_REF] as well as Cartesian Level Set methods [START_REF] Gallinato | Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation[END_REF].

In the following we denote the time step by t, the space step by x and the velocity by a. When a is omitted then x stands for x/a. The CFL condition, a physical criterion from the founding paper [START_REF] Courant | On the partial difference equations of mathematical physics[END_REF] based on the influence areas of the points, asserts that the numerical simulation of a transport phenomenon at speed a has to satisfy t ≤ C x/a with C a constant close to 1. It is a necessary condition for the numerical stability of explicit schemes.

Nevertheless, the linear CFL condition may not be sufficient to ensure the numerical stability. Thanks to the von Neumann stability analysis [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF], and allowing a controlled exponential growth of the error, it is possible to establish stability conditions of the type t ≤ C x α with α ∈ [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF][START_REF]Discontinuous Galerkin Methods: Theory, Computation and Applications[END_REF] a rational number. This exponent α is given by α = p(2q- 1) q(2 p-1) with p and q integers such that q ≥ p > 0. This result was announced but not justified in [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF]. Here we detail the mathematical premise. Then we also prove and test these non-linear CFL conditions.

The organization of the paper is the following: in the first part we briefly review the stability domain of the time schemes, mainly studied for the ordinary differential equation theory and comprehensively presented in references [START_REF] Hairer | Solving Ordinary Differential Equations. I. Nonstiff Problems[END_REF][START_REF] Hairer | Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems[END_REF], in the second part we discuss the spectra of the finite difference approximations, in the third part, we combine these two elements to make the stability condition t ≤ C x α appear, and in the fourth part we test this condition numerically.

Stability Domain of the Time Schemes

Many of the time schemes used in Partial Differential Equations [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] were developed in the frame of Ordinary Differential Equations [START_REF] Hairer | Solving Ordinary Differential Equations. I. Nonstiff Problems[END_REF][START_REF] Hairer | Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems[END_REF]. We will briefly review the usual von Neumann stability analysis of the schemes for ODE's.

Let us consider the differential equation

∂ t u = F(u), t ≥ 0. (1.1) 
To solve this equation numerically, one can use an explicit one step scheme-i.e. a scheme of Runge-Kutta type:

u (i) = u n + t i-1 j=0
a i j F(u ( j) ), for 0 ≤ i ≤ s, and u n+1 = u (s) , (

where u n is an approximation of the solution u at time n t. Or, one can use an explicit multistep scheme [START_REF] Peyret | Spectral Methods for Incompressible Viscous Flow[END_REF] which is written:

u n+1 = r i=0 a i u n-i + t s i=0 b i F(u n-i ). (1.3)
Depending on the choice of the coefficients a i j or a i and b i , the numerical scheme will have a certain accuracy and certain stability features.

In order to derive the stability properties of these schemes it is usual to consider the differential equation

∂ t u = ζ u i.e. the case F(u) = ζ u with ζ ∈ C. Then the scheme (1.2) satisfies u n+1 = G(z)u n , ( 1.4) 
where z = ζ t. The polynomial function G is called the amplification factor.

For multistep schemes, the definition of the amplification factor has to be more general. Let

X n = ⎛ ⎜ ⎜ ⎜ ⎝ u n u n-1 . . . u n-s ⎞ ⎟ ⎟ ⎟ ⎠ , ( 1.5) 
then the scheme (1.3) corresponds to X n+1 = M(z)X n , where M(z) is a (s + 1) × (s + 1) matrix. As X i+n = M(z) n X i , we will be interested in the eigenvalues of M(z) and particularly in the one with maximal norm. Hence, in the multistep case, |G(z)| stands for the maximum of the norms of the eigenvalues.

In the theory of ordinary differential equations [START_REF] Hairer | Solving Ordinary Differential Equations. I. Nonstiff Problems[END_REF], the von Neumann stability domain gathers all the points z ∈ C where the amplification factor is less than one:

D = {z ∈ C, |G(z)| ≤ 1}.
(1.6)

In Fig. 1 we represented the stability domains of the first four Runge-Kutta schemes and of a Runge-Kutta scheme of order 5 taken from the numerical analysis manual [START_REF] Crouzeix | Analyse numérique des équations différentielles[END_REF].

When we have to deal with partial differential equations, the semi-discretization of the equations (only in space, and not in time), and their diagonalization (when it is possible) stem to multiple ordinary differential equations. For instance, the transport equation on the domain T = [0, 1] with periodic boundary conditions

∂ t u + a∂ x u = 0, (t, x) ∈ [0, T ] × T
for a ∈ R given and u : T → R the unknown, when using a Fourier spectral discretization in space stems to

∂ t û + iaξ û = 0, t ∈ [0, T ] (1.7)
for each wave number ξ ∈ 2π[-N /2, N /2] of the discretization

u(t, x) = N /2 k=-N /2 û(t, k) e 2iπ kx
in the usual Fourier basis. So with this discretization, the time scheme is stable for the transport equation if

-iaξ ∈ D for ξ ∈ 2π[-N /2, N /2].
Hence the position of the domain D with respect to the y-axis near zero dictates the behavior of the schemes for simulating transport-dominated equations. If ∂D goes to the right (RK3, RK4) then the scheme is dissipative and stable when the stability domain D encloses the segment iaπ t[-N , N ]. Therefore it is stable under the linear CFL condition t ≤ C x/a. If ∂D goes to the left (Euler, RK2, RK5) then the scheme is excitatory. Therefore it calls a stronger CFL condition t ≤ C( x/a) α with α > 1 [START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[END_REF][START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF][START_REF] Deriaz | Stabilité sous condition CFL non linéaire[END_REF].

In Fig. 2 we show the stability domains of the first five Adams-Bashforth schemes. According to the behavior of the tangencies along the y-axis, we can say that the schemes AB3 and AB4 are stable under the usual linear CFL condition while the schemes Euler, AB2 and AB5 are not. In a neighborhood of zero, the boundary of D satisfies:

z = i(θ + o(θ )) -T D θ 2 p + o(θ 2 p ), θ ∈ R close to 0. (1.9)
The parameters p ∈ N and T D ∈ R are computed from the coefficients of the polynomial G(z) for the one step schemes Eq. (1.2), or by writing directly e iθ as an eigenvalue of M(z) for the multistep schemes Eq. (1.3). We refer to [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF] for more details.

Space Differentiation

Spectrum of the Discrete Differentiation

Finite differences originate from the approximation of functions by polynomials, with a first appearance in Newton's notes as early as the seventeenth century [START_REF]Mathematics of the 19th Century[END_REF]. It was the first approximation used to solve Partial Differential Equations numerically, particularly in computational fluid dynamics [START_REF] Mohan Rai | Direct simulations of turbulent flow using finite-difference schemes[END_REF]. Following [START_REF] Trefethen | Finite difference and spectral methods for ordinary and partial differential equations[END_REF] which introduces to finite difference approximations, we extract the important features of the numerical approximations regarding the CFL stability. These are necessary to unwrap the non-linear CFL stability criteria.

We consider the problem of approximating the pointwise differentiation of a function. This operation modifies the spectrum of the differential operator-contrarily to a spectral discretization. Given a smooth function u : R → R discretized on a regular space grid {k x, k ∈ Z}, we approximate ∂ x u(x) for x ∈ xZ using the points {xm x, . . . , x + n x} for m, n ∈ N-i.e. the stencil [-m,n]-by:

A u(x) = 1 x n k=-m a k u(x + k x) (2.1)
where the operator A denotes a discrete differentiation approximating ∂ x .

The spectrum of A can be obtained by taking

u(x) = e iξ x x , then A u(x) = 1 x A(ξ ) u(x) with A(ξ ) = n k=-m a k e ikξ , ξ ∈ [-π, π]. (2.2)
We plot this spectrum on the plan of complex numbers by considering the curve

S = {A(ξ ), ξ ∈ [-π, π]} ⊂ C. (2.3) Since a k ∈ R for all k, we have A(-ξ) = A(ξ ).
Hence the curve presents an axial symmetry along the x-axis.

To be consistent, the discrete differentiation A has to satisfy

A u(x) = ∂ x u(x) + O( x) i.e. k a k = 0 k k a k = 1 which corresponds to A(0) = 0 A (0) = i . ( 2.4) 
The other interesting properties are listed below:

• the first and most important issue is the order of the approximation. An approximation A is said to be consistent of order β > 0 if it satisfies

∃C > 0, ∀u ∈ C ∞ 0 , ∂ x u -A u L 2 ≤ C x β ∂ β+1 u L 2 , ( 2.5) 
• another important issue affects the stability with respect to the time integration: the upwind or downwind feature of a scheme. A necessary condition for the time integration to be stable is that the spectrum of the differentiation have no strictly positive real part i.e. S ⊂ C -= {ξ ∈ C, Re ξ ≤ 0}, see Fig. 3. For centered finite differences, we have S ⊂ iR. • and finally, another important issue, essential for the present article, regards the conservativity of the space discretization. The conservativity of a differentiation is linked to the tangency of its spectrum S to the y-axis:

A(ξ ) = i (ξ + o(ξ )) -T S ξ 2q + o(ξ 2q ) (2.6)
with q ∈ N * and T S > 0.

The link between the tangency expression (2.6) and the conservativity goes as follows: let us assume that we are using a differentiation A satisfying (2.6), then the method of lines (i.e. considering exclusively the space discretization) transforms the transport equation

∂ t u = ∂ x u, into ∂ t û(t, ξ) = x -1 A(ξ x) û(t, ξ).
The solution of this equation is given by û(t, ξ) = exp( x -1 A(ξ x)t) û(0, ξ). So, for x → 0, according to (2.6), the damping of the frequency ξ may be approximated by 

| û(t, ξ)| = exp(-T S ξ 2q x 2q-1 t + o( x 2q-1 ))| û(0, ξ)| (2.7) = (1 -T S ξ 2q x 2q-1 t + o( x 2q-1 ))| û(0, ξ)|.
(

The multiplicative factor goes to 1 as fast as T S x 2q-1 goes to zero. Hence a larger q allows a better conservation of the energy. Notwithstanding the time scheme, the frequency ξ will be damped after a typical time t ξ = 1/T S ξ 2q x 2q-1 . This concerns the upwind differentiations as for instance the first order upwind scheme with a 0 = -1, a 1 = 1 in (2.1) which is known to dissipate a lot. As we can see on Fig. 6, the dark blue curve only retains a few coarsest Fourier modes. Symmetric schemes have their spectra included in the y-axis (see Fig. 3 for second order centered scheme spectrum). Hence they conserve the energy exactly [START_REF] Verstappen | Symmetry-preserving discretization of turbulent flow[END_REF]. On the other hand, as we can see on Fig. 8 they tend to create spurious oscillations.

Most Conservative Differentiations

For further experiments, we look for discretized differentiations A maximizing the tangency of the spectrum to the y-axis, i.e. maximizing the number q in the expression (2.6). From (2.2), we deduce:

A(ξ ) = n k=-m a k e ikξ = n k=-m a k ≥0 (ikξ) ! = ≥0 i ! n k=-m a k k ξ . (2.9)
Maximizing the order of the approximation is equivalent to solving the system of equations

n k=-m a k = 0 (2.10) n k=-m k a k = 1 (2.11) 2 ≤ ≤ s, n k=-m k a k = 0 (2.12)
for s = m + n, so this provides an order s approximation. A finite differentiation is stable if its spectrum shows no strictly positive real part. If s is odd-i.e. with an even number of points-one can notice that there is only one stencil providing an order s stable finite differentiation, and if s is even, that there are two of them. For each s, one stable instance corresponds to an upwind scheme, and the other-for s even-to a centered scheme.

In order to maximize the tangency of S to the y-axis, we extract the real part of the polynomial expansion of A(ξ ) (2.9). As a result, only the equalities (2.4) and (2.12) with even parameter = 2 enter into play:

= 0, n k=-m a k = 0 (2.13) = 1, n k=-m k a k = 1 (2.14) 2 ≤ 2 ≤ 2(q -1), n k=-m k 2 a k = 0 (2.15)
If a -k = -a k , then the scheme is centered and q = +∞. If it is not the case, then we have an expansion of the type:

A(ξ ) = i ξ + o(i ξ) + (-1) q (2q)! n k=-m k 2q a k ξ 2q + o(ξ 2q ). (2.16)
From (2.9), the real part of A(ξ ) is given by:

f (ξ ) = Re(A(ξ )) = a 0 + N k=1 (a k + a -k ) cos(k ξ) (2.17)
with N = max(n, m) and (a k ) completed by a k = 0 when k does not remain to the stencil.

In the following we consider that N = n. We maximize the number of vanishing derivatives of f at zero, by taking

f (ξ ) = -K m,n (1 -cos ξ) n , ( 2.18) 
with K m,n a positive constant for n ≥ m. With this choice, q = n in the expansion (2.16).

Remark 1 This form for the real part of A(ξ ) maximizes the tangency to the y-axis. And, since it does not contain any strictly positive value, it provides a stable upwind differentiation.

For m = 0, this leads to the unique solution K 0,n = 2 n-1

C n-1 2n-2 , a 0 = - C n 2n 2 C n-1 2n-2
and a k =

(-1) k+1 C n+k 2n C n-1 2n-2
for k ≥ 1 [START_REF] Gustafsson | High Order Difference Methods for Time Dependent PDE[END_REF].

For the further numerical experiments, we will be using the case m = n -1 with maximum order of approximation (i.e. order s = 2n -1), leading to the coefficients of Table 1 for a velocity going from the right to the left: ∂ t u + a ∂ x u = 0 with a < 0. 
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We plotted the spectra of the discretized operators A applied to these modes in Fig. 3.

Stability Condition 1t ≤ C 1x ˛with ˛> 1

The partial differential equation (1.7) has solutions of the type u(t, x) = f (xat). So in particular for ξ ∈ R we have as a solution, the wave function u(t, x) = u 0 e iξ(x-at) . Discretized with x and t, x k = k x and t n = n t, for u n (x k ) = u(t n , x k ) = e iξ(x k -at n ) the numerical scheme provides u n+1 = g(ξ, t, x)u n . Following [START_REF] Strikwerda | Finite Difference Schemes and Partial Differential Equations[END_REF], the scheme is stable under the condition |g(ξ, t, x)| ≤ 1 + C t with C ≥ 0 a constant which limits the exponential growth of the numerical solution:

u n ≤ |g(ξ, t, x)| n u 0 ≤ (1 + C t) (t n / t) u 0 ≤ e C t n u 0 . (3.1)
We concentrate on the module of g(ξ, t, x) but numerical accuracy also depends on its phase -iξω(ξ, t, x) t defined by g(ξ, t, x) = |g(ξ, t, x)|e -iξω(ξ, t, x) t and how close ω(ξ, t, x) remains to a. Considering Eq. (3.1), we notice that the case C > 0 is more permissive than the case C = 0. The case C > 0 is actually encountered in numerical simulations and allows to explain more accurately some actual stability phenomena. Then we deduce the following result which links the non linear CFL condition to the stability domain of the time scheme and to the spectrum of the discrete differentiation applied to the space variable: Theorem 3.1 Let us consider a numerical solver for the transport equation ∂ t u + a ∂ x u = 0 using finite differences with time step t and space step x. If, close to zero, the boundary of the stability domain of the time integrator-noted D in (1.6)-satisfies:

∂D : z = i(θ + o(θ )) -T D θ 2 p + o(θ 2 p ) (3.2)
for p ∈ N and T D > 0, and if the spectrum S = {A(ξ ), ξ ∈ [-π, π]} of the discrete differentiation-from (2.3)-satisfies: for q ∈ N and T S > 0, then the von Neumann stability condition

S : z = i(θ + o(θ )) -T S θ 2q + o(θ 2q ) (3.3)
u n+1 L 2 ≤ (1 + C t) u n L 2 (3.4) of the numerical solution (u n ) is given by t ≤ C x α (3.5)
with C > 0 a constant independent of t and x and with

• α = 1 if q ≤ p (stable under linear CFL condition), • α = p(2q-1) (2 p-1)q ∈ (1, 2] if q > p
, and in this case, the constant C from (3.5) is written:

C = C q-p q(2 p-1) T p q(2 p-1) S T 1 2 p-1 D p q p q-p - p q q q-p -q-p q(2 p-1) , ( 3.6) 
with p and T D from (3.2), q and T S from (3.3) and C from (3.4).

Remark 1 If q = +∞ (centered schemes, spectral method) it makes appear the case presented in [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF] for conservative space discretizations: α = 2 p 2 p-1 .

Remark 2

The localization of all possible values of α is plotted in Fig. 4. It consists in accumulations from the left to the points of the sequence ( 2 p 2 p-1 ) p≥1 . This sequence itself has an accumulation point at 1, from the right.

Remark 3

This result also applies to other schemes than finite differences. Following Cockburn et al. [START_REF]Discontinuous Galerkin Methods: Theory, Computation and Applications[END_REF], a Discontinuous Galerkin method combining a second order upwind scheme in space (q = 2) with a forward Euler scheme in time ( p = 1) turns out to be stable under the condition t ≤ C x α (3.5) with the exponent α = 3 2 , which explains why this numerical scheme "is stable if t

x is of order

√ x".
Proof We prove Theorem 3.1 directly by computation. It also corresponds to geometrical considerations: the spectrum t x × S must not get out of the domain of stability D by more than C t, see Fig. 5.

Geometrically, if q ≤ p and S ∩iR = {0} then for τ = x t sufficiently small the spectrum τ S fits inside the stability domain D.

Let us consider the case q > p. The demonstration relies on the same computations as the demonstration of Theorem 3.1 of [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF]. The tangency of the stability domain to the y-axis, Eq. (3.2), corresponds to an amplification factor

G(z) = β 0 + β 1 z + β 2 z 2 + • • • such that |G(i ζ )| 2 = 1 + 2T D ζ 2 p + o(ζ 2 p ) (3.7)
for ζ ∈ R close to zero. We assume the convergence of this power series, hence

G(z) = G 0 (z) + o(|z| 2 p ) with G 0 a polynomial.
We are interested in the case that deviates a little from the spectral case z ∈ i R, and we need to compute |g(ξ, t, x 

)| = |G( t x A(ξ ))| for A(ξ ) = iξ -T S ξ 2 p + o() / ∈ i R.
G(a + i b) = 1 + (a + i b) + β 2 (a + i b) 2 + • • • + β 2 p (a + i b) 2 p + o(|z| 2 p ) (3.8) then |G(a + i b)| 2 = (1 + a + β 2 a 2 -β 2 b 2 ) 2 + (b + 2β 2 a b) 2 + • • • + o(b 2 p ) (3.9) = 1 + 2a -2β 2 b 2 + • • • + b 2 + • • • + o(a) + o(b 2 p ) (3.10)
As all the terms a m+1 b n are negligible with respect to a for m + n > 0, then

|G(a + i b)| 2 = |1 + (a + i b) + β 2 (i b) 2 + β 3 (i b) 3 + • • • | 2 + o(a) + o(b 2 p ) (3.11) = (1 + a -β 2 b 2 + β 4 b 4 + • • • ) 2 + (b -β 3 b 3 + • • • ) 2 + o(a) + o(b 2 p ) (3.12) = 1 + 2a + (1 -2β 2 )b 2 + • • • + ⎛ ⎝ 2 j=0 (-1) + j β j β 2 -j ⎞ ⎠ b 2 + • • • + o(a) + o(b 2 p ) (3.13) = 1 + 2a + 2T D b 2 p + o(a) + o(b 2 p ) (3.14)
Now, using the fact that a = -T S τ ξ 2q + o(τ ξ 2q ), ξ ∈ [-π, π], and b = τ ξ + o(τ ξ ), we look for the maximal value of:

f (τ, ξ ) = 1 -2T S τ ξ 2q + 2T D τ 2 p ξ 2 p = |G(τ A(ξ ))| 2 + o(τ ξ 2q ) + o(τ 2 p ξ 2 p ) (3.15)
This maximum is reached for

ξ = ξ 0 = p T D q T S 1 2(q-p) τ 2 p-1 2(q-p) (3.16) then |G(τ A(ξ 0 ))| 2 = 1 + 2 T q q-p D T p q-p S p q p q-p - p q q q-p τ p(2q-1) q-p + o(τ p(2q-1)
q-p ). (3.17)

Hence, knowing that τ = t x , the von Neumann stability condition

|G(τ A(ξ 0 ))| 2 ≤ 1 + 2C t is given by t x p(2q-1) q-p ≤ C T p q-p S T q q-p D p q p q-p - p q q q-p -1 t ( 3.18) 
i.e. by the condition t ≤ C x α (3.5) with α = p(2q-1) (2 p-1)q and C given by (3.6).

Numerical Experiment

We test the stability predictions (3.5) of Theorem 3.1 on the simplest case of hyperbolic equation. On the interval [0, 1] with periodic boundary conditions denoted T, we simulate the transport of a function f : T → R by a constant speed, i.e. we solve

∂ t u = -∂ x u for (t, x) ∈ [0, 5] × T where u :[0, 5] × T → R (t, x) → u(t, x)
with initial condition u(0, x) = f (x) and periodic boundary condition u(t, 0) = u(t, 1). During this process, the function f makes five laps, and the exact solution at time t = 5 is:

u(5, x) = f (x).
This (rather simple) experiment accounts of numerous simulations where the transport dominates the stability properties of the numerical solution. We apply an explicit scheme of Runge-Kutta type with time step t to the PDE ∂u = F u:

u n+1 = u n + b 1 t F (u n + b 2 t F (u n + . . . b s-1 t F (u n + b s t F u n ) . . . )) (4.1)
where the parameters (b r ) 1≤r ≤s are chosen according to the desired amplification factor. The coefficients β of the amplification factor (3.7) are given by:

β = k=1 b k .
We couple this time integration with the finite differences from Sect. 2.1. And we use the spacing x = 1 N between the N points of the discretization. So it allows to observe the effects of the parameters p-regarding the time integration-and q-regarding the finite differences-on the stability condition t max ( x) and to evidence the exponents of Table 2.

For simplicity reasons, we apply second order Runge-Kutta schemes which maximize p and whose coefficients are given by Table 3.

We simulate the transport of the function f (x) = x which presents a discontinuity at x = 0 by a constant velocity. Then, in Fig. 6, we represent the Fourier transform of the numerical solution at time t = 5 obtained using the second order Runge-Kutta integration scheme in conjunction with several finite difference approximations. Three typical cases appear, using a linear CFL condition: 

r 1 2 3 4 p 1 1 2 1 1 2 3 1 1 2 1 4 4 1 1 2 2- √ 2 2 2- √ 2 4
-the numerical scheme is stable but the high frequencies are dumped, e.g. second order Runge-Kutta time scheme with a second order upwind space differentiation ( p = 2 and q = 2, see Fig. 6), or every third or fourth order Runge-Kutta time schemes, -an instability occurs at high frequency ξ = π N 2 , e.g. Euler or Runge-Kutta 2 in association with centered finite differences (see Figs. 6,8), -an instability occurs at low frequency ξ = C N -1/2q N , q ≥ 2 (see Fig. 6), e.g. Euler with upwind of order two, Runge-Kutta 2 with upwind of order greater or equal to four (see Figs. 7,8). It can be checked that an order 2n scheme has a tangency parameter q at least equal to n + 1 as indicated in Theorem 3.2 of [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF].

In Figs. 6, 7 and 8, the number of points was chosen equal to N = 271, and the time step equal to 5 6 t max with t max coming from the second experiment equation (4.2). In Fig. 6 we can observe the spectra of the transported function with six different finitedifference schemes. The corresponding physical results are plotted in Figs. 7 and8. We remark that all the numerical solutions present spurious oscillations except when using the upwind order one differentiation. While the centered finite differences allow the best conservativity as seen in Fig. 6, they also alter the aspect of the solution dramatically as seen in Fig. 8, whatever explicit time scheme we choose. This is due to the Gibbs phenomenon and is not related to any stability issue. Now, let us check the relevance of the stability condition (3.5). For different space steps x = 1 N , we compute the maximal time steps t max such that

∀ t ≤ t max , ∀n ≤ 5 t , u n TV ≤ 4 u 1 t TV . (4.2)
where the constant 4 is arbitrary, and the solution at time t = 1, u 1 t chosen so that the Gibbs phenomenon does not interfere with stability issues. We plot the results for various values of p and q in Figs. 9, 10 and 11, taking as an initial condition the continuous function: This experiment corroborates our approach: although the initial condition and the divergence criterion influence the slopes i.e. the exponent α, these are located only slightly above the predicted ones, and their relative positions fit our predictions very well (Figs. [START_REF] Deriaz | Direct numerical simulation of turbulence using divergence-free wavelets[END_REF][START_REF] Gallinato | Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation[END_REF][START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]. Actually, the smaller and smaller initial value of the most excited mode when N increases explains the shifting of the slope. 
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Conclusion

The present paper explores in details the non-linear CFL conditions which may appear in transport dominated simulations. It completes the previous paper [START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF] by proving and testing the upwind Von Neumann stability condition: t ≤ C x α with C > 0 and α ∈ [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF][START_REF]Discontinuous Galerkin Methods: Theory, Computation and Applications[END_REF]. The numerical experiments meet our predictions accurately.

Although some CFL instabilities or more precisely exotic CFL stability conditions had been observed previously [START_REF] Mohan Rai | Direct simulations of turbulent flow using finite-difference schemes[END_REF], our precise stability assertions-Theorem 3.1-had not been clearly established earlier [START_REF] Levy | From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method[END_REF][START_REF] Wesseling | Principles of Computational Fluid Dynamics[END_REF]. These results help to select a time integration scheme: for instance for someone using an upwind of second order, it is useless-from a stability point of view-to go higher than the second order for the time integration. They also explain some possible instabilities appearing in explicit hyperbolic numerical simulations: at high frequencies using centered discretizations [START_REF] Mohan Rai | Direct simulations of turbulent flow using finite-difference schemes[END_REF], and at low frequencies for upwind schemes [START_REF]Discontinuous Galerkin Methods: Theory, Computation and Applications[END_REF].

As presented in [START_REF] Deriaz | Stabilité sous condition CFL non linéaire[END_REF], it also helps to select a suitable time step for simulating the turbulence if one is interested in capturing precisely the spectrum which characterizes the auto-similarity of the turbulence e.g. the -5/3 Kolmogorov Law [START_REF] Kolmogorov | Dissipation of energy in locally isotropic turbulence[END_REF]. Then the non linear CFL condition applies even though it is not necessary for the stability. It also explains why unstable second order time schemes are so widely in use in Computational Fluid Dynamics [START_REF] Peyret | Spectral Methods for Incompressible Viscous Flow[END_REF][START_REF] Verstappen | Symmetry-preserving discretization of turbulent flow[END_REF]. The excitatory time schemes such as Runge-Kutta 2 or Adams-Bashforth 2 are more adapted to this kind of experiments because when they do not reconstruct the spectrum correctly (as t is not small enough) then they crash, while dissipative schemes such as Runge-Kutta 3 or Adams-Bashforth 3 do not crash but provide with biased spectra.
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 212 Fig.1Von Neumann stability domains for first five Runge-Kutta schemes. Left: on the half-plan. Right: zooming in the x direction. The fifth order Runge-Kutta scheme is taken from[START_REF] Crouzeix | Analyse numérique des équations différentielles[END_REF] 

Fig. 3

 3 Fig.3Spectra of several finite difference schemes for space differentiation. These spectra have to be compared with the domains of stability of the temporal schemes Figs.1 and 2

Remark 2

 2 For a finite number of points N with periodic boundary conditions, the Fourier modes of the simulation e iξ x x form a discrete set with {ξ
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 4 Fig. 4 Possible locations of the exponent α
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 5 Fig. 5 Stability domain D of the time scheme and spectrum S of the discretized finite difference space operator
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 67 Fig.[START_REF] Deriaz | Stability conditions for the numerical solution of convection-dominated problems with skewsymmetric discretizations[END_REF] Fourier transform û(5, ξ) of the numerical solution obtained with a second order Runge-Kutta time scheme with p = 2 and various finite difference differentiations: upwind schemes of orders 1, 3, 5, 7 and 9 (q = 1, 2, 3, 4, 5), and centered scheme (q = +∞)
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 89 Fig.8Physical result of the transport of a discontinuous function using 2nd order Runge-Kutta and 7th order upwind (q = 4) and centered (q = +∞) finite differences
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 310711 Fig. 10 Numerical experiment with p = 2 and various q

Table 1

 1 Upwind finite difference coefficients (a k ) k∈[-m,n] for several stencils [-n, n + 1]. The resulting orders of approximation are equal to 2q -1

Table 2 Table of

 2of 

	the exponents q(2 p-1) expected for the α = p(2q-1)	q p	1	2	3	4	5	+∞
	non-linear CFL stability condition t ≤ x α	1	1	3 2	5 3	7 4	9 5	2
		2	1	1	10 9	7 6	6 5	4 3
		3	1	1	1	21 20	27 25	6 5
		4	1	1	1	1	36 35	8 7

Table 3 Table

 3 

	of coefficients b r
	forming the numerical schemes
	(4.1) with parameters
	p = 1, 2, 3, 4 regarding the
	tangency property (3.2)
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The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.