
HAL Id: hal-03231798
https://hal.science/hal-03231798

Submitted on 21 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Explicit Algebraic Wall Model for LES of
Turbulent Flows Under Adverse Pressure Gradient

Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut

To cite this version:
Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut. A New Explicit Algebraic Wall Model for LES of
Turbulent Flows Under Adverse Pressure Gradient. Flow, Turbulence and Combustion, 2020, 106 (1),
pp.1-35. �10.1007/s10494-020-00181-7�. �hal-03231798�

https://hal.science/hal-03231798
https://hal.archives-ouvertes.fr


A New Explicit Algebraic Wall Model for LES of Turbulent 
Flows Under Adverse Pressure Gradient

Sylvia Wilhelm1   · Jerome Jacob1 · Pierre Sagaut1

Abstract
A new explicit algebraic wall law for the Large Eddy Simulation of flows with adverse 
pressure gradient is proposed. This new wall law, referred as adverse pressure gradient 
power law (APGPL), is developed starting from the power-law of Werner and Wengle 
(Turbulent Shear Flows, vol 8, Springer, New York, pp 155–168, 1993) in order to mimic 
an implicit non-equilibrium log-law based on Afzal’s law (Afzal, IUTAM Symposium on 
Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers, Kluwer Aca-
demic Publishers, Bochum, pp 95–118, 1996). No iterative method is needed for the evalu-
ation of the wall shear stress from the APGPL contrary to the majority of models available 
in the literature. The APGPL model relies on the definition of three modes: the equilibrium 
power-law is used in regions of no or favourable pressure gradient, the APGPL is used in 
regions of adverse pressure gradient, and no wall model is used in separated flow regions. 
This model is assessed via Large Eddy Simulations of flows involving adverse pressure 
gradient and boundary layer separation using the Lattice Boltzmann Method on uniform 
nested grids. The flow around a clean and iced NACA23012 airfoil at Reynolds number 
Re = 1.88 × 106 and the flow over the LAGOON landing gear at Re = 1.59 × 106 are con-
sidered. Results are found in good agreement with those obtained by the non-equilibrium 
log-law and experimental and numerical data available in the literature.

Keywords  Wall modelling · Large Eddy simulation · Lattice Boltzmann method · 
Aerodynamics
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1  Introduction

Engineering applications often involve flows at high Reynolds numbers around bluff bod-
ies such as the landing gear of an aircraft. Adverse pressure gradient due to streamline 
curvature or diverging flow cross-section may affect the boundary layer development over 
such surfaces and lead to separation resulting in increased drag and aerodynamic noise. 
The accurate prediction of such flows is of particular interest to improve industrial design. 
Large Eddy Simulation (LES) is well adapted to predict these unsteady and turbulent flows 
since the large scale structures influencing the flow are explicitly resolved when only the 
small dissipative scales are modelled (Sagaut 2006). LES is classically implemented within 
the Navier–Stokes framework but it can also be used with the Lattice Boltzmann Method 
(LBM) which is an emerging numerical method becoming popular in particular for sub-
sonic aerodynamic flows and aeroacoustics prediction thanks to its low dissipative char-
acter (Marié et al. 2009; Malaspinas and Sagaut 2012; Sengissen et al. 2015; Lucas et al. 
2017; Leveque et al. 2018; König et al. 2018). The computational cost for wall-resolved 
LES (WRLES) on industrial configurations is however high due to the small grid size 
required near the wall to explicitly resolve the boundary layer dynamics (Piomelli 2008; 
Bose and Park 2018). Traditional solutions proposed to overcome this limitation can be 
classified in three categories (Piomelli and Balaras 2002; Larsson et al. 2016): algebraic 
laws for the tangential velocity near the wall, two-layer zonal models and hybrid Reynolds-
Averaged Navier–Stokes (RANS)-LES methods. In the first two methods, termed wall-
modelled LES (WMLES), the no-slip boundary condition is replaced by a prescription 
of the wall shear stress �w (Larsson et al. 2016) or the determination of the first off-wall 
node tangential velocity u (see e.g. Bernardini et al. 2016; Wilhelm et al. 2018). WMLES 
along with Immersed Boundary Conditions in LBM has been presented by Malaspinas and 
Sagaut (2014).

Two-layer zonal models are based on the resolution of thin boundary layer equations 
(TBLE) on an embedded grid in the near-wall region. TBLE can be written for flows 
at equilibrium neglecting the convective, unsteady and pressure gradient terms. This 
is adapted for attached flows with zero or mild pressure gradient (Tessicini et  al. 2002; 
Piomelli 2008). However for complex flows in industrial applications, non-equilibrium 
effects may affect the boundary layer dynamics and should be taken into account for better 
accuracy as shown in Wang and Moin (2002) and Park (2017). To avoid the resolution of 
TBLE near the wall, the meshless approach of Monfort et al. (2010) and the integral wall 
model of Yang et al. (2015), recently extended to compressible flows in Catchirayer et al. 
(2018), are based on analytical models for the tangential velocity profile in the near-wall 
region taking pressure gradient effects into account. These models are still more complex 
than algebraic models since in the meshless approach (Monfort et al. 2010) a Gauss quad-
rature is required to determine the tangential velocity while for the integral wall model 
(Yang et al. 2015) several coefficients have to be determined from physical constraints and 
integrated momentum equations at almost each time step.

Algebraic wall models are based on the assumption that, with a proper scaling u∗ , the 
scaled tangential velocity in the boundary layer, u+ = u∕u∗ , follows a universal algebraic 
law depending on the scaled distance y to the wall, y+ = yu∗∕� , , where � is the kinematic 
viscosity of the considered fluid. In the viscous sub-layer, the linear law u+ = y+ generally 
used at equilibrium can also be used for non-equilibrium boundary layers (Larsson et al. 
2016; Yang et al. 2015). Scalings and algebraic wall laws commonly used in the overlap 
region of a boundary layer are presented in Table 1. More information can be found in the 
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review papers of Buschmann and Gad-el Hak (2006) and Bose and Park (2018). For equi-
librium flows the scaling is generally based on the friction velocity u� and the most popular 
model is the logarithmic law (“log-law”) for which different values of the von Karman � 
and C constants are given in the literature (Zagarola et al. 1997; Marusic et al. 2013). This 
model is implicit, which means that an iterative method is needed for the determination of 
the wall shear stress. On the contrary, with explicit models, an explicit expression of the 
wall shear stress can be derived thus simplifying the near-wall modelling and its numerical 
implementation. This is the case for the power-law model of Werner and Wengle (1993) as 
used by Wilhelm et al. (2018).

For a boundary layer involving a pressure gradient, the pressure is supposed constant in 
the wall normal direction and the pressure gradient acts mainly in the streamwise direction 
(Schlichting et al. 1955). The following velocity scale is then defined (Mellor 1966):

where dp/ds is the streamwise pressure gradient and � is the density of the flow. This veloc-
ity scale may be more relevant than the friction velocity u� for flows under pressure gradi-
ent in particular for separated boundary layer for which u� becomes zero at a separation 
or reattachment point. The pressure gradient parameter is defined as in Mellor (1966) and 
used in Afzal (1996), Skote and Henningson (2002), Breuer et al. (2006) and Gungor et al. 
(2016):

This parameter is not bounded at a separation or reattachment point since u� vanishes. 
According to Coleman et al. (2018) and Maciel et al. (2018), none of the near-wall length 
scales found in the literature are pressure gradient independent and no universal self-simi-
lar solution can be expected for boundary layers ranging from quasi-equilibrium to strong 
adverse pressure gradient turbulent boundary layers. As shown in Skote and Henningson 
(2002), using the friction velocity u� as the velocity scale, a tangential velocity profile 
depending on the local pressure gradient and the Reynolds number can be derived for a 
turbulent boundary layer under adverse pressure gradient. This corresponds to an extended 
log-law for the overlap region already established by Afzal (1996) and hereafter referred as 
Afzal’s law:

The wall model defined by Eq.  (3) is not valid at a separation or reattachment point where 
u� becomes zero. To overcome this singularity, Skote and Henningson (2002) proposed a 
second version of the model using up as the velocity scale. This second version is however 
not valid in zero pressure gradient regions where up = 0 . In a priori validation, Skote and 
Henningson (2002) showed that the Afzal’s law better follows the velocity profile in a 
boundary layer under adverse pressure gradient than the classical log-law with a modifica-
tion of the constant C depending on the pressure gradient. Marsden et al. (2008) found a 
good agreement between the velocity profiles obtained by wall-resolved LES and the ana-
lytical profile given by Eq.  (3) in the turbulent region of the boundary layer over a 
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NACA0012 airfoil. The Afzal’s law has been recently successfully used for the prediction 
of a rod-airfoil tandem (Zhang et  al. 2018). The Afzal’s law has been compared to the 
dynamic wall model of Wang and Moin (2002) by Hou et al. (2016) giving very similar 
results, better than those obtained using the equilibrium model of Spalding (1961), for the 
flow over a single cylinder and tandem cylinders which involve separation regions. An 
extended log-law taking adverse pressure gradient into account based on an Afzal-like law 
has been successfully applied to complex turbulent flows in Sengissen et al. (2015), Lucas 
et al. (2017) and Leveque et al. (2018). As shown in Table 1, an equivalent explicit alge-
braic model extensively validated for pressure gradient boundary layers and separated 
flows is missing. Breuer et al. (2007) proposed an extended version of the power-law model 
of Werner and Wengle (1993) taking pressure gradient into account: the Extended Werner 
and Wengle Improved (EWWI). Its explicit version, the Extended Simplified Werner and 
Wengle Improved (ESWWI), is however only valid for small first cell heights. Manhart 
et  al. (2008) proposed to combine both velocity scales u� and up in a single one 
u�p =

√
u2
�
+ u2

p
 which does not vanish at separation and reattachment points or for vanish-

ing pressure gradient. They derived an explicit extended wall model valid in the viscous 
sub-layer for boundary layer under pressure gradient. Duprat et  al. (2011) extended this 
wall model outside the viscous sub-layer by taking the Reynolds stresses effects into 
account besides the pressure gradient effects. The resulting model is however implicit.

An open issue is to know if wall models are valid or not inside separated flow 
regions. Temmerman et al. (2003) showed that velocity profiles do not comply with the 
log-law not only in the separated region but also in the reattached zone of a periodic 
hill flow. The back-flow scaling, based on the maximum averaged back-flow velocity 
UN and its distance yN to the wall, is however appropriate for a majority of the sepa-
rated region. In both studies of Wang and Moin (2002) and Yang et  al. (2015), it is 
suggested that the boundary layer is resolved in separated regions by LES even on a 
coarse grid since the local Reynolds number is low. In their WMLES of the flow over 
the 30P-30N airfoil at Reynolds number Re = 9 × 106 , Bodart et al. (2013) decided to 
not use the wall model, but the usual no-slip boundary condition, in the flap storage 
bay where separated flow is expected. Note that the decision of using or not the wall 
model is made in pre-processing based on the foreknowledge about the flow. The wall 
model is consequently used in other regions of separated flow during the calculation.

Complex industrial flows often involve pressure gradient boundary layers leading 
sometimes to separation. The necessity of taking pressure gradient effects into account 
in wall models when considering such flows has been established by several studies 
as reminded in the present introduction. The explicit power-law wall model has been 
applied for LBM simulations of attached flows in Wilhelm et  al. (2018) thus greatly 
simplifying the near-wall treatment for LBM on Cartesian grids. The objective of the 
present study is to extend this power-law model for industrial applications involving 
large adverse pressure gradient and flow separation while preserving the explicit char-
acter of the model. The paper is organized as follows. The new explicit wall model 
is presented in Sect.  2. The numerical method is discussed in Sect.  3 as well as the 
application of the new wall model in LBM. Validation of this wall model is evaluated 
in Sect. 4 for three test cases of engineering interest. Conclusions are given in Sect. 5.



2 � An Explicit Algebraic Wall Model for Flows Under Adverse Pressure 
Gradient

2.1 � The Power‑Law Wall Model

Since the pioneering work of Prandtl (Schlichting et  al. 1955) who proposed a one-sev-
enth power-law for boundary layer flows at small Reynolds numbers, the power-law model 
has long been considered as an alternative to the log-law to describe the flow in turbu-
lent boundary layers and fully developed flows in pipes or channels (Marusic et al. 2010; 
Cheng and Samtaney 2014). Several authors proposed a power-law with constant param-
eters (Zagarola et al. 1997) or depending on the Reynolds number (Barenblatt et al. 1997; 
Castro-Orgaz and Dey 2011) to describe the velocity profile in pipe flows and turbulent 
boundary layers. According to Afzal (2001), the power-law is an equivalent solution to 
the log-law for the matching between the inner and outer regions of the boundary layer. A 
review of the power-law models developed for pipe and channel flows and turbulent bound-
ary layers can be found in Buschmann and Gad-el Hak (2006). The power-law has been 
used in LES by Murakami et al. (1987) with an exponent adapted to the considered flow 
(see Table 1) and by Werner and Wengle (1993) with exponent 1/7 for LES of flow over a 
cube. The later was used more recently in LES by several authors (Temmerman et al. 2003; 
Chang et al. 2014; Lehmkuhl et al. 2016; Wilhelm et al. 2018).

In this work, the equilibrium power-law model is considered as defined in Wilhelm et al. 
(2018):

where B = 1∕7 and y+
c
= 11.81 is the scaled height of the viscous sub-layer. By continuity 

of the velocity profile at y+
c
 , A = (y+

c
)
1−B

≈ 8.3 . The scaling is based on the friction veloc-
ity u� such as:

with the following explicit expression for u�:

In the following, this equilibrium power-law is extended for boundary layers under adverse 
pressure gradient while remaining explicit. This new law will be termed “APGPL” for 
Adverse Pressure Gradient Power-Law.

2.2 � Development of the Adverse Pressure Gradient Power‑Law (APGPL)

According to Larsson et al. (2016), the viscous region of the boundary layer is at equilib-
rium. As in Yang et al. (2015), a linear velocity profile is used in the viscous sub-layer and 
only a model for the overlap region of boundary layers under adverse pressure gradient is 
developed.
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As explained in the introduction, no self-similar law of the wall exists for turbulent 
boundary layer under adverse pressure gradient. The Afzal’s law (extended log-law) pre-
sented in Eq. (3) has been validated by several authors. The wall model successfully used 
in Sengissen et al. (2015), Lucas et al. (2017) and Leveque et al. (2018) to take adverse 
pressure gradient effect into account is based on the Afzal’s law. It will be called Adverse 
Pressure Gradient Log-Law (APGLL) in this paper. In particular, a constant C0 is added 
to y+ in the first logarithm of Eq. (3) to correct the model for low y+ values. This model is 
however implicit. The APGPL is developed in order to mimic the APGLL but in an explicit 
way. It has been established according to the following procedure: 

1.	 General form of the APGPL: The APGPL model is developped using the friction 
velocity u� as velocity scale and is therefore not valid at a separation or reattachment 
point where u� vanishes. Similarly to Eq. (3), a function depending on y+ and p+ is added 
to the equilibrium power-law: 

 The constants A and B are maintained equal to the values of the equilibrium power-
law. The function f involves free parameters that have to be calibrated.

2.	 Definition of the function  f : An explicit form of the wall law is defined by combining 
the expressions of y+ and p+ in the function f (y+, p+) . For example, the product (y+)3p+ 
is independent of the friction velocity u� . Similar mathematical functions as in Eq. (3) 
are used, namely square root and logarithm, in order to mimic this expression.

3.	 Calibration of the model: Free parameters of the model involved in the function f are 
determined by minimizing the error between the APGPL and the APGLL over specified 
ranges of y+ and p+ values relevant for real engineering applications at high Reynolds 
numbers. Only adverse pressure gradient effects, that is, positive values of p+ , are 
considered in this work. The ranges 0 < p+ < 1 and 100 < y+ < 1000 are selected. In 
particular, when used with immersed boundaries or Cartesian grids, the wall model is 
first applied to a fictitious Ref point located at a larger distance from the wall than the 
boundary node (Kalitzin and Iaccarino 2002; Tessicini et al. 2002; Roman et al. 2009; 
Capizzano 2011; Berger and Aftosmis 2012). As shown in Wilhelm et al. (2018), for y+ 
values of a few hundred at the boundary node, y+ can reach values around 1000 at the 
Ref point.

Several expressions for the function f have been considered, calibrated and tested. The fol-
lowing expression giving the best results in LES (see Sect. 4) is retained for the APGPL:

with B = 1∕7 , A ≈ 8.3 , � = 7.5789 , � = −1.4489 , � = 191.1799 . The corresponding 
expression of the tangential velocity in the boundary layer is as follows for y > 0 and 
dp∕ds > 0:

(7)u+
APGPL

= A(y+)B + f (y+, p+)

(8)for p+ > 0 and y+ > 0, u+
APGPL

= A(y+)B + 𝛼
√
y+p+ + 𝛽(p+)1∕3 ln (𝛾(y+)3p+)
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Note that this expression does not require u� ≠ 0 as for Eq. (8).
The term D is defined as:

The following explicit expression of the friction velocity is obtained from the APGPL for 
D ≥ 0:

In real flow applications, different flow regions can be encountered, namely with positive 
or negative values of p+ and D. A specific implementation of the APGPL wall model is 
thus necessary and will be discussed in Sect. 2.3.

The APGLL and the APGPL are compared in Fig.  1 for 0.1 < p+ < 1 and 
30 < y+ < 1000 . The range of y+ values is extended to lower values than used for the 
APGPL development to verify its validity until the buffer layer. Note that the equilib-
rium log and power laws comply for 50 < y+ < 1000 as shown in Wilhelm et al. (2018). 
For low values of p+ , the larger discrepancy between the two wall models is observed 
at large values of y+ . As p+ increases, this discrepancy is moved towards small values 
of y+ . The mean differential �u+ over the range 30 < y+ < 1000 presented in Fig. 1b is 
always lower than 7% . The lower errors are obtained for p+ values in the middle of the 
range. This comparison is extended to higher values of p+ in Fig.  2 to show how the 
law calibrated for the range 0 < p+ < 1 behave for larger values that can be encountered 
in simulations. The mean error �u+ increases with increasing p+ . However, this error 
remains lower than 7.5% and reaches a plateau for high values of p+.
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Fig. 1   Comparison of the APGLL and the APGPL (Eq.  (8)) (in log-log scale) for the range 0.1 < p+ < 1 
and 30 < y+ < 1000 (a) and mean differential �u+ = 100 ∗ |u+

APGPL
− u+

APGLL
|∕u+

APGLL
 over the range of 

30 < y+ < 1000 (b)



2.3 � Practical Use of the APGPL

The local streamwise pressure gradient dp/ds is considered, where � points in direction of 
the local wall-parallel flow. Firstly, the APGPL is developed for adverse pressure gradi-
ent flows, this means for dp∕ds > 0 . For favourable or zero pressure gradient, dp∕ds ≤ 0 , 
the equilibrium power-law model should be recovered. Secondly, at a separation or reat-
tachment point, the friction velocity u� becomes zero and the pressure parameter p+ is 
not defined. The APGPL written in dimensional scale in Eq. (9), though, is still defined. 
According to Eq.  (11), u� vanishes when the term D vanishes. If D becomes negative, 
Eq.  (11) is no more defined and the APGPL is not valid. D can become negative if the 
pressure gradient dp/ds is very high or if the tangential velocity u in the boundary layer is 
low, which is the case in separated flow regions. It will be shown in the results presented 
in Sect. 4 that D becomes negative near separation zones. As explained in the introduction, 
it is controversial if a wall model should be used in a separated region of the flow. Conse-
quently, it has been decided not to use a wall model in regions where D is negative. Note 
that, contrary to Bodart et al. (2013), this decision is made according to the sign of D dur-
ing the calculation and not in a pre-processing stage.

In the end, the implementation of the APGPL wall model involves three modes defined 
below. An indicator function �(�, t) is defined specifying which mode of the APGPL wall 
model is locally active at position � at time t: 

1.	 if dp∕ds(�, t) ≤ 0 , �(�, t) = 1: the equilibrium power-law defined by Eq. (4) is used
2.	 if dp∕ds(�, t) > 0 but D(�, t) < 0 , �(�, t) = 2: no wall model is used, the boundary layer 

is resolved with a no-slip boundary condition. In this case, the wall shear stress �w = �u2
�
 

is calculated according to the linear velocity profile assumption near the wall and the 
friction velocity is: 

(12)u� =

�
�‖u‖
y

(a) (b)

Fig. 2   Mean differential �u+ = 100 ∗ |u+
APGPL

− u+
APGLL

|∕u+
APGLL

 over the range of 30 < y+ < 1000 for 
1 < p+ < 10 (a) and 10 < p+ < 100 (b)



 where ‖u‖ is the norm of the tangential velocity obtained by the no-slip boundary con-
dition. Note that the same expression was obtained by Yang et al. (2015) in the limit of 
wall-resolving case.

3.	 if dp∕ds(�, t) > 0 and D(�, t) ≥ 0 , �(�, t) = 3: the APGPL is used with the linear law in 
the viscous sub-layer: 

 with the constants A,B, �, �, � defined in Sect. 2.2.

3 � Numerical Method

3.1 � Lattice Boltzmann Method and Turbulence Modelling

In this work, the Lattice Boltzmann Method (LBM) is used to solve the weakly compress-
ible Navier–Stokes equations for the velocity � and density � in a fluid flow. This emerging 
method is attractive thanks to the absence of a non-linear term and of a Poisson equation 
for the pressure and due to its local nature enabling massively parallel simulations (Chen 
and Doolen 1998; Krüger et al. 2017). In this method, the fluid dynamics is described at 
the mesoscopic level by the collision and propagation of particles over a discrete lattice. 
This mechanism is represented by the Boltzmann equation for the particle distribution 
function f (�, �, t) which is the probability density function of particles with velocity � at 
time t and position �.

This work was carried out using the ProLB solver. The Boltzmann equation is dis-
cretised in velocity space � over a D3Q19 (3 dimensions and 19 velocities) lattice. The 
Dynamic Hybrid Recursive Regularized Bhatnagar-Gross-Krook (DHRR-BGK) LBM 
model proposed by Jacob et al. (2018) is used to ensure numerical stability and accuracy of 
the results. Macroscopic quantities of the flow can then be recovered from the moments of 
the distribution functions:

where 0 ≤ i ≤ 18 is the velocity index and fi(�, t) is the distribution function discretised 
in velocity space. Finally, the static pressure p is obtained from the isothermal equation of 
state:

where cs is the speed of sound.
Using the DHRR-BGK LBM model, the LES is implicit with the Vreman sub-grid scale 

model (Vreman 2004) used to estimate the dissipation of the LBM scheme as explained in 
Jacob et al. (2018).

(13)u+ =

�
y+ if y+ ≤ y+

c

A(y+)B + 𝛼
√
y+p+ + 𝛽(p+)1∕3 ln (𝛾(y+)3p+) if y+ > y+

c

(14)�(�, t) =

18∑

i=0

fi(�, t)

(15)�(�, t)�(�, t) =

18∑

i=0

fi(�, t)�i

(16)p = �c2
s



3.2 � Near‑Wall Treatment

The near-wall treatment used along with the Lattice Boltzmann method in this work has 
been extensively detailed in Wilhelm et  al. (2018) and only elements necessary for the 
understanding of the present work are reminded. LBM is applied on a Cartesian cut-cell 
grid which is not body-fitted, as illustrated in Fig. 3. The LBM scheme can not be com-
pleted at the first off-wall nodes termed “Boundary Nodes” (BN). Distribution functions 
at these nodes are reconstructed from otherwise determined velocity and density. For high 
Reynolds number flows, it is generally difficult to sufficiently refine the Cartesian grid near 
a solid boundary to be able to resolve the boundary layer. In this case, a wall model is used 
to calculate the tangential velocity at boundary nodes.

Figure 3 presents the near-wall treatment in two dimensions for the sake of simplicity, 
but it applies in three dimensions. In particular, the near-wall treatement when using a wall 
model is presented in Fig.  3a. � defines the normal direction to the wall at the consid-
ered boundary node ★ . In all cases, the normal velocity at the boundary node is zero for 
a stationary wall. As explained in (Wilhelm et al. 2018) and shown in Fig. 3a, a fictitious 
point Ref is defined at a distance yRef = 2.5�x from the wall in � direction. The Cartesian 
velocity at the Ref point at time t + 1 is calculated from Inverse Distance Weighting (IDW) 
interpolation of Cartesian velocities at time t + 1 at neighbouring nodes ▪ and ▴ . The corre-
sponding tangential velocity ut+1

Ref
 is then evaluated knowing the local wall normal direction 

� . The tangential direction � in Fig. 3a is defined by the local and instantaneous tangential 
to the wall flow direction at the Ref point. In three dimensions, this corresponds to the tan-
gential direction to the wall in the streamwise direction of the local velocity field. The local 
coordinate system (�, �) is thus defined at each boundary node ★ . The local streamwise 
pressure gradient dp/ds acting on the boundary layer, and involved in Eq. (8), is evaluated 
at the boundary node. For this purpose, two fictitious points are first defined at distance �x 
from the boundary node in the upstream and downstream tangential flow directions, where 

(a) (b)

Fig. 3   Scheme of the near-wall treatment in LBM when a wall model is used (a) or when the boundary 
layer is resolved (b); the black region is the solid, �x is the local grid size, ★ : boundary node of interest, ▪ 
and ▴ : neighbouring fluid nodes of ★ , ◻ and △ : neighbouring boundary nodes of ★ , ∙ : reference points



�x is the local grid size (see Fig. 3a). The closest grid nodes A and B from these fictitious 
points are then identified. These nodes can be fluid nodes at which � and � are known at 
time t + 1 from the LBM scheme, such as node B, or another boundary node, such as node 
A, for which values of � and � are considered at the previous time step t. The pressure is 
supposed constant in the wall normal direction and the streamwise pressure gradient is cal-
culated at time t + 1 according to :

where dAB is the distance between points A and B along the streamwise direction � , pA ( pB ) 
is the pressure calculated at the point A (B) using the equation of state p = �c2

s
.

The implementation of the APGPL model is described in Table 2. The term D of the 
APGPL is evaluated at the Ref point according to Eq.  (10) using ut+1

Ref
 and the pressure 

gradient calculated with Eq.  (17) since it is supposed constant in the wall normal direc-
tion. With dp/ds and D known at the Ref point, the APGPL mode �(�Ref , t + 1) is locally 
determined.

For �(�Ref , t + 1) = 1 or 3, the local Reynolds number Rel(yRef ) = yRef u
t+1
Ref

∕� at the Ref 
point is compared with the critical local Reynolds number at the upper limit of the viscous 
sub-layer Rec = (y+

c
)
2 . If Rel(yRef ) ≤ Rec , then both the Ref point and the boundary node are 

located in the viscous sub-layer and the linear law is used. Otherwise, the friction velocity 
ut+1
�

 is evaluated using the wall law in the overlap region. The wall-distance y at the bound-
ary node is then compared to the height of the viscous sub-layer yc to determine which wall 
law is to be applied to the boundary node. The tangential velocity u(y)t+1 at the boundary 
node is obtained from the application of the wall model. A transformation to the Cartesian 
coordinate system is then performed as needed for the LBM written in a Cartesian system.

(17)
dp

ds

t+1

=

pt+1
B

− pt
A

dAB
= c2

s

�t+1
B

− �t
A

dAB

Table 2   Implementation of the APGPL model for Cartesian grids in LBM

�(�Ref , t + 1) Rel(yRef ) Calculation of the tangential u(y) and friction 
u� velocities at the boundary node at wall-
distance y in � direction

1 or 3 ≤ Rec linear law: u(y)t+1 = ut+1
Ref

y

yRef
 ⇒ ut+1

�
=

√
�u(y)t+1

y

> Rec equilibrium power-law or APGPL at Ref point:

If � = 1 : ut+1
�

= (ut+1
Ref

)

1

1+B A
−1

1+B y
−B

1+B

Ref
�

B

1+B

If � = 3 : ut+1
�

(ut+1
Ref

, yRef ) from Eq. (11)

⇒ sub-layer thickness : yc = �y+
c
∕ut+1

�

If y < yc : u(y)t+1 =
y(ut+1

�
)
2

�
Else:
If � = 1 : u(y)t+1 = ut+1

Ref

(
y

yRef

)B

If � = 3 : u(y)t+1 from Eq. (9)
2 u(y)t+1 from polynomial interpolation of Carte-

sian velocity vectors at Ref1, Ref2 and Refw 
and transformation to the local coordinate 

system ( �, � ) 
ut+1
�

=

�
�‖u(y)t+1‖

y



In case �(�Ref , t + 1) = 2 , no wall model is used and the near-wall treatment is illustrated 
in Fig. 3b. The Cartesian velocity vector at the boundary node is reconstructed according 
to the no-slip boundary condition using an interpolation method as it is generally done for 
non-body fitted Cartesian grids (Berger and Aftosmis 2012; Iaccarino and Verzicco 2003). 
The velocity vector is reconstructed by polynomial interpolation of Cartesian velocities at 
the Ref1, Ref2 and Refw points presented in Fig. 3b. Ref1 and Ref2 are defined in the wall 
normal direction at distances �x and 2�x respectively from the boundary node. Similarly to 
the Ref point, the velocities at Ref1 and Ref2 at time t + 1 are obtained by IDW of known 
velocities at time t + 1 at neighbouring nodes ▪ and ▴ . Refw is the projection of the bound-
ary node on the wall in the � direction. Its velocity corresponds to the boundary condition 
applied to the wall, which is � = � for a no-slip wall. The tangential velocity u(y)t+1 at the 
boundary node is then calculated by coordinate system transformation and its norm is used 
to calculate the friction velocity according to Eq.  (12).

Finally, the density at the boundary node is equated to the density at the Ref point 
�(y)t+1 = �t+1

Ref
 according to the assumption of constant pressure in the wall normal direction 

and where �t+1
Ref

 is obtained by IDW of densities at neighbouring nodes ▪ and ▴.

4 � Validation

In this section, the new APGPL and the well-validated APGLL will be applied to relevant 
test cases and results will be compared in order to evaluate the accuracy of the new APGPL 
model.

The APGLL is based on the Afzal’s law defined in Eq.  (3) as explained in Sect. 2.2. 
This law is valid in the overlap region only. In order to extend it to the buffer layer and 
viscous sub-layer, Eq.  (3) is multiplied by a Van-Driest damping function of the form 
1 − exp(−y+∕E) , where E is a constant:

The APGLL is actually used only for adverse pressure gradient flow regions. When the 
pressure gradient vanishes ( p+ = 0 ), the equilibrium log-law with Van-Driest damping 
is recovered from Eq.  (18). For favorable pressure gradient flow regions, this equilib-
rium log-law is also used. The APGLL switches between the equilibrium log-law and the 
Afzal’s law depending on the sign of the pressure gradient. The resulting model referred as 
“APGLL model” has a continuous formulation in the whole boundary layer.

The Van-Driest damping function can not be used with the power-law because it would 
render the model implicit. The term “APGPL model” refers to the model implemented as 
described in Table 2. In cases where a wall law is used (modes � = 1 or 3), the linear law is 
implemented in the viscous sub-layer and the power-law with or without pressure gradient 
effect is used in the overlap region of the boundary layer.

The same adverse pressure gradient, calculated as defined in Sect. 3.2, is used in both 
models. As a consequence, the APGLL et APGPL models may differ in the viscous sub-
layer and buffer layer but should be equivalent in the overlap region. They are compared 

(18)
u+ =

�
1

�
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�
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�√
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�
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on three test cases of industrial interest and of increasing complexity involving adverse 
pressure gradient and boundary layer separation. The flow around a streamlined body, 
namely the NACA23012 airfoil, with gradual adverse pressure gradient is first consid-
ered. The same NACA23012 profile is then considered with ice accretion on the leading 
edge involving boundary layer separation and reattachment. Finally, the flow around a 
landing gear is computed. Results are compared with reference data in order to evaluate 
the validity of the APGPL model. In particular, results obtained with the APGPL model 
should be as accurate as those obtained with the APGLL model.

4.1 � NACA23012 Clean‑Airfoil

The capacity of the APGPL model to predict the attached flow around an airfoil at low 
angles of attack is first evaluated. The flow around the NACA23012 airfoil without ice 
accretion (“clean airfoil”) experimentally studied by Broeren et al. (2014) at Reynolds 
number Re = 1.88 × 106 based on the airfoil chord c and Mach number Ma = 0.18 is 
considered. This test case has been already used by Wilhelm et  al. (2018) to validate 
the equilibrium power-law in LBM with the RANS Spalart-Allmaras turbulence model 
for low angles of attack at which the flow should remain attached. It has also been 
numerically studied by König et al. (2015) in LBM using the commercial software Pow-
erFLOW. A Very Large Eddy Simulation (VLES) approach was used in König et  al. 
(2015) along with a wall model based on an extension of the log-law taking among oth-
ers pressure gradient effects into account.

4.1.1 � Numerical Setup

The computational domain is illustrated in Fig. 4. It is the same as used for RANS calcu-
lations in Wilhelm et al. (2018) except for the spanwise extension s which corresponds 
to one third of the experimental model’s span as in König et al. (2015). According to 
Broeren et  al. (2014), the stalling angle of attack is 14.4◦ for this clean airfoil. Three 
angles of attack � are considered before stall with increasing adverse pressure gradi-
ent: � = 3.08◦;6.2◦ and 9.3◦ . Uniform free-stream velocity U

∞
 inclined with an angle � 

is imposed as a boundary condition and in sponge layers at the inlet and lower surfaces. 

Fig. 4   Computational domain 
and grid for the NACA23012 
clean-airfoil test case; c is the 
airfoil chord



Uniform free-stream density �
∞

 is imposed as a boundary condition and in sponge lay-
ers at the outlet and upper surfaces. Frictionless wall condition is imposed on a few cells 
at the intersection between the inlet and the upper surface and between the lower surface 
and the outlet. Periodicity is assumed in the spanwise � direction. Wall modelling is 
used for the airfoil surface.

4.1.2 � Grid Influence at ̨ = 6.2◦

As shown in Fig.  4, the computational grid is composed of uniform embedded Carte-
sian grids where the grid size is halved at each refinement level. The smallest embedded 
grids are defined by offseted surfaces from the airfoil surface as illustrated in the red box 
in Fig. 4. Grid convergence study is conducted for � = 6.2◦ . Grids 1, 2 and 3 defined in 
Table  3 only differs by the number of offsets around the airfoil, the grids being identi-
cal in the rest of the domain. Grids 2, respectively 3, is defined by adding one offset to 
grid 1, respectively 2, thus halving y+ values at boundary nodes. Grid 3 is represented in 
Fig. 4. Corresponding averaged y+ values obtained with the APGPL model are presented 
in Fig. 5 (values for the APGLL model are very close). The grid being Cartesian, it has a 
staircase-like form around the solid body explaining the large fluctuations of the y+ values 
at boundary nodes. Maximum y+ values around 250 are obtained for grid 1 but one has to 
keep in mind that the wall model is first applied to the Ref point with larger y+ values (see 
Sect. 3.2).

At this pre-stall angle of attack, statistical steady state should be obtained for the flow 
around the clean airfoil. Figure 6 presents the convergence history of the lift coefficients 
obtained with the APGLL and APGPL models. Neither the APGLL nor the APGPL pre-
dict a statistically steady flow on Grid 1 even when calculation is run twice as long as for 
grids 2 and 3. At this grid refinement level, the blunt trailing edge of the NACA profile 

Table 3   Characteristics of the 
grids for the NACA23012 clean-
airfoil grid convergence study

Grid Grid 1 Grid 2 Grid 3

c∕dxmin 368 736 1472
s∕dxmin 224 448 896
Number of nodes (in 

million)
11 24 70

Fig. 5   Temporal- and span- aver-
aged y+ over the NACA23012 
clean-airfoil for the APGPL 
model



is not sufficiently discretised and an unsteady separation bubble is predicted at the trail-
ing edge. This bubble is fluttering with the APGLL model leading to the CL oscillations 
observed in Fig. 6a while this unsteadiness is less regular with the APGPL model. In this 
region, the mode � = 2 of the APGPL is principally used which means that the wall model 
is not applied. This may explain the different behaviors of the APGLL and APGPL mod-
els on grid 1. By refining the grid, the prediction of the flow around the trailing edge is 
improved and a small but statistically steady recirculation zone is predicted at the trailing 
edge. A statistically steady state is obtained with grids 2 and 3 after 15t∗ , where t∗ = c∕U

∞
.

For grids 2 and 3, simulations are run for 15.54t∗ and temporal statistics are then sam-
pled over 5.65t∗ . As explained in Wilhelm et al. (2018), far-field integration is more accu-
rate than surface integration to evaluate the lift and drag coefficients with the numerical 
method used in this work. In particular, the surfaces of the 3D volume in the spanwise 
direction for far-field integration are defined at 10% of the airfoil chord from the periodic 
boundaries. The calculated span is 60.8%c as shown in Fig.  4 so that the integration is 
done on 40.8%c . All other post-processed results have been obtained by considering the 
same restricted span for homogeneity in the results. Time-averaged aerodynamic coeffi-
cients obtained with grids 2 and 3 are compared in Table 4 with numerical and experi-
mental references. Results obtained with the Xfoil program (Drela and Youngren 2001) 
were presented in Wilhelm et  al. (2018). Xfoil is based on equations from the integral 
boundary layer formulation and has been run in a way to bypass the transition mechanism 
according to the fully turbulent boundary layer assumption done in the present numeri-
cal method. elsA results were provided by Airbus using the elsA code (http://elsa.onera​.fr/. 
Accessed 02 Oct 2019) based on the Navier–Stokes equations. Results presented in this 
paper were obtained by a 2D body-fitted RANS calculation using the Spalart-Allmaras tur-
bulence model with resolved boundary layer. Two sets of experimental measurements are 
available: the experimental data of Broeren et al. (2014) were corrected for wall-boundary 
effects of the wind tunnel but the non-corrected values are available in König et al. (2015). 
Experimentally, the lift was obtained by integration of surface pressure when the drag was 
obtained by momentum-deficit methods. In LBM-VLES results of König et al. (2015), lift 

(a) (b)

Fig. 6   Convergence history of the lift coefficient for the NACA23012 clean-airfoil using the APGLL (a) or 
the APGPL (b)

http://elsa.onera.fr/


and drag coefficients were calculated by surface integration over the complete model for 
the lift but over only 5% of the span for the drag to avoid corner effects. For the RANS 
body-fitted elsA results, coefficients obtained by far-field integration are presented but 
very close results were obtained with surface integration. LBM-RANS results presented 
in Wilhelm et al. (2018) were obtained by far-field integration. The use of different meth-
ods to determine these coefficients makes precise comparison difficult. However, the same 
post-processing is applied for the two grids considered enabling a correct grid convergence 
study. Grid convergence is similar with both wall models. Lift coefficients obtained with 
both grids are very similar and slightly higher than references. The drag coefficients pre-
dicted with grid 3 are higher than with grid 2 and closer to numerical references. Note that 
all numerical references give CD values higher than experimental data. As explained in 
König et al. (2015), this may be explained by the turbulent boundary layer assumption used 
in numerical simulations when the flow may be laminar at some point in the experiments. 
The present drag coefficients should be compared with the numerical references since the 
same turbulent boundary layer assumption is involved. In this case, results obtained with 
grid 3 are in better agreement with numerical reference data. The drag coefficient is how-
ever very low in the attached flow region so that the gap between numerical and experi-
mental data is only around 40 drag counts.

This grid convergence study is completed with the pressure coefficient Cp profiles, aver-
aged in time and over the span of the airfoil, obtained with grids 2 and 3 in Fig. 7. Oscil-
lations of the pressure profiles obtained with both grids are observed, which increase with 
grid refinement. This is due to pressure oscillations observed close to the solid surface 
when using Cartesian grids as explained in Wilhelm et al. (2018). This problem is linked to 
the use of non-body-fitted grids not only in LBM but also in the Navier–Stokes framework 
when immersed boundary methods (Capizzano 2011; Tamaki et al. 2017) or cut-cell meth-
ods (Berger and Aftosmis 2012) are used. Farfield density and velocity are used for the 
non-dimensionalization in the Cp calculation. According to König et al. (2015), quantities 
measured upstream in the wind tunnel are used for non-dimensionalization in the experi-
ments. This leads to a deviation 0 ≤ 𝛥Cp < 0.1 . This may explain some of the discrepan-
cies between experimental and numerical Cp profiles. The present numerical results should 

Table 4   Time-averaged lift C
L
 and drag C

D
 coefficients obtained with grids 2 and 3 for the NACA23012 

clean-airfoil and compared with numerical and experimental references at � = 6.2◦ , except for data from 
König et al. (2015) at � ≈ 6◦ ; Broeren et al. (2014) data are read from figure 9 in Broeren et al. (2014); 
experimental and LBM values of König et al. (2015) are read from figure 9 in König et al. (2015)

CL CD

APGLL model Grid 2 0.89 0.0086
Grid 3 0.88 0.0124

APGPL model Grid 2 0.89 0.0067
Grid 3 0.89 0.0122

Numerical references Xfoil 0.83 0.0125
RANS elsA 0.81 0.0119
LBM-RANS Wilhelm et al. (2018) Grid A (Wilhelm et al. 2018) 0.81 0.0099
LBM-VLES König et al. (2015) at � ≈ 6◦ 0.85 0.0119

Experimental references Corrected data from Broeren et al. (2014) 0.79 0.0091
Un-corrected data from König et al. (2015) at � ≈ 6◦ 0.82 0.0085



nonetheless be in agreement with elsA results which uses the same nominal quantities for 
the non-dimensionalization. Cp profiles obtained with both grids are very close and close 
to the Xfoil and elsA references independently of the wall model used. A modification 
of the wall model application has been proposed by Capizzano (2011) and taken up by 
Tamaki et al. (2017) which smooth out pressure wiggles. However, as shown in Wilhelm 
et al. (2018), this introduces artificial roughness to the NACA profile and deteriorates the 
drag coefficient prediction. This method was not used in the present paper for this reason. 
These pressure oscillations are in fact not detrimental to the results since the predicted 
pressure coefficients Cp are oscillating around a mean value which is close to Xfoil and elsA 
references.

In conclusion, refining the mesh size close to the airfoil surface from grid 2 to grid 
3 enables to better predict the drag coefficient, other variables being less influenced by 
this refinement. Grid 3 is thus used for validation of the APGPL model in the rest of this 
section.

(a) (b)

Fig. 7   Time- and span-averaged pressure coefficient Cp over the NACA23012 clean-airfoil at � = 6.2◦ 
obtained with grids 2 and 3 using the APGLL (a) or the APGPL (b) model compared with references; Bro-
eren et al. (2014) experimental data are read from figure 20 in Broeren et al. (2014)

Fig. 8   Indicator function � at boundary nodes over 20% of the calculated NACA23012 clean-airfoil span for 
the last simulation time step at the three angles of attack considered



4.1.3 � Evaluation of the APGPL Model

The behaviour of the APGPL model is illustrated in Fig. 8 with the repartition of the indi-
cator function � , defined in Sect. 2.3, at the last time step of the simulations for the three 
considered angles of attack. The equilibrium power-law ( � = 1 ) is used close to the leading 
edge and in the second part of the airfoil chord. The mode � = 3 is used in regions of high 
adverse pressure gradient on the upper and lower surfaces of the airfoil. As the angle of 
attack is increased, the region resolved with � = 3 extends towards the leading edge and 
a larger part of the upper surface is resolved by taking the adverse pressure gradient into 
account. The mode � = 2 is active only on the airfoil truncated trailing edge where small 
flow recirculation occurs. One may observe oscillations of the model between modes 1 
and 3. This is due to pressure oscillations observed close to the solid surface when using 
Cartesian grids, as already mentioned in the previous section. This leads to oscillations of 
the pressure gradient sign which is one condition for variation between modes 1 and 3 of 
the APGPL model. However, no numerical instabilities have been observed due to these 
oscillations of � . Moreover, this is not detrimental for the flow prediction as observed in the 
previous section and will be observed below.

Lift and drag coefficients obtained with the APGLL and APGPL models for the three 
angles of attack are compared with references in Fig. 9. CL and CD coefficients obtained 
with the APGLL and APGPL models are very close. CL is slightly over-estimated com-
pared to the references except for the results of König et  al. (2015) from which present 
results are very close. CD values obtained in present WMLES are close to numerical refer-
ences and slightly higher than experimental data as already discussed in the previous sec-
tion. For further validation, pressure coefficients obtained at two angles of attack with the 
APGLL and APGPL models are illustrated in Fig. 10. Cp profiles obtained with both mod-
els are almost identical and close to all the references. All numerical results overestimate 
Cp on the lower surface of the airfoil compared to experimental measurements. The results 
obtained with the APGPL model are of the same accuracy as existing methods.

(a) (b)

Fig. 9   Time-averaged lift (a) and drag (b) coefficients obtained with the APGLL and APGPL models for 
the NACA23012 clean-airfoil compared with reference data; experimental data (exp.) of Broeren et  al. 
(2014) are read from figure 9 in Broeren et  al. (2014) and the corresponding non-corrected data as well 
as LBM-VLES results are read from figure 9 in König et al. (2015), Wilhelm et al. (2018) corresponds to 
results on Grid A in Wilhelm et al. (2018)



4.2 � NACA23012 Iced‑Airfoil

The ability of the APGPL model to predict a three-dimensional unsteady flow with bound-
ary layer separation and reattachment is evaluated by considering the flow around an iced 
airfoil. The horn ice shape ED1978 presented in Broeren et al. (2014) is added to the lead-
ing edge of the NACA23012 airfoil studied in the previous section as illustrated in Fig. 11. 
This ice shape is composed of two main horns with some roughness and its shapes var-
ies along the spanwise direction. The flow field around this shape involves separation and 
reattachment in particular downstream of the upper-surface horn. This test case has been 
studied experimentally in Broeren et al. (2014) and numerically in König et al. (2015). The 
flow conditions are the same as in the previous section ( Re = 1.88 × 106 , Ma = 0.18).

(a) (b)

Fig. 10   Time and span-averaged pressure coefficient Cp over the NACA23012 clean-airfoil at � = 6.2◦ (a) 
and � = 9.3◦ (b) compared with references; Broeren et al. (2014) experimental data are read from figures 11 
and 20 in Broeren et al. (2014)

Fig. 11   Illustration of the NACA23012 airfoil with the horn ice ED1978 on the leading edge (in red) along 
with an example of the grid used for the calculation (it corresponds to grid A in Fig. 12)



4.2.1 � Numerical Setup

As illustrated in Fig. 12, almost the same domain size as for the clean airfoil is used for the 
iced airfoil with a small difference in spanwise length. In the experiment of Broeren et al. 
(2014), the same ice shape (illustrated in Fig. 11) is reproduced three times over the span 
of the airfoil. One ice shape is considered in the present numerical simulations considering 
one third of the measured span which corresponds to 61.8% of the airfoil chord. The angle 
of attack � = 6.2◦ is considered for which references of lift, drag and pressure coefficients 
are available. The same boundary conditions as for the clean airfoil are used except for the 
condition in the spanwise direction. Periodicity can not be used because of the ice shape, 
frictionless walls are used instead.

4.2.2 � Grid Influence

As shown in Fig.  12, boxes defined for grid refinement around the airfoil are extended 
compared to the clean airfoil case in order to capture the three dimensional structures gen-
erated by the iced airfoil. Three grids are defined in the red box of Fig. 12 which differ in 
particular around the ice shape. In grid A, offsets around the NACA profile are extended by 
boxes when approaching the leading edge. The discretisation of the ice shape is improved 
in grid B by an additional offset when the overall region around the ice shape is refined in 
grid C by an additional box of refinement. The grid size around the rest of the airfoil cor-
responds to c∕dxmin = 622 and s∕dxmin = 384 for all grids. This leads to mean y+ values of 

Fig. 12   Computational domain and grid for the NACA23012 airfoil with horn ice ED1978 test case; c is the 
airfoil chord

Table 5   Characteristics of the 
grids for the horn ice shape 
ED1978-NACA23012 airfoil 
case grid convergence study

Grid Grid A Grid B Grid C

�yhorn+∕dxmin 29 57 57
�yhorn−∕dxmin 24 49 49
Number of nodes (in 

million)
42 36 75



around 30 on the upper surface and 70 on the lower surface, with maximum values that 
can reach twice these mean values. Grids characteristics are defined in Table 5. �yhorn+ and 
�yhorn− correspond to the maximum heights in y direction of the upper and lower horns.

The grid influence study is conducted with the APGPL model. For all calculations, a 
statistically steady flow solution is obtained after 17.6t∗ and temporal statistics are then 
sampled over 25t∗ , where t∗ = c∕U

∞
 is the same as for the clean airfoil in the previous 

section. All results presented in this section are averaged in time unless otherwise speci-
fied. A restricted span is considered for post-processing by removing 10%c on each side in 
the spanwise direction as it was done for the clean airfoil thus maintaining a homogeniety 
in the post-processing. The considered span is then 41.8%c . In this case, this allows to 
avoid border effects due to the frictionless wall boundary conditions used in the spanwise 
direction.

Aerodynamic coefficients obtained with the three grids are compared in Table 6 with 
experimental and numerical references. The result obtained with the APGLL model on 
grid C is also presented and will be discussed in the next section. As for the clean air-
foil, corrected experimental data are taken from Broeren et al. (2014), while non-corrected 
data are obtained from König et al. (2015). However, unlike for the clean airfoil, experi-
mental lift is obtained by force balance for the iced airfoil while drag is still obtained by 
momentum-deficit methods. Two sets of data are available in Broeren et al. (2014) which 
correspond to two types of ice shapes: the ”casting“ and Rapid-Prototype Manufacturing 
”RPM“ cases. Some differences exist between the two shapes so that the comparison of 
both data sets highlights the variation in the results due to variations or uncertainties of the 
ice shape. Lift coefficients predicted by the three grids are very close and close to refer-
ences though slightly lower. The drag coefficient is underestimated, in particular with grid 
A, compared to references, except for the casting which has a lower drag coefficient than 
the RPM. The differences between the three grids are of the same order of magnitude than 
the differences between references.

Pressure coefficients Cp are compared in Fig. 13. According to Broeren et  al. (2014), 
experimental profiles are measured around mid-span so that Cp profile is first presented at 
mid-span in Fig. 13a. For x∕c < 0 , several Cp values may exist for one x/c position due to 
the presence of the horns so that data are represented with non-connected symbols. Cp = 1 
is correctly predicted at the zero velocity point by all grids. Cp can locally reach low values 

Table 6   Time-averaged lift C
L
 and drag C

D
 coefficients obtained with grids A, B and C for the ED1978-

NACA23012 airfoil case and compared with numerical and experimental references at � = 6.2◦ , except for 
data from König et al. (2015) at � ≈ 6◦ ; Broeren et al. (2014) data are read from figure 19 in Broeren et al. 
(2014); experimental and LBM values of König et al. (2015) are read from figure 9 in König et al. (2015)

CL CD

APGPL model Grid A 0.64 0.0546
Grid B 0.64 0.0584
Grid C 0.63 0.0646

APGLL model Grid C 0.58 0.0575
Numerical reference LBM-VLES König et al. (2015) at � ≈ 6◦ 0.69 0.0745
Experimental references Corrected data from Broeren et al. (2014) Casting 0.66 0.0587

Corrected data from Broeren et al. (2014) RPM 0.65 0.0718
Un-corrected data from König et al. (2015) at � ≈ 6◦ 0.69 0.0752



on the upper-surface horn tip ( −Cp close to 2.5). Results for all grids for x∕c < 0 are simi-
lar except for the beginning of the plateau on the upper surface. This plateau of Cp until 
x∕c ≈ 0.1 corresponds to the separation region downstream of the upper-surface horn. This 
separated region is shorter with the ”casting“ ice shape associated with a higher −Cp pla-
teau level and a faster pressure recovery than with the RPM ice-shape. The same tendency 
is observed for grid A and B with a Cp plateau close to the RPM data but with a too rapid 
pressure recovery. The plateau level is under-estimated with grid C but the pressure recov-
ery is slower indicating a longer separated region closer to references as will be shown 
below in Table 7. The pressure is then slightly overestimated on the upper and lower sur-
faces with all three grids. The small Cp plateau and pressure recovery downstream of the 
lower-surface horn is correctly reproduced by all grids. The span-averaged Cp is presented 
in Fig. 13b with error bars representing the minimum and maximum values of Cp . It shows 
the same tendency as in the mid-span but highlights that variations of Cp over the span are 

(a) (b)

Fig. 13   Time-averaged pressure coefficient Cp profiles obtained with the APGPL model on grids A, B and 
C at mid-span (a) and span-averaged Cp with error bars representing the minimum and maximum Cp values 
(b) and compared with references for the ED1978-NACA23012 airfoil case; Broeren et al. (2014) experi-
mental data are read from figure 20 in Broeren et al. (2014)

Table 7   Position of reattachment point x
R
∕c on the upper surface of the ED1978-NACA23012 airfoil with 

grids A, B and C and compared with references; x
R
∕c and �

x
R
∕c

 correspond to the mean position of the 
reattachment point and its standard deviation over the considered span; (x

R
∕c)

min
 and (x

R
∕c)

max
 are the mini-

mum and maximum values of x
R
∕c ; experimental minimal and maximal values are taken from figure 21 in 

Broeren et al. (2014)

(xR∕c)min xR∕c
(xR∕c)max �xR∕c

APGPL model Grid A 0.1 0.13 0.16 0.016
Grid B 0.11 0.14 0.16 0.015
Grid C 0.12 0.19 0.27 0.034

APGLL model Grid C 0.08 0.14 0.19 0.025
Experimental references 

Broeren et al. (2014)
RPM ≈ 0.19 0.25 ≈ 0.31

Casting ≈ 0.16 0.2 ≈ 0.22



principally observed downstream of the upper- and lower-surfaces horns and close to the 
trailing edge.

The positions (xR∕c) of the reattachment point on the upper surface obtained with the 
APGPL model on grids A, B and C are compared with reference data in Table 7. Results 
obtained with the APGLL model are discussed in the next section. In numerical results, 
this position is obtained by the position where the axial velocity becomes zero in the volu-
metric grid close to the solid surface. This position varies over the airfoil span due to the 
three-dimensionality of the ice-shape so that minimum, maximum and standard deviation 
of this position is given to better appreciate this variation. As mentioned before, a smaller 
recirculation region is obtained with the casting ice shape compared to the RPM ice shape. 
Results obtained with grids A and B are close and lead to too short recirculation region 
in agreement with the too rapid pressure recovery observed in Fig. 13. The recirculation 
region is slightly longer with grid C associated with a standard deviation more than twice 
the standard deviation obtained with grids A and B. These results are in agreement with 
previous observations made on the Cp profiles.

As a conclusion, improvement of the ice shape discretisation from grid A to grid B does 
not improve the flow prediction in terms of aerodynamic and pressure coefficients as well 
as length of the separated region behind the upper-surface horn. In contrast, these results 

Fig. 14   Instantaneous vortices (identified by iso-surface of Q-criterion) coloured by the non-dimensional 
streamwise Ux velocity obtained in WMLES with the APGPL model for the ED1978-NACA23012 case

Fig. 15   Time-averaged axial velocity contours with streamlines (a) and instantaneous axial velocity con-
tours at mid-span with � distribution at boundary nodes at t = 30.1t∗ (b) for the ED1978-NACA23012 case



are slightly improved by refining the grid in the separated flow region in grid C. Grid C is 
used for following evaluation of the APGPL model.

4.2.3 � Evaluation of the APGPL Model

An overview of the flow field obtained in WMLES with the APGPL model is given in 
Figs.  14 and  15. A three-dimensional unsteady flow is generated behind the horns. The 
large separation region behind the upper-surface horn is identified by streamlines in 
Fig.  15a in agreement with experimental observations (Broeren et  al. 2014) and numer-
ical results of König et  al. (2015). The behaviour of the APGPL model is presented in 
Fig. 15b with the indicator function � . The equilibrium power-law ( � = 1 ) is used on the 
horns around the point with zero velocity but also near the reattachment zone on the upper 
surface. The mode � = 2 without wall model is used at the point with zero velocity on the 
leading edge and in the onset of the separation region, two regions where the validity of 
a wall model is indeed not clearly demonstrated. The APGPL with � = 3 , taking adverse 
pressure gradient effects into account, is activated on the horns tips, near the onset of the 
separation and also after reattachment where the flow is submitted to adverse pressure gra-
dient, similarly to the clean airfoil.

Aerodynamic coefficients obtained with the APGPL and APGLL models on grid C are 
given in Table 6. Results obtained with the APGPL model are slightly better but the gap 
between both present WMLES is of the same order of magnitude than the gap between 
references. The same conclusion is drawn from the span-averaged pressure coefficients 
profiles in Fig. 16. Both present WMLES overestimate Cp on the airfoil. The lower −Cp 
plateau and slower pressure recovery obtained with the APGPL model indicates a longer 
recirculation region confirmed by results presented in Table 7. The length of the separation 
region varies more in the spanwise direction with the APGPL model than with the APGLL 
model.

Results obtained with the APGPL model for the prediction of the iced-airfoil are 
very similar to the one obtained using the APGLL model. The gap between both present 
WMLES is of the same order as the gap between the different references.

Fig. 16   Time and span-averaged 
pressure coefficient Cp obtained 
for the ED1978-NACA23012 
case with the APGLL and the 
APGPL models on grid C and 
compared with references; Bro-
eren et al. (2014) experimental 
data are read from figure 20 in 
Broeren et al. (2014)



4.3 � LAGOON Landing Gear Model

For further validation of the APGPL model, the flow around a landing gear is consid-
ered. The landing gear is one of the most important source of noise of an aircraft (Manoha 
et  al. 2008) and a good prediction of the flow dynamics and the aeroacoustics is of pri-
mary importance for noise reduction. The configuration 1 of the LAGOON (LAnding-Gear 
nOise database for CAA validatiON) project supported by Airbus (Manoha et  al. 2008, 
2009) and numerically studied in LBM by Sengissen et al. (2015) is considered. Sengis-
sen et al. (2015) in particular used the Afzal’s wall model with an additional term taking 
curvature effects (Patel and Sotiropoulos 1997) into account and the Approximate Decon-
volution Model (ADM) for turbulence modelling (Malaspinas and Sagaut 2011). In this 
case, the separation is not fixed by sharp edges but instead by smooth curvature giving high 
importance to the effect of the induced adverse pressure gradient and the near-wall flow 
prediction.

4.3.1 � Numerical Setup

The test case presented in Sengissen et al. (2015) with Reynolds number Re = 1.59 × 106 , 
based on the wheel diameter D, and Mach number Ma = 0.23 is used in this work. The 
computational domain is presented in Fig. 17. The origin of the domain corresponds to the 
intersection between the wheel axis and the main leg. Uniform free-stream velocity U

∞
 in 

streamwise −� direction and uniform free-stream pressure p
∞

 are respectively imposed at 
the inlet and outlet surfaces. Wall modelling is used on the landing-gear surface. All other 
surfaces are defined as outlets with fixed free-stream pressure. The MEDIUM mesh with 
40 million grid points defined in Sengissen et al. (2015) is used. The domain is composed 
on 10 embedded grids leading to y+ values varying from 0 to 200 for the landing gear. The 
calculation is performed up to time 22t∗ = 0.084 s to obtain a statistically steady flow solu-
tion, temporal statistics are then calculated by sampling the flow over 66t∗ = 0.25 s, where 
t∗ = D∕U

∞
.

Fig. 17   Computational domain and grid for the LAGOON test case; D is the wheel diameter



4.3.2 � Results and Discussion

The instantaneous vortices and the � distribution obtained with the APGPL model are pre-
sented in Fig. 18 for the last time step of the simulation. Turbulent structures are generated 
on the wheels and in the wake of the landing gear with massive flow separation down-
stream of the landing gear. In Fig. 18b, in the upstream part of the main leg, the flow is 
attached so that the equilibrium power-law is used ( � = 1 ). Going downstream, the flow 
is submitted to an adverse pressure gradient and the mode � = 3 is activated until flow 
separation occurs leading to the mode � = 2 . In the downstream part of the main leg in 
Fig. 18c, this mode is followed by the mode � = 3 where the flow reattaches and the mode 
� = 1 is recovered in the rear part of the main leg. Concerning the wheels, the equilibrium 
power-law ( � = 1 ) is also used in the upstream part when the APGPL ( � = 3 ) is mostly 
active in the downstream part and on the wheels sides with some regions without wall 
model ( � = 2 ), in particular in the interior part of the wheels where flow separation occurs.

A comparison of the mean streamwise velocity U (in −� direction) contours pre-
dicted by the APGLL and APGPL models on the plane at z = 0 in the wake of the land-
ing gear wheels is presented in Fig. 19. The width of the wake downstream of the wheels 

Fig. 18   Instantaneous vortices (identified by iso-surface of Q-criterion coloured by the streamwise velocity) 
(a) and upstream (b) and downstream (c) view of � distribution at boundary nodes around the landing gear 
at the last time step obtained in WMLES with the APGPL model

Fig. 19   Mean streamwise velocity U contours predicted by the APGLL (a) and APGPL (b) models on the 
plane at z = 0 for the LAGOON case



(a) (b)

(c) (d)

Fig. 20   Mean streamwise velocity profiles in different sections downstream of the wheels of the LAGOON



(a) (b)

(c) (d)

Fig. 21   Mean streamwise velocity fluctuations U�RMS =

√
u�u� profiles in different sections downstream of 

the wheels of the LAGOON



( x ≈ −0.5 m) shrinks more with the APGLL than with the APGPL model. The streamwise 
velocity obtained with the APGPL model is also lower in the centreline. Figure 20 gives 
a more precise comparison of the streamwise velocity prediction close the wheels on the 
middle plane, at z = 0 m, and below, at z = −0.104 m, which corresponds to almost 70% of 
the wheel radius. Results are compared with experimental LDV data and results obtained 
by Sengissen et al. (2015) on the same mesh. Velocity profiles obtained with the APGLL 
and APGPL models differ somewhat near the wheels in the centreline ( y = 0 ) and near 
y = 0.1 m as can also be observed in Fig. 19. However, both models are able to predict the 
rapid velocity reduction near y = ±0.15 m and the region of low velocity behind the wheels 
and their axis on the plane at z = 0 (Fig. 20a–c). At z = −0.104 m (Fig. 20d), the velocity 
reduction is also well predicted in the wheels wakes at y = ±0.08 m.

Mean streamwise velocity fluctuations predicted by WMLES are compared with 
LDV data and Sengissen et al. (2015) results in Fig. 21. Fluctuation levels are slightly 
higher with present WMLES compared to the results of Sengissen et  al. (2015) close 
to the wheels (Fig. 21a, b). Only resolved fluctuations in LES are considered in Fig. 21 
which may explain the fact that all WMLES underestimate the fluctuation levels com-
pared to LDV data on the plane at z = 0 as explained in Sengissen et al. (2015). Results 
obtained with the APGPL model are however in fair agreement with results of Sengis-
sen et al. (2015).

The validation of the APGPL model is completed by the comparison of the pres-
sure coefficient on one landing gear wheel in Fig. 22. WMLES results with the APGLL 
and APGPL models are in good agreement with previous results (Sengissen et  al. 
2015) and with experimental data obtained with pressure taps on the wheel centreline 
for −120◦ < 𝜃 < 120◦ . For |𝜃| > 120◦ , the APGPL model results are still in fairly good 
agreement with the APGLL model results. Both models give oscillations of Cp near 
|�| ≈ 90◦ and |�| ≈ 130◦ which are linked with the staircase-like form of the grid around 
solid surfaces as already discussed in the previous sections.

An interesting validation step for the LAGOON case concerns the near-field acous-
tics prediction based on Power Spectral Density (PSD) of wall pressure fluctuations. 
Experimental data using unsteady pressure transducers (kulite) are available at locations 
shown in Fig.  23a. Pressure signals at the corresponding points obtained by WMLES 

Fig. 22   Mean pressure coef-
ficient Cp along one LAGOON 
wheel centreline as a function 
of the angular position � on the 
wheel. Positive (respectively 
negative) � values correspond to 
positive (respectively negative) 
z values. See Figs. 20 and 21 for 
the caption



are sampled at a frequency of 60kHz over the last 0.25  s of the calculation. The PSD 
are calculated using the Welch’s procedure with five blocks and 50% of overlapping 
and considering Hann windowing as in Sengissen et al. (2015) for result’s consistency. 
Results are compared in Fig. 23. All WMLES give similar results in fair agreement with 
experimental data except for f > 6kHz which is the cut-off due to the grid resolution as 
explained in Sengissen et al. (2015). Local peaks at 1000 Hz and 1500 Hz for kulites 1, 
4 and 13 are well reproduced by WMLES.

For all validation parameters, results obtained with the APGPL model are very simi-
lar to the one obtained using the APGLL model, which is the primary objective of the 
present work. Moreover, the accuracy of present WMLES is similar to the one of Seng-
issen et al. (2015) and results in good agreement with experimental data are obtained on 
this complex geometry of engineering interest.

(a) (b)

(c) (d)

Fig. 23   Power spectral density of the pressure signal on kulite sensors on the LAGOON wheel



5 � Conclusion

A new explicit wall model based on the power-law for boundary layer under adverse 
pressure gradient has been developed based on an existing adverse pressure gradient 
log-law. The main objective was to preserve the explicit character of the equilibrium 
power-law model by extending it to boundary layers subjected to adverse pressure gradi-
ent frequently encountered in engineering applications. The new model, termed Adverse 
Pressure Gradient Power Law (APGPL) model, is composed of three modes that can be 
active simultaneously in different regions of a flow. In regions of favourable or no pres-
sure gradient, the equilibrium power-law is used. In regions exposed to adverse pressure 
gradient, the APGPL is used. The APGPL is however not valid in regions of separation 
where no wall model is then used assuming a low local Reynolds number and a direct 
resolution of the boundary layer.

The APGPL model is validated based on the Lattice Boltzmann Method applied on Car-
tesian grids for which the use of a wall model is required when considering turbulent flows. 
Results are compared with an adverse pressure gradient log law (APGLL) based on the 
Afzal’s law. A streamlined body is first studied considering a NACA profile subjected to 
smooth adverse pressure gradient. The attached flow is well reproduced in terms of lift 
and draft coefficients and pressure profile. The same NACA profile is then considered with 
ice accretion on the leading edge inducing boundary layer separation and reattachment. 
Finally, the flow around a landing-gear, for which massive separation occurs, is simulated. 
It is verified that, with the APGPL model, the no-wall model mode is active in regions of 
separation. The obtained results are very similar to results given by the APGLL model and 
in good agreement with experimental and numerical references. The APGPL model has 
been proven to give good results for both bluff body and streamline body flows while being 
explicit. No iterative method is required for the calculation of the flow quantities at the 
boundary node thus simplifying the near-wall treatment. This is of great interest for further 
developments of efficient boundary treatment for Immersed Boundary Models.
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