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1. INTRODUCTION

In this contribution, we propose a sequential sensor place-
ment to design an array geometry for underwater acoustic
source localization.

Inspired by the compressed sensing (CS) framework,
we consider the source localization as a sparse problem and
solve it in its undetermined form with a Bayesian method,
taking a sparse prior into account. In order to improve the
localization, we design the array geometry following the
Bayesian experimental design [1]. The sensor placement
becomes then an optimization problem. The proposed ap-
proach solves it with a greedy data-dependent method, that
answer the following question: according to what is mea-
sured by the current array, which new sensor position could
improve the source localization at most? The proposed
procedure iterates a sparse direction of arrival (DOA) esti-
mation followed by the sensor placement in the D-optimal
sense [2]. Each iteration leads to position one sensor at a
time.

In this extended abstract, we present the main theoreti-
cal components grounding the proposed method and illus-
trate its performance in a setup of practical interest.

2. MODEL

We consider a classic underwater source localization prob-
lem with a linear array of aperture D and M sensors with
their positions p ∈ [−D2 ,

D
2 ]
M . The S sources are uncor-

related narrowband and considered far-field. The sparse
vector x ∈ CN , with N the number of angles observed,
contains the complex amplitude of the sources. The mea-
sured signal y(p) ∈ CM can be modeled, using a on grid
approach, as follow:

y(p) = A(p)x + w, (1)

where w is an uncorrelated noise, supposed to be a zero-
mean complex Gaussian with variance α−10 . The matrix
A(p) ∈ CM×N contains N steering vectors associated
to plane waves propagating from angles θ1, · · · , θN ∈
[−π2 ,

π
2 ]. For convenience we define A(p) by its rows,

such that A(p) = [r(p1)T, . . . , r(pM )T]T and

r(pm) = [e−j
2π
λ pmsin(θ1), . . . , e−j

2π
λ pmsin(θN )], (2)

with λ the source wavelength.

3. PROPOSED STRATEGY

The proposed iterative sensor placement method follows
the Bayesian experimental design. The optimization crite-
rion is the volume of the ellipsoid error [2]. Meaning that
the new sensor has to minimize the determinant of the error
covariance matrix estimated a posteriori using the measure
acquired from the previous sensor array.

The proposed global procedure to sequentially add new
sensors, one at the time, is summarized in Algorithm 1.
The main steps are the Bayesian source localization, to es-
timate the error covariance matrix, and the computation of
the sensor placement. These steps are detailed in the next
sections.

3.1 Source Localization

The first step consist in estimating the source locations
from a given number of sensors. Consider the estimation
of x in a maximum a posteriori sense:

x̃ = argmax
x
P(x|y(p),α, α0), (3)

with α the vector containing the variances of the complex
normal distribution priors for each value of x. In order
to exploit a sparse prior on the number of sources, the esti-
mation of x is performed via the so-called Sparse Bayesian
Inference (SBI) [3]. The algorithm considers that the vari-
ances, α0 and α are unknown, and uses a non-informative
Gamma prior on both variables. Taking the complex nor-
mal distribution and Gamma distribution into account, a
closed-form solution of x̃ can be found since all hyper-
priors are conjugates of the Gaussian priors on x and w. In
fact, the posterior distribution is also Gaussian and writes
P(x|y(p),α, α0) = CN (x̃p, Σ̃p). Its mean and covari-

Algorithm 1 Sequential sensor placement procedure.
Require: M0, M , y ∈ CM0 , p = [p1, . . . , pM0

]T

for m =M0 + 1,M0 + 2 . . . ,M do
- Localize sources by SBI to compute Σ̃p

- Find the next optimal sensor position p̃∗ – eq. (7)
- Acquire the new measurement y∗
- Update variables y← [yT, y∗]

T and p← [pT, p̃∗]
T

end for
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ance read [4]:

x̃p = α0Σ̃pA(p)Hy, (4)

Σ̃p = (α0A(p)HA(p) + diag(α)−1)−1. (5)

3.2 Sensor placement

The goal of the second step is to choose the sensor position
p∗ that minimize the determinant of the covariance matrix
or maximize the reduction of the ellipsoid error volume [2].
Following a greedy procedure and as in [5], this step can
be written as:

p̃∗ = argmin
p∗∈[−D2 ,

D
2 ]

log

∣∣∣∣Σ([p
p∗

])∣∣∣∣ , (6)

by keeping the previous positions p constant so that the
covariance is parametric to p∗ only. As in [5], the greedy
sensor placement in (6) can be rewritten as:

p̃∗ = argmax
p∗∈[−D2 ,

D
2 ]

δh(p∗), (7)

with δh(p∗) = log(1 + α0r(p∗)Σ̃pr(p∗)H) and r(p∗) the
candidate row vector computed at the position p∗. Finally,
finding p∗ is done by calculating δh(p∗) for a high number
of candidate positions regularly sampled in the array.

4. EXPERIMENTS

The proposed iterative sensor placement procedure starts
with M0 = 2 sensors located at ±D/2, where D = 10 m
is the largest aperture of the array. The algorithm increase
sequentially the number of sensors. In this experiment we
fix to M = 45 the maximal number of sensors. The sen-
sors have to localize S = 10 far-field uncorrelated sources
emitting at the wavelength λ = 1.0 m. We force the angu-
lar positions of the sources to be sufficiently separated to
respect the necessary condition for the sparse source recov-
ery [6]. The source positions are randomly selected from
N = 181 angles regularly sampled in the interval [−π2 ,

π
2 ].

We adjust the sensor noise variance in order to maintain
the SNR = 12 dB.

The chosen performance score is the Jaccard index J , a
measure of similarity between 2 sets of samples. It quan-
tifies the detection and the localization in a sparse prob-
lem [7]. Note that 0 ≤ J ≤ 1: J = 1 reveals an exact
detection, whereas J = 0 if none of the sources is cor-
rectly detected. To quantify the performance of the sensor
placement, we compute the Jaccard index for each sensor
added.

To analyze how much the criteria from the experimen-
tal design δh(p∗) sequentially improve the detection score,
we choose to estimate a sensor placement as a function of
δh(p∗). To do so, δh(p∗) is linearly scaled between 0 and
1 to obtain δh(p∗). According to the D-design, δh(p∗) = 1
is the most informative position candidate. Then we select
randomly a position that fit the threshold chosen, for ex-
ample δh(p∗) ∈ [0, 0.25]. To quantify the criteria we test 4
different thresholds from the least to the most informative.
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Figure 1. Jaccard index (averaged on 100 realizations) ac-
cording to the number of new sensor placement.

We also test the optimized placement (i.e. δh(p∗) ∈ [1, 1])
and the random placement (i.e. δh(p∗) ∈ [0, 1]).

Fig. 1 corresponds to the averaged Jaccard index on
100 realizations, where each realization contains different
noise w, but with the source positions fixed. The results
show the more we maximize the criterion (i.e. δh(p∗) =
1), the quicker the performance score increases with the
number of sensors. Note that if you have enough sensors,
you can place them randomly to obtain the same result as
our iterative approach. But if you want to reduce the num-
ber of sensors, you can see that our approach only needs 25
sensors to reach the best detection performance against 40
for the random placement. We also note that the best de-
tection performance does not reach 1 in average, since in a
small portion of the realizations, the SBI algorithm doesn’t
detect all the sources.

We have evaluate the robustness of our approach ac-
cording to the SNR level. We have also done some com-
parison with state of the art approaches. These results will
be discussed during the presentation.
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