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Strategic information transmission with sender’s approval:

the single-crossing case

Stéphan Sémirat∗ and Françoise Forges†

May 2, 2022‡

Abstract

We consider games in which an informed sender first talks at no cost to a receiver;

then, the latter proposes a decision and, finally, the sender accepts the proposal or “exits”.

We make the following assumptions: the sender has finitely many types, the receiver’s

decision is real-valued, utility functions over decisions are concave, single-peaked and

single-crossing, exit is damaging to the receiver. In this setup, it may happen that babbling

equilibria necessarily involve exit. We nevertheless propose a constructive algorithm that

achieves a pure perfect Bayesian equilibrium without exit in every game of the class

considered.

Keywords: discrete cheap talk, participation constraints, single-crossing

JEL Classification: C72, D82

1 Introduction

A standard sender-receiver game is played in two stages: first, the – informed – agent sends a

message to the – uninformed – decision maker; then, the latter makes his decision. However,

in practice, there is often a third stage: the agent can reject the decision in favor of an outside

option.
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As an example (to be developed further below), consider the interaction between patients

and a public hospital. Patients are asked to report personal information (on previous diseases,

allergies, etc.), physicians decide on medical treatments, but these cannot be implemented

without the patients’ approval.

In this paper, we consider three-stage sender-receiver games in which, given the sender’s

message, the receiver proposes a decision. If the sender accepts the proposal, it is implemented.

Otherwise, the sender “exits”, and his outside option is implemented. The sender’s utility (on

decisions, but also on the outside option) depends on his type.

As in the most general version of Crawford and Sobel (1982), the receiver’s decisions belong

to a real interval and the type-dependent utility functions, over decisions, satisfy desirable

properties, namely, they are concave, single-peaked and single-crossing; the sender is upwardly

biased. As in Frug (2016), the sender has finitely many types, which are originally ordered to

make sense of the previous properties.

By contrast with the previous papers, the sender’s reservation utility matters in our model.

We do not assume that it varies in any specific way with the sender’s type. For instance, many

relationships are conceivable between a patient’s type and his utility for his outside option (to

get no treatment, to go a private hospital, etc.).

We show that the sender-receiver game with sender’s approval has a perfect Bayesian equi-

librium (PBE) in which exit does not happen. Such equilibria are meaningful if the receiver’s

utility in case of rejection is sufficiently low and the receiver is conceived as an expected utility

maximizing principal.

Without the “no exit” restriction, existence of a PBE is not an issue, because our game

always has a babbling equilibrium, in which the sender possibly exits, for some of his types.

A natural motivation for PBE without exit, under the assumption that the receiver’s utility,

when exit occurs, is sufficiently low, is that the maximal utility the receiver can expect, over

all conceivable PBE, is achieved at a PBE without exit (provided there exists one, of course).1

In other words, if, as Bester and Strausz (2001), we view the receiver as a principal who cannot

commit to a mechanism, namely, must play a cheap talk game with the agent, but can choose

among the equilibria of this game, a PBE without exit will emerge as the solution of the

1This quite intuitive result is established formally by Forges and Renault (2021) in a model that is more

general than the current one.
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principal’s optimization problem.2

To illustrate further the possible merits of our solution concept, let us make our example

more concrete by focusing on a specific disease with severe consequences for society. Assume

that public hospitals can provide various levels of treatment against the disease, that every

patient can only go to a given public hospital and that the effect of the treatment depends on

aspects of the patient’s health that cannot be checked on the spot (as suggested above, previous

diseases, allergies, etc.). Our technical assumptions on the utility functions (in particular, the

informed player’s upward bias) make sense. More importantly, the exit of patients can be very

costly to the hospital (due to sunk costs, but also to reputation effects). In other words, given

the mission of public institutions, it seems reasonable to ask whether there exists an equilibrium

in which treatments are proposed so as to keep all possible types of patients on board.3

As another example, suggested by the “France Telecom case”, think of a company in need

for management reorganization. After an interview with the employee (which can reveal his

degree of psychological weakness), the company proposes new working conditions, an extreme

case being employment termination with a severance pay. Exit, which can go as far as the

employee’s suicide, can have dramatic consequences for the company (e.g., trials with managers

sentenced to jail). In such a context, the company would be wise to consider equilibria without

exit.

Guided by the previous insights and building on Forges and Renault (2021), we study the

limit game in which the receiver’s utility level in case of exit is −∞. In this setup, the receiver’s

expected utility, at any PBE in which exit occurs with positive probability, is −∞, while it is

finite in every PBE without exit.

As will be illustrated in Section 4.2, existence of a PBE without exit requires specific

assumptions. We provide a counterexample in which utility functions are concave and single-

peaked, but do not satisfy the single-crossing condition.

The conditions that we impose on utility functions, when exit does not occur, are standard in

economic applications (see, e.g., Kreps and Sobel (1994), Sobel (2013) and the references below).

They cover, but go much beyond, the popular case in which the utility functions are quadratic,

2The same applies if instead of maximizing the receiver’s expected utility, we seek to maximize a weighted

sum of the players’ expected utilities with a positive weight to the receiver’s utility.
3Pushing the idea beyond the mere analysis of a three stage game, equilibria with exit would make public

hospitals attractive to some types of patients only, which would give rise to an adverse selection phenomenon.
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and the players’ ideal decisions differ by a bias that is independent of the sender’s type. We

only restrict the sender’s (type-dependent) reservation utility by assuming that, under complete

information, the receiver would be able to make a decision inducing the sender’s participation.

We establish that the limit game has a PBE in pure strategies, in which the sender accepts

the receiver’s proposal, whatever his type. Every such equilibrium corresponds to a partition

of the sender’s (finite) set of types satisfying two properties: individual rationality (IR) and

incentive compatibility (IC). The idea is that the sender reveals the cell π of the partition

containing his type and that, for every cell π of the partition, the receiver proposes a decision

that maximizes his own utility, subject to the constraint that all types in π approve the decision.

In order to avoid exit, there must exist, for every cell π, a decision giving at least as much as the

outside option to every sender’s type in π. This is the (IR) property. If the partition is IR, let,

for every cell π of the partition, yπ be the best choice of the decision maker when the sender’s

type is in π. The (IC) property expresses that every sender’s type in π prefers the decision

yπ associated with π to the decision yπ
′

associated with any other cell π′. Our existence proof

takes the form of a step by step algorithm, which starts with the finest partition of the sender’s

types (namely, the set of singletons) and gradually modifies it – by moving types from one cell

to another and possibly merging cells – so as to eventually satisfy (IR) and (IC).

Let us go back to the principal-agent interpretation suggested above. The receiver cannot

commit to a mechanism, so that the revelation principle does not hold. Hence to maximize

his expected utility, the receiver can just choose the PBE to be played. Given the previous

characterization of pure PBE without exit, the receiver has to select an IR and IC partition

of the sender’s types, with the understanding that the sender will report the partition cell

containing his true type.

The paper is organized as follows: we first complete the introduction by indicating further

links between this paper and related ones. Then, in Section 2, we introduce the formal model

and, in Section 3, we state our main result. Section 4 contains some elementary examples

(Subsection 4.1) and, as already announced, a counterexample, in Subsection 4.2. The algo-

rithm is described in Section 5. The section starts with basic lemmas which are proved in an

appendix. The different steps of the algorithm are detailed and its convergence is established.

A representative case is described in the body of the paper while the other cases are detailed

in the appendix. Section 6 makes some suggestions for future research.
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Related papers

As pointed out above, we add an approval stage to the cheap talk game considered by Frug

(2016), namely, Crawford and Sobel’s (1982) model with finitely many types for the sender.

In other words, Frug’s (2016) model can be viewed as a particular case of ours, when the

participation constraints are never binding. Frug (2016) convincingly argues that finitely many

types appear in relevant applications. Among other results, in the uniform quadratic case, he

proposes a procedure to determine a specific IR and IC partition of the types, which corresponds

to an ex ante optimal equilibrium.

Matthews (1989) already considers a cheap talk game with an approval stage. He makes

the same basic assumptions as Crawford and Sobel (1982). In particular, the sender has a con-

tinuum of unidimensional types. In Matthews’ (1989) game, rejection of the receiver’s proposal

leaves the players at the status quo, which is not particularly harmful to the receiver. As a

consequence, in typical equilibria of the game studied by Matthews (1989), some sender’s types

do veto the receiver’s proposal. Actually, one of Matthews’ (1989) insights is that incomplete

information (together with cheap talk) can explain rational exit in a framework where complete

information would preclude it.

By contrast, equilibria without exit are thoroughly analyzed in Shimizu (2017). The model

is again a direct extension of Crawford and Sobel (1982), with a focus on quadratic utility func-

tions, uniformly distributed types and type-independent reservation utility levels. Shimizu’s

(2017) main point is that the sender’s outside options can make cheap talk informative in spite

of a substantial conflict of interest between the players. To this aim, the author shows rigor-

ously how a parameter representing the credibility of exit is as important as the sender’s bias

in the standard uniform quadratic model (see also Section 4.1). Shimizu (2013) illustrates the

same phenomenon in the case where the receiver has a binary decision.

Finally, Forges and Renault (2021) can be viewed as a companion paper. The three-stage

game and the solution concept are the same as in this paper. But Forges and Renault (2021)

only assume that the receiver’s decision set is compact and that the utility functions are contin-

uous. In particular, the sender’s types can be multidimensional, so that they cannot be ordered

in a relevant way. Forges and Renault (2021) show that a PBE without exit may fail to exist

when the receiver has finitely many decisions, over which he can randomize. Their analysis

indicates that to establish the existence of a PBE without exit, one has to solve constrained
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optimization problems for the receiver (to account for the IR conditions) together with (IC)

conditions for the sender, which can reliably be formulated for finitely many types (but looks

intractable with a continuum of types). They prove that a pure PBE without exit exists in

three specific cases. First, when the sender has two types only. Second, when decisions belong

to the real line (as in the current paper) and, for every type, the sender’s utility function is

monotonic in the receiver’s decision (in sharp contrast with the current paper). Third, when

the receiver’s utility is type-independent. In the latter case, the proof proceeds by merging

cells of the finest partition of the sender’s types, which is one of the basic ingredients of the

algorithm below. Forges and Renault (2021) leave open the question of the existence of a PBE

without exit in the popular case of single-crossing utility functions. The current paper provides

an answer.

2 Model

We consider a sender-receiver game Γ, in which the receiver’s decision cannot be implemented

unless the sender approves it. The sender’s set of types Θ is a finite ordered set, p denotes a

probability distribution over Θ, such that p(θ) > 0 for every type θ. In the same way as types,

messages belong to a finite set, denoted as M , such that |M | ≥ |Θ|. Finally, uθ0 is type θ’s

reservation utility.

The timing of the game Γ is as follows:

• The sender’s type θ is chosen in Θ according to p.

• The sender learns his type and sends a message in M to the receiver.

• The receiver proposes a decision x ∈ R to the sender.

• If the sender accepts the proposal, the sender’s utility is U θ(x) and the receiver’s utility

is V θ(x). Otherwise, the sender’s utility is uθ0 and the receiver’s utility is −∞.

At a perfect Bayesian equilibrium (PBE) of Γ, the sender accepts decision x if U θ(x) > uθ0

and exits if U θ(x) < uθ0. We will focus on PBE without exit and such that, at equilibrium, x is

accepted if and only if U θ(x) ≥ uθ0. This means that the effective utility function of the sender

is max{U θ, uθ0}. At a PBE without exit, the receiver’s utility is finite.
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As pointed out in the Introduction, Forges and Renault (2021) consider the more general

case where the set of decisions is a compact subset of Rn. They start by considering games

Γ(v0), in which the receiver’s utility, when the sender exits, is a finite number v0. They show

that the PBE without exit of the limit game Γ are relevant to those of Γ(v0). Indeed, on the

one hand, if Γ does not have a PBE without exit, then, the same happens in every Γ(v0); on

the other hand, if Γ has a PBE without exit, then every Γ(v0) with a sufficiently low v0 also

has a PBE without exit.

In this paper, we directly concentrate on the game Γ, but we assume that the receiver’s

decision is a real number and that the functions (θ, x) 7→ U θ(x) and (θ, x) 7→ V θ(x) satisfy the

following properties:

• Strict concavity :

For every θ ∈ Θ, functions x 7→ U θ(x) and x 7→ V θ(x) are twice continuously differentiable

and for every x ∈ R, ∂
2Uθ(x)
∂x2 < 0 and ∂2V θ(x)

∂x2 < 0;

(A0)

• Single-crossing :

For every (θ1, θ2, x1, x2) ∈ Θ2 × R2, with θ2 > θ1 and x2 > x1,

if U θ1(x2)− U θ1(x1) ≥ 0, then U θ2(x2)− U θ2(x1) > 0, and

if V θ1(x2)− V θ1(x1) ≥ 0, then V θ2(x2)− V θ2(x1) > 0;

(A1)

• Existence of a unique maximizing argument :

For every θ ∈ Θ, there exists a unique x∗(θ) ∈ R and a unique y∗(θ) ∈ R

such that ∂Uθ(x)
∂x

∣∣∣
x=x∗(θ)

= 0 and ∂V θ(x)
∂x

∣∣∣
x=y∗(θ)

= 0;
(A2)

• The sender is right biased :

For every θ ∈ Θ, x∗(θ) > y∗(θ); (A3)

• For every type, the receiver has the opportunity to induce the sender’s participation:

For every θ ∈ Θ, there exists x ∈ R such that U θ(x) > uθ0; (A4)

Note that if the functions (x, θ) 7→ U θ(x) satisfy (A0)–(A3), then so do the functions

(x, θ) 7→ U θ(x) − uθ0. Therefore, we can assume w.l.o.g. that for each θ ∈ Θ, uθ0 = 0.4

The effective utility function of the sender becomes max{U θ, 0}, which, of course, does not

necessarily satisfy properties (A0) - (A3).

4Replacing Uθ by Uθ − uθ0 makes reservation utilities type-independent but of course modifies the utility
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3 Existence of an equilibrium without exit

In Section 5, we establish the following proposition.

Proposition 1. The game Γ has a pure perfect Bayesian equilibrium without exit.

Set for every θ ∈ Θ,

Xθ = {x ∈ R, U θ(x) ≥ 0}.

The set Xθ contains the decisions that are approved by type θ. By assumption (A4), Xθ 6= ∅.

We show below that Xθ is a closed interval of R. Since Xθ 6= ∅,

yθ = arg max
x∈Xθ

V θ(x)

is well-defined.

More generally, let, for every L ⊆ Θ and every x ∈ R,

XL =
⋂
θ∈L

Xθ,

V L(x) =
∑
θ∈L

p(θ)V θ(x).

The set XL contains the decisions that are approved by all types in L. The function V L is

proportional to the receiver’s conditional expected utility, given that the sender’s type belongs

to L; it is concave and single-peaked on R. If XL 6= ∅,

yL = arg max
x∈XL

V L(x)

is well-defined. Note that y{θ} = yθ.

To prove Proposition 1, we construct a partition Π of Θ such that Π induces an equilibrium

without exit of Γ.

Consider the following conditions:

(IR) Individual Rationality :

For every cell π ∈ Π, Xπ 6= ∅;

(IC) Incentive Compatibility :

If |Π| > 1, for every π, π′ ∈ Π and every θ ∈ π, U θ(yπ) ≥ U θ(yπ
′
).

functions when exit does not occur. Hence, assuming a specific functional form, e.g., quadratic, for Uθ together

with type-independent reservation utilities, as in Shimizu (2017), may entail a loss of generality (see Subsection

4.1).
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Let Π be a partition of Θ satisfying (IR) and (IC).5 To construct strategies from Π, let us

first associate a message mπ to every cell π of Π. Let the sender’s strategy σ associated to Π

be:

for every θ ∈ Θ, σ(θ) = mπ(θ),

where π(θ) is the cell that contains θ. Let the receiver’s strategy τ associated to Π be:

for every m ∈M , if m = mπ for some π ∈ Π, τ(mπ) = yπ,

otherwise, τ(m) = yπ0 ,

where π0 is an arbitrary cell of Π. It is straightforward to check that (σ, τ) defines a PBE

without exit of Γ.6

As a first particular case, the coarsest partition Π = {Θ} corresponds to a nonrevealing

(aka pooling) strategy of the sender, for which (IC) is automatically satisfied. However, in our

model, XΘ may be empty. In this case, (IR) cannot hold for Π = {Θ} and a nonrevealing

PBE without exit does not exist. At the other extreme, the finest partition Π = {{θ} : θ ∈ Θ}

corresponds to a fully revealing (aka separating) strategy for the sender, for which (IR) is

satisfied as a consequence of assumption (A4). But in this case, (IC) is quite demanding.

4 Examples

4.1 Elementary examples

Let us consider quadratic utility functions, with type-independent bias b > 0 and type-

independent maximal utility c2 for the sender7:

U θ(x) = c2 − (θ + b− x)2

V θ(x) = −(θ − x)2

5Note that single-crossing (i.e., (A1)) implies that a partition Π satisfying (IR) and (IC) is necessarily an

interval partition, in which every cell consists of consecutive types, i.e., if θ1 < θ2 belong to the same cell π of

Π, then every θ such that θ1 < θ < θ2 also belongs to π.
6Note that conversely, every pure PBE without exit (σ, τ) of Γ induces a partition Π satisfying (IR) and (IC).

It is the partition whose cells contain the types that lead to the same action, for every action on the equilibrium

path.
7We have pointed out above that w.l.o.g., we can assume that the sender’s reservation utility uθ0 equals 0.

However, imposing at the same time that Uθ has a specific quadratic form is of course restrictive.
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In this case, assuming c > 0,

Xθ = [θ + b− c, θ + b+ c]

x∗(θ) = θ + b

y∗(θ) = θ

Recalling yθ = arg max
x∈Xθ

V θ(x), we have here

yθ =

 θ + b− c if c < b

θ if c ≥ b.

This expression indicates that if c < b, the sender’s participation constraint x ∈ Xθ is

binding, for every θ while for c ≥ b, it is not binding, for every θ. Furthermore, yθ increases

with θ. As next examples will show, these properties are not always satisfied in our model.

Let us show how we can construct a PBE without exit when c < b. Let us set Θ =

{θ1, . . . , θn}, with θ1 < . . . < θn. For every subset L = {θj+1, . . . , θj+`} of ` consecutive types

such that XL 6= ∅, the participation constraint, namely, x ∈ XL, is binding:∑
θ∈L

p(θ)θ ≤ θj+` ≤ θj+` + b− c = minXL

so that yL = θj+` + b− c.

The partition Π0 = {{θi} , i = 1, . . . , n} satisfies (IR), but every type just receives his reser-

vation value. Regarding (IC), if θi < θj, y
θi /∈ Xθj so that type θj cannot envy θi. However, θj

envies θk > θj as soon as θk < θj + 2c. This suggests that the effect of the parameter c, which

reflects the credibility of exit (since it determines the size of Xθ) is as important as the effect

of the bias b, which reflects the players’ conflict of interest. This is a key insight in Shimizu

(2017).

A partition satisfying (IR) and (IC) can be gradually constructed from Π0. To see that,

observe that the highest type θn does not envy any type. Let us keep the cells as in Π0 until

we find θk envying θk+1; if this happens, we move θk to the next cell to form {θk, θk+1}. The

receiver’s constrained optimal decision over the new cell is y{θk,θk+1} = θk+1 + b − c = yθk+1 .

Hence the move is helpful to fulfill type θk’s (IC) condition but has no effect on the other types.

We can go on by identifying the next type, among θ1 < . . . < θk−1, starting with θk−1, which

envies the cell on its right, and so on to end up with a partition satisfying both (IR) and (IC).

These steps are consistent with the algorithm that we propose below and all correspond to case

C. of Subsection 5.7.
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In this particular example, the algorithm to go from partition Π0 to an IR and IC partition

is quite simple, because moving a type to a next cell does not generate a new decision for the

receiver. As a result, checking (IC) from step to step is straightforward. Even with the utility

functions above, the construction gets more intricate when c ≥ b, because the participation

constraint x ∈ XL, which is not binding for L = {θ}, can become binding when L gets larger.

Note that when c is so large that the participation constraint is never binding, whatever the

subset of types, we recover the standard case, in which there is no need to ask for the sender’s

approval.

Other examples are proposed in the sequel to illustrate the difficulties of a fully general

algorithm. These examples are still generated by quadratic utility functions but both the bias

and the maximum payoff of the sender depend on his type, namely

U θ(x) = c(θ)2 − (θ + b(θ)− x)2

with b(θ) > 0 and θ + b(θ) increasing with θ.

4.2 Counterexample

Existence of a partition Π that satisfies (IR) and (IC) is not guaranteed in general.8 Indeed,

conditions (IR) and (IC) tend to exert opposite effects on the players’ strategies:

• Condition (IC) directly reports on the sender’s Nash equilibrium conditions. When con-

dition (IR) is irrelevant (e.g. when the sender prefers the receiver’s preferred action to his

outside option), condition (IC) is obtained by pooling adjacent types, up to the situation

in which players agree about the resulting pool-contingent actions.9

• Condition (IR) requires separating strategies for types whose participation constraints

cannot be simultaneously satisfied.

Let us illustrate, in a setting close to ours, that conditions (IC) and (IR) may not be simul-

taneously satisfied. In the following example, we only relax the single-crossing assumption

8For instance, Forges and Renault (2021, Section 4.2 and 4.3) exhibit settings in which there is no pure

strategy equilibrium without exit (Section 4.2), or in which there is no mixed strategy equilibrium without exit

(Section 4.3).
9The resulting set of pools possibly consists of the single set Θ. For instance, it is so in the leading example

of Crawford and Sobel (1982), when the informed player’s bias is sufficiently large.
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U θ1

U θ2

U θ3

•
yθ1

•
y{θ1,θ2}

•
yθ2

•
yθ3 = y{θ1,θ3}

•
•

•

V θ1 V θ2 V θ3

Figure 1: A situation in which (A1) does not hold, and in which (IR) and (IC) do not simul-

taneously hold.

(A1), and show that it is not possible to pool and separate the types in such a way that both

conditions (IR) and (IC) hold.

Example 1. There are three types θ1, θ2, θ3, with θ1 < θ2 < θ3. The utility functions and cell-

contingent optimal actions are as depicted in Figure 1. In particular, assumptions (A0), (A2),

(A3) and (A4) hold. Moreover, we have x∗(θ1) < x∗(θ2) < x∗(θ3) and y∗(θ1) < y∗(θ2) < y∗(θ3).

However, the single-crossing condition (A1) does not hold, because θ2 > θ1 and yθ3 > y{θ1,θ2},

but

U θ1(yθ3)− U θ1(y{θ1,θ2}) > 0 and U θ2(yθ3)− U θ2(y{θ1,θ2}) < 0.

In that context, there is no partition Π of Θ = {θ1, θ2, θ3} such that both (IR) and (IC) are

satisfied:

• If Π = {{θ1, θ2, θ3}} (uninformative), or if Π = {{θ1}, {θ2, θ3}} (partially informative),

from X{θ1,θ2,θ3} ⊂ X{θ2,θ3} = Xθ2 ∩Xθ3 = ∅, (IR) does not hold.

• If Π = {{θ1, θ2}, {θ3}} (partially informative), then (IR) holds, but from U θ1(y{θ1,θ2}) <

U θ1(yθ3), (IC) does not hold.

• If Π = {{θ2}, {θ1, θ3}} (partially informative), then (IR) holds, but from U θ1(y{θ1,θ3}) <

U θ1(yθ2), (IC) does not hold.
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• If Π = {{θ1}, {θ2}, {θ3}} (fully informative), then (IR) holds, but from U θ1(yθ1) <

U θ1(yθ2) or U θ1(yθ1) < U θ1(yθ3), (IC) does not hold.

Finally, note that assumption (A1) would hold if, in Figure 1, the alternative graph for utility

function U θ2 (the dashed one) was considered. In that case, X{θ1,θ2,θ3} = Xθ2 ∩ Xθ3 6= ∅,

y{θ1,θ2,θ3} = yθ3 , and the uninformative partition Π = {{θ1, θ2, θ3}} does satisfy (IR) and (IC).

In the next section, we provide an algorithm showing that under assumptions (A0)–(A4), it

is always possible to pool and separate the types in such a way that conditions (IR) and (IC)

simultaneously hold.

5 Algorithm

We establish Proposition 1 by recursively defining a sequence of partitions (Πr)r≥0 that ends

on a partition Π of Θ satisfying (IR) and (IC).

Let us first state some lemmas about the receiver’s constrained optimum (proofs are given

in the appendix).

5.1 Preliminary lemmas

The first lemma states that Xθ is a closed interval.10

Lemma 1. For every θ ∈ Θ, Xθ = [minXθ,maxXθ].

The next two lemmas deal with the receiver’s constrained optimal action in the complete

information case, namely, yθ = arg max
x∈Xθ

V θ(x).

Lemma 2. For every θ ∈ Θ, yθ < x∗(θ) < maxXθ. In particular, U θ is increasing at x = yθ.

Lemma 3. For every θ ∈ Θ, yθ ≥ y∗(θ), with equality iff y∗(θ) ≥ minXθ. In particular, V θ is

not increasing at x = yθ.

Summing up, yθ =

 y∗(θ) if (x ∈ Xθ) is not binding,

minXθ if (x ∈ Xθ) is binding.

10The strict inequality in (A4) guarantees that, for every type θ, the set Xθ has a nonempty interior. This is

to avoid extra case by case analysis that, we believe, would not add much to the result.
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Observe that, as expected from the single-crossing condition (A1), y∗(θ) increases when θ

increases according to the original order over Θ, but that this monotonicity does not necessarily

hold for yθ (see Figure 2 below).

Finally, the next three lemmas identify relationships between the receiver’s constrained

optimal action in the partially informative case, namely, yL, L ⊂ Θ and yθ, θ ∈ L. Note that

when L is not a singleton, yL is possibly achieved at both ends of XL:

yL = arg max
x∈XL

∑
θ∈L

p(θ)V θ(x) =

 y∗(L) if (x ∈ XL) is not binding

minXL or maxXL if (x ∈ XL) is binding

where y∗(L) = arg max
x∈R

∑
θ∈L

p(θ)V θ(x).

Lemma 4. Let L ⊆ Θ be such that XL 6= ∅. Let θ ∈ L be such that for every θ′ ∈ L, yθ ≤ yθ
′
.

Then yθ ≤ yL.

Lemma 5. Let L ⊆ Θ be such that XL 6= ∅. Let θ ∈ L be such that for every θ′ ∈ L, yθ ≥ yθ
′
.

Then yθ ≥ yL.

Lemma 6. Let L1, L2 ⊆ Θ be such that XL1∪L2 6= ∅. If yL1 ≥ yL2 then yL1 ≥ yL1∪L2 ≥ yL2.

5.2 Initialization

Let us order the types in Θ as θi1 , . . . , θin , so that

yθi1 < . . . < yθin .

We start with the following partition Π0:

{π1
0 = {θi1}, . . . , πn0 = {θin}},

whose cells are ordered in the same way as the types.11

Partition Π0 clearly satisfies (IR). Moreover, since for each θ ∈ Θ, U θ is increasing at yθ

(see Lemma 2), partition Π0 is such that no type in a cell strictly prefers the action induced

in a preceding cell. Hence partition Π = Π0 also satisfies the following condition, which makes

sense in any partition Π with ordered cells:

11If there exist types θ and θ′ such that yθ = yθ
′
, then it is straightforward to see that y{θ,θ

′} = yθ = yθ
′
, so

that such types can be merged into a unique cell, up to obtaining a partition Π̃0 that does satisfy yπ̃
1
0 < yπ̃

2
0 <

. . . < yπ̃
|Π̃0|
0 . In that case, the algorithm has to start from partition Π̃0 instead of Π0.

14



U θ2

U θ1

•
yθ2

•
yθ1

V θ1 V θ2

Figure 2: A situation in which θ1 < θ2, but yθ1 > yθ2 .

(L-IC) Left-sided incentive compatibility : If |Π| > 1, for every n2 ∈ {2, . . . , |Π|}, for every θ ∈ πn2 ,

for every n1 ∈ {1, . . . , n2 − 1}, U θ(yπ
n1 ) < U θ(yπ

n2 ).

Condition (L-IC) can be seen as a half-way path to the more demanding condition (IC),

which says that no type in a given cell strictly prefers the action induced in neither a preceding

nor a succeeding cell. The recursive procedure detailed below will generate a sequence (Πr)r≥0

in which every Πr is an ordered partition satisfying conditions (IR) and (L-IC), and such that,

as r gets larger, Πr gradually fulfills the “right-sided incentive compatibility” (R-IC) constraint

too. To achieve this goal, if Πr does not satisfy (R-IC), the idea is to construct Πr+1 from Πr

by merging cells of Πr or by moving a type θ ∈ πn, with πn ∈ Πr, to some succeeding cell

πn
′
, n′ > n, of Πr. But to keep (IR) and (L-IC) all along the sequence, some care is needed

in the way cells are ordered in every partition Πr. It turns out to be useful to identify further

properties (namely, (P1) and (P2) below) to be satisfied by the partitions in (Πr)r≥0.

5.3 Orders on cells, types and induced actions

The type ordering used to define partition Π0, for which (L-IC) holds, might not be the original

one, for which single-crossing holds. Indeed a lower type may have a greater outside option

than a higher one. Then, as illustrated in Figure 2, in case of a large bias of the sender, the

receiver’s optimal type-contingent actions may be non monotonic in the type.12

However, from the single-crossing condition, a partition that satisfies (IC) requires the

receiver’s optimization to associate types with actions increasingly. For instance, if, as in

12This is in sharp contrast with the standard setting (e.g. as in Crawford and Sobel (1982)), for which the

receiver’s (unconstrained) optimal actions are ordered in the same way as the original order of types, whatever

the sender’s bias.
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Figure 2, θ1 < θ2 and yθ2 < yθ1 , so that the ordered partition Π0 = {{θ2}, {θ1}} associates

types with actions decreasingly, then θ1 necessarily prefers yθ1 to yθ2 , and from (A4), so does

θ2. Thus partition Π0 does not satisfy (IC).

As we shall see, an increasing association between types and actions from Π0 can be achieved

through merging adequately the types into cells. However, given that the action associated with

a cell is a convex combination of the actions associated with the types that it contains (see

Lemmas 4 and 5), the non monotonic association of type and type-contingent actions makes

the task difficult. But we do have a monotonic association between types and type-contingent

actions for at least a subset of the types. Indeed, as a consequence of the single-crossing

condition on the receiver’s utility function, according to which θ 7→ y∗(θ) increases, type and

type-contingent actions are identically ordered at least for those types θs such that yθ = y∗(θ),

i.e. for those types such that the receiver’s constraint is not binding (such that yθ > minXθ).

When considered in Π0, since yπ
k
0 = yθik , k ∈ {1, . . . , n}, the previous property can also

be stated as a monotonic association between types and cell -contingent actions. In this way,

the property can be stated for any partition Π = {π1, . . . , π|Π|} through the following two

conditions:

(P1) Increasing cell-contingent actions : yπ
1
< yπ

2
< . . . < yπ

|Π|
.

(P2) Increasing unconstrained type-contingent actions : If |Π| > 1, then for every n ∈ {1, ..., |Π|−

1}, for every θ ∈ πn, if yθ > minXθ, then for every n′ ∈ {n+1, . . . , |Π|}, for every θ′ ∈ πn′ ,

yθ ≤ yθ
′
.13

It turns out that the two conditions are sufficient to deal with the way actions shift when,

starting from Π0, we will recursively construct an (IR) and (IC) partition by merging types

adequately. To this end, we shall keep conditions (P1) and (P2) at every step of the algorithm.

Moreover, as the next example illustrates, once a partition Π fully satisfies (P1), (IR) and (IC),

property (P2) cannot be modified to include types whose receiver’s constraint is binding (such

that yθ = minXθ). Thus, (P1) and (P2) can be seen as a minimal requirement concerning the

relationship between the order of types and the order of cells, as induced by convex combinations

of the associated type-contingent actions.

Example 2. There are three types θ1, θ2, θ3, with θ1 < θ2 < θ3. The utility functions and

cell-contingent optimal actions are as depicted in Figure 3. The initial partition is Π0 =

13Note that property (P2) is meaningful as long as property (P1) is satisfied by partition Π.
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U θ2

U θ1

U θ3

•
yθ2
•

yθ1 = y{θ1,θ2}

•
yθ3 ' y{θ2,θ3}

V θ1 V θ2 V θ3

Figure 3: Non-monotonic receiver’s constrained optimal actions

{{θ2}, {θ1}, {θ3}}. The only partition satisfying (IR) and (IC) is Π = {π1, π2} with π1 = {θ1},

π2 = {θ2, θ3}.14 This partition Π is such that yπ
1
< yπ

2
, but θ1 ∈ π1 (with binding receiver’s

constraint), θ2 ∈ π2 and yθ1 > yθ2 .

5.4 Recursive procedure

Proposition 1 results from the following claim, which we establish in Section 5.7.

Claim. Let Πr be a partition which satisfies (P1), (P2), (IR) and (L-IC). If Πr does not

satisfy (IC), then there exists a partition Πr+1, obtained by moving some type θ̃ from some

cell πn ∈ Πr to some succeeding cell πn
′
, n′ > n, and possibly by merging cells, such that Πr+1

satisfies conditions (P1), (P2), (IR) and (L-IC).

The claim ultimately guarantees the existence of a partition satisfying (IR) and (IC) because

the moves considered in the claim cannot be repeated indefinitely. Indeed, there are finitely

many types and finitely many cells. Furthermore, every type move is always directed to a

succeeding cell. In other words, starting from Π0, and constructing Πr+1 from Πr according to

the claim, we necessarily reach a partition that satisfies (IR) and (IC).

14When considering the fully revealing partition Π = {{θ2}, {θ1}, {θ3}}, or the partially revealing partition

Π = {{θ2, θ1}, {θ3}}, type θ2 prefers yθ3 to yθ2 or to y{θ2,θ1} respectively, and if we consider the non revealing

partition Π = {{θ2, θ1, θ3}} or the partially revealing partition Π = {{θ2}, {θ1, θ3}}, the receiver may not satisfy

the participation constraint of the sender.
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As will be clear below, the algorithm used to establish the claim will be flexible regarding

the choice of the cell of the type θ̃ to be moved. Hence, different runs of the algorithm will be

conceivable, possibly leading – a priori – to different IR and IC partitions. Given our primary

goal, namely, to establish the existence of an equilibrium without exit, we do not constrain the

algorithm unless further specification makes it simpler.

5.5 Choices for the moving type and the destination cell

According to the above procedure, we need to establish the existence of a partition Πr+1 that

satisfies conditions (IR) and (L-IC), among the partitions that can be reached from Πr, by

using the moves prescribed in the above claim.

Keeping (IR) satisfied from Πr to Πr+1 is easily obtained if only appropriate cells are merged

(cells π and π′ such that Xπ ∩ Xπ′ 6= ∅), and if, as the following lemma (established in the

appendix) states, type moves are restricted to moving a type to a cell that it prefers.

Lemma 7. Let L,L′ ⊂ Θ with XL 6= ∅, XL′ 6= ∅, and suppose that there exists θ ∈ L′, θ /∈ L,

such that U θ(yL) > U θ(yL
′
). Then we have XL∪{θ} 6= ∅.

Keeping (L-IC) satisfied is more demanding because the considered moves from Πr to Πr+1

shift some induced actions, and thereby impact condition (L-IC) for every type. To that end,

we need to carefully monitor every cell-contingent induced action yπr , πr ∈ Πr, during the

process. As a first step, we will specify the way in which type θ̃ is moved from its cell πn to a

succeeding cell πn
′
. Before this specification, let us introduce further notations.

Set, for every y ∈ R,

Xθ(y) = {x ∈ R : U θ(x) ≥ U θ(y)}.

Since U θ is single-peaked, we have:

if y < x∗(θ), then minXθ(y) = y;

if y > x∗(θ), then maxXθ(y) = y;

if y = x∗(θ), then Xθ(y) = {x∗(θ)}.

Then we can write

Xθ(y) = [xθ−(y), xθ+(y)],

with y = xθ−(y) or y = xθ+(y) conditional on y ≤ x∗(θ) and y ≥ x∗(θ) respectively. Note that

from Lemma 2, for every θ ∈ Θ, xθ−(yθ) = yθ.
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5.5.1 Destination cell

Concerning the destination cell, if the chosen type θ̃ to be moved is an element of πn, we show

that we can w.l.o.g. choose πn
′

with n′ = n+ 1.

Let θ̃ ∈ πn, for some n ∈ {1, . . . , |Π|−1}, that prefers the action induced in some succeeding

cell πn
′
, n′ > n, i.e. such that yπ

n′ ∈ X θ̃(yπ
n
). Since X θ̃(yπ

n
) is an interval, and since we also

have yπ
n ∈ X θ̃(yπ

n
), we obtain [yπ

n
, yπ

n′
] ⊆ X θ̃(yπ

n
), where yπ

n
< yπ

n′
results from (P1). From

(P1), we also get yπ
n+1 ∈ [yπ

n
, yπ

n′
]. Therefore, we have yπ

n+1 ∈ X θ̃(yπ
n
), i.e. type θ̃ prefers

yπ
n+1

to yπ
n
.

5.5.2 Moving type

We choose, among the types in πn who prefer yπ
n+1

, the type θ with the greatest associated

action yθ. We set

θ̃ = θi` ,

where we ordered πn = {θi1 , . . . , θi|πn|} in such a way that yθi1 ≤ . . . ≤ y
θi|πn| , and set

` = max{j : U θj(yπ
n+1

) > U θj(yπ
n

)}.

The next lemma allows us to characterize θ̃ within πn.

Lemma 8. Either ` = |πn| or, if ` < |πn|, then for every j ∈ {`+ 1, . . . , |πn|}, yθij = minXθij .

In that latter case, yπ
n

= y
θi|πn| = minX

θi|πn| .

5.6 Action shifts

The choice of θ̃ as a maximal element of πn and the choice of moving it to the next succeeding

cell πn+1 allow us to characterize how the induced actions yπ
n

and yπ
n+1

shift after the type

move.

Lemma 9. • If πn \ {θ̃} 6= ∅, then

yπ
n\{θ̃} ≤ yπ

n

, (1)

and, if moreover ` < |πn|,

yπ
n\{θ̃} = yπ

n

. (1a)
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•

yθ̃ ≤ yπ
n+1∪{θ̃} ≤ yπ

n+1

(2)

• If ` = |πn|, then

yπ
n ≤ yπ

n+1∪{θ̃}. (3)

5.7 Partition Πr+1

Finally, we are now able to define partition Πr+1 from a partition Π = Πr that satisfies (IR),

(L-IC), (P1) and (P2). We distinguish the following cases.

(A) If [πn \ {θ̃} 6= ∅ and yπ
n+1∪{θ̃} ≤ yπ

n\{θ̃}], we set:
π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r ,

πnr+1 = πnr ∪ πn+1
r ,

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(4)

(B) If [πn \ {θ̃} 6= ∅ and yπ
n+1∪{θ̃} > yπ

n\{θ̃}],

(B.1) if [n = 1 or yπ
n−1
r < yπ

n
r \{θ̃}], we set

π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r if n > 1,

πnr+1 = πnr \ {θ̃},

πn+1
r+1 = πn+1

r ∪ {θ̃},

πn+2
r+1 = πn+2

r , . . . , π
|Πr|
r+1 = π

|Πr|
r .

(5)

(B.2) if [n > 1 and yπ
n−1
r ≥ yπ

n
r \{θ̃}], we set:

π1
r+1 = π1

r , . . . , π
n−2
r+1 = πn−2

r ,

πn−1
r+1 = πn−1

r ∪
(
πnr \ {θ̃}

)
,

πnr+1 = πn+1
r ∪ {θ̃},

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(6)

(C) If [πn \ {θ̃} = ∅]. we set: 
π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r ,

πnr+1 = πn+1
r ∪ {θ̃},

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(7)
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U θ1

U θ2 U θ3

•

yθ1 = y{θ2,θ1} = y{θ2,θ1,θ3}

•
yθ2

•
yθ3

•

y{θ2,θ3}

V θ1 V θ2 V θ3

Figure 4: Illustration of Case A.

Case C is the simplest one. It occurs for instance when πn is a cell of the initial partition

Π0, in particular, if Π0 does not satisfy (IC). We provide an illustration of the construction of

Πr+1 in cases A and B in examples 3 and 4 respectively.

Example 3. There are three types θ1, θ2, θ3, with θ1 < θ2 < θ3. The utility functions and

cell-contingent optimal actions are as depicted in Figure 4. In particular, yθ2 < yθ1 < yθ3 .

Set Π0 = {{θ2}, {θ1}, {θ3}} accordingly. Then type θ2 prefers yθ1 = yπ
2
0 to yθ2 = yπ

1
0 . Set

Π1 = {{θ2, θ1}, {θ3}}. Then type θ2 prefers yθ3 = yπ
2
1 to y{θ2,θ1} = yπ

1
1 . When θ̃ = θ2 moves from

π1
1 = {θ2, θ1} to π2

1 = {θ3}, we obtain yπ
2
1∪{θ̃} = y{θ2,θ3} ≤ yθ1 = yπ

1
1\{θ̃}. This is case A. In words,

moving a type from a cell to a succeeding cell may reverse the order of the shifted cell-contingent

actions. Hence the resulting cell-contingent actions do not satisfy (P1). However, as we shall

show, in such a case it is always possible to merge the considered cells while keeping condition

(IR) satisfied. In the present example, the next step is to set Π2 = {π1
1 ∪ π2

1} = {{θ2, θ1, θ3}}

which does satisfy (IR) and (P1).

Example 4. There are four types θ1, θ2, θ3, θ4, with θ1 < θ2 < θ3 < θ4. The utility functions

and cell-contingent optimal actions are as depicted in Figure 5. In particular, yθ2 < yθ1 <

yθ3 < yθ4 . Set Π0 = {{θ2}, {θ1}, {θ3}, {θ4}} accordingly. Then type θ2 prefers yθ1 = yπ
2
0 to

yθ2 = yπ
1
0 . Set Π1 = {{θ2, θ1}, {θ3}, {θ4}}. Now type θ2 prefers yθ3 = yπ

2
1 to y{θ2,θ1} = yπ

1
1 . Set

Π2 = {{θ1}, {θ2, θ3}, {θ4}}. Then yθ1 < y{θ2,θ3} < yθ4 , so that the order on the cell-contingent
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U θ1

U θ2

U θ3 U θ4

•
yθ2

•
yθ1 = y{θ2,θ1}

•

yθ3 = y{θ2,θ3}

•

yθ4 = y{θ3,θ4}

V θ1 V θ2 V θ3 V θ4

Figure 5: Illustration of Case B

actions does not change from Π1 to Π2. Accordingly, condition (L-IC) is satisfied. This is

case B.1. Now let us go on with the algorithm in order to illustrate case B.2. At Π2, θ3

prefers yθ4 = yπ
3
2 to y{θ2,θ3} = yπ

2
2 . When θ̃ = θ3 moves from π2

2 = {θ2, θ3} to π3
2 = {θ4},

then yπ
1
2 = yθ1 ≥ yθ2 = yπ

2
2\{θ̃}. This is case B.2. In words, moving a type from a cell πn

to the next succeeding cell may reverse the order of the cell-contingent actions of the nth cell

(which becomes πn\{θ̃}) and its preceding cell πn−1. In particular, the resulting cell-contingent

actions do not satisfy (P1). However, as we shall show, in that case it is always possible to

merge πn \ {θ̃} and πn−1 in such a way that the resulting partition satisfies (IR) and (P1). In

the present example, the next step is to set Π3 = {π1
2 ∪π2

2 \{θ̃}, π3
2 ∪{θ̃}} = {{θ2, θ1}, {θ3, θ4}}.

Once Πr+1 is constructed from Πr, we have to show that it also satisfies (IR), (L-IC), (P1)

and (P2). The construction is greatly simplified when yθ is increasing w.r.t. the initial order

of types, a property that does not hold in examples 3 and 4. It holds when participation

constraints are not binding for individual types (i.e., yθ = y∗(θ)). Then only two cases (B.1

and C) can arise, the initial order of types is maintained all along the procedure and at every

step, properties (P1) and (P2) are satisfied in a straightforward way. As an illustration, the

proof of case C is given below. We give the proofs of cases A and B in the appendix.
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The proof of case C. We suppose πnr \ {θ̃} = ∅, i.e. πnr = {θ̃}, and set
π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r ,

πnr+1 = πn+1
r ∪ {θ̃},

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(7)

By construction, Πr+1 satisfies (IR).

We show that Πr+1 satisfies (P1). Since Πr satisfies (P1), we only have to show:

yπ
n−1
r < yπ

n+1
r ∪{θ̃} < yπ

n+2
r .

From πnr = {θ̃}, yπnr = yθ̃. From yπ
n
r < yπ

n+1
r , we get yθ̃ < yπ

n+1
r and thus, from Lemma 6,

yθ̃ ≤ yπ
n+1
r ∪{θ̃} ≤ yπ

n+1
r , that is:

yπ
n
r ≤ yπ

n+1
r ∪{θ̃} < yπ

n+1
r . (8)

Then yπ
n−1
r < yπ

n
r and yπ

n+1
r < yπ

n+2
r gives the result.

Now we show that Πr+1 satisfies (P2). Let n1 ∈ {1, . . . , |πr+1| − 1 = |πr| − 2} and let

θ ∈ πn1
r+1. Suppose that there exists n2 ≥ n1 + 1 and θ′ ∈ πn2

r+1 such that yθ
′
< yθ. We show

that necessarily yθ = minXθ.

• If n2 ≤ n − 1, then n1 ≤ n − 2 and θ ∈ πn1
r , θ′ ∈ πn2

r with n2 ≥ n1 + 1, so that we have

yθ = minXθ because Πr satisfies (P2).

• If n2 = n, then either θ′ ∈ πn+1
r or θ′ = θ̃ ∈ πnr . Moreover, n1 ≤ n2 − 1 = n − 1 implies

θ ∈ πn1
r with n1 < n. The result also follows from (P2) applied to Πr.

• If n2 ≥ n+ 1, then θ′ ∈ πn2+1
r .

– If n1 ≥ n + 1 too, then θ ∈ πn1+1
r and the result follows by the same argument as

above.

– If n1 ≤ n, then either θ ∈ πn+1
r , or θ = θ̃ ∈ πnr or θ ∈ πn1

r . The result is similarly

obtained in all three cases.

Finally, we show that Πr+1 satisfies (L-IC). Let n′2 ∈ {2, . . . , |πr+1|}, n′1 ∈ {1, . . . , n′2 − 1}

and θ ∈ πn
′
2

r+1. We want to show that yπ
n′1
r+1 /∈ Xθ(yπ

n′2
r+1).
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We first consider the case θ = θ̃. In that case, π
n′2
r+1 = πn+1

r ∪ {θ̃} and we have to show

yπ
n′1
r+1 /∈ X θ̃(yπ

n+1
r ∪{θ̃}), i.e.

U θ̃(yπ
n+1
r ∪{θ̃}) > U θ̃(yπ

n′1
r+1).

From n′1 < n′2 = n, we have yπ
n′1
r+1 = yπ

n′1
r . Since Πr+1 satisfies (P1), we have yπ

n′1
r < yπ

n
r , and

from (8), we obtain the inequalities

yπ
n′1
r < yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r .

If U θ̃ increases at yπ
n+1
r ∪{θ̃}, then the first inequality gives the result. Otherwise, the second

inequality gives U θ̃(yπ
n+1
r ∪{θ̃}) ≥ U θ̃(yπ

n+1
r ). Now by construction, we have U θ̃(yπ

n+1
r ) > U θ̃(yπ

n
r ),

and since Πr satisfies (L-IC), we also have U θ̃(yπ
n
r ) > U θ̃(yπ

n′1
r ). This gives the result.

Next we suppose θ 6= θ̃. In that case, we use the following lemma.

Lemma 10. Let Π = {π1, . . . , π|Π|} be a partition of Θ that satisfies (IR), (P1) and (L-IC).

Let n2 ∈ {2, . . . , |Π|}, n1 ∈ {1, . . . , n2 − 1} and let θ ∈ πn2. For every y1, y2 ∈ R, if y1 < y2,

y1 ≤ yπ
n1 and y2 ≤ yπ

n2 , then y1 /∈ Xθ(y2).

According to that lemma, partition Πr+1 satisfies (L-IC) if y1 = yπ
n′1
r+1 and y2 = yπ

n′2
r+1 are such

that y1 < y2 (guaranteed because Πr+1 satisfies (P1)) and such that their exist n2 ∈ {2, . . . , |πr|}

and n1 ∈ {1, . . . , n2 − 1} with θ2 ∈ πn2
r , y1 ≤ yπ

n1
r and y2 ≤ yπ

n2
r . The result is obtained by the

following case by case analysis.

• If n′2 ≤ n − 1, then θ ∈ πn
′
2

r+1 = π
n′2
r = πn2

r with n2 = n′2, so that y2 = yπ
n′2
r = yπ

n2
r . From

n1 ≤ n′2 − 1 ≤ n− 2, we also have y1 = yπ
n′1
r = yπ

n1
r with n1 = n′1. This gives the result.

• If n′2 = n, then θ ∈ π
n′2
r+1 = π

n′2
r ∪ {θ̃}, and since θ 6= θ̃, we have θ ∈ π

n′2
r = πn2

r with

n2 = n′2, and, according to (2), y2 ≤ yπ
n′2
r = yπ

n2
r . From n′1 ≤ n′2 − 1 = n − 1, we have

y1 = yπ
n′1
r = yπ

n1
r with n1 = n′1, which gives the result.

• If n′2 ≥ n+ 1, then θ ∈ πn
′
2

r+1 = π
n′2+1
r = πn2

r with n2 = n′2 + 1, and then y2 = yπ
n′2+1
r = yπ

n2
r

with n2 = n′2 + 1 ≥ n+ 2.

– If n′1 ≥ n + 1 or n′1 ≤ n − 1, then π
n′1
r+1 = π

n′1
r = πn1

r with n1 = n′1, and thus

y1 = yπ
n′1
r = yπ

n1
r , which gives the result.

– If n′1 = n, inequality (2) gives y1 ≤ yπ
n+1
r = yπ

n1
r with n1 = n + 1, and the result

follows.
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6 Concluding remarks

We have established the existence of a perfect Bayesian equilibrium without exit in a class of

games of information transmission with sender’s approval. To do so, we have proposed a step by

step algorithm which achieves an IR and IC partition of the sender’s type. In the equilibrium

associated with the partition, the sender reveals the cell containing his type and for every cell,

the receiver makes the optimal decision subject to participation of all types in the cell.

The algorithm starts by ordering the types so that no type envies a lower one (L-IC). The

initial partition of singletons, which is trivially IR, is gradually modified into a not finer partition

satisfying (L-IC), as long as some type envies a higher one. Our construction is applicable in

every game of the class under consideration. As noted above, our algorithm allows for some

flexibility, at every step r, to pick the cell πn ∈ Πr containing an envying type; then, a specific

envying type θ̃ is selected, namely, the maximal element of πn and θ̃ is moved to the next cell

πn+1. As a consequence, it can happen that the algorithm has several distinct runs.

In any case, our algorithm guarantees that the sender-receiver game with sender’s exit

option has a partitional equilibrium without exit. Since, in our model, exit gives an infinitely

low payoff to the receiver, our existence result implies that the problem of maximizing the

equilibrium payoff of the receiver (interpreted as a principal) has a finite solution. A natural

topic for future research would be to identify conditions guaranteeing that the receiver’s best

equilibrium is partitional, as may happen in models like the one we consider, with finitely

many types for the sender, when participation constraints do not matter (see Frug (2016)).

Under such conditions, one might hope that (variants of) our algorithm converge to this best

partitional equilibrium.
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A Proof of the lemmas

Lemma 1. For every θ ∈ Θ, Xθ = [minXθ,maxXθ].

Proof. The proof is elementary analysis. Let us give the arguments. Function U θ is concave

with respect to x, with a maximum value at x = x∗(θ), where it is strictly positive. Since

U θ(x∗(θ)) > 0, there exists x̃ < x∗(θ) such that U θ(x̃) > 0. By concavity, on (−∞, x̃], the graph

of x 7→ U θ(x) is below its tangent line at x̃. Since x 7→ U θ(x) is increasing on (−∞, x∗(θ)),

the tangent line has a negative slope. Therefore U θ(x) < 0 if x is sufficiently small. Since U θ

is strictly positive at x̃, continuous and strictly increasing on (−∞, x̃], the Intermediate Value

Theorem ensures the existence of a unique x(θ) < x̃ at which U θ(x) vanishes. Then U θ(x) < 0

on (−∞, x(θ)), and U θ(x) > 0 on (x(θ), x∗(θ)]. Similarly, we can define x(θ) that annihilates

U θ and that is such that U θ(x) > 0 on (x∗(θ), x(θ))), and U θ(x) < 0 on (x(θ),+∞). Then

minXθ = x(θ), maxXθ = x(θ) and Xθ = [minXθ,maxXθ].

Lemma 2. For every θ ∈ Θ, yθ < x∗(θ) < maxXθ. In particular, U θ is increasing at x = yθ.

Proof. Let θ ∈ Θ. From y∗(θ) < x∗(θ), function x 7→ V θ(x) decreases on [x∗(θ)− ε,maxXθ] ⊂

Xθ for some ε > 0. Therefore its maximal argument yθ on Xθ is lower than x∗(θ).
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Lemma 3. For every θ ∈ Θ, y∗(θ) ≤ yθ, with equality iff y∗(θ) ≥ minXθ. In particular, V θ is

not increasing at x = yθ.

Proof. Let θ ∈ Θ. Function x 7→ V θ(x) increases on (−∞, y∗(θ)) and decreases on (y∗(θ),+∞).

From Lemma 2, V θ is not increasing at x = yθ. Therefore y∗(θ) ≤ yθ.

Now we show that y∗(θ) = yθ iff y∗(θ) ≥ minXθ. If y∗(θ) < minXθ, then V θ decreases

on Xθ, so that its maximal argument on Xθ, that is yθ, is minXθ, and thus y∗(θ) < yθ. This

shows that y∗(θ) ≥ yθ (and in particular, y∗(θ) = yθ) implies y∗(θ) ≥ minXθ. Conversely, if

y∗(θ) ≥ minXθ, then from x∗(θ) < maxXθ and y∗(θ) < x∗(θ) we obtain y∗(θ) ∈ Xθ. Since

y∗(θ) maximizes V θ on R, it maximizes V θ on Xθ and therefore y∗(θ) = yθ.

Lemma 4. Let L ⊆ Θ be such that XL 6= ∅. Let θ ∈ L be such that for every θ′ ∈ L, yθ ≤ yθ
′
.

Then yθ ≤ yL.

Proof. We distinguish the four cases: (i) yθ = minXθ; (ii) yθ > minXθ and yL = minXL; (iii)

yθ > minXθ and yL = maxXL; (iv) yθ > minXθ and minXL < yL < maxXL.

(i) yθ = minXθ. Then yL ≥ minXL = max{minXθ′ , θ′ ∈ L} ≥ minXθ = yθ.

(ii) yθ > minXθ and yL = minXL. Let θ′ be such that minXL = minXθ′ . Then yθ
′

=

minXθ′ . Thus yL = yθ
′ ≥ yθ

(iii) yθ > minXθ and yL = maxXL. Let θ′ be such that maxXL = maxXθ′ . Then yL =

maxXL = maxXθ′ > yθ
′ ≥ yθ,

(iv) yθ > minXθ and minXL < yL < maxXL. If the derivative of V L is positive at

yθ, then the result follows. Otherwise, there is some θ′ ∈ L such that V θ′ is decreasing at

x = yθ. Then V θ′ is also decreasing at x = yθ
′ ≥ yθ. This implies yθ

′
= minXθ′ . Then

yL > minXL ≥ minXθ′ = yθ
′ ≥ yθ.

Lemma 5. Let L ⊆ Θ be such that XL 6= ∅. Let θ ∈ L be such that for every θ′ ∈ L, yθ ≥ yθ
′
.

Then yθ ≥ yL.

Proof. We distinguish the two cases: (i) yL = minXL; and (ii) yL > minXL.

(i) yL = minXL. Let θ′ be such that minXL = minXθ′ . Then yθ
′ ≥ minXθ′ = minXL = yL.

The result follows from yθ > yθ
′
.
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(ii) yL > minXL. Function V L vanishes at yL. For every θ′ ∈ L, V θ′ is decreasing on the

right side of x = yθ
′
. Thus it decreases at x = yθ. Therefore V L decreases at x = yθ. Hence

yθ > yL.

Lemma 6. Let L1, L2 ⊆ Θ be such that XL1∪L2 6= ∅. If yL1 ≥ yL2 then yL1 ≥ yL1∪L2 ≥ yL2.

Proof. First we show yL1∪L2 ≥ yL2 by distinguishing the cases (i) minXL1 ≥ yL2 ; (ii) minXL1 <

yL2 and yL2 = minXL2 ; and (iii) minXL1 < yL2 and yL2 > minXL2 .

(i) minXL1 ≥ yL2. From minXL1 ≥ yL2 and yL2 ≥ minXL2 ≥ minXL1∪L2 , we obtain

minXL1 ≥ minXL1∪L2 . But since XL1∪L2 ⊆ XL1 , we have minXL1 ≤ minXL1∪L2 . There-

fore minXL1∪L2 = minXL1 , and then minXL1∪L2 ≥ yL2 . The result follows from yL1∪L2 ≥

minXL1∪L2 .

(ii) minXL1 < yL2 and yL2 = minXL2. From minXL1 < yL2 = minXL2 , we obtain

minXL1 < minXL2 . Then minXL1∪L2 = max{minXL1 ,minXL2} = minXL2 . The result

follows from yL1∪L2 ≥ minXL1∪L2 = minXL2 and assumption yL2 = minXL2 .

(iii) minXL1 < yL2 and yL2 > minXL2. From yL1 ≥ yL2 , we have that V L1 is non decreasing

at x = yL2 . From yL2 > minXL2 , so is V L2 , and thus so is V L1∪L2 = V L
1 + V L2 . This implies

yL1∪L2 ≥ yL2 .

Next we show yL1∪L2 ≤ yL1 by distinguishing the cases (i) maxXL2 ≤ yL1 ; (ii) maxXL2 >

yL1 and yL1 = maxXL1 ; and (iii) maxXL2 > yL1 and yL1 < maxXL1 .

(i) maxXL2 ≤ yL1. From maxXL2 ≤ yL1 and yL1 ≤ maxXL1 , we obtain maxXL2 ≤

maxXL1 . Therefore maxXL1∪L2 = min{maxXL1 ,maxXL2} = maxXL2 . Then the result

follows from yL1∪L2 ≤ maxXL1∪L2 = maxXL2 and assumption maxXL2 ≤ yL1 .

(ii) maxXL2 > yL1 and yL1 = maxXL1. From maxXL2 > yL1 = maxXL1 , we obtain

maxXL1∪L2 = min{maxXL1 ,maxXL2} = maxXL1 . Then the result follows from yL1∪L2 ≤

maxXL1∪L2 = maxXL1 and assumption maxXL1 = yL1 .

(iii) maxXL2 > yL and yL1 < maxXL1. From yL2 ≤ yL1 and maxXL2 > yL1 , we have

yL1 ∈ [yL2 ; maxXL2). Since yL2 is the maximal argument of V L2 on XL2 , it is also the max-

imal argument of V L2 on [yL2 ; maxXL2) ⊂ XL2 . Thus from yL1 ∈ [yL2 ; maxXL2), we have
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V L2(yL2) ≥ V L2(yL1). From that, we get that V L2 is non increasing on [yL2 ,+∞). In particu-

lar, it is non increasing at x = yL1 ≥ yL2 . Therefore V L1∪L2 = V L1 + V L2 is non increasing at

x = yL1 . This implies yL1∪L2 ≤ yL1 .

Lemma 7. Let L,L′ ⊂ Θ with XL 6= ∅, XL′ 6= ∅, and suppose that there exists θ ∈ L′ with

θ /∈ L. If U θ(yL) > U θ(yL
′
), then XL∪{θ} 6= ∅.

Proof. By definition, yL
′ ∈ XL′ , and since XL′ = XL′\{θ} ∩ Xθ ⊆ Xθ, we have yL

′ ∈ Xθ.

Therefore U θ(yL
′
) ≥ 0, so that U θ(yL) > U θ(yL

′
) implies U θ(yL) > 0. Hence yL ∈ Xθ. Since

yL ∈ XL, we obtain yL ∈ XL ∩Xθ = XL∪{θ}, and in particular XL∪{θ} 6= ∅.

Lemma 8. Either ` = |πn| or, if ` < |πn|, then for every j ∈ {`+ 1, . . . , |πn|}, yθij = minXθij .

In that latter case, yπ
n

= y
θi|πn| = minX

θi|πn| .

Proof. If ` 6= |πn|, let j ∈ {`+ 1, ..., |πn|} 6= ∅. First, we show

yπ
n+1 ≥ x

θij
+ (yπ

n

). (9)

Since j > `, U θij (yπ
n+1

) ≤ U θij (yπ
n
). This means that either (9) holds, or yπ

n+1 ≤ x
θij
− (yπ

n
).

However this latter inequality cannot occur. Indeed, from (P1), we have yπ
n+1

> yπ
n
. And

from yπ
n ∈ Xθij (yπ

n
), we have yπ

n ≥ x
θij
− (yπ

n
). We obtain yπ

n+1
> x

θij
− (yπ

n
).

Second, we show

yπ
n

= x
θi`
− (yπ

n

). (10)

If (10) does not hold, then yπ
n

= x
θi`
+ (yπ

n
). If this holds, then from U θi` (yπ

n+1
) > U θi` (yπ

n
), we

obtain yπ
n+1

< x
θi`
+ (yπ

n
) = yπ

n
. But from (P1), we have yπ

n
< yπ

n+1
.

Third, we show

θij < θi` . (11)

From (9), x
θij
+ (yπ

n
) ≤ yπ

n+1
and from U θi` (yπ

n+1
) > U θi` (yπ

n
), we have yπ

n+1
< x

θi`
+ (yπ

n
). Then

we obtain x
θi`
+ (yπ

n
) > x

θij
+ (yπ

n
). This implies x

θi`
+ (yπ

n
) /∈ Xθij (yπ

n
). Since yπ

n ∈ Xθij (yπ
n
), we

get

U θij (x
θi`
+ (yπ

n

))− U θij (yπ
n

) < 0. (12)

From (10), U θi` (x
θi`
− (yπ

n
))− U θi` (yπ

n
) = 0, and since U θi` (x

θi`
+ (yπ

n
)) = U θi` (x

θi`
− (yπ

n
)), we get

U θi` (x
θi`
+ (yπ

n

))− U θi` (yπ
n

) = 0.
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Therefore, according to (12),

U θij (x
θi`
+ (yπ

n

))− U θij (yπ
n

) < U θi` (x
θi`
+ (yπ

n

))− U θi` (yπ
n

). (13)

Now from (10), x
θi`
+ (yπ

n
) > yπ

n
so that from the single-crossing condition (A1), (13) holds only

if (11) holds.

Fourth, we show

yθij = minXθij . (14)

Inequality (11) implies that either yθij = minXθij or yθi` = minXθi` , since otherwise, yθij >

minXθij and yθi` > minXθi` , which implies, y∗(θij) = yθij and y∗(θi`) = yθi` . But in that case,

from the single-crossing assumption on V θ(x), y∗(θij) < y∗(θi`) which gives yθij < yθi` , i.e.

j < `, a contradiction. Hence if yθi` > minXθi` then necessarily (14) holds. It remains to show

that yθi` = minXθi` also implies (14). If yθi` = minXθi` then y∗(θi`) ≤ minXθi` . From (11)

and the single-crossing condition, y∗(θij) < y∗(θi`) and thus y∗(θij) < minXθi` = yθi` . Then

from yθi` ≤ yθij , we obtain y∗(θij) < yθij , which precisely implies (14).

Finally, consider j = |πn|. Since for every θ ∈ πn, yθ ≤ yθij , according to Lemma 5, we

have, on the one hand,

yπ
n ≤ yθij .

On the other hand, from yπ
n ∈

⋂
θ∈πn

Xθ, we also have yπ
n ≥ minXθij . That is, according to

(14), yπ
n ≥ yθij . Hence we obtain

yπ
n

= y
θi|πn| = minX

θi|πn| .

Lemma 9. • If πn \ {θ̃} 6= ∅, then

yπ
n\{θ̃} ≤ yπ

n

, (1)

and, if moreover ` < |πn|,

yπ
n\{θ̃} = yπ

n

. (1a)

•

yθ̃ ≤ yπ
n+1∪{θ̃} ≤ yπ

n+1

(2)

• If ` = |πn|, then

yπ
n ≤ yπ

n+1∪{θ̃}. (3)
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Proof of (1) and (1a). According to Lemma 8, either ` = |πn|, or [` < |πn| and yπ
n

=

minX
θi|πn| = y

θi|πn| ]. If ` = |πn|, then for every θ ∈ πn, yθ ≤ yθi` . According to Lemma

6, this implies

yπ
n\{θi`} ≤ y(πn\{θi`})∪{θi`} = yπ

n

.

If instead ` < |πn| and yπ
n

= minX
θi|πn| = y

θi|πn| , then from θi|πn| ∈ πn \ {θi`}, we have

yπ
n\{θi`} ∈ X

θi|πn| and then yπ
n\{θi`} ≥ minX

θi|πn| = yπ
n
. Moreover, since for every θ ∈ πn,

yθ ≤ y
θi|πn| , we also have for every θ ∈ πn \ {θi`}, yθ ≤ y

θi|πn| . Therefore, according to Lemma

5, yπ
n\{θi`} ≤ y

θi|πn| = minX
θi|πn| . Thus, we obtain (1a).

Proof of (2). According to Lemma 6, inequalities (2) hold whenever

yθi` ≤ yπ
n+1

(2a)

holds. To show (2a), we use (P2).

Suppose that θi` is such that yθi` > minXθi` . Then from (P2), for every θ′ ∈ πn+1, yθi` ≤ yθ
′
.

Then (2a) derives from Lemma 4.

If instead θi` is such that yθi` = minXθi` , then from yπ
n ∈ Xθi` , we have yπ

n ≥ minXθi` =

yθi` . Then from yπ
n+1

> yπ
n
, we obtain yπ

n+1
> yθi` , which implies (2a).

Proof of (3). If ` = |πn|, then for every θ ∈ πn \ {θi`}, yθ ≤ yθi` . Then From Lemma 5,

yπ
n\{θi`} ≤ yθi` , and then from Lemma 6,

yπ
n

= y(πn\{θi`})∪{θi`} ≤ yθi` . (15)

Now suppose that θi` is such that yθi` > minXθi` . Then from (P2) we have: for every θ′ ∈ πn+1,

yθi` ≤ yθ
′
. Then from Lemma 4, we have yθi` ≤ yπ

n+1
, and from Lemma 6, we deduce yθi` ≤

yπ
n+1∪{θi`}. Then from (15), we obtain yπ

n ≤ yθi` ≤ yπ
n+1∪{θi`}, so that (3) holds. If instead

yθi` = minXθi` , then from yπ
n+1∪{θi`} ∈ Xθi` , we necessarily have yπ

n+1∪{θi`} ≥ minXθi` = yθi` ,

which implies (3) using (15).

Lemma 10. Let Π = π1 ∪ . . . ∪ π|Π| be a partition of Θ that satisfy (IR), (P1) and (L-IC).

Let n2 ∈ {2, . . . , |Π|}, n1 ∈ {1, . . . , n2 − 1} and let θ ∈ πn2. For every y1, y2 ∈ R, if y1 < y2,

y1 ≤ yπ
n1 and y2 ≤ yπ

n2 , then y1 /∈ Xθ(y2).

Proof. Since Π satisfies (L-IC), given n2 ∈ {2, . . . , |Π|}, n1 ∈ {1, . . . , n2 − 1} and θ ∈ πn2 , we

have yπ
n1 /∈ Xθ(yπ

n2 ). Therefore either yπ
n1 < xθ−(yπ

n2 ) or yπ
n1 > xθ+(yπ

n2 ). Since Π satisfies
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(P1), we have yπ
n1 < yπ

n2 ≤ xθ+(yπ
n2 ), so that necessarily

yπ
n1 < xθ−(yπ

n2 ). (16)

Let us first suppose y2 ∈ Xθ(yπ
n2 ). This means U θ(y2) ≥ U θ(yπ

n2 ), which implies Xθ(y2) ⊆

Xθ(yπ
n2 ). In particular, xθ−(yπ

n2 ) ≤ xθ−(y2). This gives, with y1 ≤ yπ
n1 and (16),

y1 ≤ yπ
n1 < xθ−(yπ

n2 ) ≤ xθ−(y2).

In particular, y1 /∈ Xθ(y2).

Now suppose y2 /∈ Xθ(yπ
n2 ). This means U θ(y2) < U θ(yπ

n2 ), so that yπ
n2 ∈ Xθ(y2). In

particular,

yπ
n2 ≤ xθ+(y2).

Let us consider the cases yπ
n2 < xθ+(y2) and yπ

n2 = xθ+(y2) respectively. If yπ
n2 < xθ+(y2), then

from y2 ≤ yπ
n2 , we obtain y2 < xθ+(y2). Then necessarily y2 = xθ−(y2). Then from y1 < y2 we

have y1 < xθ−(y2), which implies y1 /∈ Xθ(y2). If yπ
n2 = xθ+(y2) then Xθ(y2) = Xθ(yπ

n2 ), and in

particular xθ−(yπ
n2 ) = xθ−(y2). This gives, with y1 ≤ yπ

n1 and (16),

y1 ≤ yπ
n1

1 < xθ−(yπ
n2 ) = xθ−(y2),

and thus y1 /∈ Xθ(y2).

B Proofs of cases A and B

Case A. Suppose πnr \ {θ̃} 6= ∅ and

yπ
n+1
r ∪{θ̃} ≤ yπ

n
r \{θ̃}. (17)

In that case, partition Πr+1 is obtained by merging cells πn and πn+1. From (17), (1) and

yπ
n
r < yπ

n+1
r respectively, we have

yπ
n+1
r ∪{θ̃} ≤ yπ

n
r \{θ̃} ≤ yπ

n
r ≤ yπ

n+1
r . (18)

Note that yπ
n+1
r ∪{θ̃} ∈

⋂
θ∈πn+1

r ∪{θ̃}
Xθ and yπ

n+1
r ∈

( ⋂
θ∈πn+1

r

Xθ

)
∩X θ̃ =

⋂
θ∈πn+1

r ∪{θ̃}
Xθ. This means

that for every θ ∈ πn+1
r ∪ {θ̃}, we have

{
yπ

n+1
r ∪{θ̃}, yπ

n+1
r

}
⊂ Xθ. However, Xθ is an interval.

Therefore for every θ ∈ πn+1
r ∪ {θ̃}, we have [yπ

n+1
r ∪{θ̃}, yπ

n+1
r ] ⊂ Xθ. Then from (18), we have

that for every θ ∈ πn+1
r ∪ {θ̃}, yπnr \{θ̃} ∈ Xθ. But this is also true for every θ ∈ πnr \ {θ̃}.
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Therefore, for every θ ∈
(
πnr \ {θ̃}

)
∪
(
πn+1
r ∪ {θ̃}

)
= πnr ∪ πn+1

r , we have yπ
n
r \{θ̃} ∈ Xθ. In

particular, ⋂
θ∈πnr ∪π

n+1
r

Xθ 6= ∅.

Thus yπ
n
r ∪π

n+1
r is well defined. Let us show that

yπ
n
r ∪π

n+1
r = yπ

n
r . (19)

• If ` = |πnr |, from (3) we have yπ
n
r = yπ

n+1
r ∪{θ̃}, so that (18) gives yπ

n
r ∪{θ̃} = yπ

n
r \{θ̃} = yπ

n
r .

Then (19) derives from πnr ∪ πn+1
r = (πnr ∪ {θ̃}) ∪ (πnr \ {θ̃}).

• If ` < |πnr |, from Lemma 8, yπ
n
r = y

θi|πnr | = minX
θi|πnr | . Since θi|πnr | ∈ π

n
r ∪ πn+1

r , we then

have yπ
n
r ∪π

n+1
r ≥ minX

θi|πnr | = yπ
n
r . But from Lemma 6, we also have yπ

n
r ≤ yπ

n
r ∪π

n+1
r .

This gives (19).

We set 
π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r ,

πnr+1 = πnr ∪ πn+1
r ,

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(4)

Partition Πr+1 satisfies (IR) by construction. Since Πr satisfies (P1), from (19), Πr+1 also

satisfies (P1).

Let us show that it also satisfies (P2). Let n1 ∈ {1, . . . , |Πr+1| − 1 = |Πr| − 2} and let

θ ∈ πn1
r . Suppose that there exists n2 ≥ n1 + 1 and θ′ ∈ πn2

r+1 such that yθ
′
< yθ. Let us show

that yθ = minXθ.

• If n1 ≤ n− 1, then from πn1
r+1 = πn1

r , we have θ ∈ πn1
r . Then n2 ≥ n, so that θ′ ∈ πn

′
2

r for

some n′2 such that n′2 = n2 or n′2 = n2 + 1. In particular n′2 ≥ n1. Since Πr satisfies (P2),

we then get yθ = minXθ.

• If n1 = n, then from n2 ≥ n1 + 1 = n + 1, we have πn2
r+1 = πn2+1

r and thus θ′ ∈ πn2+1
r

with n2 + 1 ≥ n + 2. We have either θ ∈ πnr or θ ∈ πn+1
r . Thus θ ∈ π

n′1
r with n′1 = n

or n′1 = n + 1. In both cases, n2 + 1 ≥ n + 2 ≥ n′1. Since Πr satisfies (P2), we get

yθ = minXθ.

• If n1 ≥ n+1 then from n2 ≥ n1 +1 ≥ n+2 we have θ ∈ πn
′
1

r and θ′ ∈ πn
′
2

r , with n′1 = n1 +1

and n′2 = n2 + 1 so that n′2 = n2 + 1 ≥ (n1 + 1) + 1 = n′1 + 1. Since Πr satisfies (P2), we

get yθ = minXθ.
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Finally, we show that Πr+1 satisfies (L-IC). Let n′2 ∈ {2, . . . , |Πr+1|}, n′1 ∈ {1, . . . , n′2 − 1}

and θ ∈ πn
′
2

r+1. We want to show that yπ
n′1
r+1 /∈ Xθ(yπ

n′2
r+1).

• If n′1 6= n and n′2 6= n, then either π
n′1
r+1 = π

n′1
r and π

n′2
r+1 = π

n′2
r , or π

n′1
r+1 = π

n′1
r , and π

n′2
r+1 =

π
n′2+1
r , or π

n′2
r+1 = π

n′2+1
r and π

n′2
r+1 = π

n′2+1
r . Since Πr satisfies (L-IC), yπ

n′1
r /∈ Xθ(yπ

n′2
r ), and

yπ
n′1
r /∈ Xθ(yπ

n′2+1
r ), and yπ

n′1+1
r /∈ Xθ(yπ

n′2+1
r ), so that yπ

n′1
r+1 /∈ Xθ(yπ

n′2
r+1) in the three cases.

• If n′1 = n, then from (19), yπ
n′1
r+1 = yπ

n
r , and from n′2 ≥ n′1 + 1 = n + 1, yπ

n′2
r+1 = yπ

n′2+1
r ,

with θ ∈ πn
′
2+1

r . Since Πr satisfies (L-IC), yπ
n
r /∈ Xθ(yπ

n′2+2
r ) and the result follows.

• If n′2 = n, then from (19), yπ
n′2
r+1 = yπ

n
r , and from n′1 ≤ n′2 − 1 = n− 1, yπ

n′1
r+1 = yπ

n′1
r . We

have θ ∈ πnr or θ ∈ πn+1
r .

– If θ ∈ πnr , then yπ
n′1
r /∈ Xθ(yπ

n
r ) because Πr satisfies (L-IC).

– If θ ∈ πn+1
r , let us set y1 = yπ

n′1
r and y2 = yπ

n
r . Then y1 < y2 (because n′1 ≤ n−1 and

Πr satisfies (P1)), y1 ≤ yπ
n′1
r and y2 ≤ yπ

n+1
r (because Πr satisfies (P1)), and Lemma

10 gives the result.

Case B. Suppose πnr \ {θ̃} 6= ∅ and

yπ
n+1
r ∪{θ̃} > yπ

n
r \{θ̃}. (20)

In this case, we distinguish cases (B.1) [n = 1 or yπ
n−1
r < yπ

n
r \{θ̃}], and (B.2) [n > 1 and

yπ
n−1
r ≥ yπ

n
r \{θ̃}].

Case B.1. Suppose that n = 1, or

yπ
n−1
r < yπ

n
r \{θ̃}. (21)

In that case, the move of θ̃ from πnr to πn+1
r keeps the order of the corresponding cell-contingent

actions yπ.

We set 

π1
r+1 = π1

r , . . . , π
n−1
r+1 = πn−1

r if n > 1,

πnr+1 = πnr \ {θ̃},

πn+1
r+1 = πn+1

r ∪ {θ̃},

πn+2
r+1 = πn+2

r , . . . , π
|Πr|
r+1 = π

|Πr|
r .

(5)
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Then Πr+1 satisfies (IR) by construction. Concerning (P1), we clearly have yπ
1
r+1 < ... < yπ

n−1
r+1

(if n > 1) and yπ
n+2
r+1 < . . . < yπ

|Πr+1|
r+1 . From (20), we also have yπ

n
r+1 = yπ

n\{θ̃} < yπ
n+1∪{θ̃} =

yπ
n+1
r+1 . Moreover, from (2) we have yπ

n+1
r+1 = yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r < yπ

n+2
r = yπ

n+2
r+1 . Then Πr+1

satisfies (P1) whenever yπ
n−1
r+1 < yπ

n
r+1 , i.e. whenever yπ

n−1
r < yπ

n
r \{θ̃}, i.e. (21).

Now we show that it satisfies (P2). Let n1 ∈ {1, . . . , |Πr+1|− 1 = |Πr|− 1} and let θ ∈ πn1
r+1.

Suppose that there exists n2 ≥ n1+1 and θ′ ∈ πn2
r+1 such that yθ

′
< yθ. We show that necessarily

yθ = minXθ.

• If θ 6= θ̃ and θ′ 6= θ̃, then θ ∈ πn1
r and θ′ ∈ πn2

r with n2 ≥ n1 + 1, so that we have

yθ = minXθ because Πr satisfies (P2).

• If θ = θ̃, then θ ∈ πnr . Moreover, n1 = n + 1, and from n2 ≥ n1 + 1 = n + 2, we have

θ′ ∈ πn2
r+1 = πn2

r . Since n2 ≥ n+2 > n, and since Πr satisfies (P2), we obtain yθ = minXθ.

• If θ′ = θ̃, then θ′ ∈ πnr . Moreover, n2 = n + 1, and from n2 ≥ n1 + 1, we obtain

n+ 1 ≥ n1 + 1, i.e. n1 ≤ n. From θ 6= θ′, we derive θ ∈ πn1
r .

– If n1 < n, since Πr satisfies (P2), we obtain yθ = minXθ.

– If n1 = n, from yθ
′

= yθ̃ < yθ we have θ = θij for some j > `. In that case, Lemma

8 gives yθ = minXθ.

Finally, we show that Πr+1 satisfies (L-IC). Let n′2 ∈ {2, . . . , |Πr+1|}, n′1 ∈ {1, . . . , n′2 − 1}

and θ ∈ πn
′
2

r+1. We want to show that yπ
n′1
r+1 /∈ Xθ(yπ

n′2
r+1).

We first suppose θ = θ̃. In that case, π
n′2
r+1 = πn+1

r ∪ {θ̃} and we have to show yπ
n′1
r+1 /∈

X θ̃(yπ
n+1
r ∪{θ̃}), i.e.

U θ̃(yπ
n+1
r ∪{θ̃}) > U θ̃(yπ

n′1
r+1).

• If n′1 = n′2 − 1 = n, then π
n′1
r+1 = πnr \ {θ̃}, and thus yπ

n′1
r+1 = yπ

n
r \{θ̃}. From (20) and (2),

we obtain the two inequalities

yπ
n
r \{θ̃} < yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r .

If U θ̃ increases at yπ
n+1
r ∪{θ̃}, then the first inequality gives the result. Otherwise, the second

inequality gives U θ̃(yπ
n+1
r ∪{θ̃}) ≥ U θ̃(yπ

n+1
r ). By construction, we also have U θ̃(yπ

n+1
r ) >

U θ̃(yπ
n
r ). Since yπ

n
r < yπ

n+1
r , it must be that U θ̃ increases at yπ

n
r . From (1), i.e. yπ

n
r \{θ̃} ≤

yπ
n
r , we then get U θ̃(yπ

n
r ) ≥ U θ̃(yπ

n
r \{θ̃}), and therefore U θ̃(yπ

n+1
r ∪{θ̃}) > U θ̃(yπ

n
r \{θ̃}).
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• If instead n′1 ≤ n′2−2 = n−1 (if n > 1), then yπ
n′1
r+1 = yπ

n′1
r . In that case, since Πr satisfies

(P1), and from (21) and (20) respectively,

yπ
n′1
r ≤ yπ

n−1
r < yπ

n
r \{θ̃} < yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r .

The same argument as above gives the result.

Next we suppose θ 6= θ̃. Set y1 = yπ
n′1
r+1 and y2 = yπ

n′2
r+1 . Then according to Lemma 10,

the result derives from y1 < y2 (guaranteed because Πr+1 satisfies (P1)), and the existence of

n2 ∈ {2, . . . , |πr|} and n1 ∈ {1, . . . , n2 − 1} such that θ ∈ πn2
r , y1 ≤ yπ

n1
r and y2 ≤ yπ

n2
r .

• If n′2 ≤ n − 1, then θ ∈ π
n′2
r+1 = π

n′2
r = πn2

r with n2 = n′2, so that y2 = yπ
n2
r . Setting

n1 = n′1 ≤ n′2 − 1 ≤ n− 2, we have y1 = yπ
n1
r . This gives the result.

• If n′2 = n, then θ ∈ πn
′
2

r+1 = π
n′2
r \{θ̃}, and according to (1), y2 ≤ yπ

n′2
r = yπ

n2
r with n2 = n′2.

Setting n1 = n′1 ≤ n′2 − 1 = n− 1, we have y1 = yπ
n1
r . This gives the result.

• If n′2 = n + 1, then θ ∈ πn
′
2

r+1 = π
n′2
r ∪ {θ̃}, and according to (2), y2 ≤ yπ

n′2
r = yπ

n2
r , with

n2 = n′2, and θ ∈ πn2
r because θ 6= θ̃.

– If n′1 = n′2 − 1 = n, then π
n′1
r+1 = π

n′1
r \ {θ̃}, and according to (1), y1 ≤ yπ

n′1
r = yπ

n1
r

with n1 = n′1. This gives the result.

– If n′1 < n′2 − 1 = n, then π
n′1
r+1 = π

n′1
r = πn1

r with n1 = n′1, and then y1 = yπ
n1
r , which

also gives the result.

• If n′2 ≥ n+ 2, then θ ∈ πn
′
2

r+1 = π
n′2
r = πn2

r with n2 = n′2, and then y2 = yπ
n2
r .

– If n′1 ≥ n+ 2 or n′1 ≤ n− 1, then π
n′1
r+1 = π

n′1
r = πn1

r with n1 = n, and thus y1 = yπ
n1
r ,

which gives the result.

– If n ≤ n′1 ≤ n + 1, inequality (1) (if n′1 = n) or inequality (2) (if n′1 = n + 1) gives

y1 ≤ yπ
n′1
r = yπ

n1
r with n1 = n′1, and the result follows.

Case B.2. Suppose

yπ
n−1
r ≥ yπ

n
r \{θ̃}. (22)

In that case, when type θ̃ is removed from πnr , the nth action yπ
n
r in partition Πr moves to a

rank which is possibly strictly lower than n. In that case, we merge πnr \ {θ̃} with πn−1
r .
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We first show that necessarily ` = |πnr |. Indeed, if ` < |πnr |, then from Lemma 8, yπ
n
r =

y
θi|πnr | = minX

θi|πnr | . Then from (1a), we have yπ
n
r \{θ̃} = yπ

n
r . Since yπ

n−1
r < yπ

n
r , inequality (22)

cannot hold.

Next we show that Xπn−1
r ∩Xπnr \{θ̃} 6= ∅. From (22) and yπ

n
r > yπ

n−1
r we get

yπ
n
r > yπ

n−1
r ≥ yπ

n
r \{θ̃}.

Since Xπnr \{θ̃} is an interval, from yπ
n
r ∈ Xπnr ⊆ Xπnr \{θ̃} and yπ

n
r \{θ̃} ∈ Xπnr \{θ̃}, we get

[yπ
n
r \{θ̃}, yπ

n
r ] ⊆ Xπnr \{θ̃}. We obtain yπ

n−1
r ∈ Xπnr \{θ̃}. Since moreover yπ

n−1
r ∈ Xπn−1

r , we

obtain

yπ
n−1
r ∈ Xπn−1

r ∩Xπnr \{θ̃} 6= ∅.

This allows us to set

π = πn−1
r ∪

(
πnr \ {θ̃}

)
,

with π such that Xπ 6= ∅.

Next we show yπ = yπ
n−1
r . Let θ ∈ πnr \ {θ̃} be such that for every θ ∈ πnr \ {θ̃}, yθ ≤ yθ.

Then from Lemma 4 and from (22),

yθ ≤ yπ
n
r \{θ̃} ≤ yπ

n−1
r .

Now let θ ∈ πn−1
r be such that for every θ ∈ πn−1

r , yθ ≥ yθ. Then from Lemma 5,

yθ ≥ yπ
n−1
r .

Therefore yθ ≥ yθ, where θ ∈ πnr and θ ∈ πn−1
r . Since partition Πr satisfies (P2), we get

yθ = minXθ.

Consequently, from yπ
n−1
r ≥ minXπn−1

r ≥ minXθ, we have yπ
n−1
r ≥ yθ. Hence yθ ≥ yπ

n−1
r and

yπ
n−1
r ≥ yθ, and thus

yπ
n−1
r = yθ = minXθ.

From Lemma 6 and yπ
n−1
r ≥ yπ

n
r \{θ̃}, we have yπ

n−1
r ≥ yπ ≥ yπ

n
r \{θ̃}, and in particular yπ ≤

minXθ. But θ ∈ π, and necessarily yπ ≥ minXθ. Thus yπ = minXθ = yπ
n−1
r .

We set: 

π1
r+1 = π1

r , . . . , π
n−2
r+1 = πn−2

r ,

πn−1
r+1 = πn−1

r ∪
(
πnr \ {θ̃}

)
,

πnr+1 = πn+1
r ∪ {θ̃},

πn+1
r+1 = πn+2

r , . . . , π
|Πr|−1
r+1 = π

|Πr|
r .

(6)
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By construction, Πr+1 satisfies (IR). It satisfies (P1) if yπ
1
r < . . . < yπ

n−2
r and yπ

n+2
r < . . . <

yπ
|Πr |
r , which hold by assumption (P1) on Πr, and if moreover yπ

n−2
r < yπ

n−1
r ∪(πnr \{θ̃}) = yπ =

yπ
n−1
r , which also holds by assumption (P1) on Πr, and if moreover

yπ
n−1
r ∪(πnr \{θ̃}) = yπ

n−1
r < yπ

n+1
r ∪{θ̃}, (23)

and

yπ
n+1
r ∪{θ̃} < yπ

n+2
r . (24)

Inequality (23) results from yπ
n−1
r < yπ

n
r , and, from ` = |πnr |, inequality (3), that is: yπ

n
r <

yπ
n+1
r ∪{θ̃}. Inequality (24) results from yπ

n+1
r < yπ

n+2
r and from the second inequality in (2), that

is: yπ
n+1
r ∪{θ̃} < yπ

n+1
r .

Now we show that Πr+1 satisfies (P2). Note that |Πr+1| = |Πr|−1. Let n1 ∈ {1, . . . , |Πr|−2}

and let θ ∈ πn1
r+1. Suppose that there exists n2 ≥ n1 + 1 and θ′ ∈ πn2

r+1 such that yθ
′
< yθ. We

show that necessarily yθ = minXθ.

• If n2 < n− 1, then n1 ≤ n2− 1 < n− 2, and then θ ∈ πn1
r and θ′ ∈ πn2

r . Since Πr satisfies

(P2), yθ
′
< yθ implies yθ = minXθ.

• If n2 = n − 1, then n1 ≤ n2 − 1 = n − 2, and then θ ∈ πn1
r and either θ′ ∈ πn−1

r , with

n− 1 > n1, or θ′ ∈ πnr , with n ≥ n1 + 2, and the same argument holds.

• If n2 = n, then θ′ ∈ πn+1
r or θ′ = θ̃ ∈ πnr . Moreover, either n1 ≤ n2 − 2 = n − 2, or

n1 = n2 − 1 = n− 1.

– If n1 ≤ n − 2 then θ ∈ πn1
r with n1 < n + 1 and n1 < n respectively, and the same

argument as above holds.

– If n1 = n − 1, then θ ∈ πn−1
r ∪

(
πnr \ {θ̃}

)
. In particular, either θ ∈ πn−1

r , or

θ ∈ πnr \ {θ̃}. If θ ∈ πn−1
r then we are done. If θ ∈ πnr \ {θ̃} and θ′ ∈ πn+1

r then we

are done too. It remains the case in which θ ∈ πnr \ {θ̃} and θ′ = θ̃ ∈ πnr . In that

case, yθ
′
< yθ guarantees that θ = θij for some j > `, and Lemma 8 gives the result.

• if n2 > n, then θ′ ∈ πn2+1
r . In each of the following cases, θ is in a cell of Πr whose rank

is lower than n2 + 1. Since Πr satisfies (P2), yθ
′
< yθ implies yθ = minXθ.

– If n1 > n, then θ ∈ πn1+1
r , with n1 + 1 < n2 + 1.
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– If n1 = n, then either θ = θ̃ ∈ πnr with n < n2 < n2 + 1, or θ ∈ πn+1
r with

n+ 1 < n2 + 1.

– If n1 = n−1 and θ 6= θ̃, then either θ ∈ πn−1
r or θ ∈ πnr , with n−1 < n2−1 < n2 + 1

and n < n2 < n2 + 1 respectively.

– If n1 ≤ n− 2, then θ ∈ πn1
r with n1 < n2 < n2 + 1.

Finally, we show that Πr+1 satisfies (L-IC). Let n′2 ∈ {2, . . . , |Πr+1|}, n′1 ∈ {1, . . . , n′2 − 1}

and θ ∈ πn
′
2

r+1. We want to show that yπ
n′1
r+1 /∈ Xθ(yπ

n′2
r+1).

We first consider the case θ = θ̃. In that case, π
n′2
r+1 = πn+1

r ∪ {θ̃} and we have to show

yπ
n′1
r+1 /∈ X θ̃(yπ

n+1
r ∪{θ̃}), i.e.

U θ̃(yπ
n+1
r ∪{θ̃}) > U θ̃(yπ

n′1
r+1).

If n′1 = n′2−1 = n−1, then π
n′1
r+1 = π, and thus yπ

n′1
r+1 = yπ = yπ

n−1
r . If instead n′1 < n′2−1 = n−1,

then yπ
n′1
r+1 = yπ

n′1
r . In both cases, yπ

n′1
r+1 = yπ

n′
r for some n′ ≤ n − 1. Since Πr satisfies (P1),

yπ
n′
r ≤ yπ

n−1
r and from (23) and (2), we obtain the two inequalities

yπ
n′
r < yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r .

If U θ̃ increases at yπ
n+1
r ∪{θ̃}, then the first inequality gives the result. Otherwise, the second

inequality gives U θ̃(yπ
n+1
r ∪{θ̃}) ≥ U θ̃(yπ

n+1
r ). Now by construction, we have U θ̃(yπ

n+1
r ) > U θ̃(yπ

n
r ),

and since Πr satisfies (L-IC), we also have U θ̃(yπ
n
r ) > U θ̃(yπ

n′
r ). This gives the result.

Next we suppose θ 6= θ̃. As above, we set y1 = yπ
n′1
r+1 and y2 = yπ

n′2
r+1 . Then according to

Lemma 10, the result derives from y1 < y2 (guaranteed because Πr+1 satisfies (P1)), and the

existence of n2 ∈ {2, . . . , |Πr|} and n1 ∈ {1, . . . , n2 − 1} such that θ ∈ πn2
r , y1 ≤ yπ

n1
r and

y2 ≤ yπ
n2
r .

• If n′2 ≤ n − 2, then θ ∈ π
n′2
r+1 = π

n′2
r = πn2

r with n2 = n′2, so that y2 = yπ
n2
r , and from

n′1 ≤ n′2 − 1 ≤ n− 3, we also have y1 = yπ
n′1
r = yπ

n1
r with n1 = n′1. This gives the result.

• If n′2 = n− 1, then θ ∈ πn
′
2

r+1 = πn−1
r ∪

(
πnr \ {θ̃}

)
= π. In particular, y2 = yπ, where we

showed yπ = yπ
n−1
r .

– If θ ∈ πnr \ {θ̃}, setting n2 = n, we obtain θ ∈ πnr = πn2
r and y2 ≤ yπ

n
r = yπ

n2
r . This

gives the result.

– If θ ∈ πn−1
r , setting n2 = n− 1, we have y2 ≤ yπ

n2
r and θ ∈ πn2

r . From n′1 ≤ n′2− 1 =

n− 2, we have y1 = yπ
n′1
r = yπ

n1
r with n1 = n′1. This also gives the result.
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• If n′2 = n, then θ ∈ π
n′2
r+1 = πn+1

r ∪ {θ̃}. Since θ 6= θ̃, we have θ ∈ πn+1
r = πn2

r with

n2 = n+ 1, and, according to (2), y2 = yπ
n+1
r ∪{θ̃} ≤ yπ

n+1
r = yπ

n2
r .

– If n′1 = n′2 − 1 = n − 1, then π
n′1
r+1 = π, and then y1 = yπ = yπ

n−1
r = yπ

n1
r with

n1 = n− 1. This gives the result.

– If n′1 < n′2 − 1 = n − 1, then π
n′1
r+1 = π

n′1
r and thus y1 = yπ

n′1
r = yπ

n1
r with n1 = n′1,

which also gives the result.

• If n′2 ≥ n+ 1, then θ ∈ πn
′
2

r+1 = π
n′2+1
r , and y2 = yπ

n′2+1
r = yπ

n2
r with n2 = n′2 + 1.

– If n′1 ≥ n + 1 or n′1 ≤ n− 2, then π
n′1
r+1 = π

n′1
r or π

n′1
r+1 = π

n′1+1
r , i.e. π

n′1
r+1 = πn1

r with

n1 = n′1 or n1 = n′1 + 1 respectively, and the result follows.

– If n′1 = n, then y1 = yπ
n
r+1 = yπ

n+1
r ∪{θ̃} ≤ yπ

n+1
r from (2). Setting n1 = n + 1 gives

the result.

– If n′1 = n− 1, then y1 = yπ = yπ
n−1
r = yπ

n1
r with n1 = n− 1 gives the result.
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