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1.  Introduction
Food security is a global concern in a changing climate. With population growth and diet shift to high 
calories, it is predicted that food demand will be roughly doubled by 2050 (Hertel et  al.,  2010; Tilman 
et al., 2011). In particular, the demand for wheat is expected to increase over the next few years. According 
to FAO (Alexandratos & Bruinsma, 2012), wheat consumption will increase in many countries. Addition-
ally, global warming is causing an increase in the frequency and severity of extreme events (Diffenbaugh 
et al., 2017; Field et al., 2012) resulting in yield reductions that have a cascade of socio-economic impacts as 
well as lower mean decadal yields (Asseng et al., 2015; Cottrell et al., 2019).

Abstract  Recently, yield shocks due to extreme weather events and their consequences for food 
security have become a major concern. Although long yield time series are available in Europe, few 
studies have been conducted to analyze them in order to investigate the impact of adverse climate 
events on yield shocks under current and future climate conditions. Here we designated the lowest 10th 
percentile of the relative yield anomaly as yield shock and analyzed subnational wheat yield shocks across 
Europe during the last four decades. We applied a data-driven attribution framework to quantify primary 
climate drivers of wheat yield shock probability based on machine learning and game theory, and used 
this framework to infer the most critical climate variables that will contribute to yield shocks in the future, 
under two climate change scenarios. During the period 1980–2018, our attribution analysis showed that 
32% of the observed wheat yield shocks were primarily driven by water limitation, making it the leading 
climate driver. Projection to future climate scenarios RCP4.5 and RCP8.5 suggested an increased risk 
of yield shock and a paradigm shift from water limitation dominated yield shock to extreme warming 
induced shocks over 2070–2099: 46% and 54% of areas were primarily driven by extreme warming under 
RCP4.5 and RCP8.5, respectively. A similar analysis conducted on yields simulated by an ensemble of crop 
models showed that models can capture the negative impact of low water supply but missed the impact of 
excess water. These discrepancies between observed and simulated yield data call for improvement in crop 
models.

Plain Language Summary  Crop production is inherently sensitive to climate hazards 
including droughts, heat waves, and extreme precipitation. Many studies have investigated the impact 
of extreme events on crop yields, however, there is little conclusive evidence of the most frequent and 
significant causes of yield shocks. Here we applied a data-driven attribution framework to quantify the 
primary climate drivers of wheat yield shock probability in Europe. The results show that the overall 
dominant climate driver of yield shock during 1980–2018 is water limitation, however, it was surpassed by 
extreme warming in the late period (2000–2018). The future projection revealed an increasing yield shock 
probability and a paradigm shift from water limitation to extreme warming dominated yield shock across 
all regions. Crop model evaluation suggests that crop models can capture the negative impact of low water 
supply but missed the one of excess water. These discrepancies call for improvement in crop models. 
Our data-driven attribution framework can be readily applied to larger areas and other crop types to 
explore the leading driver of yield shock, therefore, the attribution analyses we presented here have broad 
implications and would be beneficial for targeted climate adaptation policy design in agricultural system.
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This study focused on yield shock, which is often accompanied by food price spikes and can have dramat-
ic influence on food security and social conflicts (Chen & Villoria, 2019; Crost et al., 2018). Yield shock 
is normally interrelated with single or compound extreme weather events, pest and disease outbreaks or 
geopolitical events (Beillouin et al., 2020; Ben-Ari et al., 2018; Ciais et al., 2005; Cottrell et al., 2017; Web-
ber et al., 2020). Yet, the influential climate variables are diverse and not fully identified, and interactions 
between them matter as well. For example, heat stress accelerates crop leaf senescence (Lobell et al., 2012); 
excessive precipitation causes lodging or increased risk of pests and diseases (Zampieri et al., 2017). Several 
studies investigated the impact of specific climate variation or extreme climate events on crop yields (Beil-
louin et al., 2020; Jin et al., 2017; Lesk et al., 2016; Rötter et al., 2018) but no study has been conducted to 
attribute yield shocks to different types of weather events in Europe over several decades. This information 
is essential to identify the most influential climatic factors and the most sensitive periods of crop develop-
ment. Considering that compound extreme events are more frequent in warmer climate (AghaKouchak 
et al., 2020; Zscheischler et al., 2018) a better understanding of the leading drivers of yield shock will help 
design a targeted climate adaptation policy for agricultural production systems.

Winter wheat is widely planted in Europe and highly sensitive to climatic warming (Asseng et al., 2015; 
Porter & Semenov, 2005). Compared to spring crops, winter wheat has a longer growing season and thus 
higher probability of being exposed to extreme events, making it more difficult to be simulated by crop mod-
els (Guarin et al., 2020). For example, until approaching the time of harvest, all forecasting systems failed 
to predict the 2016 yield shock that occurred in the breadbasket of France. In contrast, a statistical model 
was able to attribute this extreme yield shock to a compound extreme of abnormal autumn warming and 
spring wet conditions (Ben-Ari et al., 2018). Therefore, a systematic analysis of the climate drivers underly-
ing different types of shocks beyond well-studied drought events and an evaluation of the performances of 
current crop models to capture the drivers of those shocks is required to improve model credibility and help 
agricultural decision making (Rötter et al., 2011; Wang et al., 2017).

Here we built a data-driven framework with long term sub-national European winter wheat yield survey 
during 1980–2018 to attribute the yield shocks to different climatic drivers. We first used the random forest 
(RF) machine-learning algorithm to associate climate stresses at different wheat growth stages with wheat 
yield shocks. We then used an attribution analysis based on game theory (Shapley additive explanations) to 
assess the relative contribution of extreme weather to each yield shock event (Figure 1). Specifically, in the 
following content, we try to address the following questions: (1) How have the wheat yield shocks evolved 
over the historic period? (2) What were the primary climate drivers for the identified yield shocks? (3) How 
will the yield shock occurrence probability change under future climate scenarios? (4) How well are the 
current crop models able to predict wheat yield shocks under current and future climate?
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Figure 1.  Schematic diagram of the workflow for yield shock attribution analysis in historical and future climate conditions.
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2.  Methods and Data Sets
2.1.  Wheat and Climate Data

Winter wheat yield and cropping areas data in Europe over 1980–2018 were obtained based on survey data 
collected in a previous study (Beillouin et al., 2020) which covered 17 European countries at subnational 
scale (i.e., at nomenclature of Territorial Units for Statistics from EUROSTAT 2 and 3) and 1,435 admin-
istrative units across the 17 countries. To fill the missing yield data in some units, we employed a gridded 
yield data set at a spatial resolution of 0.5° (Iizumi and Sakai 2020). This global-scale gridded yield data was 
created through disaggregating national level yield data to finer spatial resolution based on grid cell crop 
harvest area and satellite estimated crop productivity. Correlation analysis suggests a good consistency be-
tween the two yield data sets (Figure S1) in most units. Given the spatial disparity in climate and potentially 
locally adapted farmer management practices in wheat production system, the whole Europe yield data 
set was divided into four regions: North, South, West, and East Europe, as done by Beillouin et al. (2020) 
(details in Table S1).

Yield shocks were identified by fitting long-term yield trends through locally weighted scatterplot smooth-
ing (“loess,” Cleveland, 1979) and then estimating relative yield anomalies  ,i t as:
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where ,i tY  is wheat yield and ,i tY  is the expected yield value in the i administrative unit at year t. The expected 
yield value, ,i tY  corresponds to the long-term yield trend estimated using loess. Finally, yield shocks were 
defined as the lowest 10th percentile of relative yield anomalies in each region (Figure S2). For those admin-
istrative units having missing values in the yield survey, relative yield anomalies based on yield survey and 
gridded yield by Iizumi and Sakai (2020) were estimated separately. Then yield shock was identified based 
on the two combined yield anomalies. The yield shock events identified in Iizumi and Sakai data constitute 
18% total yield shock events. We also calculated the area fraction of yield shock for each year across all 
administrative units as:
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where Fractiont is the area fraction of yield shock for year t; ,t iI  = 1, if unit i in year t is identified as yield 
shock, otherwise ,t iI  = 0; M is the number of administrative units (M = 1,435), iArea  is the harvested area 
of administrative unit i.

Gridded climate data during 1979–2018 were obtained from the Joint Research Center's MARS meteorolog-
ical database (Toreti, 2014). This database was selected to be consistent with the climate forcing data used 
in the following crop model simulations. This climate data included daily minimum (Tmin) and maximum 
(Tmax) surface air temperature, precipitation, 10-m wind speed, global radiation, vapor pressure deficit and 
potential evapotranspiration from a crop canopy at 25  km resolution covering Europe and neighboring 
countries.

The winter wheat growing season in Europe generally starts with sowing in autumn followed by a dorman-
cy period in winter and plant development in spring, and ends with maturity in the following late spring 
or early summer. Considering the different response of the plant to climate stresses in different growing 
stages (Duncan et al., 2015; Siebers et al., 2017; Zhu et al., 2019), we used an observational crop phenolo-
gy dataset to classify climate stressors according to their occurrence during each development stage. The 
crop phenology data were taken from Eurostat (http://ec.europa.eu/eurostat/web/main), including winter 
wheat sowing date, anthesis and harvest/maturity date. These observed crop phenology dates were aggre-
gated for each administrative unit and then averaged over time. Four growing stages were defined: sowing 
date to November 30 as autumn; December 1 to February 28 as winter; March 1st to anthesis as vegetative 
period; and anthesis to maturity as reproductive period. For each of the four stages, five climate variables 
were defined (Table 1) (Ben-Ari et al., 2016, 2018) in order to cover four distinct categories of stress: warm 
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stress, cold stress, water supply, and water demand. Specifically, we used two variables (mean precipitation 
and fraction of rainy days) to characterize the water availability accounting for precipitation distribution, as 
a recent study suggested that uneven precipitation distribution will offset the yield benefit of precipitation 
(Fishman, 2016). The 20 climate variables (five types of variable for each of the four growth stages consid-
ered) were used as the predictors of yield shock probability.

2.2.  Crop Models and Future Crop Model Projections

Crop models have been used to study the climate change impacts on crop productivity, given their potential 
to simulate the large-scale spatiotemporal variations of crop yield (Mueller et al., 2017; Webber et al., 2018). 
Here we used simulated yield data produced by eight-crop models (4M, FASSET, HERMES, MONICA, SIM-
PLACE-Lintul5, SIRIUS 2015, SiriusQuality v3, and SSM-Wheat) which simulate wheat yield at 25 km reso-
lution across Europe in the historical period 1980–2010 and future climate scenarios (RCP4.5 and RCP8.5). 
From the multiple model experiments, we selected the model simulation with responsiveness to mean tem-
peratures, drought, and heat stress with simulated canopy temperature. Although other global-scale crop 
model simulation experiments were available (Mueller et al., 2017), the eight-crop models selected here 
were designed specifically for Europe and assimilated observed crop phenology data from Eurostat (http://
ec.europa.eu/eurostat/web/main) to better match crop growth seasonality. Additionally, the simulated yield 
showed a good performance in reproducing the interannual variation of wheat yield at national level.

For the historic period simulation (1980–2010), all eight crop models were forced by the climate data ob-
tained from the Joint Research Center's meteorological database (Toreti, 2014). For the climate projections 
under the two future scenarios (RCP4.5 and RCP8.5), 6 out of 8 crop models reported the outputs forced 
with elevated CO2 and future climate models (GFDL-CM3, GISS-E2-R, HadGEM2-ES, MIROC5, and MPI-
ESM-MR) during the period 2070–2099. The climate projections were downscaled to the resolution of the 
baseline data by assigning values to each 25 km grid. The climate projections were created using the en-
hanced delta change method by applying changes in simulated temperature and precipitation variability to 
historic mean climate (Ruane et al., 2015). This climate data can be accessed at: http://open-research-data-
zalf.ext.zalf.de/ResearchData/DK_59.html. The same climate variables in Table 1 were derived for each cli-
mate model under RCP4.5 and RCP8.5, and were also used as predictors to predict future yield shock proba-
bility. In future climate scenarios, PET was calculated using Penman-Monteith equation (Allen et al., 1998).

To identify yield shock in the crop model simulation during both the historic period (1980–2010) and fu-
ture scenarios (RCP4.5 and RCP8.5), simulated yield data were aggregated to the administrative unit and 
grouped into the same four regions as those considered in the yield survey data. Similarly, the relative yield 
anomaly was estimated with Equation 1 and then yield shocks (Shocksim) were defined as the lowest 10th 
percentile of relative yield anomalies in each of the four regions.

2.3.  Data-Driven Framework of Yield Shock Occurrence Modeling and Attribution

Yield shock events identified in the historical yield survey data were treated as a binary variable. We used 
a RF machine-learning algorithm to predict the shock occurrence probability using the 20 climate varia-
bles defined above (Table 1) as predictors. RF algorithm was selected as it was able to take into account 
non-linear responses and complex interactions between multiple predictor variables. The output of RF was 
expressed as a predicted probability of shock occurrence computed by averaging across an ensemble of 
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fwd Fraction of warm days (days with Tmax >30°C or its 90th percentile in each growth stage)

fcd Fraction of cold days (days with Tmin < its 10th percentile in each growth stage)

Prec Mean daily precipitation in each stage (mm/day)

frd Fraction of rainy day (rainy day is a day with precipitation > 1 mm)

PET Mean daily potential evapotranspiration amount in each stage (mm/day)

Table 1 
Climate Variables Defined for Each Growth Stage to Capture Different Climatic Stress Effects on Wheat Yield

http://ec.europa.eu/eurostat/web/main
http://ec.europa.eu/eurostat/web/main
http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html
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decision trees built with a training data set (Breiman, 2001; Cutler et al., 2012). One separate RF model was 
built for each of the four regions to account for the potential disparity in the response of yield to climate 
variation. The two hyperparameters—“mtry” and “ntree”—in the RF model, representing the numbers 
of predictors sampled for splitting at each node and number of trees grown in the RF model, were tuned 
using the available set of data. The “ntree” was set equal to 1,000, since we found that out-of-sample model 
accuracy plateaued after this threshold. The “mtry” was tuned through 5-fold cross-validation and set equal 
to 11, 14, 12, and 11 for North, West, East, and South Europe, respectively. In order to assess the RF mod-
el performance in discriminating yield shock and non-yield shock, we computed the area under receiver 
operating characteristic curve (AUC) value (Fawcett, 2006) for each of the four regions by five-fold cross 
validation (AUC equal to 1 means a perfect classification, while a value of 0.5 suggests a performance equal 
to a random classification). For each RF model, we used partial dependence plots (PDP) to analyze the 
relationship between the yield shock occurrence probability and each predictor variable, averaging over all 
other predictors (Friedman, 2001). Similarly, eight RF models were built to fit the yield shock derived from 
the eight sets of crop model simulations with the same climate predictors during 1980–2010, respectively. 
RF models were implemented using the “ranger” R package (Wright et al., 2017).

Although PDP provides a graphical description of how yield shock probability responds to climate stressors 
in their multi-dimensional space, this approach does not quantify how much each climate predictor has 
contributed to the predicted yield shock probability. An attribution analysis based on game theory (Shapley 
additive explanations, SHAP) allowed us to evaluate the relative contribution of each climate variable to the 
predicted yield shock probability and then to identify the most adverse types of stress. SHAP is a method of 
estimating the expected marginal contribution of a covariate across all possible combinations and has been 
used in recent study to interpret machine learning model (Padarian et al., 2020). For each observed yield 
shock event, we used SHAP to break down the RF model predicted yield shock probability into individual 
predictor contribution. We then selected the predictor with the largest SHAP value as the primary driver for 
a yield shock event. Based on the category of climate variables in Table 1 and the reported prevalent causes 
of wheat yield shock events (Webber et al., 2020; Zheng et al., 2012; Zampieri et al., 2017), we focused on the 
following five drivers: extreme warming, high water demand, excessive water supply, low water supply, and 
cold stress. The selection criteria for each primary driver is detailed in Table 2. SHAP value based attribution 
analysis was implemented using the “iml” R package (Molnar et al., 2018).

Based on the criteria listed in Table 2, all yield shocks associated with the same primary climate driver were 
grouped together, and the five resulting groups were used to calculate the area fraction of yield shocks with 
the same primary driver for the four regions and the whole of Europe. We also divided the area fraction of 
yield shocks with the same primary driver in 1980–2018 into two periods (1980–1999 and 2000–2018) to 
investigate how a certain climate stress driven yield shocks have changed over time.

To predict the probability of yield shock in the future, we applied the RF model trained over historic yield 
survey data to the two climate scenarios considered (RCP4.5 and RCP8.5). Then, shock probability above 
its top 90th percentile in each region was identified as yield shock. We then applied the SHAP method to 
decompose the yield shock probability into contributions of individual climate predictors and finally de-
termined the primary driver for each shock in future climate scenarios. Future yield shocks predicted by 
RF models (ShockRF) were also used as pseudo true values to evaluate the performance of crop models in 
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Primary drivers Criteria

Extreme warming fwd associated SHAP was the largest and fwd exceeding its 80% percentile

High water demand PET associated SHAP was the largest and PET exceeding its 80% percentile

Excessive water supply Prec or frd associated SHAP was the largest and Prec or frd above its 80% percentile

Low water supply Prec or frd associated SHAP was the largest and Prec or frd below its 20% percentile

Cold stress fcd associated SHAP was the largest and fcd exceeding its 80% percentile

Note. Five different drivers are distinguished depending on the SHAP values associated to the climate variables fwd, PET, Prec, frd, and fcd.

Table 2 
Criteria Used to Attribute a Primary Driver to Each Yield Shock
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forecasting yield shock. A yield shock occurrence predicted by the RF model during both historic and future 
periods might be identified as yield shock by 0, 1, 2 ,…, 6 crop models (Shocksim). The level of agreement 
between ShockRF and Shocksim was assessed as a function of the type of climate variables considered as the 
main driver by RF. For example, for N yield shocks (ShockRF) primarily driven by extreme warming, we 
could get N0, N1 ,…, N5, N6 (N0 + N1 + … N5 + N6 = N, with N the total number of ShockRF for this driver) 
yield shocks also identified as shock (Shocksim) by 0, 1, 2 ,…, 6 crop models, respectively. A high value of N4 
+ N5 + N6 + N7 suggested a strong agreement between RF and crop models.

3.  Results
3.1.  Spatial and Temporal Distributions of Yield Shocks in Europe

Time series of wheat cropping area influenced by yield shock during 1980–2018 suggested that the year 
showing the highest area impacted by yield shock corresponded to year 2003 (Figure 2a). According to sev-
eral previous studies, this year was characterized by a compound heat and drought stress (Ciais et al., 2005; 
van der Velde et al., 2010). When looking into the four regions, North Europe and East Europe show increas-
ing trend in the area fractions of yield shock (Figure S3). Spatially, the yield shock frequency (yield shock 
occurrence numbers/total years) is higher in southern areas characterized by warmer conditions, especially 
in Romania, Spain, and Southern France (Figure 2b).

3.2.  Response of Yield Shock to Climate Stresses

AUC values estimated with 5-fold cross validation for the four regions were all greater than 0.85, suggesting 
that the trained RF model had a high capacity to discriminate between yield shock and non-yield shock, 
with North Europe scoring the highest AUC (0.95, see Table S2). With the trained RF model, we also de-
rived the PDP to show the marginal effect of each predictor on yield shock probability. Overall, the same 
predictor might have quite different PDPs across the four regions, suggesting spatially varying sensitivities 
of yield shocks to climate and also justifying our partitioning of Europe into several regions. Based on PDP, 
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Figure 2.  Yield shock area fraction for the studied European countries during 1980–2018 (a). Yield shock area fraction was estimated with Equation 2. The 
smooth curve is based on loess with shaded area as 95% confidence interval. The spatial pattern of yield shock frequency for each administrative unit (number 
of yield shock occurrence/total years).
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we found a greater fwd in a given region generally corresponded to a higher probability of yield shock, espe-
cially for extreme temperature in the reproductive period (Figure 3). As fwd collectively accounted for >30°C 
heat stress or >90th percentile abnormal warming, the positive relationship suggested both heat stress and 
abnormal warming should be carefully considered in crop models to predict yield shock. For water supply 
(precipitation or frd), RF models suggested both low and excessive water supply can result in higher yield 
shock probability, especially for those in winter and in the reproductive period in North and West Europe 
(Figure 3). In terms of water demand (PET), higher PET generally corresponded to higher yield shock prob-
ability, especially in the vegetative and reproductive periods. We also noted that although water demand 
was usually highly correlated with warming, yield shock was less responsive to water demand relative to 
warming (Figure 3). The yield shock responded only weakly to cold stress, except for the winter cold stress 
in North and East Europe.

On the other hand, compared with the PDP of RF models based on official yield surveys, the crop model de-
rived PDP suggested an overall positive but a weaker response of yield shock probability to fwd (Figure S5). 
For water supply, lower water supply resulted in higher yield shock probability, especially for precipitation 
(Figure S5). However, the higher yield shock probability with excessive water supply as observed in Figure 3 
cannot be reproduced by crop models. For PET and cold stress, crop model based PDP suggested a mild 
increase in yield shock probability with higher PET or cold stress.
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Figure 3.  Response curves for yield shock probability generated through partial dependence plot with the RF models 
trained for the four regions. VP, vegetative period and RP, reproductive period.
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3.3.  Attribution of Yield Shock Probability to Individual Climate 
Drivers

With yield shock probability being attributed to individual predictors 
(Figure  4a), the yield shocks primarily driven by the first four climate 
drivers in Table 2 comprised 83% of total yield shocks across Europe (cold 
stress was not presented, as cold stress driven yield shocks comprised 
less than 5% of total yield shocks). Across all studied countries, the at-
tribution analysis suggested that low water supply was the most perva-
sive primary climate driver of shocks, followed with extreme warming, 
high water demand and excessive water supply (Figure 4a, although the 
dominant climate driver varied for each region). There was also a distinct 
spatial disparity about low water supply driven yield shock; the relatively 
drier and warmer regions (South and East Europe) were more dominat-
ed by low water supply than North and West Europe, and vice versa for 
the excessive water supply (Figure 4a). Seasonally, reproductive period 
was the critical stage for extreme warming driven yield shocks; however, 
for shocks driven by low water supply and high water demand the most 
important season was vegetative period, which was probably related with 
the lasting effect of water supply (Zhang & Oweis, 1999).

When the total time period was divided into two periods 1980–1999 and 
2000–2018, for the whole Europe there was a distinct shift, such that the 
most pervasive emerging primary driver changed from low water supply 
to extreme warming from the earlier period to the later period (Figures 4b 
and  4c). However, low water supply in South Europe remained as the 
most pervasive primary driver. Seasonally, the two time periods had a 
similar pattern to the whole time period; reproductive period was the 
most important stage for extreme warming and vegetative period was the 
most important for low water supply and high water demand. Further, 
the crop models overrepresent the effect of low water supply on yield dur-
ing the reproductive period compared to the yield survey data Figure 5.

3.4.  Change in Climate Drivers of Wheat Yield Shocks due to 
Climate Change

We projected yield shock probability to two climate scenarios (RCP4.5 
and RCP8.5) using the RF models trained with historical survey yield 
data. As expected, future warming resulted in higher yield shock proba-
bility and RCP8.5 showed even higher shock probability with RCP8.5 rep-
resenting the higher emission scenario and warmer climate than RCP4.5 
(Figure 6). Spatially, East European countries like Hungary and Roma-
nia were more prone to be influenced by yield shock in both scenarios. 
When the top 90th percentile of projected yield shock probability was 
identified as a yield shock event, the attribution analysis suggested that 
extreme warming was the most pervasive primary driver in both RCP4.5 
and RCP8.5, while shocks driven by low water supply decreased signifi-
cantly (Figure 7). This shift in yield shock drivers could be regarded as the 
extension of climate driver shift since 2000 as identified in Figure 4. Out 
of the 4 regions, East Europe had the most area with extreme warming as 
the primary driver in both scenarios (Figure 7), which might explain why 
East Europe had a higher yield shock probability in Figure 6.
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Figure 4.  Area fractions of different primary climate driven yield shocks 
for the separate four regions (N: North Europe; W: West Europe; E: East 
Europe; S: South Europe) and the whole Europe (All). The first panel (a) is 
for the whole historic period (1980–2018) and the latter two panels are for 
divided two time period: 1980–1999 (b) and 2000–2018 (c).
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Figure 5.  Area fractions of different primary climate driven yield 
shocks for the separate four regions and the whole Europe, based on the 
average of eight crop models. Results for each crop model can be found in 
Figure S7.
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3.5.  Yield Shock Prediction Agreement Between RF Models and Crop Models

Generally, crop models had a satisfactory performance for predicting yield shocks primarily driven by low 
water supply during 1980–2010. This category of yield shock constituted 32% of total yield shocks and more 
than 60% of them could be predicted by more than 3 out of 6 crop models during 1980–2010 (Figure 8a). 
However, there was a lower model agreement for other climate stress driven yield shocks, especially for 
the yield shock driven by autumn and winter (S1) stresses. For example, 73% yield shocks primarily driv-

en by vegetative and reproductive period (S2) extreme warming could be 
predicted by more than 3 out of 6 crop model, while only 17% for yield 
shocks primarily driven by autumn and winter (S1) extreme warming 
(Figure 8a). Yield shock primarily driven by excessive water supply had a 
low model agreement for both stages (Figure 8a), which could be inferred 
from crop model response curves where yield shock probability was un-
responsive to excessive water supply (Figure S5). Relative to the historic 
period, the model agreement became lower in future climate for all kinds 
of climate driven shock events (Figures 8b and 8c). This implies that in 
the future it might be even more challenging to forecast yield shock and 
design adaptation strategies accordingly using existing crop models as 
predictive tools.

4.  Discussion and Conclusions
Here we built a data-driven attribution framework to investigate the pri-
mary climate drivers that may contribute to yield shocks in both histor-
ical and future climate scenarios. The attribution analysis suggests that 
for all studied areas low water supply was the dominant driver for yield 
shock. However, the most dominant climate drivers varied for each re-
gion: North Europe was dominated by excessive water, West Europe by 
excessive water, East Europe by high water demand, and South Europe 
by low water supply. This suggests that agricultural adaptation strategies 
should be tailored to meet the regional environment. Future warmer 
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Figure 6.  Spatial pattern of future yield shock probability increase (2070–2099) predicted with Random forest model under the scenarios of RCP4.5 and 
RCP8.5.

Figure 7.  Area fractions of different primary climate driven yield shocks 
for the separate four regions (N: North Europe; W: West Europe; E: East 
Europe; S: South Europe) and the whole Europe (All). The yield shocks 
were predicted using Random forest models with future climate variables. 
The upper panel (a) is for RCP4.5 and the lower panel (b) is for RCP8.5.
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climate may cause extreme warming to become the most pervasive climate driver of yield shock across all 
regions.

Unlike most studies where a machine learning algorithm was used to directly model yield variation 
(Crane-Droesch, 2018), here we classified yield data into yield shock and non-yield shock with the lowest 
tenth percentile yield as threshold. Then yield shock and non-yield shock was treated as a binary variable 
and a RF model was trained to classify them. This treatment allowed the RF model to focus on the extreme 
low yield cases while minimizing the influence of small yield variation on the estimation of yield response 
to climate. High AUC (>0.85) based on out-of-sample prediction suggested that the RF model produced a 
reliable classification. We also showed that the attribution analysis was robust to an alternative yield time 
series detrending method using Savitzky-Golay smoothing function (Figures S8–S9). We should note that 
although we divided Europe into 4 groups, our model was unable to capture the finer spatial variation of 
farmer-adapted management practices in each administrative unit, like shift in sowing date and irrigation 
implementation. For example, irrigation is expected to expand to maintain crop yield at future warmer 
climate (Peña-Arancibia et al., 2020); however, our projection did not consider the potential expansion of 
irrigation area in the future, which might overestimate the risk of future yield shock.

On the other hand, our selection of four regions is based on the relatively homogeneous weather and geo-
graphic patterns within each region. Dividing the whole data set into more regions might better account for 
the spatial heterogeneity but will also reduce the training sample size for each regional RF model. We also 
conducted a sensitivity test through using an alternative spatial aggregation method (Table S3). The attribu-
tion analysis based on this second spatial aggregation (Figure S10) also suggested that the major driver of 
yield shock during historical period is water limitation, although the climate drivers in each growing period 
differ between the two aggregation methods. For example, the extreme warming stress in Eastern Europe 
becomes more dominant yield shock driver in the alternative aggregation method (Figure S10). We looked 
into this and find it is probably because yield shock probability shows a steeper response to warming stress 
after removing Austria in the second spatial aggregation (Figure S11). This sensitivity test suggests that 
more attention need to be paid to spatial aggregation if more detailed administrative units become available 
in the future.

Since we did not account for the dynamics of crop phenology, which might reflect the farmer adaptation 
practices to climate change, we conducted a sensitivity test to see whether our conclusion will change with 
shifted crop phenology. When we shifted the crop phenological date by two weeks (±14 days), our main 
conclusion still holds, although a few differences were noticed in certain growing periods of climate drivers 
(Figure S12). Although our results are robust, we suggest that the dynamic information of crop phenology 
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Figure 8.  Yield shock prediction agreement between RF models and crop models. There are totally 6 crop models reported future yield simulations. Therefore, 
for each ShockRF, it might be identified as yield shock by 0, 1, 2, …, 6 crop models. ShockRF was grouped based on its primary driver on different seasons (S1 
means the early season: autumn and winter; S2 means the later season: vegetative period and reproductive period). The numbers on the grid represents the 
percentage of yield shocks also identified as shock (Shocksim) by 0, 1, 2, …, 6 crop models, respectively. For example, for N yield shocks (ShockRF) primarily 
driven by extreme warming in S1, there could be N0, N1, …, N5, N6 (N0 + N1 + … N5 + N6 = N) yield shocks also identified as shock (Shocksim) by 0, 1, 2, …, 6 
crop models, respectively. A higher value of N3 + N4 +N5 + N6 suggested a higher confidence to predict the yield shock. RP, reproductive period.
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should be considered when available to better account for the influence of farmer management practices 
on crop yield.

Our analysis confirmed that accounting for the accurate timing information of climate stress is important, 
which can be inferred from the different responsive curves for the same climate variable in different sea-
sons. On the other hand, lower crop model predictive power for autumn and winter stress relative to the lat-
er growing season suggested that crop models need to improve the simulation of abnormal weather effects 
during these seasons. Studies have revealed that abnormal warm winter resulted in insufficient vernalizing 
days and affected wheat leaf and tiller number or flowing timing (Kirby, 1992; Wu et al., 2017), which is 
likely related to the recent yield shock in the breadbasket of France (Ben-Ari et al., 2018). In addition, the 
excess water stress was always poorly represented by crop models, which calls for incorporating water ex-
cess effects in crop models to improve their predictive performance (Li et al., 2019; Rosenzweig et al., 2002).

We note that yield shock could be influenced by single or compound climate extremes as well as non-ex-
treme variability (Anderson et al., 2019; Beillouin et al., 2020; Ben-Ari et al., 2018; Ciais et al., 2005). The 
traditional yield loss attribution analysis based on crop models requires a set of model experiments wherein 
certain crop stress schemes are turned on or off and then their outputs are compared (Webber et al., 2018). 
However, climate stresses are often interrelated and the interaction effect between water and heat stress 
could be also important for determining crop yield (Jin et al., 2017; Zandalinas et al., 2018). Omitting either 
of them could lead to unintended results. Our data-driven attribution framework provides a flexible alter-
native, as it does not require a priori knowledge on crop physiological response to climate stress and can 
handle nonlinear responses. The interaction effects of climate stresses were implicitly considered in the RF 
model through the hierarchical classification tree of predictors within the structure of the model. Then, the 
game theory based attribution gave a reasonable quantification of the relative importance of climate stress-
es for either single or compound extremes.

Overall, our study analyzed the spatial-temporal pattern of wheat yield shock and applied a data-driven 
attribution framework to quantify primary climate drivers of yield shock during the historical period. Our 
attribution analysis suggests that the overall dominant climate driver of yield shock during 1980–2018 is 
water limitation. However, it was surpassed by extreme warming in the late period (2000–2018). The future 
projection based on a calibrated RF model revealed enhanced yield shock probability and a paradigm shift 
from water limitation dominated yield shock to extreme warming dominated yield shock with warmer 
climate. However, crop models generally attributed low water supply as the primary climate driver of yield 
shock and were unresponsive to excessive water supply. The subsequent yield shock agreement analysis 
suggested that yield shocks driven by autumn and winter season extreme warming, high water demand, 
and excessive water supply were not as easily predicted by the crop models compared to the RF model. The 
future warmer climate resulted in even lower performance of crop models in predicting yield shocks. This 
analysis suggests that these climate stress effects during specific growth stages should be improved in future 
crop models to better develop climate adaptation strategies in cropping systems.

Data Availability Statement
Simulated wheat yield data used in this study is available at https://zcloud2.zalf.de/s/ZfsYAQ54nFdFJEX. 
The climate data can be accessed at: http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html.
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