
HAL Id: hal-03231510
https://hal.science/hal-03231510v4

Preprint submitted on 5 Jul 2021 (v4), last revised 27 Mar 2023 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupled-Cluster Theory Revisited
Mihaly Andras Csirik, Andre Laestadius

To cite this version:

Mihaly Andras Csirik, Andre Laestadius. Coupled-Cluster Theory Revisited. 2021. �hal-03231510v4�

https://hal.science/hal-03231510v4
https://hal.archives-ouvertes.fr


COUPLED-CLUSTER THEORY REVISITED∗

MIHÁLY A. CSIRIK† AND ANDRE LAESTADIUS†

Abstract. We propose a comprehensive mathematical framework for Coupled-Cluster-type
methods. These methods aim at accurately solving the many-body Schrödinger equation. The
present work has two main aspects. First, we rigorously describe the discretization scheme involved
in Coupled-Cluster methods using graph-based concepts. This allows us to discuss different methods
in a unified and more transparent manner, including multireference methods. Second, we analyze the
nonlinear equations of the single-reference Coupled-Cluster method using topological degree theory.
We establish existence results and qualitative information about the solutions of these equations that
also sheds light on some of the numerically observed behavior. For the truncated Coupled-Cluster
method, we derive an energy error bound for approximate eigenstates of the Schrödinger equation.

1. Introduction. The Coupled-Cluster (CC) method is one of the most pop-
ular methods in computational quantum chemistry among Hartree–Fock (HF) and
Density-Functional Theory (DFT). In its full generality, the quantum many-body
problem is intractable, and it is one of the greatest challenges of quantum mechanics
to devise practically useful methods to approximate the solutions of the many-body
Schrödinger equation. Although the stationary Schrödinger equation itself is a linear
eigenvalue problem, it is extremely high-dimensional even for a few particles and a low-
dimensional one-particle space.1 Here, we focus on those fermionic systems which are
described by the so-called molecular Hamilton operator—on which most electronic-
structure models are based in quantum chemistry. The Galerkin method applied to
the Schrödinger equation (sometimes combined with an initial HF “guess”) is branded
Configuration Interaction (CI) in computational quantum chemistry; unfortunately,
its applicability is limited due to the aforementioned high-dimensionality issue. The
HF method is perhaps conceptually the simplest, whereby the ground state is approxi-
mated by minimizing the energy of the system over determinantal wavefunctions; the
resulting Euler–Lagrange equations constitute a nonlinear eigenvalue problem that
yields the HF ground state. HF theory has attracted much interest in the mathemati-
cal physics community, see e.g. [40, 41, 3, 4, 11, 55, 18, 34]. The spiritual successor to
the statistical mechanics-motivated Thomas–Fermi theory—DFT—is the single most
used method in quantum chemistry, and some of its mathematical aspects are also
highly non-trivial [37, 15, 35, 36].

CC theory is a vast and highly active subfield of quantum chemistry, consisting
of many variants and refinements. However, among the aforementioned methods, the
CC approach has arguably received the least attention in the mathematics community.

1.1. Previous work. It is beyond the scope of this paper to give a historical
review of the CC method and its vast number of variants. The interested reader is
pointed to [21, 31, 7, 6, 54]. The survey article [57, pp. 99–184] is somewhat more
mathematically-oriented and also proposes a rather general framework.

Our approach is based on the analysis of the single-reference CC method by R.
Schneider [52]. In that work, a thorough description of the basic building blocks of the
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2 M. A. CSIRIK AND A. LAESTADIUS

method, namely excitation- and cluster operators, and their algebraic and functional-
analytic properties are given. Using the standard tools of nonlinear analysis, the
CC equation (a nonlinear system of equations consisting of quartic polynomials) is
formulated in terms of a locally strongly monotone and locally Lipschitz operator
defined on an appropriate space. Under certain assumptions, this establishes local
existence and uniqueness of a (Galerkin projected) solution of the equation and more-
over quasi-optimality of the projected CC solution (Theorem 5.8 ibid.). Perhaps the
most important contribution of [52] is a quadratic energy error estimate (Theorem
6.3 ibid.). It is worth emphasizing that Schneider’s analysis is a local one: “[...]
experience indicates that, in general, it cannot be expected that strong monotonicity
always holds, or the constants might be extremely bad. Therefore we expect to get local
existence results at best.” (ibid. p. 30)

Schneider’s original analysis was carried out in the finite-dimensional case only.
This was remedied in two subsequent articles by T. Rohwedder [51] and then by both
of them [50]. The article [51] establishes important technical tools and rigorously
proves that the untruncated CC problem is equivalent to the Full CI problem, i.e.
to essentially the Schrödinger equation. Using the said tools, the subsequent paper
[50] also establishes local uniqueness and existence of a solution to the truncated
CC equations in a neighborhood of the untruncated CC solution. Further, [50] also
extends the energy error estimates of [52] to the infinite-dimensional case.

This line of investigation was continued by S. Kvaal and A. L. in [33] for the
Extended CC (ECC) method based on the “bivariational principle” [2]. In this case,
strong monotonicity for the ECC mapping can be established so that quasi-optimality
follows along similar lines as previously done by Schneider and Rohwedder. In the
ECC theory, the traditional CC theory is recovered as a special case.

Furthermore, the local strong monotonicity-based analysis was applied to a vari-
ant of the traditional CC method by F. M. Faulstich et al. in 2019 [16], namely the
Tailored Coupled-Cluster (TCC) method. The TCC approach splits the computa-
tional task into two parts: solving for the statically correlated wave function on a
complete active space, and then on top of that accounting for the dynamical corre-
lation using the CC method. Numerical investigations based on [16] were conducted
in [17].

Finally, we mention the survey article [32] for more details on the use of local
strong monotonicity-based methods in the analysis of CC methods.

1.2. Outline. It is our intention to present both known and new results in a self-
contained manner and primarily with a mathematical audience in mind. In section 2,
we describe the setting of the quantum-mechanical problems the CC theory is aimed
at. The CC method typically takes a HF solution as an “input”, so we give a brief
discussion of the HF method in subsection 2.3. Next, subsection 2.4 gives a rough
sketch of the most basic CI and CC methods.

We begin our discussion in subsection 3.1 with the definition of a partial order
relation which will be used to encode the relevant transitions of the system, called
excitations. This partial order, and the induced lattice operations will be used in sub-
section 3.2 to define the excitation graph, which fully describes the CC discretization
scheme. We give a few examples of the generality of our concepts and also extend
the definition of the excitation graph to the multireference (MR) case. After this, the
corresponding excitation operators (subsection 3.3), cluster operators (subsection 3.4)
and cluster amplitude spaces (subsection 3.5) are constructed, which are the essential
building blocks for the formulation of any CC-like method.
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In section 4, we give short derivations of the SRCC and JM-MRCC methods. We
do so by generalizing the known procedure which is based on perturbation theory.

The analysis of the single-reference CC (SRCC) method begins in section 5. Basic
properties of the SRCC mapping are discussed in subsection 5.1. After this, the local
properties of the SRCC mapping are considered in subsection 5.2, such as strong
monotonicity and topological index in both the non-degenerate-, and in the degenerate
case. We also look at the complex SRCC mapping in subsection 5.3.

In subsection 5.4, an important class of homotopies is defined that can be used
for proving the existence of a solution for the truncated SRCC mappings. In sub-
section 5.5 a homotopy is considered that was invented specifically to connect CC
methods of different truncation levels. We prove an existence result and calculate
the topological index of the homotopy. Finally, we derive an energy error estimate in
subsection 5.6 using the results of Appendix D.

In Appendix A we state a few results that we use from finite-dimensional topolog-
ical degree theory. In Appendix B we calculate various graph-theoretic properties of
the excitation graph. In Appendix C we propose a method based on linear program-
ming to select reference determinants for the multi-reference setting in an optimal
way. In Appendix D we re-prove certain results related to the method used in sub-
section 5.5 and subsection 5.6.

2. Background. In this section we collect the concepts and results that are
necessary for the forthcoming discussion. For proofs and more about the mathematical
foundations of quantum mechanics, see e.g. [47, 48, 49, 20, 58, 22, 39].

We use the convention that complex inner products are conjugate-linear in their
second arguments (as opposed to the convention used in physics). Complex conjuga-
tion is denoted by z. The usual notation B(a, r) is used for the open ball of radius
r and center a, also B∗(a, r) = B(a, r) r {a} denotes the punctured ball. The spec-
trum of a linear operator A is written σ(A), the elements of its discrete spectrum as
En(A), where n = 0, 1, 2, . . ., if A is bounded from below. We use the usual notation
[A,B] = AB − BA for the commutator. For normed spaces V and W , the symbol
L(V,W ) denotes normed space of bounded linear mappings V → W endowed with
the operator norm ‖ · ‖L(V,W ). Furthermore, V ∗ denotes the (continuous) dual space.

2.1. Function spaces. In the context of many-body quantum mechanics, the
complex Lebesgue-, and Sobolev spaces L2(R3) and H1(R3) are viewed as “one-
particle spaces” which are used to define the N -particle fermionic spaces (see e.g.
[38])

L2 =

N∧
L2(R3), and H1 = L2 ∩H1(R3N ),

endowed with the inner products

〈Ψ,Φ〉 =

∫
R3N

Ψ(X)Φ(X) dX

and

〈Ψ,Φ〉H1 = 〈Ψ,Φ〉+

N∑
k=1

∫
R3N

∇xkΨ(X) ·∇xkΦ(X) dX,

respectively. Here, X = (x1, . . . ,xN ) ∈ R3N and z · w denotes the usual inner
product. Also, ∇xk = (∂x1

k
, ∂x2

k
, ∂x3

k
) is the distributional gradient operator acting

on the kth triple of the arguments. We define the second order Sobolev space as
H2 = L2 ∩H2(R3N ).
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Let K ≥ N or K =∞ and assume that an L2-orthonormal (spin-)orbital set B =
{ϕp}Kp=1 ⊂ H1(R3) is given. We define the subspace H1

K(R3) = SpanB ⊂ H1(R3).
Corresponding to B we can construct the determinantal wavefunctions (a.k.a. Slater
determinants)

B = {Φα ∈ H1 : 1 ≤ α1 < . . . < αN ≤ K, Φα(X) = N !−1/2 det(ϕαi(xj))1≤i,j≤N}.

Then B is L2-orthonormal. Set

H1
K = SpanB ⊂ H1,

and we will use the convention that the subscript K is dropped if B ⊂ H1(R3) forms
a basis.

The negative exponent Sobolev space H−1 will also be used in the sequel, which
is given by the continuous dual space (H1)∗ (see e.g. [1]). We will exploit that the
dense continuous embeddings H1 ↪→ L2 ↪→ H−1 hold true, i.e. they form a Gelfand
triple. In this case, instead of the dual pairing 〈·, ·〉H1×H−1 it suffices to use 〈·, ·〉 on
H1 × L2 and then extend to the whole space by density.

2.2. Hamilton operator. In this section, we introduce the model Hamilton
operator for concreteness. Let V,w : R3 → R be Kato class2 potentials: V,w ∈
L3/2(R3) + L∞ε (R3) with w even and define the quadratic form E on H1 as

E(Ψ) =
1

2
‖∇Ψ‖2 +

∫
R3N

(
N∑
i=1

V (xi) +

N∑
i,j=1
i<j

w(xi − xj)

)
|Ψ(X)|2 dX

for any Ψ ∈ H1. For every ε > 0, there is a Cε > 0 so that Kato’s inequality (see e.g.
[18] for a detailed proof),

1− ε
2
‖∇Ψ‖2 − Cε‖Ψ‖2 ≤ E(Ψ) ≤ 1 + ε

2
‖∇Ψ‖2 + Cε‖Ψ‖2 for all Ψ ∈ H1,

holds true. This implies that the quadratic form induced by V and w is infinitesimally
form bounded with respect to −4 (and E is continuous and closed on H1). The KLMN
theorem implies that there exists a unique self-adjoint operator H : D(H)→ L2 asso-
ciated to E , having form domain Q(H) = Q(E) = H1 and being lower semibounded.
This H is given by

(HΨ)(X) = −1

2

N∑
i=1

4xiΨ(X) +

(
N∑
i=1

V (xi) +

N∑
i,j=1
i<j

w(xi − xj)

)
Ψ(X),

for all Ψ ∈ D(H) and X ∈ R3N . Kato’s inequality implies that H is H1-bounded:
there is a constant M > 0, such that

(2.1) 〈HΨ,Φ〉 ≤M‖Ψ‖H1‖Φ‖H1

for all Ψ,Φ ∈ H1. Thus, H can be extended to a bounded mapping H1 → H−1, which
we denote with the same symbol. We say that Ψ ∈ H1 and E ∈ R satisfy the weak
Schrödinger equation if 〈HΨ,Φ〉 = E〈Ψ,Φ〉 for all Φ ∈ H1.

2By definition f ∈ L3/2(R3) + L∞ε (R3), if for every ε > 0 there is an f1 ∈ L3/2(R3) and
f2 ∈ L∞(R3) with ‖f2‖∞ < ε so that f = f1 + f2.
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As far as the finite-dimensional case K <∞ is concerned, we simply consider the
Galerkin projection of the weak Schrödinger equation. More precisely, let H1

K ⊂ H1

be as defined in subsection 2.1. Then Ψ ∈ H1
K and E ∈ R are said to satisfy the

projected Schrödinger equation if 〈HΨ,Φ〉 = E〈Ψ,Φ〉 for all Φ ∈ H1
K .

The so-called (electronic) molecular Hamilton operator H corresponds to the spe-
cial case

V (x) = −
M∑
j=1

Zj
|x− rj |

and w(x) =
1

|x|
,

where Zj ∈ N (j = 1, . . . ,M) and r1, . . . , rM ∈ R3 denote the charges and the
positions of the M ∈ N nuclei.

2.3. The Hartree–Fock method. In practice, the CC method usually takes
the HF orbitals as an input and therefore the performance of the method hinges on
this preliminary HF calculation. Here, we collect the basic facts about the HF method
that will be used later on.

The HF method3 is based on the minimiziation of the energy over the determi-
nantal wavefunctions. It is fairly easy to see by direct calculation that the energy
E(Ψ) of a determinantal wavefunction Ψ = N !−1/2 det(ϕi(xj))1≤i,j≤N , with {ψj}Nj=1

being L2-orthonormal is given by

E(ψ1, . . . , ψN ) := E(Ψ) =
1

2

N∑
j=1

∫
R3

|∇ψj |2 +

N∑
i=1

∫
R3

V |ψi|2

+
1

2

∫∫
R3×R3

[
N∑

i,j=1

|ψi(x)|2|ψj(y)|2 −

∣∣∣∣∣
N∑
i=1

ψi(x)ψi(y)

∣∣∣∣∣
2]
w(x− y) dxdy,

see e.g. [18, 34]. Hence the task is to determine the HF energy

(2.2) EHF = E(ΦHF) = min
ψ1,...,ψN

orthonormal

E(ψ1, . . . , ψN ),

along with a HF minimizer (or HF determinant) ΦHF. The existence of a HF mini-
mizer ΦHF is guaranteed for the case of positive ions and neutral atoms (corresponding
to the electronic molecular Hamilton operator).

Theorem 2.1. [40] If N < Z + 1, then there exists a minimizer ΦHF to (2.2).

Recently, much more has been discovered about the mathematical structure of the
HF energy functional [18, 34]. As usual, a minimizer satisfies the corresponding Euler–
Lagrange equations (which are called Hartree-Fock equations in this context). In
practice, it is this system of nonlinear integro-differential equations which is discretized
and solved. To describe the HF equations, we make a definition that will be convenient
for later purposes. Fix Φ(X) = N !−1/2 det(ϕi(xj))1≤i,j≤N , where {ϕp}Np=1 ⊂ H1(R3)
is L2-orthonormal. Define a self-adjoint operator FΦ : L2(R3)→ L2(R3) with domain
D(FΦ) = H2(R3) via the instruction

(FΦψ)(x) = −1

2
4ψ(x) + V (x)ψ(x)

+

N∑
i=1

∫
R3

w(x− y)(|ϕi(y)|2 − ϕi(x)ϕi(y))ψ(x) dy

3a.k.a. Self-Consistent Field (SCF) method
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for all ψ ∈ D(FΦ) and all x ∈ R3. The operator FΦ is called the mean-field operator.4

The form domain of FΦ is H1(R3). The essential spectrum of FΦ is [0,+∞). We
summarize the basic properties of the mean-field operator in the next theorem. Let

µn(FΦ) = min
ψ1,...,ψn∈H1(R3)

max
ψ∈Span{ψ1,...,ψn}
‖ψ‖L2(R3)=1

〈FΦψ,ψ〉

denote the min-max values of FΦ.

Theorem 2.2. Assume that there exists a HF minimizer

ΦHF = N !−1/2 det(ϕi(xj))1≤i,j≤N .

(i) (Hartree-Fock equations) There exists a unitary matrix U ∈ CN×N so that
with

(ϕ̃1, . . . , ϕ̃N ) = U(ϕ1, . . . , ϕN ),

ϕ̃i are eigenfunctions of FΦ corresponding to its N lowest eigenvalues λ1 ≤
. . . ≤ λN ,

(2.3) FΦϕ̃i = λiϕ̃i, for all i = 1, . . . , N.

(ii) (Aufbau principle) If µN+1(FΦ) is an eigenvalue of FΦ, then

λN = µN (FΦ) < µN+1(FΦ) ≤ 0.

The eigenvalue λN is called the highest occupied molecular orbital (HOMO) and
λN+1 the lowest unoccupied molecular orbital (LUMO). Their difference, εmin :=
λN+1−λN is called the HOMO-LUMO gap, which is an important quantity in quan-
tum chemistry [4].

The N -particle “lifted” version of the mean-field operator is called the Fock opera-
tor and is defined as the self-adjoint operator FΦ : L2 → L2 with domain D(FΦ) = H2

via
FΦ = FΦ ⊗ I ⊗ . . .⊗ I + . . .+ I ⊗ . . .⊗ I ⊗ FΦ.

Henceforth we omit Φ from the notation, and let F := FΦ whenever Φ is clear from
the context. It is immediate that the HF determinant Φ0 := ΦHF is an eigenfunction
of F ,

FΦ0 = Λ0Φ0, with Λ0 =

N∑
i=1

λi.

The Fock operator gives rise to a splitting of the molecular Hamilton operator

(2.4) H = F +W, where W = H−F

is called the fluctuation operator.
For the rest of the section, we consider the finite-dimensional case. In practice,

the Galerkin projection of the Hartree–Fock equations (2.3) are solved to obtain the
orbitals {ϕi}Ni=1. Since the mean-field operator FΦ is self-adjoint, its eigenfunctions
can be used to extend these orbitals to an orthonormal basis {ϕi}Ki=1 ⊂ H1

K(R3). In

this orbital basis, the Fock operator takes the diagonal form F =
∑K
i=1 λia

†
iai, where

4It is sometimes called the Fock operator, but we reserve that name for its N -particle version.
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a†i and ai are the fermionic creation-, and annihilation operators corresponding to the
orbital ϕi.

Furthermore, if Φα = N !−1/2 det(ϕαi(xj))1≤i,j≤N with α1 < . . . < αN that is
obtained from Φ0 = N !−1/2 det(ϕi(xj))1≤i,j≤N by swapping r orbitals ϕIj with ϕAj
where Ij ∈ {1, . . . , N}, Aj 6∈ {1, . . . , N} (j = 1, . . . , r ≤ N), then

(2.5) FΦα = ΛαΦα, with Λα =

N∑
i=1

λαi = Λ0 + εα, εα =

r∑
j=1

λAj − λIj .

Note that in the infinite-dimensional case, it might not be possible to construct
a complete eigenbasis {ϕi}∞i=1 ⊂ H1(R3) for the mean-field operator FΦ due to the
presence of the essential spectrum.

2.4. The CI and the CC method. We now give a very rough description of
the single-reference CI and CC methods. For the rigorous derivations, we refer to
section 4.

In a preliminary step—typically using the HF method—the reference determinant

Φ0 = N !−1/2 det(ϕi(xj))1≤i,j≤N

is constructed and normalized so that ‖Φ0‖ = 1. We restrict our discussion here
to the case when relevant function spaces are real. The occupied orbitals Bocc =
{ϕp}Np=1 ⊂ H1(R3) are extended to a basis B = {ϕp}Kp=1 ⊂ H1

K(R3) by adding K−N
virtual orbitals Bvirt = {ϕp}Kp=N+1, so that B = Bocc ∪ Bvirt. Here, K = ∞ is
allowed. The orthonormal set B generates the determinantal wavefunctions B and
the subspace H1

K ⊂ H1 (see subsection 2.1). For later convenience, we introduce the
space H1,⊥ as the L2-orthogonal complement of Span{Φ0} in H1. Further, we also set

H1,⊥
K = H1,⊥ ∩ H1

K .
In both the CI and the CC method, the Schrödinger equation HΨ = EΨ is solved

based on the reference wavefunction Φ0. For simplicity,5 we consider the case when
Ψ is sought after in the form Ψ = Φ0 + Ψ, where 〈Ψ,Φ0〉 = 0. In other words, Ψ
is calculated via a correction Ψ to Φ0. Note that 〈Ψ,Φ0〉 = 1, which is called the
intermediate normalization condition. If the “targeted” wavefunction Ψ happens to
be orthogonal to the reference determinant Φ0, then the Ansatz Ψ = Φ0 + Ψ cannot
yield a solution (see, however, Lemma 5.1).

The Full Configuration Interaction (FCI) method can be summarized as follows:

find Ψ ∈ H1,⊥
K such that

(2.6) 〈H(Φ0 + Ψ),Φ〉 = ECI〈Φ0 + Ψ,Φ〉 for all Φ ∈ H1,⊥
K .

Here, ECI = ‖Ψ‖−2〈HΨ,Ψ〉 is called the CI-, or variational energy. The projected
CI method is simply the Galerkin projection of the previous problem to some finite
dimensional subspace Vd ⊂ H1,⊥

K , i.e. to find Ψd ∈ Vd such that

(2.7) 〈H(Φ0 + Ψd),Φd〉 = Ed,CI〈Φ0 + Ψd,Φd〉 for all Φd ∈ Vd.

The choice of the Galerkin subspace Vd is typically based on so-called truncation
rank, for instance Vd = VSD, is the span of singly-, and doubly excited determinants
in B. The corresponding (projected) CI method in this case is designated as “CISD”.

5Although the CI method is more general.
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The CI equations are more commonly expressed using cluster operators. A cluster
operator C : L2

K → L2
K is a bounded linear operator that is a linear combination of

special products of fermionic creation and annihilation operators a†i and ai, so that the
action of each such product is to replace some occupied orbitals Bocc with the same
number of virtual orbitals Bvirt (see Remark 3.18). A cluster operator C can therefore
be parametrized with the said linear-combination coefficients, denoted by the lower
case c and are called cluster amplitudes. The vector space of all cluster amplitudes are
denoted by V. There is a one-to-one correspondence between functions in L2,⊥ (resp.

H1,⊥
K ) and functions of the form CΦ0, where C : L2

K → L2
K (resp. C : H1

K → H1
K)

is a cluster operator. Therefore, (2.6) can be expressed as a follows: find a cluster
operator C (or, equivalently cluster amplitudes c), such that

〈H(I + C)Φ0, SΦ0〉 = ECI〈(I + C)Φ0, SΦ0〉 for all cluster operators S.

Although this might seem an unnecessary complication at first, cluster operators are
essential for the formulation of the CC method.

In the CC method, the “exponential Ansatz” is assumed for the intermediately
normalized wavefunction Ψ. Substituting Ψ = eTΦ0 into the Schrödinger equation,
where T is a cluster operator, we get

(2.8) HeTΦ0 = ECCe
TΦ0,

for some ECC ∈ R. First, to determine ECC we premultiply (2.8) by e−T (eT is always
invertible), and take the inner product with Φ0 to obtain the CC energy

(2.9) ECC := ECC(t) = 〈e−THeTΦ0,Φ0〉,

where we used the normalization ‖Φ0‖ = 1. Second, by premultiplying (2.8) by e−T

again, but now testing against functions in H1,⊥
K , we get the Full CC (FCC) method:

find cluster amplitudes t∗ ∈ V such that

(2.10) 〈e−T∗HeT∗Φ0, SΦ0〉 = 0, for all s ∈ V.

The projected CC method is the Galerkin projection of the FCC problem with respect
to some subspace Vd ⊂ V. More precisely, the task is to find td,∗ ∈ Vd such that

(2.11) 〈e−Td,∗HeTd,∗Φ0, SdΦ0〉 = 0 for all sd ∈ Vd.

For the moment, we denote the corresponding CC energy by Ed,CC. Again, Vd is
based on some truncation, such as SD, in which case the corresponding method is
called “CCSD”.

We now discuss the relation between CI and CC. It was shown that the FCI (2.6)
and the FCC (2.10) methods are equivalent, see [50, Theorem 5.3].

Theorem 2.3 (Equivalence of FCI and FCC). The problems (2.6) and (2.10)
are equivalent, and the full CC solution Ψ = eT∗Φ0 satisfies ECC(t∗) = ECI.

However, the corresponding Galerkin-projected problems are not equivalent. Fur-
ther, while ECI ≤ Ed,CI due to the Rayleigh–Ritz variational principle, the same is not
true for the CC method and numerical experience undoubtedly shows that there is
no obvious relation in general between ECC = ECI and Ed,CC; this last phenomenon is
called the nonvariational property of CC theory. Note that according to Theorem 2.3,
FCC is variational.
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Despite this, the gains of CC over CI are significant. First, by construction, the
CC method is size-consistent, even when truncated [52, Theorem 4.10]. This prop-
erty is crucial for the precise determination of various chemical properties. Second,
the evaluation of expressions involving the similarity-transformed Hamilton operator
e−THeT is greatly eased by the formula

(2.12) e−THeT =

4∑
j=0

1

j!
[H, T ](j),

see [52, Theorem A.1],6 where the iterated commutators are given by [H, T ](0) = H
and [H, T ](j) = [[H, T ](j−1), T ] for j ≥ 1. Equation (2.12) may be referred to as
the termination of the Baker–Campbell–Hausdorff series (2.12), and it makes the
computer implementation of CC methods feasible even for moderately sized systems.
In particular, this, and the Slater–Condon rules imply that the CC energy can be
computed as7

(2.13) ECC(t) = 〈H(I + T1 + T2 + 1
2T

2
1 )Φ0,Φ0〉.

Furthermore, (2.12) also implies that the polynomial system (2.10) (and hence its
Galerkin projection (2.11)) is quartic in terms of the cluster amplitudes t. Despite
their apparent simplicity, the CC equations usually involve many complicated terms
and even their assembly is a nontrivial task. In summary, the CC method approxi-
mates an extremely high-dimensional linear problem (2.6) by a low-dimensional non-
linear problem (2.11).

Since most literature on CC theory is somewhat vague on how the actual dis-
cretization scheme is set up, we begin our discussion by introducing a framework that
allows us to describe the CC discretization rigorously and also without the use of
second-quantized formalism.

3. Coupled-Cluster discretization. Using an appropriate string of creation
and annihilation operators, any fermionic state can be changed to any other one (see
e.g. [21, 56]). In our context, a set of N occupied orbitals is given; its complement
is called the set of virtual orbitals. The action of an excitation operator consists of
annihilating a few occupied orbitals and creating the same number of virtual orbitals
(hence the particle number N is conserved). A de-excitation operator amounts to
the reverse action: annihilating some virtual orbitals and creating the same number
of occupied ones. Obviously, any N -particle state can be achieved by acting with an
appropriate excitation operator on the “reference state”, which is the N -particle state
composed of all the occupied orbitals. However, it might also be possible to arrive
at the same state from another state through successive excitations. The concrete
relationships are nontrivial and this section is devoted to their description.

3.1. Excitation order. Let Λ be a countable set called the orbital set and let
2Λ denote the power set of Λ. In concrete examples, we will often use the numbers
Λ = {1, 2, 3, . . .} to label the elements of Λ for the sake of simplicity, and set K = |Λ|.
Let N ≥ 1 denote the number of particles, and set S = {α ∈ 2Λ : |α| = N}, the
elements of which are called states. The particle number N is assumed to be fixed

6Their proof is straightforward to adapt to the more general Hamilton operator defined in sub-
section 2.2.

7Actually, the term 〈HT1Φ0,Φ0〉 vanishes if Φ0 is the Hartree–Fock solution (Brillouin theorem).
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throughout. Fix M ≥ 1 reference states

Ω = {01, . . . , 0M} ⊂ S.

For every m = 1, . . . ,M define

Lm = S r (Ω r {0m})

and on it, the partial order relation

α �m β ⇐⇒ β
m
⊂ αm and αm ⊂ βm

for any α, β ∈ Lm, where

αm = α ∩ 0m and αm = α ∩ (0m)c,

and the complement is to be understood relative to Λ. According to commonly used
nomenclature, we call αm the occupied part of α w.r.t. 0m and αm the virtual part of
α w.r.t. 0m. This partial order relation is a generalization of [50, Definition 4.2]. By
definition, Lm = {α ∈ S : 0m �m α} and for the sake of convenience, we introduce
the notations S = S r Ω and Lm = Lm r {0m}. Note that the reference states are
defined not to be comparable with respect to �m with each other.

The partial order �m generates the join and meet lattice operations

α ∨m β =
(
αm ∩ βm

)
∪
(
αm ∪ βm

)
,

α ∧m β =
(
αm ∪ βm

)
∪
(
αm ∩ βm

)
,

for all α, β ∈ Lm. Furthermore, we introduce the orthocomplementation α⊥ = Λrα.
For the so-called single-reference (SR) case, M = 1 and we will make the con-

vention that all the m indices are dropped from the notation. For the next result, we
extend �, ∨ and ∧ to the whole 2Λ.

Proposition 3.1. The structure B = (2Λ,∨,∧, 0, 1,⊥) is a Boolean algebra, that
is, a distributive, bounded lattice in which the de Morgan laws hold true. Here, we set
1 := Λ, the identity for ∧.

A similar statement holds true in the multi-reference (MR) case, for the individual
structures Bm = (2Λ,∨m,∧m, 0m, 1,⊥). Even though the algebraic structure on B is
nice, the subset S loses this structure. In fact, S is not a sublattice of B, since for
example α ∨m β, α ∧m β 6∈ S for distinct α and β with α = β = ∅. The reason why
we stated Proposition 3.1, however, is because we will exploit the operational rules
for ∨, ∧ and ⊥ in a few occasions; for instance, in the following trivial result.

Lemma 3.2. Let γ, β ∈ 2Λ be such that β �m γ. Then, α∨m β = γ if and only if
α = β⊥ ∧m γ.

Proof. We have

α ∨m β = (γ ∧m β⊥) ∨m β = (γ ∨m β) ∧m (β⊥ ∨m β) = (γ ∨m β) ∧m 1 = γ ∨m β = γ,

where in the last step we used β �m γ. Further, if α′ ∨m β = γ as well, then
α′ ∨m β = α ∨m β. By joining β⊥ to both sides, we get α′ = α.

The poset (Lm,�m) also admits a rank function which makes it a graded poset.
This means that the rank function rkm : Lm → N satisfies rkm(α) < rkm(β) whenever
α ≺m β, and rkm(β) = rkm(α) + 1 if there is no element γ such that α ≺m γ ≺m β.
The choice rkm(α) = |αm| is easily seen to satisfy the requirements. Obviously, the
maximum value that rkm(α) can take is N . For a geometric description of the rank
function, see Appendix C.



COUPLED-CLUSTER THEORY 11

{1, 2, 3} {1, 2, 4}

{1, 2, 5}{1, 3, 4}

{1, 3, 5} {1, 4, 5}

{2, 3, 4}

{2, 3, 5} {2, 4, 5}

{3, 4, 5}

Fig. 1. Full multi-reference excitation multigraph for Λ = {1, . . . , 5} and 01 = {1, 2, 3}, 02 =
{1, 2, 4}. The edges corresponding to 01 and 02 are shown in red and blue, respectively.

3.2. Excitation graphs. As we remarked in the previous section, Lm fails to
be a sublattice of the Boolean algebra Bm. Therefore, let us consider pairs (α, β) ∈
Lm × Lm for which α ∨m β ∈ Lm. In other words, pairs (α, β) ∈ Lm × Lm for which
|αm ∩ βm|+ |α

m ∪ βm| = N , or, equivalently,

(3.1) |αm ∪ βm|+ |α
m ∩ βm| = N.

While still α ∨m β ∈ Lm in the case αm ∩ βm 6= ∅, we wish to avoid that possibility
on based physical grounds. Namely, on the account of the Pauli exclusion principle,
since roughly speaking such an operation would introduce a repeated row in the
determinantal wavefunction and that would render it identically zero. Therefore, we
restrict our attention to the set

(3.2) Lm = {(α, β) ∈ Lm × Lm : |αm ∪ βm| = N and |αm ∩ βm| = 0}.

Hence, if (α, β) ∈ Lm, then we have α ∨m β ∈ Lm. The set Lm is symmetric to
the diagonal (which it does not contain), and (0m, α), (α, 0m) ∈ Lm for any α ∈ Lm.
Furthermore, the rank function rkm is additive on Lm in the sense that

rkm(α ∨m β) = rkm(α) + rkm(β),

for any (α, β) ∈ Lm. This property may also seen to be a reason why we want to
exclude the case αm ∩βm 6= ∅. Indeed, it could also be taken as the definition of Lm.

Proposition 3.3. The set Lm can be written as

Lm = {(α, β) ∈ Lm × Lm : α ∨m β ∈ Lm and rkm(α ∨m β) = rkm(α) + rkm(β)}.

Proof. Let L′m denote the set on the right hand side. Then, it is clear from the
above that Lm ⊂ L′m. Conversely, suppose that (α, β) ∈ L′m. Then, |αm ∪ βm| =
|αm|+ |βm|, from which |αm ∩ βm| = 0. Since α∨m β ∈ Lm, (3.1) holds true, and we
have that |αm ∪ βm| = N , so (α, β) ∈ Lm. Hence, Lm ⊃ L′m.
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The set Lm is used for our main definition.

Definition 3.4. The digraph Gfull
m = (Lm, E

full
m ) is called the full (SR) excitation

graph w.r.t. 0m, where

Efull
m = {(β, α ∨m β) ∈ Lm × Lm : (α, β) ∈ Lm, α 6= 0m}.

A subgraph Gm = (Lm, Em), Em ⊂ Efull
m is said to be an (SR) excitation (sub)graph

w.r.t. 0m.

Notice that we excluded α = 0m to omit loop edges. Lemma 3.2 has the following
refinement on the excitation graph.

Lemma 3.5. Let (β, γ) ∈ Efull
m . Then α = β⊥ ∧m γ ∈ Lm is the unique α such

that α ∨m β = γ.

Proof. Using Lemma 3.2, we can uniquely solve the equation α∨m β = γ for α to
obtain α = β⊥ ∧m γ ∈ 2Λ. Therefore, (β, α ∨m β) ∈ Efull

m , which implies that α ∈ Lm
using the definition of Efull

m .

Corollary 3.6. The digraph Gfull
m does not contain parallel edges.

Various graph-theoretic quantities of the single-reference excitation graph are
calculated in Appendix B.

A digraph G = (V,E) is said to be transitive if (u, v) ∈ E and (v, w) ∈ E imply
(u,w) ∈ E. It follows by induction that, if G is transitive, and whenever G contains
a directed path ((v0, v1), (v1, v2), . . . , (vn−1, vn)), then (v0, vn) ∈ E.

Proposition 3.7. The digraph Gfull
m is transitive.

Proof. Suppose that (γ0, γ1) ∈ Efull
m and (γ1, γ2) ∈ Efull

m . Then there exists α
and β such that γ1 = α ∨m γ0 and γ2 = β ∨m γ1. Since γ2 = (α ∨m β) ∨ γ0 by the
associativity of ∨m, it follows easily from Proposition 3.3 that (γ0, α ∨m β) ∈ Lm.
Therefore,

(γ0, γ2) = (γ0, (α ∨m β) ∨m γ0) ∈ Efull
m ,

which is what we wanted to show.

Transitivity of certain subgraphs, and of Gfull
m itself will come up later, since

vaguely speaking this property will imply the algebraic closedness of the set of exci-
tation operators that we attach to the edges (see subsection 3.3 and subsection 3.4).

We label the edges of Gfull
m with their corresponding α. Thus, to every directed

edge (β, α ∨m β) ∈ Efull
m there corresponds a map xm,α : Lm → Lm defined with the

instruction xm,α(β) = α ∨m β. This way, the digraph Gfull
m may be interpreted as a

commutative diagram (cf. subsection 3.3). Note that a label xm,α may appear on
multiple edges.

Furthermore, for any subgraph Gm = (Lm, Em), we introduce the set of excita-
tions Ξ(Gm) ⊂ Lm of Gm via

(3.3) Ξ(Gm) = {α ∈ Lm : (β, α ∨m β) ∈ Em for some β ∈ Lm}.

Note that the excitations are indexed with the same set Lm as the states themselves,
but in general Ξ(Gm) 6= Lm. Nonetheless, for the full excitation graph Gfull

m , we have
in fact Ξ(Gfull

m ) = Lm.
The reason why explicitly stated that we are considering the “full” excitation

graphs is that, in practice, one is forced to ignore the “degree of freedom” (called
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“cluster amplitudes”, see subsection 3.5) corresponding to some edges.8 This is done
by considering certain subsets of the full edge set Efull

m .

Definition 3.8. An excitation subgraph Gm = (Lm, Em) is said to be a consis-
tent subgraph (of Gfull

m ) if Em ⊂ Efull
m , and whenever (β, α ∨m β) ∈ Em for some

β ∈ Lm and α ∈ Ξ(Gm), then (β′, α ∨m β′) ∈ Em for all β′ ∈ Lm.

The consistency criterion can be rephrased as follows: for a fixed α ∈ Ξ(Gm),
either Em contains the whole “orbit” {(β, α ∨m β) ∈ Em : β ∈ Lm} or it does
not contain it at all. Note that the set Ξ(Gm) can equally well be used to define a
consistent subgraph.

Definition 3.9. For a given r = 1, . . . , N , define Gm(r) = (Lm, Em(r)), where

Em(r) = {(β, α ∨m β) ∈ Efull
m : β ∈ Lm, α ∈ Lm such that rkm(α) = r}.

The subgraph Gm(r1, . . . , rρ) = (Lm, Em(r1, . . . , rρ)) is called a rank-truncated exci-
tation subgraph if

Em(r1, . . . , rρ) = Em(r1) ∪ . . . ∪ Em(rρ) for r1, . . . , rρ ∈ {1, . . . , N}.

We refer to Gm(1), Gm(1, 2), Gm(1, 2, 3), etc. more colloquially as Gm(S), Gm(SD),
Gm(SDT), etc.

Rank-truncation does not introduce isolated vertices in Gm(r1, . . . , rρ) as long as
one of the rj ’s is 1. However, in the doubles (D) case, G(D) does in fact produce
isolated vertices so that vertices of odd rank cannot be reached. Also, note that these
truncated subgraphs like Gm(S) and Gm(SD) are not transitive in general.

We shall summarize these observations in the next theorem. Recall that a digraph
is said to be weakly connected if every pair of vertices has an undirected path between
them.

Theorem 3.10. Let Gm = Gm(r1, . . . , rρ) be a rank-truncated excitation sub-
graph. Then the following is true.

(i) Gm is a consistent subgraph.
(ii) Gm is weakly connected if one of the rj’s is 1.

Proof. Obvious from the definition.

Next, we briefly consider two rather “exotic” CC-like methods to demonstrate
the generality of the excitation graph concept.

Example 3.11. The excitation graph corresponding to the Tailored CC method
(see e.g. [16]) can be described as follows. In that SR method (M = 1), the orbital set
Λ is partitioned according to ΛCAS = {1, . . . , N,N + 1, . . . , k} and Λext = Λ r ΛCAS

for some k = N, . . . , |Λ|. This induces a splitting L = L(CAS)∪̇L(ext), where

L(CAS) = {α ∈ L : α ⊂ ΛCAS}, L(ext) = Lr L(CAS).

Furthermore, the edge set Efull may also be split accordingly

E(CAS) = {(β, α ∨ β) ∈ Efull : α ⊂ ΛCAS}, and E(ext) = Efull r E(CAS).

In other words, E(CAS) contains excitations which change CAS occupied orbitals to
CAS virtual ones, and as such, no edge in E(CAS) leaves L(CAS) that starts from
L(CAS). It is easy to see that both G(CAS) = (L,E(CAS)) and G(ext) = (L,E(ext))
are transitive and consistent subgraphs.

8Note that the vertex set is still the “full” vertex set Lm—some vertices might become isolated.
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Example 3.12. A generalization of E(CAS) is the “CAS-type subalgebra” (de-
noted as “g(N)(R,S)” in [29]), which is constructed from two given subsets ΛR ⊂
{1, . . . , N} and ΛS ⊂ {N + 1, . . .}. Define Λint = ΛR∪̇ΛS and Λext = Λ r Λint. This
induces a splitting L = L(int)∪̇L(ext), where

L(int) = {α ∈ L : α ⊂ Λint}, and L(ext) = Lr L(int).

The edge set Efull decomposes as

E(int) = {(β, α ∨ β) ∈ Efull : α ⊂ Λint}, and E(ext) = Efull r E(int).

In other words, E(int) contains excitations that replace some orbitals in ΛR with
ones in ΛS . Then G(int) = (L,E(int)) and G(ext) = (L,E(ext)) are transitive
and consistent subgraphs. Clearly, Example 3.11 can be recovered with the choice
ΛR = {1, . . . , N}, ΛS = {N + 1, . . . , k}.

Finally, we define excitation graph in the multireference case, which is a natural
extension of the above concepts.

Remark 3.13. An important warning is in order. In general, α ∨m β may or may
not be equal to α∨`β for m 6= `. In fact, take Λ = {1, 2, . . . , 7} and 01 = {1, 2, 3}, 02 =
{1, 2, 4}. Then, with α = {1, 3, 5} and β = {2, 6, 7}, we have α∨1β = α∨2β = {5, 6, 7}.
On the other hand, with α = {2, 3, 4} and β = {1, 2, 5}, we have α ∨1 β = {2, 4, 5},
but α∨2 β = {2, 3, 5}. Note that in the first case, we actually have (α, α∨1 β) ∈ Efull

1

and (α, α ∨2 β) ∈ Efull
2 , i.e. a double edge.

Definition 3.14. The full MR excitation multigraph w.r.t. Ω, Gfull = (L,Efull)
is defined as the union of the individual full SR excitation graphs Gfull

m = (Lm, E
full
m )

for all m = 1, . . . ,M , i.e.

L =

M⋃
m=1

Lm, Efull =

M⊎
m=1

Efull
m ,

where ] denotes multiset union.

Note that as opposed to the SR graph Gfull
m , the MR graph Gfull might have

parallel edges (called “redundant” excitations), this justifies that Gfull was introduced
as a multigraph. Notice that other references cannot be “reached” from a given one
(see Figure 1). An algorithm for choosing the set of reference states Ω = {0m}Mm=1 in
an optimal way, adhering to some given criteria is described in Appendix C.

3.3. Excitation operators. Recall that Ω = {0m}Mm=1 denotes the set of ref-
erences, and that Lm does not contain the other reference states Ω r {0m}. The
construction described below is to be repeated for every m = 1, . . . ,M separately.

First, we fix an ordering of the indices in α ∈ S. Then, for every element α =
{α1, . . . , αN} ∈ S we assign the lexicographically ordered N -tuple

α< = (α<1 , . . . , α
<
N ) ∈ ΛN , α<1 < . . . < α<N , where α<j ∈ α.

Without loss of generality, we can assume that the orbital indices contained in 0m are
strictly less than the virtual indicies Λ r 0m.

As in subsection 2.1, fix an orthonormal set B = {ϕp}p∈Λ ⊂ H1(R3) and the
corresponding determinantal wavefunctions

(3.4) B = {Φα ∈ H1 : α ∈ S, Φα(X) = N !−1/2 det(ϕα<i (xj))1≤i,j≤N}.
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Recall the notation H1
K ⊂ H1 for the subspace spanned by B; which is allowed to be

finite-, or infinite-dimensional depending on K = |Λ|.
Definition 3.15. Let Gm = (Lm, Em) be a subgraph of Gfull

m . The family of

linear operators X
(m)
α := Xα(Gm) : H1

K → H1
K given by

Xα(Gm)Φβ =

{
σ(α, β)Φα∨mβ (β, α ∨m β) ∈ Em
0 (β, α ∨m β) 6∈ Em

for each α ∈ Ξ(Gm) and β ∈ S, and extended boundedly and linearly to the whole
space H1

K is called the family of excitation operators on Gm. Here, σ(α, β) is the

sign of the permutation π(α, β) that puts the tuple ((β
m

)<, (αm)<) in lexicographical
order.

Assuming Ξ(Gm) 6= ∅, by the definition of Ξ(Gm) (see (3.3)) for every α ∈ Ξ(Gm)
there is some β ∈ Lm such that (β, α ∨m β) ∈ Em and therefore Xα(Gm) 6≡ 0.
Recalling rkm(α ∨m β) = rkm(α) + rkm(β) (see Proposition 3.3), we can roughly say
that an excitation operator Xα(Gm) increases the rank by rkm(α).

Since Gm = (Lm, Em) is a subgraph of Gfull
m = (Lm, E

full
m ), some excitations

might be missing, i.e. Ξ(Gm) ⊂ Ξ(Gfull
m ). The next result shows that the excitation

operators constructed for a consistent subgraph Gm (see Definition 3.8) are precisely
the same as the ones constructed for Gfull

m , with some of them possibly being absent.
This explains the use of the word “consistent”.

Theorem 3.16. Let Gm be a consistent subgraph of Gfull
m . Then,

Xα(Gm) ≡ Xα(Gfull
m ) for all α ∈ Ξ(Gm).

Proof. Fix α ∈ Ξ(Gm), then by (3.3) and Definition 3.8, (β, α∨m β) ∈ Em for all
β ∈ Lm. Consequently, Xα(Gm)Φβ = Xα(Gfull

m )Φβ for all β ∈ L.

Based on this result, if Gm is consistent, it is safe to drop the “Gm” from the

notation Xα(Gm) and simply denote the excitation operators by X
(m)
α , or by Xα in

the SR case. However, it is important to note that for a given α, X
(m)
α 6= X

(`)
α in

general for differing reference states m 6= `, see Remark 3.13.
The excitation operators enjoy nice algebraic properties which we summarize in

the next theorem (cf. [50, Lemma 2.5]).

Theorem 3.17. Let Gm = (Lm, Em) be a consistent subgraph of Gfull
m and let

{X(m)
α }α∈Ξ(Gm) denote the set of excitation operators on Gm. Then the following

properties hold true.

(i) (commutativity) For all α, β ∈ Ξ(Gm), there holds X
(m)
α X

(m)
β = X

(m)
β X

(m)
α .

In detail, for any γ ∈ S,

X(m)
α X

(m)
β Φγ =


σ(α, β ∨m γ)σ(β, γ)Φα∨mβ∨mγ (β ∨m γ, α ∨m β ∨m γ),

(γ, β ∨m γ) ∈ Em
0 otherwise

(ii) If Gm is transitive, then {0}∪{±X(m)
α }α∈Ξ(Gm) is multiplicatively closed. In

particular, {0} ∪ {±X(m)
α }α∈Ξ(Gfull

m ) is multiplicatively closed.

(iii) (nilpotency) For all α ∈ Ξ(Gm), (X
(m)
α )2 = 0.
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Proof. To see (i), first observe that if (β ∨m γ, α∨m (β ∨m γ)), (γ, β ∨m γ) ∈ Em,
then (α ∨m γ, β ∨m (α ∨m γ)), (γ, α ∨m γ) ∈ Em due to the consistent subgraph
property of Gm. It is obvious that Φα∨mβ∨mγ = Φβ∨mα∨mγ from the commutativity
of ∨m. It remains to prove σ(α, β ∨m γ)σ(β, γ) = σ(β, α ∨m γ)σ(α, γ). Let π1, π2

and τ1, τ2 be the permutations that put ((β ∪ γ)<, α<), (γ<, β
<

) and ((α∪ γ)<, β
<

),
(γ<, α<), respectively, in lexicographic order. Then π1 ◦ π2 = τ1 ◦ τ2 = σ, where σ
is the permutation that puts (α, β, γ) in lexicographic order. The claim follows from
the multiplicativity of the sgn function on permutations.

For (ii), suppose that Gm is transitive and that α, β ∈ Ξ(Gm). Using (i), either

X
(m)
α X

(m)
β = ±X(m)

α∨mβ or X
(m)
α X

(m)
β = 0. In the former case, (β ∨m γ, α ∨m β ∨m γ),

(γ, β ∨m γ) ∈ Em implies that (γ, α ∨m β ∨m γ) ∈ Em by the transitivity of Gm, so
α ∨m β ∈ Ξ(Gm).

For (iii), it is enough to notice that (α∨mγ, α∨mγ) = (α∨mα∨mγ, α∨mγ) 6∈ Efull
m ,

because Gfull
m does not contain loop edges by definition.

It is important to note that in general excitation operators corresponding to dif-

ferent reference states do not commute: X
(m)
α X

(`)
β 6= X

(m)
β X

(`)
α for m 6= `, again,

because of Remark 3.13.

Remark 3.18. The excitation operators are traditionally expressed using the lan-
guage of second quantization. Let a†p and ap denote the fermionic creation and an-

nihilation operators. Then Φβ = a†β1
· · · a†βN |vac〉, where β = {β1 < . . . < βN},

and
Xα = a†p1aq1 · · · a

†
pnaqn .

Here {q1, . . . , qn} = 0rα and {p1, . . . , pn} = α with q1 < . . . < qn and p1 < . . . < qn.
In other words, Xα changes the orbitals 0 r α to α, as expected. Although the
excitation operators commute with each other, they do not commute in general with
the Hamilton operator.

We now define a family of operators which “reverse” the action of X
(m)
α .

Definition 3.19. Let Gm = (Lm, Em) be a subgraph of Gfull
m . For all α ∈ Ξ(Gm),

the linear operators (X
(m)
α )† : H1

K → H1
K defined via

(X(m)
α )†Φβ =

{
σ(α, α⊥ ∧m β)Φα⊥∧mβ (α⊥ ∧m β, β) ∈ Em
0 (α⊥ ∧m β, β) 6∈ Em

for any β ∈ S, and extended boundedly and linearly to the whole space H1
K , are called

de-excitation operators on Gm.

It is easy to see using Lemma 3.5 and Proposition 3.3 that

(3.5) rkm(α⊥ ∧m β) = rkm(β)− rkm(α),

whenever (α⊥ ∧m β, β) ∈ Em. Therefore, we may roughly say that the de-excitation

operator (X
(m)
α )† decreases the rank by rkm(α). Of course, the notation † is not

coincidental, and (X
(m)
α )† is in fact the L2-adjoint of X

(m)
α .

Theorem 3.20. Suppose that {X(m)
α } and {(X(m)

α )†} are the set of excitation and
de-excitation operators corresponding to the excitation graph Gm. Then

〈(X(m)
α )†Φ,Ψ〉 = 〈Φ, X(m)

α Ψ〉 for all Φ,Ψ ∈ H1
K and α ∈ Ξ(Gm).
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Proof. It is enough to prove the relation for Φ = Φγ and Ψ = Φβ , as the general
statement follows by linearity. Suppose that (α⊥ ∧m γ, γ) ∈ Em, then

〈(X(m)
α )†Φγ ,Φβ〉 = σ(α, α⊥ ∧m γ)〈Φα⊥∧mγ ,Φβ〉

= σ(α, β)〈Φγ ,Φα∨mβ〉 = 〈Φγ , X(m)
α Φβ〉,

where we used that α⊥∧m γ = β ∈ Lm if and only if α∨m β = γ ∈ Lm (Lemma 3.5).

Theorem 3.21. Let Gm = (Lm, Em) be a consistent subgraph of Gfull
m and let

{X(m)
α }α∈Ξ(Gm) and {(X(m)

α )†}α∈Ξ(Gm) denote the set of excitation-, and deexcitation
operators on Gm. Then the following properties hold true.

(i) (commutativity) For all α, β ∈ Ξ(Gm), there holds

(X(m)
α )†(X

(m)
β )† = (X

(m)
β )†(X(m)

α )†.

(ii) For any α, β ∈ Ξ(Gm) and γ ∈ S, the following formula holds true:

(X(m)
α )†X

(m)
β Φγ = σ(α, α⊥ ∧m (β ∨m γ))σ(β, γ)Φα⊥∧(β∨γ)

if (γ, β ∨m γ) ∈ Em and (α⊥ ∧m (β ∨m γ), β ∨m γ) ∈ Em both hold true.

Otherwise, (X
(m)
α )†X

(m)
β Φγ = 0. In particular, (X

(m)
α )†Φα = Φ0m .

(iii) (X
(m)
α )†Φ0` = 0 for any m 6= ` and α ∈ Ξ(Gm).

(iv) (nilpotency) ((X
(m)
α )†)2 = 0 for any α ∈ Ξ(Gm).

Proof. Part (i) follows from Theorem 3.20 combined with Theorem 3.17 (i). Part
(ii) follows directly from the definitions. Part (iii) comes from the fact that there are
no edges between different 0m’s. Part (iv) follows since (α⊥ ∧m α, α) = (0, α) ∈ Em
for every α ∈ Ξ(Gm).

It is highly important to stress that in general excitation-, and de-excitation
operators do not commute with each other:

X(m)
α (X(m)

α )† 6= (X(m)
α )†X(m)

α ,

in other words, the X
(m)
α ’s are nonnormal operators. Also, [(X

(m)
α )†, X

(m)
β ] 6= 0 in

general. This fact is the source of many technical obstacles in the analysis of the
CC method, primarily because it implies that the similarity-transformed Hamilton
operator (2.12) is nonnormal.

3.4. Cluster operators. From now on, we omit the reference index m from
the notations, with the understanding that the considerations hold true for every
reference independently. Suppose that we constructed the set of excitation operators
{Xα}α∈Ξ(G) for a given consistent subgraph G = (L,E). The completion of their
linear hull

v(G) = Span{Xα}α∈Ξ(G)

‖·‖L(H1,H1)

is called the space of cluster operators on G endowed with operator norm ‖ ·‖L(H1,H1).

As mentioned earlier, if G is not the full excitation graph Gfull, then certain excitation
operators will be absent and therefore, they will be missing from v(G) as well.

Proposition 3.22. For any T ∈ v(G), we have TN+1 = 0.

Proof. It is enough to prove that an arbitrary product ofN+1 excitation operators
is zero. In fact, by definition every excitation operator either increases the rank of
a determinantal wavefunction by at least 1 or maps it to zero. But the rank cannot
increase above N , so the product must be zero.
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It is well-known that the vector space v(Gfull) constructed on the full excitation
graph Gfull forms a commutative algebra (see e.g. [52, Lemma 4.2]) with the usual
multiplication (a subalgebra of the algebra of bounded linear operators L(H1

K ,H
1
K)).

According to Proposition 3.22, it is also nilpotent. More generally, we have

Theorem 3.23. v(G) is a nilpotent, commutative algebra for any transitive exci-
tation graph G.

Proof. Follows from Theorem 3.17 (ii).

If, however, G is not transitive, then v(G) is not an algebra in general—for in-
stance in v(G(SD)) there are no excitation operators of rank 3 and above, but the
rank of the products of excitation operators can be arbitrary (≤ N).

Example 3.24. We observed in Example 3.11 that the CAS-subgraphG(CAS) cor-
responding to the TCC method is transitive and consistent, hence v(G(CAS)) forms
a subalgebra of v(Gfull) (cf. [29]). Similarly, for G(int) in Example 3.12, v(G(int))
also forms a subalgebra. However, in a truncated setting, where only certain low-rank
edges of E(CAS) (or E(int)) are retained, transitivity, hence the subalgebra property,
is lost.

Let now the excitation graph G = (L,E) be arbitrary. A cluster operator
C ∈ v(G) may be decomposed according to the excitation ranks of its constituent
excitations as

(3.6) C =

N∑
r=1

Cr, where Cr =
∑

rk(α)=r

cαXα.

We say that C is of rank r if it contains excitation operators of rank at most r. Note
that the graded structure of G is compatible with this decomposition in the sense that
if C and D are of ranks r and s, respectively, then CD is of rank r + s.

Remark 3.25. In the SR case, the cluster operators can be used to express any
wavefunction in H1

K if the full excitation graph Gfull is used for their construction. In
fact, in this case, XαΦ0 = Φα for every α ∈ L, so we may express any function in H1

K

through a linear combination of the excitation operators and the identity I. More
precisely, if

Ψ =
∑
α∈L

cαΦα = c0Φ0 +
∑
α∈L

cαΦα, then Ψ =

[
c0I +

∑
α∈L

cαXα

]
Φ0,

for some scalars {cα}α∈L. Recall that in subsection 2.4 we assumed the intermediate
normalization condition 〈Ψ,Φ0〉 = 1, which implies c0 = 1. There is a one-to-one

correspondence between functions Ψ ∈ H1,⊥
K and the cluster operators CΨ defined as

(3.7) CΨ =
∑
α∈L

cαXα, where cα = 〈Ψ,Φα〉.

It is not clear, however, that CΨ ∈ L(H1
K ,H

1
K). See Theorem 3.26 below for the precise

statement of this nontrivial fact. Also, if the excitation graph does not contain every
edge of the form (0, α)—which is typically the case if some truncation is used—then

it is not possible to assign a cluster operator (3.7) to every Ψ ∈ H1,⊥
K .

The following important result makes the aforementioned correspondence between
functions and cluster operators precise.
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Theorem 3.26. [50, Theorem 4.1 and Lemma 5.1] Fix Ψ ∈ H1,⊥. Then, the
following hold true.

1. The cluster operator CΨ (3.7) satisfies CΨ ∈ L(H1,H1). Furthermore, there
is a constant b > 0 independent of Ψ such that

‖Ψ‖H1 ≤ ‖CΨ‖L(H1,H1) ≤ b‖Ψ‖H1 .

2. C†Ψ ∈ L(H1,H1), and there is a constant b′ > 0 independent of Ψ such that

‖C†Ψ‖L(H1,H1) ≤ b′‖Ψ‖H1 ,

and there cannot be a uniform lower bound in terms of ‖Ψ‖H1 .
3. CΨ can be extended to L(H−1,H−1).

Next, we consider the so-called exponential Ansatz, which is the representation

I + C = eT , where T =
∑

α∈Ξ(Gfull)

tαXα ∈ v(Gfull),

and C ∈ v(Gfull). Here, eT is simply a finite sum due to the nilpotency of T , i.e.

eT = I + T + 1
2!T

2 + . . .+ 1
N !T

N .

The inverse of the exponential should be the logarithm, as one would expect, and in
fact the following elementary theorem holds.

Theorem 3.27. For any cluster operator C ∈ v(Gfull) there exists a unique clus-
ter operator T ∈ v(Gfull), such that eT = I + C. Furthermore,

T = log(I + C) = C − 1
2C

2 + 1
3C

3 − . . .+ (−1)N−1

N CN .

Proof. A tedious but straightforward calculation, or see [52, Theorem 4.3] for a
quick proof using holomorphic functional calculus.

It is important to note that if some proper subgraph G = (L,E) is considered instead
of Gfull, the previous result does not hold. For instance, if G(SD) is considered, then
it might not be possible to represent I + C as eT , where C ∈ v(Gfull) and T ∈ v(G).
This in particular implies that wavefunctions of the form eTΦ0 where T ∈ v(G) is not
the totality of intermediately normalized wavefunctions.

In the multireference (MR) case, the analogue of the exponential Ansatz is called
the Jeziorski–Monkhorst (JM) Ansatz, see subsection 4.2 below. In the JM-MRCC
method, M wavefunctions, say Ψ1, . . . ,ΨM are “targeted”, and the expansion

(3.8) Ψj =

M∑
m=1

a
(m)
j eT

(m)

Φ0m , where a
(m)
j ∈ R,

is utilized. In the untruncated case, suppose that Ψj = (I + C(j))Φ0j = eT
(j)

Φ0j , as

above, for all j = 1, . . . ,M . Then the JM expansion coefficients a
(m)
j of Ψj are simply

δjm.
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3.5. Cluster amplitude spaces. The linear combination coefficients of the
excitation operators making up a cluster operator are called cluster amplitudes. Let
`2(G) denote Hilbert space of square summable real-, or complex-valued sequences
indexed by the edge labels of the excitation graph G, i.e.

`2(G) = {t = (tα)α∈Ξ(G) : ‖t‖`2 <∞}.

The (real or complex) Hilbert space

V(G) = {t ∈ `2(G) : ‖TΦ0‖H1 <∞},

endowed with the H1-inner product 〈t, s〉V = 〈TΦ0, SΦ0〉H1 is called the (cluster)
amplitude space corresponding to G. Nevertheless, from now on we use the convention
that the unmarked 〈t, s〉 = 〈TΦ0, SΦ0〉L2 and ‖ · ‖ refers to the `2-inner product and
`2-norm. Clearly, ‖t‖ ≤ ‖t‖V.

Remark 3.28. Similarly to H1 ↪→ L2 ↪→ H−1, the spaces V(G) ↪→ `2(G) ↪→ V(G)∗

also form a Gelfand triple. Therefore, the `2-inner product 〈·, ·〉may be used instead of
the dual pairing 〈·, ·〉V(G)∗×V(G) with the understanding that the appropriate relations
must be extended to V(G)∗ × V(G) by density.

It is clear that the space of cluster operators v(G) is canonically isomorphic to
V(G) via

v(G) 3
∑

α∈Ξ(G)

cαXα = C 7→ c = (cα)α∈Ξ(G) ∈ V(G).

As customary in CC theory, we will never explicitly denote this isomorphism, and
instead use capital letters S, T, U, V,W , etc. to denote the cluster operators and small
letters s, t, u, v, w, etc. to denote their corresponding cluster amplitudes.

Furthermore, to every amplitude space V(G) there corresponds a functional am-
plitude space V(G) ⊂ H1,⊥ through the (`2,L2)-isometric isomorphism V(G)→ V(G)
given by

V(G) 3 c 7→ CΦ0 =
∑

α∈Ξ(G)

cαΦα ∈ V(G).

Clearly, an appropriate subset of the determinantal basis B (see (3.4)) forms a basis
of the functional amplitude space V(G).

Given a closed subspace U ⊂ V(G), we will sometimes use the orthogonal projec-
tor ΠU : L2 → U ⊂ L2 onto U, defined as

〈ΠUΨ,Φ〉 = 〈Ψ,Φ〉, for all Ψ ∈ L2, Φ ∈ U.

Hence, the inclusion map IU : U → L2, given by IUΦ = Φ for all Φ ∈ U satisfies
I†U = ΠU.

Remark 3.29. In the case K <∞, following [52], we can introduce the norm

|||t|||2 :=
∑

α∈Ξ(G)

εα|tα|2 for all t ∈ V,

where εα denotes the eigenvalues of the Fock operator F , see (2.5). It was shown in
[52] that |||·||| and ‖ ·‖V are equivalent norms, furthermore, under certain assumptions,
the constants in the norm equivalence |||·||| ∼ ‖ · ‖V are independent of K. Finally, we
also define the norm |||·||| on V via |||TΦ0||| := |||t||| for any t ∈ V.
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We continue by recalling an important notion due to [52].

Definition 3.30. The excitation graph G is said to be excitation complete, if
α⊥ ∧ β ∈ Ξ(G) for all α, β ∈ Ξ(G) with (α⊥ ∧ β, β) ∈ E and α 6= β.

It is easy to see using (3.5), that commonly used rank-truncated graphs such
as G(1, 2, . . . , ρ) and G(D) are excitation complete. The following result is used for
proving that two different formulations of the CC method are equivalent Lemma 5.3.

Proposition 3.31. [52, Lemma 5.5] Suppose that G is excitation complete, let
V = V(G) and V0 = Span{Φ0} ⊕V. Fix t ∈ V.

(i) The linear mappings e±T
†
IV0

: V0 → V0 are bijective.

(ii) The linear mappings ΠVe
±T †IV : V→ V are surjective.

The result follows easily from the next lemma.

Lemma 3.32. [52, Lemma 5.4] Suppose that G is excitation complete. Then, for
every α, β ∈ Ξ(G) we have X†αΦβ ∈ V(G) ∪ {Φ0}.

Proof. From Theorem 3.21 (ii), we have

X†αΦβ = σ(α, α⊥ ∧ β)Φα⊥∧β ,

if (α⊥ ∧ β, β) ∈ E. If α 6= β, then right-hand side is in V(G), since G is excitation
complete. If α = β, then the right-hand side is simply Φ0.

Proof of Proposition 3.31. By linearity, Lemma 3.32 implies that the mapping

T † : V0(G) → V0(G) and so e±T
†

: V0(G) → V0(G) as well. But (eT
†
)−1 = e−T

†
,

which proves (i).

4. Derivation of the Coupled-Cluster Equations. In this section, we give
derivations of the SRCC-, and a variant of the MRCC equations. The approach
presented here is based on [57, pp. 99–184], but it is more general and sharper. We
would like to stress that the discussion only applies to the full (that is, untruncated)
CC methods.

The essence of the following theorem seems to be well-known in the physics and
in the quantum chemistry literature, and the method itself is generally attributed to
C. Bloch [8], who devised it in the context of perturbation theory.

Theorem 4.1. Let H and L be (real or complex) Hilbert spaces so that they form
a Gelfand triple: H ⊂ L ⊂ H∗. Let H : H→ H∗ be a bounded operator. Let M,N ⊂ H
be any pair of closed subspaces so that the following complementarity condition holds:

(4.1) M⊕N⊥ = H.

Then the following are equivalent.
(i) M ⊂ H is weakly H-invariant: for every Φ ∈M there exists Φ̃ ∈M such that

〈HΦ,Φ′〉 = 〈Φ̃,Φ′〉 for all Φ′ ∈ H.
(ii) (weak Bloch equation) There holds

(4.2) 〈HΞΦ, (I − Ξ†)Φ′〉 = 0 for all Φ ∈ N,Φ′ ∈ N⊥,

where Ξ : H → H denotes the (oblique) projector onto M along N⊥, i.e.
ran Ξ = M and ker Ξ = N⊥.

Furthermore, if

(4.3) M = Span{Ψj ∈ H : j = 1, . . . , J}, where 〈HΨj ,Φ〉 = Ej〈Ψj ,Φ〉 (Φ ∈ H)
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for some Ej ∈ C, then with the effective Hamiltonian Heff : N → N, given by
〈HeffΦ,Φ′〉 = 〈HΞΦ,Φ′〉 for all Φ,Φ′ ∈ N, we have

(4.4) 〈HeffΠΨj ,Φ〉 = Ej〈ΠΨj ,Φ〉 for all Φ ∈ N,

where Π : H → H denotes the L-orthogonal projector onto N, i.e. ran Π = N and
ker Π = N⊥.

Proof. For (i)=⇒(ii), note that using ker Ξ = N⊥ and ran Ξ = M, it follows from

(i) that for every Φ ∈ N there exists Φ̃ ∈ M such that 〈HΞΦ,Φ〉 = 〈Φ̃,Φ〉 for all
Φ ∈ H. Put Φ = (I − Ξ†)Φ′ to obtain

〈HΞΦ, (I − Ξ†)Φ′〉 = 〈Φ̃, (I − Ξ†)Φ′〉 = 0 for all Φ ∈ N,Φ′ ∈ H,

where we used that Φ̃ ∈M and ran(I − Ξ†) = M⊥. From this, (4.2) follows.
To see (ii)=⇒(i), fix Φ ∈ M and note that (4.2) implies FΦ(Φ′) = 0 for all

Φ′ ∈ M⊥, where FΦ(Φ′) := 〈HΦ,Φ′〉 for all Φ′ ∈ H. Here, FΦ(·) is a bounded linear

functional on H ⊂ L. Extend FΦ to a bounded linear functional F̂Φ on L using the
Hahn–Banach theorem. The Riesz representation theorem implies that there is a
Φ̃ ∈ L such that F̂Φ(Φ′) = 〈Φ̃,Φ′〉 for all Φ′ ∈ L. But 0 = FΦ(Φ′) = F̂Φ(Φ′) = 〈Φ̃,Φ′〉
for all Φ′ ∈ M⊥, so Φ̃ ∈ M⊥⊥ = M. Therefore, we constructed a Φ̃ ∈ M such that
〈HΦ,Φ′〉 = 〈Φ̃,Φ′〉 for all Φ′ ∈ H, which is what we wanted to prove.

To prove the “furthermore” part, first note that M is weakly H-invariant. We
now claim that ΞΠ = Ξ. In fact, ran(I − Π) = ker Π = ker Ξ, so Ξ(I − Π) = 0.
Continuing the proof, note that the second relation of (4.3) is equivalent to

〈HΞΠΨj ,Φ〉 = Ej〈ΞΠΨj ,Φ〉 for all Φ ∈ H.

Using (4.2), this can be further written as

〈HΞΠΨj ,Ξ
†Φ〉 = Ej〈ΠΨj ,Ξ

†Φ〉 for all Φ ∈ H.

The desired result follows by noting that ran Ξ† = N.

In practice, M (called “exact model space”) is unknown and N (called “model
space”) is chosen in a way that it provides a “reasonable approximation” to M, i.e.
that (4.1) holds. In particular, M ⊂ N⊥ is not permitted. Then, the unknown “wave
operator” Ξ (hence M) can be determined by solving the weak Bloch equation (4.2).
Next, the eigenvalue problem for Heff is solved to obtain the energies E1, . . . , EM and
(some of the) eigenvectors.

Remark 4.2.
(i) It is important to note that solving the Bloch equation only provides a

weakly H-invariant subspace M and it might not be a direct sum of (weak)
eigenspaces in general. In other words, M might be spanned by an incom-
plete set of eigenvectors. Clearly, in such a situation some of the eigenvectors
cannot be recovered through solving the eigenproblem for the effective Hamil-
tonian Heff .

(ii) The Bloch equation (4.2) is more commonly given in the “strong” form
“ΞHΞ = HΞ”.

The situation is greatly simplified, when one considers one-dimensional subspaces
N and M, because a one-dimensional invariant subspace is always an eigenspace.
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Corollary 4.3. Let dimN = dimM = 1, and set N = Span{Φ0} for some
Φ0 ∈ H. Further, let M = Span{Ψ}, and suppose that 〈Ψ,Φ0〉 = 1. Then, the
following are equivalent.

(i) 〈HΨ,Φ〉 = E〈Ψ,Φ〉 for all Φ ∈ H and some scalar E.
(ii) 〈HΞΦ0, (I − Ξ†)Φ′〉 = 0 for all Φ′ ∈ N⊥.

Furthermore, E = 〈HΞΦ0,Φ0〉.

4.1. The SRCC method. The single-reference Coupled-Cluster method easily
follows from Corollary 4.3 through the exponential parametrization of the wave oper-
ator. In the following theorem, we re-establish [50, Theorem 5.3] (see Theorem 2.3).

Theorem 4.4. Let H : H1
K → H−1 be a bounded operator. Fix Φ0 ∈ H1

K with
‖Φ0‖ = 1 and suppose that Ψ ∈ H1

K is such that 〈Ψ,Φ0〉 = 1. Then the following are
equivalent.

(i) 〈HΨ,Φ〉 = E〈Ψ,Φ〉 for all Φ ∈ H1
K for some scalar E.

(ii) (Full CC) Ψ = eT∗Φ0 for some t∗ ∈ V(Gfull) such that

(4.5) 〈e−T∗HeT∗Φ0, SΦ0〉 = 0 for all s ∈ V(Gfull).

Furthermore, E = 〈e−T∗HeT∗Φ0,Φ0〉.
(iii) (Full CI) Ψ = (I + C∗)Φ0 for some c∗ ∈ V(Gfull) such that

(4.6) 〈H(I + C∗)Φ0, SΦ0〉 = ECI〈(I + C∗)Φ0, SΦ0〉 for all s ∈ V(Gfull),

where ECI = 〈H(I + C∗)Φ0,Φ0〉. Furthermore, E = ECI.

Proof. Let H = H1
K and L = L2. First, we prove (i)⇐⇒(ii). We apply Corol-

lary 4.3 with the SRCC wave operator

Ξ = eT∗ΠΦ0
,

where T∗ is some cluster operator and ΠΦ0
is the orthogonal projector onto N =

Span{Φ0}. Note that N⊥ = V(Gfull). It is easy to see that Ξ is idempotent, and
that ker Ξ = N⊥. By an appropriate choice of T∗, ran Ξ = M using 〈Ψ,Φ0〉 = 1
and Theorem 3.27. Furthermore, Span{eT∗Φ0} = ran Ξ ⊂ H due to Theorem 3.26.
Applying Corollary 4.3, (i) holds if and only if Ψ = eT∗Φ0 and T∗ satisfies the weak
Bloch equation

〈HeT∗Φ0, (I −ΠΦ0
eT
†
∗ )S′Φ0〉 = 0 for all s′ ∈ V(Gfull).

Recalling Proposition 3.31 (ii), and using the change of variables S′ = e−T
†
∗S,

〈e−T∗HeT∗Φ0, SΦ0〉 = 0 for all s ∈ V(Gfull).

Here we used that e−T∗ can be extended to a bounded H−1 → H−1 operator (Theo-
rem 3.26).9 Note that Heff is now a one-dimensional linear map (i.e. a multiplication
by a scalar), so σ(Heff) = 〈e−T∗HeT∗Φ0,Φ0〉 = E .

Next, we prove (i)⇐⇒(iii). We now apply Corollary 4.3 with the SRCI wave
operator

Ξ = (I + C∗)ΠΦ0
,

where C∗ is some cluster operator and the claim follows from a straightforward cal-
culation. Further, now σ(Heff) = 〈H(I + C∗)Φ0,Φ0〉 = E .

9We refer the reader to the proof of [50, Theorem 5.3] for more details.
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4.2. The Jeziorski–Monkhorst MRCC method. In MRCC methods the
“model space” N is chosen to be the space spanned by M orthonormal reference
determinants,

N = Span{Φ0m : m = 1, . . . ,M}.

The Jeziorski–Monkhorst method [27] uses the following Ansatz for the wave operator:

(4.7) Ξ =

M∑
m=1

eT
(m)

ΠΦ0m
,

which corresponds to (3.8).

Theorem 4.5. Let N as above and set M = Span{Ψm : m = 1, . . . ,M}, where
{Ψm}Mm=1 ⊂ H1

K is L2-orthogonal. Suppose that for every m = 1, . . . ,M , 〈Ψm,Φ0n〉 6=
0 for at least one n = 1, . . . ,M . Then, the following are equivalent.

(i) M is weakly H-invariant: for every Ψm (m = 1, . . . ,M) there exists Ψ̃m ∈M

such that 〈HΨm,Φ
′〉 = 〈Ψ̃m,Φ

′〉 for all Φ′ ∈ H1
K .

(ii) (Full JM-MRCC) M = Span{eT (m)
∗ Φ0m : m = 1, . . . ,M}, where t

(m)
∗ ∈

V(Gfull
m ) satisfies

(4.8) 〈e−T
(m)
∗ HeT

(m)
∗ Φ0m , S

(m)Φ0m〉 =

M∑
n=1

Heff
mn〈e−T

(m)
∗ eT

(n)
∗ Φ0n , S

(m)Φ0m〉,

for all s(m) ∈ V(Gfull
m ) and m = 1, . . . ,M , where the matrix elements of the

effective Hamiltonian are given by Heff
mn = 〈e−T (m)

∗ HeT (m)
∗ Φ0m ,Φ0n〉.

(iii) (Full MRCI) M = Span{(I + C
(m)
∗ )Φ0m : m = 1, . . . ,M}, where c

(m)
∗ ∈

V(Gfull
m ) satisfies

(4.9) 〈H(I + C
(m)
∗ )Φ0m , S

(m)Φ0m〉 =

M∑
n=1

Ĥeff
mn〈(I + C

(n)
∗ )Φ0n , S

(m)Φ0m〉,

for all s(m) ∈ V(Gfull
m ) and m = 1, . . . ,M , where the matrix elements of the

effective Hamiltonian are given by Ĥeff
mn = 〈H(I + C

(m)
∗ )Φ0m ,Φ0n〉.

Furthermore, suppose that 〈HΨm,Φ〉 = Em〈Φm,Φ〉 for all Φ ∈ H1
K and m = 1, . . . ,M .

Then the following hold true.

(a) Suppose M is given as in (ii). Then the coefficients a
(m)
j in the expansion

Ψj =
∑M
n=1 a

(n)
j eT

(n)
∗ Φ0n are given as the solution to the eigenvalue problem

M∑
n=1

Heff
nma

(n)
j = Eja(m)

j where m = 1, . . . ,M.

(b) Suppose M is given as in (iii). Then the coefficients â
(m)
j in the expansion

Ψj =
∑M
n=1 â

(n)
j (I + C

(n)
∗ )Φ0n are given as the solution to the eigenvalue

problem
M∑
n=1

Ĥeff
nmâ

(n)
j = Ej â(m)

j where m = 1, . . . ,M.
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Proof. Let H = H1
K . First, we prove (i)⇐⇒(ii) by applying Theorem 4.4. Clearly,

for the JM wave operator (4.7) we have Ξ2 = Ξ and ker Ξ = N⊥ and

ran Ξ = Span{eT
(m)

Φ0m : m = 1, . . . ,M}.

The weak Bloch equation (4.2) is equivalent to

〈HeT
(m)
∗ Φ0m ,Φ

′〉 =

M∑
n=1

〈HeT
(m)
∗ Φ0m ,ΠΦ0n

e(T (n)
∗ )†Φ′〉

for all Φ′ ∈ N⊥ and m = 1, . . . ,M . Setting Φ′ = S(m)Φ0m , we obtain

〈HeT
(m)
∗ Φ0m , S

(m)Φ0m〉 =

M∑
n=1

〈HeT
(m)
∗ Φ0m ,ΠΦ0n

e(T (n)
∗ )†S(m)Φ0m〉

=

M∑
n=1

〈HeT
(m)
∗ Φ0m ,Φ0n〉〈e(T (n)

∗ )†S(m)Φ0m ,Φ0n〉

=

M∑
n=1

〈e−T
(m)
∗ HeT

(m)
∗ Φ0m ,Φ0n〉〈eT

(n)
∗ Φ0n , S

(m)Φ0m〉

for all s(m) ∈ V(Gfull
m ). Here, we used that (T (m))†Φ0n = 0, see Theorem 3.21 (iii).

The proof of (4.8) is finished by invoking Proposition 3.31 (ii) and replacing S(m) by

(e−T
(m)
∗ )†S(m).
Next, we prove (i)⇐⇒(iii). The MRCI wave operator reads

Ξ =

M∑
m=1

(I + C
(m)
∗ )ΠΦ0m

.

With this choice (4.2) is equivalent to

〈H(I + C
(m)
∗ )Φ0m ,Φ

′〉 =

M∑
n=1

〈H(I + C
(m)
∗ )Φ0m ,ΠΦ0n

(I + C
(n)
∗ )†Φ′〉

for all Φ′ ∈ N⊥ and m = 1, . . . ,M . Setting Φ′ = S(m)Φ0m , this can be written as

〈H(I + C
(m)
∗ )Φ0m , S

(m)Φ0m〉 =

M∑
n=1

〈H(I + C
(m)
∗ )Φ0m ,ΠΦ0n

(I + C
(n)
∗ )†S(m)Φ0m〉

=

M∑
n=1

〈H(I + C
(m)
∗ )Φ0m ,Φ0n〉〈(I + C

(n)
∗ )†S(m)Φ0m ,Φ0n〉

=

M∑
n=1

〈H(I + C
(m)
∗ )Φ0m ,Φ0n〉〈(I + C

(n)
∗ )Φ0n , S

(m)Φ0m〉,

which is what we wanted to prove.

For the “furthermore” part of (a), expanding Ψj as Ψj =
∑M
n=1 a

(n)
j eT

(n)
∗ Φ0n , for

some scalars a
(n)
j , we find that a

(m)
j = 〈Ψj ,Φ0m〉. It is easy to see that (4.4) now

reads
M∑
n=1

〈HeT
(n)
∗ Φ0n ,Φ0m〉a

(n)
j = Eja(m)

j

for all j = 1, . . . ,M . The proof of the “furthermore” part of (b) is similar.
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5. Analysis of the SRCC method. The rest of the article is concerned with
the analysis of the nonlinear equation (4.5) and its variants.

It is known that the truncated CC equations have a large number of solutions,
some of which exhibit unphysical behavior. Recall that the truncated CC equations
are not equivalent to the truncated CI equations, hence, there is no obvious connec-
tion with the Schrödinger equation in general. Also, the SRCC method is typically
unreliable for treating degenerate states. Since the early days of the CC method,
researchers in quantum chemistry have been interested in understanding the compli-
cated behavior of the (truncated) CC equations [61, 62, 43, 26, 30, 25, 44, 23, 24, 28].
It is one of our main goals here to explain some of the numerical observations and
provide tools for further investigations.

We consider the finite-dimensional case only, by which we mean that

K <∞

is assumed. Recall the definition of H1
K from subsection 2.1 and the interpretation of

the projected Schrödinger equation from subsection 2.2.

5.1. Definitions and basic properties. Let V := V(G) be the real amplitude
space corresponding to some consistent excitation graph G. Let V be the correspond-
ing functional amplitude space. Define A : V→ V∗ via the instruction

(5.1) 〈A(t), s〉 = 〈e−THeTΦ0, SΦ0〉,

for any t, s ∈ V, where T and S are the cluster operators corresponding to t and s,
respectively—this convention will be used throughout. Interpreting H as a bounded
map H1 → H−1, we obtain that V 3 s 7→ 〈A(t), s〉 defines a bounded linear functional
in V∗ for every given t ∈ V. In fact, using the H1-boundedness (2.1) of the Hamilton
operator and Theorem 3.26,

|〈A(t), s〉| ≤M‖eTΦ0‖H1‖e−T
†
SΦ0‖H1 ≤M‖eTΦ0‖H1‖e−T

†
‖L(H1,H1)‖SΦ0‖H1

for all t, s ∈ V.
Recall the definition (2.9) of the CC energy, which can be written as

ECC(t) = 〈e−THeTΦ0,Φ0〉 = 〈HeTΦ0,Φ0〉,

where the second equality follows from (e−T )†Φ0 = Φ0. Note that ECC(t) ∈ R since
the amplitude space V is assumed to be real. The similarity-transformed Hamilton
operator occurs often in the forthcoming discussion, so we introduce the notation

(5.2) H(t) = e−THeT : H1 → H−1,

which is a bounded map for any fixed cluster amplitude t ∈ V. Furthermore, for
a given bounded map T : H1 → H−1, we define the operator TV : V → V via
〈TVΨ,Ψ′〉 = 〈T Ψ,Ψ′〉 for all Ψ,Ψ′ ∈ V.

We will also use a notation analogous to (5.2) for the similarity-transformed fluc-
tuation operator W (see (2.4)), i.e. W(t) = e−THeT . The similarity-transformed
Fock operator can be given explicitly as

(5.3) e−TFeT = F + [F , T ], and [F , Xα] = εαXα,

for any t ∈ V, see e.g. [16, Lemma 15]. In particular,

(5.4) [[H(t), U ], V ] = [[W(t), U ], V ],
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for any t, u, v ∈ V.
The following simple observation shows the equivalence of the (strong) Schrödinger

equation with the Full CC method.

Lemma 5.1. Assume that the determinantal basis functions satisfy Φα ∈ H2. Sup-
pose that V = V(Gfull), and that A(t∗) = 0. Then the function Ψ = (c0I+C)Φ0 ∈ H2

satisfies the Schrödinger equation HΨ = EΨ if and only if e−T∗(c0I + C) = r0I +R,
where (c0 = r0 and)

(5.5)
ECC(t∗)r0 + 〈H(t∗)RΦ0,Φ0〉 = Er0

HV(t∗)RΦ0 = ERΦ0

}
Furthermore, with V0 = Span{Φ0} ⊕V,

(5.6) σ(HV0
) = {ECC(t∗)} ∪ σ(HV(t∗)).

Proof. Using the splitting V0 = Span{Φ0}⊕V, the similarity-transformed Hamil-
ton operator is block upper triangular in the determinantal basis,

H(t∗) =

(
ECC(t∗) 〈H(t∗) · ,Φ0〉

0 HV(t∗)

)
,

due to 〈H(t∗)Φ0,Φα〉 = 0. The proof now follows by noting that the eigenvalues of
H(t∗) and H are the same, and the eigenvectors of H(t∗) are of the form e−T∗Φ, where
HΦ = E ′Φ. Formula (5.6) follows by the fact that the spectrum of a block triangular
matrix is the union of the spectra of the blocks in the diagonal.

Obviously, r0 6= 0 and R = 0 is a solution to the system (5.5) if and only if
ECC(t∗) = E . In this case, Ψ = eT∗Φ0 is a solution, and the similarity-transformed
Hamilton operator H(t∗) is block diagonal.

If, however, ECC(t∗) 6= E , then R cannot be 0 (because that would imply Ψ = 0).
In this case, Ψ = (r0I + R)eT∗Φ0, where r0 = 〈H(t∗)RΦ0,Φ0〉/(E − ECC(t∗)). Note
that it is possible to have r0 = 0, in which case 〈Ψ,Φ0〉 = 0. We return to this latter
case in Remark 5.16 and discuss the former below.

Remark 5.2. If ECC(t∗) = E , then (5.5) reduces to

〈H(t∗)RΦ0,Φ0〉 = 0

HV(t∗)RΦ0 = ERΦ0

}
Suppose that this system has µ linearly independent solutions R1, . . . , Rµ. Then it is
easy to see, using Ψ = (r0I +Rµ)eT∗Φ0, that the wavefunctions

{eT∗Φ0, R1e
T∗Φ0, . . . , Rµe

T∗Φ0}

span the eigenspace ker(H−E). In particular, we have dim ker(H−E) = µ+ 1. Note
also that in this case σ(H) = σ(HV(t∗)).

Let us now recall that the CC equation A(t∗) = 0 can be cast in a form that
closely resembles the CI eigenvalue problem (2.7) (although it is not equivalent to it
in general).

Lemma 5.3. [52, Theorem 5.6] Let G be excitation complete, and let V = V(G)
be the corresponding amplitude space. Then the “linked” CC equation A(t∗) = 0 is
equivalent to the “unlinked” (a.k.a. “energy-dependent”) CC equation

(5.7) 〈HeT∗Φ0, SΦ0〉 = ECC(t∗)〈eT∗Φ0, SΦ0〉 for all s ∈ V.
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Proof. For part (i), we have

〈(H− ECC(t∗))e
T∗Φ0, SΦ0〉 = 〈e−T∗(H− ECC(t∗))e

T∗Φ0, (e
T∗)†SΦ0〉

= 〈e−T∗(H− ECC(t∗))e
T∗Φ0,ΠV(eT∗)†SΦ0〉

+ 〈e−T∗(H− ECC(t∗))e
T∗Φ0,ΠΦ0

(eT∗)†SΦ0︸ ︷︷ ︸
const·Φ0

〉

= 〈e−T∗HeT∗Φ0,ΠV(eT∗)†SΦ0〉,

where second term on the right-hand side of the penultimate equality vanishes by the
definition of ECC(t∗). The proof is completed by recalling that ΠV(eT∗)† : V → V is
surjective due to Proposition 3.31.

The “unlinked” form is less useful in practice, because the expansion of HeT does
not terminate like the Baker–Campbell–Hausdorff series (2.12) for H(t),

(5.8) H(t) =

4∑
j=0

1

j!
[H, T ](j).

More generally, the doubly10 similarity-transformed Hamilton operator H(t + s) =
e−SH(t)eS can also be expanded using the Baker–Campbell–Hausdorff series but in
this case

(5.9) H(t+ s) =

2N∑
j=0

1

j!
[H(t), S](j),

i.e. the series terminates at 2N . To see this, simply note that [H(t), S](2N+1) consists

of terms of the form SiH(t)Sk, where i + k = 2N + 1, so i, k ≥ N + 1, which, using
Proposition 3.22 implies that all terms for j ≥ 2N + 1 vanish.

5.2. Local properties—real case. Next, we look at the local behavior of the
CC mapping A : V → V∗ for general (real) amplitude spaces V. For fixed t ∈ V,
define the modified similarity-transformed Hamilton operator,

(5.10) Ĥ(t) = H(t)−
∑

α∈Ξ(G)c

〈H(t)Φ0,Φα〉Xα,

where Ξ(G)c = Ξ(Gfull) r Ξ(G) and Ξ(G) was defined in (3.3).

Definition 5.4. The amplitude space V(G) is said to be rank-regular, if

〈XαΦβ ,Φγ〉 = 0 for all β, γ ∈ Ξ(G) and α ∈ Ξ(G)c.

We immediately get that ĤV(t) = HV(t) if V(G) is rank-regular. The next proposi-
tion shows that the truncated subgraphs typically used in practice are rank-regular.

Proposition 5.5. Suppose that the excitation graph G is a rank-truncated sub-
graph of the form G = G(1, 2, . . . , ρ), for some ρ = 1, . . . , N or G = G(D). Then
V(G) is rank-regular.

10Note that the doubly similarity-transformation above differs from the one considered in Arpo-
nen’s Extended CC (ECC) theory.
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Proof. The set Ξ(G)c consists of elements of rank ρ + 1, . . . , N (or empty), so
that 〈XαΦβ ,Φγ〉 = 0 for all rkα 6∈ {1, 2, . . . , ρ} and all rkβ, rk γ ∈ {1, 2, . . . , ρ}, due
to the fact that XαΦβ is of rank rk(α) + rk(β) 6∈ {1, 2, . . . , ρ}. The proof of the case
G = G(D) is similar.

Lemma 5.6. Let t∗ be a zero of A : V → V∗. Then the derivative A′(t∗) ∈
L(V,V∗) is given by

(5.11) 〈A′(t∗)u, v〉 = 〈(Ĥ(t∗)− ECC(t∗))UΦ0, V Φ0〉

for all u, v ∈ V.

Proof. The derivative A′ : V→ L(V,V∗) is readily computed as

d

dh
〈A(t+ hu), v〉

∣∣∣∣
h=0

=
d

dh
〈e−T−hUHeT+hUΦ0, V Φ0〉

∣∣∣∣
h=0

= 〈e−T−hU (HU − UH)eT+hUΦ0, V Φ0〉
∣∣
h=0

= 〈e−T (HU − UH)eTΦ0, V Φ0〉,

so using the commutativity of the cluster operators, we get

(5.12) 〈A′(t)u, v〉 = 〈[H(t), U ]Φ0, V Φ0〉

for all t, u, v ∈ V. Expanding U†V Φ0 ∈ H1
K in the L2-orthonormal basis {Φα}α∈L ⊂

H1
K ,

U†V Φ0 =
∑
α∈L
〈UΦα, V Φ0〉Φα,

we obtain using 〈H(t∗)Φ0,Φα〉 = 0 for all α ∈ Ξ(G),

〈UH(t∗)Φ0, V Φ0〉 = 〈H(t∗)Φ0, U
†V Φ0〉

= ECC(t∗)〈UΦ0, V Φ0〉+
∑

α∈Ξ(G)c

〈H(t∗)Φ0,Φα〉〈XαUΦ0, V Φ0〉

for all u, v ∈ V. Inserting this into (5.12) with t = t∗, we obtain the stated formula.

As we noted in subsection 1.1, previous analyses of the CC mapping assumed
the local strong monotonicity at a zero t∗, i.e. that there is a δ > 0 and a constant
CSM(t∗, δ) > 0 such that

(5.13) 〈A(t)−A(s), t− s〉 ≥ CSM(t∗, δ)‖t− s‖2V, for all t, s ∈ BV(t∗, δ).

The following elementary theorem makes the observations in [51] more precise.

Theorem 5.7. Let t∗ ∈ V be a zero of A : V→ V∗.
(i) If A is strongly monotone in BV(t∗, δ) for some δ > 0, then there exists

δ′ > 0 such that A′(t∗+u) is V-coercive for all ‖u‖V < δ′ with some constant
0 < γ ≤ CSM(t∗, δ), i.e.

(5.14) 〈A′(t∗ + u)v, v〉 ≥ γ‖v‖2V for all v ∈ V and ‖u‖V < δ′.

(ii) Conversely, if (5.14) holds with u = 0, then (5.13) holds true with δ > 0
chosen so that CSM(t∗, δ) := γ −Mδδ > 0, where

(5.15) Mδ = sup
‖ζ‖V≤δ

‖A′′(t∗ + ζ)‖L(V×V,V∗).
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Proof. To see (i), fix δ′ > 0 and ‖u‖V < δ′ and write for any ‖r‖V < δ′ < δ,

CSM(t∗, δ)‖r − u‖2V ≤ 〈A(t∗ + r)−A(t∗ + u), r − u〉

≤ 〈A′(t∗ + u)(r − u), r − u〉+
1

2
Mδ‖r − u‖3V.

This implies

(CSM(t∗, δ)−Mδδ
′)‖r − u‖2V ≤ 〈A′(t∗ + u)(r − u), r − u〉.

Any vector v ∈ V can be expressed as v = α(r − u) for some α > 0 and ‖r‖V < δ′,
from which V-coercivity follows with γ = CSM(t∗, δ)−Mδδ

′, by choosing δ′ sufficiently
small.

Next, to prove (ii), write the Taylor expansions of A at t∗,

A(t∗ + r) = A′(t∗)r +R2(t∗; r),

A(t∗ + r′) = A′(t∗)r′ +R2(t∗; r
′),

for any ‖r‖V, ‖r′‖V < δ for some δ > 0, from which we obtain

〈A(t∗ + r)−A(t∗ + r′), r − r′〉 = 〈A′(t∗)(r − r′), r − r′〉+ 〈R2(t∗; r)−R2(t∗; r
′), r − r′〉

≥ γ‖r − r′‖2V + 〈R2(t∗; r)−R2(t∗; r
′), r − r′〉.

Using the intermediate value inequality, we have

‖R2(t∗; r)−R2(t∗; r
′)‖V∗ ≤Mr,r′‖r − r′‖V,

where

Mr,r′ = max
ξ∈[r,r′]

‖∂2R2(t∗; ξ)‖ = max
ξ∈[r,r′]

‖A′(t∗ + ξ)−A′(t∗)‖

≤
(

max
ξ∈[r,r′]

max
ζ∈[0,ξ]

‖A′′(t∗ + ζ)‖V×V
)
δ

=
(

sup
‖ζ‖≤δ

‖A′′(t∗ + ζ)‖V×V
)
δ = Mδδ

This implies

〈A(t∗ + r)−A(t∗ + r′), r − r′〉 ≥ (γ −Mδδ)‖r − r′‖2V

for all ‖r‖V, ‖r′‖V < δ. Setting t = t∗ + r and s = t∗ + r′ proves the claim.

Remark 5.8. Let V0 ⊂ V be a subspace and consider the projected CC mapping
A0 : V0 → (V0)∗ via

〈A0(t0), s0〉 = 〈A(t0), s0〉 for all t0, s0 ∈ V0.

Clearly, if A is strongly monotone on BV(t∗, δ) with a constant CSM > 0 at a zero t∗,
then A0 is strongly monotone on BV0(t0∗,

√
δ2 − ‖t⊥∗ ‖2V) with the same constant CSM,

where we have set t0∗ = ΠV0t∗ and t⊥∗ = (I − ΠV0)t∗. Note that t0∗ is not, in general,
a zero of A0, hence the preceding theorem is not applicable to A0.
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Remark 5.9. The quantity Mδ contains the second derivative of A. It is easy to
see that

〈A′′(t)(u, v), w〉 = 〈[[H(t), U ], V ]Φ0,WΦ0〉
for all u, v, w ∈ V. Using (5.4), we have

〈A′′(t)(u, v), w〉 = 〈[[W(t), U ], V ]Φ0,WΦ0〉,

so that A′′(t) only involves the fluctuation operator W.

Remark 5.10 (Perturbative regime). Consider the case when t∗ ≈ 0, which is the
case considered in [52, 51]. Then roughly speaking, we have H(t∗) ≈ H. Note that

〈A′(t∗)r, r〉 = 〈(H− ECC(t∗))RΦ0, RΦ0〉+O(‖t∗‖V).

Consequently, if
〈(H− ECC(t∗))RΦ0, RΦ0〉 ≥ c(t∗)‖r‖2V,

where c(t∗) > 0, then local strong monotonicity holds with constant CSM = c(t∗) −
M ′‖t∗‖V − 2Mδδ for t∗ sufficiently close to 0. In [51, Lemma 3.5], it is shown that
such a c(t∗) exists under the assumption that H has a spectral gap and that Φ0 is a
sufficiently good approximation of the ground state eT∗Φ0 (i.e. that t∗ is sufficiently
close to 0).

Proposition 5.11. If A is locally strongly monotone near a zero t∗, then t∗ is
non-degenerate.

Proof. Suppose that kerA′(t∗) 6= {0} and that A is strongly monotone near t∗.
Then for any 0 6= r ∈ kerA′(t∗) sufficiently close to 0, we have

CSM(δ)‖r‖2V ≤ 〈A(t∗ + r), r〉 =
1

2
〈A′′(t∗)(r, r), r〉+ o(‖r‖4V).

Rescaling r by α > 0 small, and letting α→ 0 we obtain that CSM = 0, a contradic-
tion.

Remark 5.12. When applying topological degree theory, we will view A : V→ V∗
as a mapping Rn → Rn by identifying V and V∗ with Rn. Following [14, Section 1.3],
we fix a basis {τα}α∈Ξ(G) of V and define the linear homeomorphism h : V→ Rn with

V 3 t =
∑

α∈Ξ(G)

t̂ατα 7→ h(t) =
∑

α∈Ξ(G)

t̂αeα ∈ Rn,

where {eα}α∈Ξ(G) is the standard (ordered) basis in Rn. Also, fix a basis {τ∗α}α∈Ξ(G)

of V∗ and define the linear homeomorphism g : V∗ → Rn analogously. Then

Â := g ◦ A ◦ h−1 : Rn → Rn

gives the desired mapping. Now suppose that two other bases {τ̃α}α∈Ξ(G) ⊂ V and

{τ̃∗α}α∈Ξ(G) ⊂ V∗ are given and let h̃ : V→ Rn and g̃ : V∗ → Rn be the corresponding
linear homeomorphism. But then

g−1 ◦ g ◦ A ◦ h−1 ◦ h = A = g̃−1 ◦ g̃ ◦ A ◦ h̃−1 ◦ h̃,

which implies Ã := g̃ ◦ A ◦ h̃−1 = m ◦ Â ◦ m̃, where m = g̃ ◦ g−1 : Rn → Rn and
m̃ = h ◦ h̃−1 : Rn → Rn. Using [14, Lemma 1.3.1], we obtain

deg(Ã, h̃(D), g̃(0)) = (sgn detm)(sgn det m̃) deg(Â, h(D), g(0))



32 M. A. CSIRIK AND A. LAESTADIUS

for any open and bounded set D ⊂ V with 0 6∈ A(∂D). We can conclude that the
topological degree is independent of the choice of the basis if V and V∗ are oriented
the same.

Next, we determine the topological index of a zero of A. The fact that the
topological index of t∗ is related to its CC energy ECC(t∗) and the eigenvalues of the

operator ĤV(t∗) is interesting on its own right.

Theorem 5.13 (Index formula for SRCC—non-degenerate case). Let t∗ be a
zero of the CC mapping A : V → V∗. Then t∗ is non-degenerate if and only if
ECC(t∗) 6∈ σ(ĤV(t∗)), and in this case t∗ is an isolated zero and the topological index
of A at t∗ is given by

i(A, t∗) = (−1)ν ,

where
ν = |{j : Ej(ĤV(t∗)) ∈ R, Ej(ĤV(t∗)) < ECC(t∗)}|.

Proof. It is trivial to see that if t∗ is non-degenerate, then it is isolated: assume
that kerA′(t∗) = {0} and write

(5.16) 〈A(t∗ + r),J (A′(t∗)r)〉 = ‖A′(t∗)r‖2V + o(‖r‖3V),

for all ‖r‖V = ε, where ε > 0 is sufficiently small. Here, J : V → V∗ denotes the
(normalized) duality mapping. This implies that A(t∗ + r) 6= 0 for all 0 < ‖r‖V < ε.

We can apply [14, Theorem 1.3.1] with the mappings h : V→ Rn and g : V∗ → Rn
defined in Remark 5.12. Using the notations of the said remark and (5.11), we have

〈Â′(h−1(t∗))eα, eβ〉 = 〈gA′(t∗)h−1(eα), eβ〉 = 〈A′(t∗)h−1(eα), g†(eβ)〉

= 〈(Ĥ(t∗)− ECC(t∗))UαΦ0, VβΦ0〉,

where uα = h−1(eα) and vβ = g†(eβ) and α, β ∈ Ξ(G). Here, g† : Rn → V is the
adjoint of g. Therefore, using an appropriate basis transformation

i(A, t∗) = sgn det Â′(h−1(t∗)) = sgn
∏
j≥0

(Ej(ĤV(t∗))− ECC(t∗)).

The proof is completed by noting that the elements of the matrix ĤV(t∗) are real, so
its complex eigenvalues come in conjugate pairs, hence only real eigenvalues contribute
to the product above.

Proposition 5.14. If A is locally strongly monotone near a zero t∗, then we have
i(A, t∗) = 1.

Proof. We have that in particular Â : Rn → Rn is monotone near h(t∗), so

according to [14, Proposition 7.2.1], Â is orientation-preserving near h(t∗). But then

[14, Theorem 7.2.1] implies that i(A, t∗) = i(Â, h(t∗)) > 0.

Using the “unlinked” form, we can determine the topological index in the FCC
case (see (2.10)). Recall that the eigenvalues En(H), n = 0, 1, . . ., are assumed to be
increasingly ordered.

Theorem 5.15 (Index formula for FCC—non-degenerate case). Let V = V(Gfull)
and assume that t∗ ∈ V is a zero of the FCC mapping A : V→ V∗. Then eT∗Φ0 ∈ H2

is an (intermediately normalized) eigenfunction corresponding to some non-degenerate
eigenvalue Eν(H) if and only if t∗ is non-degenerate, and in this case i(A, t∗) = (−1)ν .
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Proof. First, note that V(Gfull) is rank-regular so ĤV(t) = HV(t). We have
ECC(t∗) = Eν(H) by the equivalence of FCC and FCI (see Theorem 2.3).

According to Lemma 5.1, we have that eT∗Φ0 is a non-degenerate intermediately
normalized eigenfunction if and only if ECC(t∗) 6∈ σ(HV(t∗)). In fact, ECC(t∗) ∈
σ(HV(t∗)) if and only if there exists RΦ0 ∈ V nonzero, such that

〈e−T∗HeT∗RΦ0, SΦ0〉 = ECC(t∗)〈RΦ0, SΦ0〉,

for all s ∈ V. Since V(Gfull) is excitation complete, according to Lemma 5.3 the
preceding equation is equivalent to

(5.17) 〈HReT∗Φ0, SΦ0〉 = ECC(t∗)〈ReT∗Φ0, SΦ0〉,

for all s ∈ V. But this precisely means that the FCI eigenstate eT∗Φ0 is degenerate,
because ReT∗Φ0 is another eigenvector corresponding to the same eigenvalue ECC(t∗).

We also conclude from (5.6) that σ(HV(t∗)) = σ(H) r {ECC(t∗)}. Applying
Theorem 5.13, we obtain that t∗ is non-degenerate and i(A, t∗) = (−1)ν .

It is worth noting that, in the FCC case, the zero t∗ representing the intermedi-
ately normalized, non-degenerate ground state (i.e. ECC(t∗) = E0(H)) has i(A, t∗) = 1.
Note that this is not necessarily true in the truncated case. While the CC method
is most commonly aimed at the ground state, it can also be used to find other in-
termediately normalized eigenfunctions as well. Furthermore, it can also be used
to obtain eigenfunctions which are orthogonal to the reference Φ0 according to the
remark below.

Remark 5.16. The Equation-of-Motion Coupled-Cluster (EOM-CC) method [19]
is aimed at calculating excited energies and states (i.e. En(H) for n > 0, and the
corresponding eigenvectors) based on a CC ground-state solution. This is done in
two steps. Let V = V(Gfull). Firstly, a conventional CC calculation determines the
ground state Ψ = eT∗Φ0 such that A(t∗) = 0, i.e. HΨ = EΨ. Secondly, the targeted
excited state is of the form Ψex = (r0I + R)eT∗Φ0 = ReT∗Φ0, where R is a cluster
operator, see Lemma 5.1. We have

(5.18) HV(t∗)RΦ0 = EexRΦ0.

In other words, we need to solve the eigenproblem of the similarity-transformed pro-
jected Hamilton operator HV(t∗). Furthermore, similarly to the proof of Lemma 5.3,
it is easy to see that A(t∗) = 0 implies

〈RH(t∗)Φ0, SΦ0〉 = ECC(t∗)〈RΦ0, SΦ0〉 for all s ∈ V.

Subtracting this from (5.18), we get the “commutator form” of the EOM-CC equation:

(5.19) 〈[H(t∗), R]Φ0, SΦ0〉 = ∆E〈RΦ0, SΦ0〉, where ∆E = Eex − E ,

and E = ECC(t∗) is the ground-state energy as given by the CC method. Let V be an
arbitrary amplitude space. Recalling the expression (5.12) for A′(t), we can rephrase
the EOM-CC equation (5.19) as the weak eigenvalue problem for A′(t∗) : V→ V∗ (cf.
[21, Section 13.6.3]), i.e.

(5.20) 〈A′(t∗)RjΦ0, SΦ0〉 = ∆Ej〈RjΦ0, SΦ0〉,
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for j = 1, . . . , J labelling the states11 and s ∈ V is arbitrary.12 Notice that the ∆Ej ’s
are in general complex. Using Theorem 5.13 we can obtain the following. Suppose
that ∆E1, . . . ,∆Eµ are given by (5.20) and are all nonzero. Then

(5.21) i(A, t∗) = (−1)ν , ν = |{j : ∆Ej ∈ R, ∆Ej < 0}|.

Due to the nonvariational property of truncated CC (see subsection 2.4), it is not
a priori clear whether the (real) excited energies are higher than the ground-state
energy, i.e. if ∆Ej > 0. Therefore, (5.21) quantifies this nonvariational property
through the topological index i(A, t∗).

Next, we draw a connection between the degeneracy of a zero t∗ and the Fock-
splitting (2.4) of the Hamilton operator. Define ω0(t∗) = 〈W(t∗)Φ0,Φ0〉, which is
the CC correction to the lowest eigenvalue Λ0 of F , so that the CC energy at t∗ is
obtained as ECC(t∗) = Λ0 + ω0(t∗).

Proposition 5.17. Let V(G) be a rank-regular amplitude space and t∗ a zero of
A. Define the linear operator Q(t∗) : V→ V via its matrix in the determinantal basis
as

[Q(t∗)]αβ = εαδαβ +
∑

γ∈Ξ(G)

t∗,γεγ〈XγΦβ ,Φα〉 for all α, β ∈ Ξ(G).

Then ω0(t∗) 6∈ σ(Q(t∗) +WV(t∗)) is equivalent to ECC(t∗) 6∈ σ(HV(t∗)), i.e. to the
fact that t∗ is a non-degenerate zero of A.

Proof. We have using (5.3),

ECC(t∗) = 〈e−T∗FeT∗Φ0,Φ0〉+ 〈W(t∗)Φ0,Φ0〉
= 〈FΦ0,Φ0〉+ 〈[F , T∗]Φ0,Φ0〉+ 〈W(t∗)Φ0,Φ0〉
= Λ0 + 〈W(t∗)Φ0,Φ0〉 = Λ0 + ω0(t∗).

Similarly,

〈H(t∗)Φβ ,Φα〉 = 〈FΦβ ,Φα〉+ 〈[F , T∗]Φβ ,Φα〉+ 〈W(t∗)Φβ ,Φα〉

= (Λ0 + εα)δαβ +
∑

γ∈Ξ(G)

t∗,γεγ〈XγΦβ ,Φα〉+ 〈W(t∗)Φβ ,Φα〉.

Then, in the determinantal basis

HV(t∗) = Λ0I +Q(t∗) +WV(t∗).

Hence, ECC(t∗) 6∈ σ(HV(t∗)) is equivalent to ω0(t∗) 6∈ σ(Q(t∗) + WV(t∗)), which
finishes the proof.

We now consider the case of a degenerate zero. Clearly, if r ∈ kerA′(t∗) 6= {0},
we have to consider higher-order terms of the Taylor polynomial of A at t∗,

A(t∗ + r) = A′(t∗)r +
1

2
A′′(t∗)(r, r) +R3(t∗; r),

where A′′(t∗) : V × V → V∗ is a bounded bilinear mapping. Here, we only consider
the second-order information.

11Here, Rj is not to be confused with the rank-decomposition (3.6).
12A similar relation holds if t∗ does not represent the ground state.
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Assume from now on that V is rank-regular, so that ĤV(t) = HV(t). Suppose
that ECC(t∗) ∈ σ(HV(t∗)) and that R1Φ0, . . . , RµΦ0 ∈ V are the right eigenvectors
of HV(t∗) corresponding to ECC(t∗),

〈H(t∗)RjΦ0, SΦ0〉 = ECC(t∗)〈RjΦ0, SΦ0〉 for all j = 1, . . . , µ and all s ∈ V.

Also, suppose that L1Φ0, . . . , LµΦ0 ∈ V are the left eigenvectors of HV(t∗) corre-
sponding to ECC(t∗),

〈H(t∗)
†LjΦ0, SΦ0〉 = ECC(t∗)〈LjΦ0, SΦ0〉 for all j = 1, . . . , µ and all s ∈ V.

The corresponding right-, and left eigenspaces are

WR = kerA′(t∗) = Span{r1, . . . , rµ},
WL = kerA′(t∗)† = Span{`1, . . . , `µ},

and let Q : V→ V be the orthogonal projector onto WL. Further, define Q̂ : V→ V
via 〈Q̂UΦ0, V Φ0〉 = 〈Qu, v〉 for all u, v ∈ V. We introduce the mapping B : V → V∗
via

(5.22) 〈B(t), s〉 =
1

2
〈Q̂[[H(t∗), T ], T ]Φ0, SΦ0〉 =

1

2
〈Q̂[[W(t∗), T ], T ]Φ0, SΦ0〉,

that is, the Q-projection of 1
2A
′′(t∗)(t, t). In the second equality, we used (5.4). Also,

note that B is homogeneous of degree 2, i.e. B(αt) = α2B(t). The next theorem
follows esentially from Leray’s second reduction formula (see [14, Section 1.3.4]).

Theorem 5.18 (Index formula for SRCC—degenerate case). Let t∗ be zero of
the CC mapping A : V → V∗. Suppose that ECC(t∗) ∈ σ(HV(t∗)) and let WR, WL

and Q be as above. Assume that

(5.23) B(t) 6= 0 for all t ∈ ∂B(0, 1).

Then, t∗ is an isolated zero and the topological index of A at t∗ is given by

i(A, t∗) = i(A′(t∗) +Q, 0) i(B|WR
, 0).

Proof. First, we prove that t∗ is isolated. When r 6∈ kerA′(t∗) and small, it
follows that A(t∗+ r) 6= 0 similarly to (5.16). If, however r ∈ kerA′(t∗), then we may
write

〈A(t∗+r),J (A′′(t∗)(r, r))〉 = 〈A′(t∗)r︸ ︷︷ ︸
0

,J (A′′(t∗)(r, r))〉+
1

2
‖A′′(t∗)(r, r)‖2V+O(‖r‖5V)

for all r ∈ B(0, ε) for sufficiently small ε > 0. Condition (5.23) implies thatA(t∗+r) 6=
0 for all r ∈ B∗(0, ε).

Next, we apply Theorem A.2 with the choice D = B(0, ε), L = A′(t∗) and

〈N (t, λ), s〉 =

2N∑
k=2

λk−2

k!
〈[H(t∗), T ](k)Φ0, SΦ0〉,

where we used (5.9). Because ranQ = kerA′(t∗)†, it follows that

kerQ = (ranQ)⊥ = (kerA′(t∗)†)⊥ = ranA′(t∗) = ranL.
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Moreover, since t∗ is an isolated zero, it is possible to choose δ > 0 so that the equation

λ−1A(t∗ + λt) = A′(t∗)t+ λN (t, λ) = 0

does not admit a solution t ∈ ∂B(0, δ) for any λ ∈ (0, 1].
Note that QN (t, 0) = B(t) 6= 0 for all t ∈ B∗(0, δ) by assumption (5.23) and the

homogenity of B. We see that conditions (i) and (ii) of Theorem A.2 are satisfied and
the result follows.

The preceding theorem reduces the computation of the index to a low-dimensional
problem but the zero is still degenerate. In fact, since

〈B′(t)u, v〉 =
1

2
〈Q̂([[H(t∗), U ], T ] + [[H(t∗), T ], U ])Φ0, V Φ0〉,

we have that t = 0 is a degenerate zero of B|WR
and by assumption the only zero.

Therefore, we need to apply Theorem A.1 to determine i(B|WR
, 0).

Corollary 5.19. For a degenerate, isolated zero t∗ of A, dimWR = 1, and for
which (5.23) holds, we have i(A, t∗) = 0.

Proof. Let WR = Span{r} and WL = Span{`}. We apply Theorem A.1 to the
mapping B|WR

with D = B(0, ε), ε > 0 arbitrary. Fix z′ = η` ∈ ranQ = WL such
that 0 < |η| < δ. Since t = cr ∈ WR, the equation B(t) = z′ in B(0, ε) ∩ WR is
equivalent to finding 0 6= c ∈ R such that

(5.24)
c2

2
〈(H(t∗)− ECC(t∗))R

2Φ0, LΦ0〉 = η〈LΦ0, LΦ0〉.

Note that the inner product on the left-hand side is nonzero by assumption (5.23).
Choose η to be of opposite sign as the inner product on the left-hand side. Then there
are no solutions c, so i(B|WR

, t∗) = 0 and therefore i(A, t∗) = 0 by Theorem 5.18.

Corollary 5.20. Let t∗ be an isolated zero of the CC mapping A : V→ V∗. Sup-
pose that ECC(t∗) ∈ σ(HV(t∗)) and let WR and Q as above. Assume that kerB′(t) =
{0} for all 0 6= t ∈WR. If dimWR = µ is odd, then i(A, t∗) = 0.

Proof. Let z′ ∈ B∗(0, δ) ∩WL. Then the equation B(t) = z′ for 0 6= t ∈ WR is
equivalent to

1

2
〈[[H(t∗), T ], T ]Φ0, LΦ0〉 = 〈Z ′Φ0, LΦ0〉,

for all ` ∈ WL. Let T denote the set of solutions t of the preceding equation (which
can be empty). By Theorem A.1, |T | = m for some m finite. Notice that T is closed
under the operation t 7→ −t, so m is even (we also used that 0 6∈ T ), and let

T = {t1, . . . , tm2 ,−t1, . . . ,−tm2 }

using some appropriate indexing. From the linearity of t 7→ B′(t), we get via [14,
Proposition 1.3.1],

(5.25)

deg(B|WR
, B(0, r) ∩WR, z

′) =

m
2∑
i=1

sgn det gB′(ti)h−1 + sgn det gB′(−ti)h−1

=

m
2∑
i=1

(1 + (−1)µ) sgn det gB′(ti)h−1 = 0,

for some sufficiently large r > 0.
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We close this section with two remarks.

Remark 5.21.
(i) Note that, according to Theorem A.1, a zero t∗ of topological index 0 is “nu-

merically unstable”, because one could miss zeros altogether if the equations
are solved with finite precision arithmetic, even in the FCC case. Therefore,
the degenerate zeros of the SRCC mapping A are not robust in general. We
have already seen that in the FCC case, the CC energy ECC(t∗) of a de-
generate zero t∗ is a degenerate eigenvalue E of the Hamilton operator (see
Remark 5.2). Thus, we can conclude that the SRCC method is in general
unsuitable for finding degenerate eigenstates and eigenvalues—an empirical
fact that is well known among the practitioners of the SRCC method.

(ii) Proposition 5.14 and the preceding calculations imply that any approach
that stipulates the local strong monotonicity of A near t∗ can only provide
an incomplete description of the SRCC method.

5.3. Local properties—complex case. We now discuss what happens when
complex amplitude spaces are considered instead. We explain the complex case in
detail because the differences from the real case are somewhat subtle. Assume that
V is a complex amplitude space and let V∗ denote its anti-dual. It is clear that
t 7→ 〈A(t), s〉 is a (complex) polynomial for fixed s ∈ V, hence with the appropriate
identifications, AC : V→ V∗ is a holomorphic mapping, where we used the subscript C
to highlight the difference.13 Of course, a real zero t∗ ∈ V toA(t∗) = 0 is automatically
a “complex” zero: AC(t∗) = 0. Further, using the fact that the Hamilton operator is
real (by which we mean 〈HΦα,Φβ〉 ∈ R), AC(t∗) = 0 if and only if AC(t∗) = 0. Also,

ECC(t) = ECC(t).
From [14, Proposition 7.2.2] we immediately get that deg(AC, U, 0) ≥ 0 for every

bounded open U ⊂ V. In particular, i(AC, t∗) ≥ 0 for every isolated zero t∗. Notice
that, even if t∗ is a zero of both A and AC, its real and complex indices i(A, t∗) and
i(AC, t∗) may differ; for instance we know that i(A, t∗) can have a sign, while i(AC, t∗)
cannot. Also, [14, Theorem 7.2.3] implies that i(A, t∗) ≥ 2 for an isolated, degenerate
zero t∗. Moreover, the following is true.

Theorem 5.22. If t∗ ∈ V is a real isolated zero of both A and AC, then

|i(A, t∗)| ≤ i(AC, t∗), i(A, t∗) ≡ i(AC, t∗) mod 2.

Proof. The result follows from Theorem A.6 with the choice D = B(t∗, δ).

For simplicity, we assume from now on that V is rank-regular (Definition 5.4), so

that ĤV(t) = HV(t). Adapting the proofs of Theorem 5.13 and Theorem 5.18 in the
complex case, we have

Theorem 5.23 (Index formula for SRCC—complex case). Let t∗ be an isolated
zero of AC : V→ V∗. Then the following hold true.

(i) The zero t∗ is non-degenerate if and only if ECC(t∗) 6∈ σ(HV(t∗)), and in this
case i(AC, t∗) = 1.

(ii) Suppose that ECC(t∗) ∈ σ(HV(t∗)) and that the second-order regularity as-
sumption (5.23) holds true. Then

i(AC, t∗) = i(B|WR
, 0).

13Note that the realification of AC, (AC)R does not equal A (they are mappings of different type:
(AC)R : R2n → R2n).
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(iii) Suppose that ECC(t∗) ∈ σ(HV(t∗)) and that the second-order regularity as-
sumption (5.23) holds true. Assume further, that kerB′(t) = {0} for all
0 6= TΦ0 ∈WR. Then i(AC, t∗) = m ≥ 2, where m is the number of solutions
0 6= RΦ0 ∈WR to the equation

〈(H(t∗)− ECC(t∗))R
2Φ0, LΦ0〉 = 〈ZΦ0, LΦ0〉 (LΦ0 ∈WL)

for any ZΦ0 ∈WL ∩B∗(0, δ) for sufficiently small δ > 0.

Proof. For (i), it is enough to note that kerA′C(t∗) 6= {0} follows via the same
calculation as in the proof of Theorem 5.13. Part (ii) follows since i(A′C(t∗) +Q) = 1.
For the proof of (iii), notice that (5.25) now reads

deg(B|WR
, B(0, r) ∩WR, z) =

m∑
i=1

sgn |det gB′(ti)h−1|2 = m.

Corollary 5.24. For a degenerate, isolated zero t∗ of AC, dimWR = 1, and for
which (5.23) holds, we have i(AC, t∗) = 2.

Proof. The proof is analogous to that of Corollary 5.19, but (5.24) always has
exactly two nonzero complex solutions c.

We close this section with a few remarks.

Remark 5.25.
(i) Luckily, for a real zero t∗ ∈ V, the condition ECC(t∗) 6∈ σ(HV(t∗)) is for-

mally the same as in the real case, therefore a non-degenerate real zero is
automatically a non-degenerate zero of AC.

(ii) The degeneracy of a complex zero t∗ manifests itself in numerical compu-
tations as follows. Suppose the hypotheses of Theorem 5.23 (iii) hold true.
Combining this with Theorem A.5, we get that the perturbed equationA(t) =
z′ has exactly m solutions for almost all z′ ∈ V sufficiently close to zero. This
is in contrast with the real case, when one might completely “lose” solu-
tions when the index is zero (Remark 5.21 (i)). The appearance of multiple
complex zeros in degenerate situations was conjectured based on numerical
observations in [45, 44].

(iii) If the Hamilton operator is real (see above), then the index of the complex
conjugate zero is the same: i(AC, t∗) = i(AC, t∗).

(iv) The classical Bézout theorem states that if a polynomial system

P1(x1, . . . , xd) = 0

P2(x1, . . . , xd) = 0

. . .

Pn(x1, . . . , xd) = 0


has a finite number of zeros in Cd, then the number of zeros (counting multi-
plicities) is at most ∆ = ∆1 · · ·∆d (called the Bézout number), where ∆k

denotes the degree of Pk. As remarked earlier, according to the Baker–
Campbell–Hausdorff expansion (2.12), for the polynomials constituting the
system A(t) = 0 there holds ∆1 = . . . = ∆d = 4, hence the Bézout num-
ber of the CC equations is ∆ = 4d, where d = dimV. This is typically a
huge number. However, it is known that the Bézout number often grossly
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overestimates the number of zeros. In fact, it was observed numerically that
the number of zeros for the (truncated) CC equations is much less than the
Bézout number [44].

5.4. Continuation of solutions. In this section we discuss how solutions of
different CC methods can be “connected” in a systematic way. The idea is not new
to this field (and certainly not new to nonlinear analysis, see e.g. [60]), and it has
been a subject of both theoretical and numerical investigations in the CC literature,
as we have already mentioned in the beginning of section 5.

The main theoretical tool we use to describe the aformentioned connection is a
specific type of homotopy.

Definition 5.26. Let V1 be an amplitude space with direct sum decomposition
V1 = V0 ⊕ V∠. Let Aj : Vj → (Vj)∗ be continuous mappings for j = 0, 1. A
continuous map K : V1 × [0, 1]→ (V1)∗ is said to be an admissible homotopy, if

(i) 〈K(t1, 0), s0〉 = 〈A0(t0), s0〉 for all t1 ∈ V1, s0 ∈ V0, and
(ii) K(·, 1) = A1.

Furthermore, an admissible homotopy K : V1 × [0, 1] → (V1)∗ is said to be faithful,
if for every t0∗∗ ∈ V0 such that A0(t0∗∗) = 0, there exists t∠∗∗ ∈ V∠ so that with
t1∗∗ = t0∗∗ + t∠∗∗ ∈ V1, there holds K(t1∗∗, 0) = 0.

Example 5.27. WhenA0 is the projection ofA := A1 onto V0, a simple admissible
homotopy can be given by

(5.26) 〈K(t1, λ), s1〉 = 〈A(t0 + λt∠), s0〉+ 〈A(t1), s∠〉,

for all t1 ∈ V1, s1 ∈ V1 and λ ∈ [0, 1] (cf. (5.34)).

Let V1 = V(Gfull) and A1 be the FCC mapping, V0 some rank-truncated space
and A0 the truncated CC mapping. This case is particularly important due to the
equivalence of FCC and FCI (Theorem 4.4), so existence of a solution to the FCI
problem (essentially the Schrödinger equation) can be exploited to infer the existence
of a truncated CC solution. Furthermore, the topological index of the CC solution
can be determined by the results of subsection 5.2 and the homotopy invariance of
the topological degree can be used relate these quantities in certain situations (see
(5.29) below).

The zero set of an (admissible) homotopy K is defined as

(5.27) Z(K) = {(t1∗, λ) ∈ V1 × [0, 1] : K(t1∗, λ) = 0}.

We omit K from the notation Z(K) whenever it is clear from the context. The λ-
sections of Z are denoted as Zλ = {t1∗ ∈ V1 : (t1∗, λ) ∈ Z}. Clearly, (Z(K))1 =
(A1)−1(0) for any admissible homotopy K. Furthermore, ΠV0(Z(K))0 = (A0)−1(0)
for any faithful, admissible homotopy K. We will sometimes explicitly label t1∗ with
the λ to which it corresponds as t1∗(λ).

Recall that any topological space can be partitioned into a family of connected
components, which are maximal (w.r.t. set inclusion), closed connected sets. We are
interested in the connected components of Z(K). The Leray–Schauder continuation
principle [14, Theorem 2.1.3] immediately implies the following.

Theorem 5.28. Suppose that D ⊂ V1 × [0, 1] is a bounded open set and let K :
V× [0, 1]→ V∗ be an admissible homotopy such that

(5.28) K(t1, λ) 6= 0 for all (t1, λ) ∈ ∂D.

Then the following statements hold true.
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(i) deg(K(·, 0),D0, 0) = deg(A1,D1, 0) =: d.
(ii) If ∆ 6= 0, then there is a connected component C of Z, such that

C ∩ Zj × {j} 6= ∅ for j = 0, 1.

This general theorem can be used to prove existence results, which essentially consists
of establishing the boundary condition (5.28). Furthermore, note that (i) implies that

(5.29)
∑

t1∗∗∈Z0∩D0

i(K(·, 0), t1∗∗) =
∑

t1∗∈Z1∩D1

i(A1, t1∗) = d.

This is a necessary condition for zeros in Z0 and Z1 be in the same bounded connected
component.

Remark 5.29. In the case when D is possibly unbounded, once can invoke [14, The-
orem 2.1.4] to obtain the following statement: If Z0 is bounded and deg(K(·, 0), D, 0) 6=
0 for some bounded open set D ⊃ Z0, then there is a connected component C of Z
intersecting Z0×{0} which either intersects Z1×{1} or is unbounded. The unbound-
edness of C has been observed numerically for a specific type of homotopy and its
significance is discussed in the next remark.

Remark 5.30. In [44], a specific type of admissible homotopy (essentially (5.26),
which will be discussed in subsection 5.5 below) is used as the basis to distinguish
“physical” truncated solutions from “unphysical” ones. Roughly speaking, they call
a truncated solution “physical” if it shares a bounded connected component with an
FCC solution (although they require more regularity of the connected component
in question). They also found that some FCC (resp. truncated) solutions cannot
be “connected” to any truncated (resp. FCC) solution. While this approach to
the classification of solutions seems attractive at first, it has a serious conceptual
drawback: it is unclear why one particular homotopy is preferred over the (infinitely
many) others. For instance, it is conceivable that an admissible homotopy classifies a
truncated solution as “unphysical” while another homotopy classifies it as “physical”.
Moreover, their homotopy itself does not admit an obvious physical interpretation.
We will not pursue this line of thought any further in this work, and view homotopies
as purely mathematical devices.

As an example of an admissible homotopy, we consider the linear homotopy. Let
V0 ⊂ V1 be any subspace (a typical choice is based on some truncation: V0 =
V(G(1, . . . , ρ))) and V∠ := (V0)⊥, where the orthogonal complement is taken with
respect to the V-inner product. Also, to emphasize that V∠ is actually given by the
V-orthogonal complement of V0, we shall write t1 = t0 + t⊥ for some unique t0 ∈ V0

and t⊥ ∈ (V0)⊥, for any t1 ∈ V1. Let KL : V1 × [0, 1]→ (V1)∗ by given by

〈KL(t1, λ), s1〉 = (1− λ)
(
〈A0(t0), s0〉+ α|〈t⊥ − u⊥, s⊥〉V|

)
+ λ〈A1(t1), s1〉

for any t1, s1 ∈ V1 and λ ∈ [0, 1], and some fixed constants α > 0 and u⊥ ∈ (V0)⊥.
Then, clearly KL(·, 1) = A1. Further, KL(t1∗∗, 0) = 0 is equivalent to A0(t0∗∗) = 0
and t⊥∗∗ = u⊥. Therefore, KL is a faithful, admissible homotopy. Also, KL has the
following trivial property: if t1∗ ∈ V1 is such that A0(t0∗) = 0 and A1(t1∗) = 0, then
KL(t1∗, λ) = 0 for all λ ∈ [0, 1].

As a simple application of the linear homotopy, we give a variant of the existence
result [51, Theorem 4.1].

Theorem 5.31. Suppose that t1∗ ∈ V1 is a zero of A1. Let κ = ‖t⊥∗ ‖V. Assume
the following hold true.
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(i) Aj : Vj → Vj is C1.
(ii) L0κ = sup‖u0‖V=1〈A0(t0∗)−A1(t1∗), u

0〉 for some L0 <∞.

(iii) Aj is strongly monotone in BVj (t
j
∗, δj) with constant CjSM = CjSM(δj) > 0 for

j = 0, 1.

(iv) κ < δ
C0

SM

L0 , where δ = min{δ0, δ1}
Then there exists a unique t0∗∗ ∈ BV0(t0∗, δ) such that A0(t0∗∗) = 0. Furthermore,
i(KL(·, 0), t1∗∗) = i(A0, t0∗) = 1.

Proof. Set α := C0
SM and u⊥ := t⊥∗ in the definition of KL. We prove that the

boundary condition KL(t1, λ) 6= 0 holds true for all t1 ∈ ∂B(t1∗, δ) and λ ∈ [0, 1].
Write t1 = t1∗ + r1, where ‖r1‖V = δ and

〈KL(t1∗ + r1, λ), r1〉 =: (1− λ)A0 + λA1.

Here,

A0 = 〈A0(t0∗ + r0), r0〉+ C0
SM〈t⊥∗ + r⊥ − t⊥∗ , r⊥〉V

= 〈A0(t0∗ + r0)−A0(t0∗), r
0〉+ 〈A0(t0∗)−A1(t1∗), r

0〉+ C0
SM‖r⊥‖2V

≥ C0
SM‖r0‖2V − L0κ‖r0‖V + C0

SM‖r⊥‖2V
≥ (C0

SM‖r1‖V − L0κ)‖r1‖V = (C0
SMδ − L0κ)δ > 0,

where we in the last step used that ‖r1‖2V = ‖r0‖2V + ‖r⊥‖2V. Furthermore,

A1 = 〈A1(t1∗ + r1), r1〉 = 〈A1(t1∗ + r1)−A1(t1∗), r
1〉 ≥ C1

SM‖r1‖2V > 0.

Using Proposition 5.14 and the uniqueness of the zero t1∗ in B(t1∗, δ),

deg(KL(·, 1), B(t1∗, δ), 0) = deg(A1, B(t1∗, δ), 0) = 1.

Since we have already seen that KL(t1, λ) 6= 0 for all t1 ∈ ∂B(t1∗, δ) and λ ∈ [0, 1], the
homotopy invariance of the degree can be applied to get

deg(KL(·, 0), B(t1∗, δ), 0) = 1.

Using the existence property of the degree (see [14, Corollary 1.2.5]), there exists
t1∗∗ ∈ V0 such that (t0∗∗, t

⊥
∗ ) ∈ BV1(t1∗, δ) and 〈KL(t0∗∗, 0), s0〉 = 〈A0(t0∗∗), s

0〉 = 0 for
all s0 ∈ V0, which is what we wanted to prove. Uniqueness follows form the local
strong monotonicity of A0.

In the special case when A0 is given as a projection of A1 (see Remark 5.8), we
obtain the following.

Corollary 5.32. Suppose that t1∗ ∈ V1 is a zero of A1. Let κ = ‖t⊥∗ ‖V and
suppose the following hold true.

(i) L0κ = sup‖u0‖V=1〈A1(t0∗)−A1(t1∗), u
0〉 for some L0 <∞.

(ii) A1 is strongly monotone in BV1(t1∗, δ) with constant CSM > 0.
(iii) κ < δ CSM

CSM+L0 .

Then there exists a unique t0∗∗ ∈ BV0(t1∗, δ − κ) such that A1(t0∗∗) = 0.

Proof. It is enough to recall that A0 = ΠV0A1|V0 is strongly monotone with
constant CSM in

BV0(t0∗,
√
δ2 − κ2) ⊃ BV0(t0∗, δ − κ).

Applying Theorem 5.31 with C0
SM = CSM and δ0 = δ − κ gives the result.
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5.5. Kowalski–Piecuch homotopy. In this section, we consider another ho-
motopy that can be used to analyze the connection between the solutions to CC meth-
ods of different rank-truncation levels. The approach was pioneered by the chemists
K. Kowalski and P. Piecuch [44], who conducted a comprehensive numerical study
based on this idea.14 They considered complex amplitudes and the following discus-
sion is easily extended to that case.

Assumption. Let V1 = V0 ⊕ V∠ be an `2-orthogonal direct sum decomposition of
a real amplitude space V1 = V(G1), where V0 is an amplitude space corresponding
to some lower truncation level. More precisely, assume that there is a rank ρ ≥ 1,
such that V0 contains all amplitudes with rank ≤ ρ and V∠ := (V0)⊥`2 contains all
amplitudes with rank > ρ. In the notations introduced before,

V0 = V(G0) = V(G(1, . . . , ρ)) ∩ V1, and V∠ = V(G⊥) = V(G(ρ+ 1, . . . , N)) ∩ V1,

where G0 = G(1, . . . , ρ) ∩ G1 and G⊥ = G(ρ + 1, . . . , N) ∩ G1. Hence, any t1 ∈ V1

may be uniquely decomposed as t1 = t0 +t∠, where t0 ∈ V0, t∠ ∈ V∠ and 〈t0, t∠〉 = 0.

Now suppose that A : V1 → (V1)∗ is the SRCC mapping (5.1). Write

(5.30)

〈A(t1), s1〉 = 〈e−T
1

HeT
1

Φ0, S
0Φ0〉+ 〈e−T

1

HeT
1

Φ0, S
∠Φ0〉

= 〈(e−T
0

+ e−T
0

(e−T
∠

− I))H(eT
0

+ eT
0

(eT
∠

− I))Φ0, S
0Φ0〉

+ 〈e−T
1

HeT
1

Φ0, S
∠Φ0〉

= 〈A0(t0), s0〉+ 〈e−T
0

(e−T
∠

− I)HeT
0

(eT
∠

− I)Φ0, S
0Φ0〉

+ 〈e−T
0

(e−T
∠

− I)HeT
0

Φ0, S
0Φ0〉+ 〈e−T

0

HeT
0

(eT
∠

− I)Φ0, S
0Φ0〉

+ 〈e−T
1

HeT
1

Φ0, S
∠Φ0〉

= 〈A(t0), s0〉+ 〈e−T
0

HeT
0

(eT
∠

− I)Φ0, S
0Φ0〉+ 〈A(t1), s∠〉,

where in the last step the second and the third terms of the penultimate expression
vanish because

(e−T
∠

− I)†S0Φ0 = −(T∠)†S0Φ0 −
1

2

(
(T∠)†

)2
S0Φ0 − . . . = 0,

due to the definition of the spaces V0 and V∠. Note that this last relation would not
hold in the case V0 = V(G(D)) ∩ V1, V1 = V(Gfull), which is actually excluded by
assumption.

Motivated by the preceding calculation in (5.30), we define the Kowalski–Piecuch
homotopy KKP : V1 × [0, 1]→ (V1)∗ via the instruction

(5.31)
〈KKP(t1, λ), s1〉 = 〈H(t0)Φ0, S

0Φ0〉+ 〈H(t1)Φ0, S
∠Φ0〉

+ λ〈H(t0)(eT
∠

− I)Φ0, S
0Φ0〉

for all t1, s1 ∈ V1 and λ ∈ [0, 1]. Here, the relation KKP(t1∗, λ) = 0 is the same as the
system [44, eqs. (90)–(91) and (93)].

14They call it the “β–nested equations”, β being the homotopy parameter.
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It is obvious that KKP is an admissible homotopy. However, it is unclear whether
it is faithful or not. In fact, KKP(t1∗∗, 0) = 0 is equivalent to the system

〈H(t0∗∗)Φ0, S
0Φ0〉 = 0,(5.32)

〈H(t0∗∗ + t∠∗∗)Φ0, S
∠Φ0〉 = 0,(5.33)

for all s1 ∈ V1. In other words, the usual SRCC equation A(t0∗∗) = 0, (5.32), is
augmented with an additional equation for t∠∗∗, (5.33), which, in turn, depends on
t0∗∗. It is not obvious at all that (5.33) has a solution t∠∗∗ for a given zero t0∗∗. The
extensive numerical evidence in [44] clearly indicates that (5.33) admits a solution in
various circumstances.

Before proving our existence result we recast the KP homotopy into a more con-
venient form, which we already encountered in (5.26).

Lemma 5.33. The following formula holds true:

(5.34) 〈KKP(t1, λ), s1〉 = 〈A(t0 + λt∠), s0〉+ 〈A(t1), s∠〉,

for all t1, s1 ∈ V1 and λ ∈ [0, 1].

Proof. It is enough to prove that

(5.35) 〈KKP(t1, λ), s1〉 = 〈e−T
0

HeT
0+λT∠

Φ0, S
0Φ0〉+ 〈e−T

1

HeT
1

Φ0, S
∠Φ0〉,

because (e−λT
∠

)†S0Φ0 = S0Φ0. To see (5.35), suppose that HeT 0+λT∠
Φ0 ∈ H1 and

note that in the expansion eT
0+λT∠

= eT
0

(I + λT∠ + λ2

2! (T∠)2 + . . .+ λN

N ! (T∠)N ) the
quadratic and higher-order terms do not contribute because the excitation rank of
H(T∠)kΦ0 exceeds ρ for k = 2, . . . , N , due to the fact that H is a two-body operator.

The case HeT 0+λT∠
Φ0 ∈ H−1 is obtained by density.

To formulate the existence result, note that because V1 is assumed to be finite-
dimensional, it is always possible to choose an α > 0 so that

(5.36) 〈(A′(t1∗) + αI)r1, r1〉 ≥ γα‖r1‖2V for all r1 ∈ V1,

for some γα > 0. This is also true in the complex case with a “Re” added to the
left-hand side.

Define the operator Θα : V→ V via15

(5.37) 〈A′(t1∗)u1,Θαv
1〉 = 〈(A′(t1∗) + αI)u1, v1〉 for all u1, v1 ∈ V1.

Then Θα is well-defined, as long as kerA′(t1∗) = {0}, i.e. that t1∗ is non-degenerate.

Theorem 5.34 (Existence for KP). Let t1∗ ∈ V1 be a non-degenerate zero of A.
Suppose the following.

(i) With θ0 = ‖Π0(Θα − I)Π0‖2L(V,V) and θ∠ = ‖Π0(Θα − I)Π∠‖2L(V,V), there
holds

η := (1−g)
γα − 1

2Mδ‖Θα‖L(V,V)δ

∆(t1∗) +Mδδ
−1

2
max{ε+2(1+ε−1)θ0, 2(1+ε−1)θ∠} >

1

2
,

for some ε > 0 and δ > 0. Here, α > 0 and γα > 0 satisfy (5.36) and
0 < g < 1 is such that |〈t0, t∠〉V| ≤ g‖t0‖V‖t∠‖V for all t1 ∈ V1.

15The authors learned this trick from [10, 9].



44 M. A. CSIRIK AND A. LAESTADIUS

(ii) With κ = ‖t∠∗ ‖V, there holds

(5.38) κ <
2
√
η −
√

2

2−
√

2 + 2
√
η
δ.

Let D = {t1∗ + r1 ∈ V1 : ‖r0‖2V + ‖r∠‖2V < 1
2 (δ − κ)2}. Then, for any λ ∈ [0, 1), there

exists t1∗∗(λ) ∈ D such that KKP(t1∗∗(λ), λ) = 0. Furthermore, deg(KKP(·, λ), D, 0) ≡
d 6= 0 for all λ ∈ [0, 1]. In particular, there exists t1∗∗ ∈ D such that A(t0∗∗) = 0.

Proof. We first prove that KKP(·, λ) 6= 0 on ∂D for all λ ∈ [0, 1]. Set t1 = t1∗ + r1

and s1 = Θαr
1 in (5.34) where r1 ∈ ∂D, and write

〈KKP(t1∗ + r1, λ),Θαr
1〉 = 〈A(t0∗ + r0 + λt∠∗ + λr∠),Π0Θαr

1〉+ 〈A(t1∗ + r1),Π∠Θαr
1〉

= 〈A(t0∗ + λt∠∗ + r0 + λr∠)−A(t1∗ + r1),Π0Θαr
1〉+ 〈A(t1∗ + r1),Θαr

1〉
=: (I) + (II).

For (I), Taylor expansion around t1∗ leads to

(I) = (λ− 1)〈A′(t1∗)(t∠∗ + r∠),Π0Θαr
1〉

+ 〈R2(t1∗, (λ− 1)t∠∗ + r0 + λr∠)−R2(t1∗, r
1),Π0Θαr

1〉
≥ (λ− 1)〈A′(t1∗)(t∠∗ + r∠),Π0Θαr

1〉 −M‖t∠∗ + r∠‖‖Π0Θαr
1‖

≥ −(∆(t1∗) +M)‖t∠∗ + r∠‖V‖Π0Θαr
1‖V,

where we used the intermediate value inequality. Here, letting Ψ0 ∈ V0 correspond
to the amplitude Π0Θαr

1,

〈A′(t1∗)(t∠∗ + r∠),Π0Θαr
1〉 = 〈(H(t1∗)− ECC(t1∗))(T

∠
∗ +R∠)Φ0,Ψ

0〉
= 〈H(t1∗)(T

∠
∗ +R∠)Φ0,Ψ

0〉
= 〈(H+ [H, T 1

∗ ] + . . .)(T∠
∗ +R∠)Φ0,Ψ

0〉
≤ ∆(t1∗)‖t∠∗ + r∠‖V‖Π0Θαr

1‖V,

where the first equality is (5.11), and in the last inequality we exploited that H
decreases the excitation rank at most by 2 (so that the single amplitudes (t1∗)1 of t1∗
only contribute). Also, the following estimate was used,

M = max
ξ∈[(λ−1)t∠∗ +r0+λr∠,r1]

‖∂2R2(t1∗, ξ)‖L(V,V∗)

= max
ξ∈[(λ−1)t∠∗ +r0+λr∠,r1]

‖A′(t∗ + ξ)−A′(t∗)‖L(V,V∗)

≤ max
ξ∈[(λ−1)t∠∗ +r0+λr∠,r1]

‖ξ‖V max
ζ∈[0,ξ]

‖A′′(t1∗ + ζ)‖L(V×V,V∗)

≤Mδ max
ξ∈[(λ−1)t∠∗ +r0+λr∠,r1]

‖ξ‖V ≤Mδ(‖r0‖V + ‖r∠‖V + κ) ≤Mδδ.

For (II), we have using (5.36), (5.37) and Taylor’s theorem,

(II) = 〈A′(t1∗)r1,Θαr
1〉 − 〈R2(t1∗, r

1),Θαr
1〉 ≥ γα‖r1‖2V − 1

2Mδ‖r1‖2V‖Θαr
1‖V

≥ (γα − 1
2Mδ‖Θα‖L(V,V)‖r1‖V)‖r1‖2V ≥ (γα − 1

2Mδ‖Θα‖L(V,V)δ)‖r1‖2V.
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In summary, using the definitions of θ0 and θ∠, and setting γ̃ = γα− 1
2Mδ‖Θα‖L(V,V)δ,

〈KKP(t1∗ + r1, λ),Θαr
1〉

≥ γ̃‖r1‖2V − (∆(t1∗) +Mδδ)‖t∠∗ + r∠‖V‖Π0Θαr
1‖V

≥ γ̃‖r1‖2V −
∆(t1∗) +Mδδ

2
(‖t∠∗ + r∠‖2V + ‖Π0Θαr

1‖2V)

≥ (1− g)γ̃(‖r0‖2V + ‖r∠‖2V)− ∆(t1∗) +Mδδ

2

(
κ2 + 2κ‖r∠‖V + ‖r∠‖2V + ‖Π0Θαr

1‖2V
)

≥
(

(1− g)γ̃ − ∆(t1∗) +Mδδ

2

(
1 + max{ε+ 2(1 + ε−1)θ0, 2(1 + ε−1)θ∠}

))
× (‖r0‖2V + ‖r∠‖2V)− ∆(t1∗) +Mδδ

2
(κ2 +

√
2κ(δ − κ))

≥
(

(1− g)γ̃ − ∆(t1∗) +Mδδ

2
max{ε+ 2(1 + ε−1)θ0, 2(1 + ε−1)θ∠}

)
(δ − κ)2

2

− ∆(t1∗) +Mδδ

2

(
κ +

√
2

2
(δ − κ)

)2

.

The positivity of the last expression follows from (5.38). We also used the bound

‖r∠‖2V + ‖Π0Θαr
1‖2V ≤ (1 + ε−1)‖Π0(Θα − I)r1‖2V + (1 + ε)‖r0‖2V + ‖r∠‖2V

≤ 2(1 + ε−1)(‖Π0(Θα − I)Π0‖2L(V,V)‖r
0‖2V + ‖Π0(Θα − I)Π∠‖2L(V,V)‖r

∠‖2V)

+ (1 + ε)‖r0‖2V + ‖r∠‖2V
≤ (1 + max{ε+ 2(1 + ε−1)θ0, 2(1 + ε−1)θ∠})(‖r0‖2V + ‖r∠‖2V).

We now apply the homotopy invariance of the degree to get deg(KKP(·, λ), D, 0) ≡
d 6= 0 for all λ ∈ [0, 1], with δ decreased if necessary.

Remark 5.35.
(i) A crucial difference between the linear homotopy and the KP homotopy is

that while the decomposition used for KL is V-orthogonal, the decomposition
for KKP is `2-orthogonal—the computation (5.30) and Lemma 5.33 exploit
this heavily. Nevertheless, we used the V-inner product in the existence result
for KKP. This geometric discrepancy is reflected in condition (i) above.

(ii) Using the Cauchy–Schwarz inequality it is clear that |〈t0, t∠〉V| < ‖t0‖V‖t∠‖V
for all t1 ∈ V1, due to the fact that V1 = V0 ⊕ V∠. The maximum of the
function t1 7→ 〈t0, t∠〉V is attained on ‖t0‖V = 1, ‖t∠‖V = 1 and this maximum
may be taken as the 0 < g < 1 of condition (i).

(iii) In the coercive case, i.e. when (5.36) holds with α = 0, we have Θ0 = I, so
that θ0 = θ∠ = 0. Letting ε→ 0, condition (i) simplifies to

η =
(1− g)(γ0 − 1

2Mδδ)

∆(t1∗) +Mδδ
>

1

2
.

This last condition in turn reduces to γ0 > Mδδ as g and ∆(t∗) approaches
zero.

(iv) It is interesting to note that while the linear homotopy KL involves the “tar-
geted” solution t1∗, the KP homotopy KKP does not. In this sense, KKP is
“universal”.
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(v) The result is straightforward to extend to the complex case.
(vi) A careful inspection of the proof shows that the result can be generalized

to the case when V1 = V0 ⊕ V∠ is an arbitrary `2-orthogonal direct sum
decomposition as long as the homotopy KKP is defined via (5.34) (cf. (5.26)).
In this more general case, ∆(t1∗) is given by a more complicated expression.

The constant ∆(t1∗) also deserves some explanation. Roughly speaking, the “de-
fect” ∆(t1∗) measures how much the subspace V0 ⊂ V deviates from being an invariant

subspace of the operator (H+[(T 1
∗ )†1,H])V : V→ V. In addition, we can invoke (5.3)

to write

∆(t1∗) = sup
‖u0‖V=1

‖v∠‖V=1

|〈(W + [(T 1
∗ )†1,W])U0Φ0, V

∠Φ0〉|.

Note that the term [(T 1
∗ )†1,W] can be eliminated via orbital rotations (since (t1∗)1 = 0

can be achieved according to the Thouless theorem), as it involves single excitations
only, in which case the amplitude dependence of ∆ is removed. Hence, ∆ quantifies
how much the operator WV leaves V0 invariant.

We summarize the above existence result in the corollary below that holds under
the following structural assumptions.

Assumption (KPA). ∆(t1∗) can be made sufficiently small by an appropriate choice
of the orbital basis and truncation level 1 ≤ ρ < N .

Assumption (KPB). There is a δ0 > 0 such that Mδ0 is sufficiently small.

Corollary 5.36. Suppose that t1∗ ∈ V1 is a non-degenerate zero of A and that
Assumptions (KPA) and (KPB) hold. If ‖t∠∗ ‖V is sufficiently small, then there exists
t1∗∗ ∈ V1 in a neigborhood of t1∗ such that KKP(t1∗∗, 0) = 0.

Remark 5.37. Recall that Mδ only involves the second derivative A′′ near t1∗ (see
(5.15)), so that (KPB) can be viewed as a “perturbative” assumption. Further, as
we noted in Remark 5.9, Mδ involves the mapping ζ 7→ [[W(t1∗ + ζ), ·], ·]Φ0. There-
fore, (KPB) may be viewed as the higher-order generalization of assumption on the
smallness of the local Lipschitz constant of the mapping ζ 7→ W(t1∗ + ζ)Φ0 in [51,
Assumption BII] (see also Remark 5.41 (v)).

In the last step of the proof of Theorem 5.34, we could have invoked Theorem 5.28
instead to obtain the existence of a connected component C of the zero set Z(KKP),
such that C ∩ (Z(KKP))j 6= ∅ for j = 0, 1. Under the above assumptions, this provides
a theoretical basis for the “solution trajectories” observed in [44]. Further, combining
Theorem 5.34 with (5.29), we get for t1∗∗ = t1∗∗(0),∑

t1∗∗∈C∩(Z(KKP))0

i(KKP(·, 0), t1∗∗) = i(A, t1∗).

Since we do not have uniqueness for t1∗∗ in this case, it is possible that the left-hand side
may contain multiple terms which sum up to i(A, t1∗). In particular, i(KKP(·, 0), t1∗∗)
does not need to be i(A, t1∗).

To close this section, we calculate the topological index for a non-degenerate zero
at the λ = 0 endpoint of the KP homotopy. Note that the index at λ = 1 is simply
given by Theorem 5.13 and Theorem 5.18.
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Fix t1 ∈ V1 and define the operator Ĥ(t1) (not to be confused with (5.10) in a
different context),

(5.39) Ĥ(t1) = H(t1)−
∑

α∈Ξ(G0)

〈H(t1)Φ0,Φα〉Xα.

Notice that 〈Ĥ(t1)Φ0, S
0Φ0〉 = 0 for all s0 ∈ V0. Define the linear mapping ĤV0,V∠(t1) :

V0 → V∠ via 〈ĤV0,V∠(t1)Ψ,Ψ′〉 = 〈Ĥ(t1)Ψ,Ψ′〉 for all Ψ ∈ V0 and Ψ′ ∈ V∠. We
first calculate the derivative of KKP(·, 0).

Lemma 5.38. The derivative ∂1KKP(t1∗∗, 0) : V1 → (V1)∗ of KKP(·, 0) at a zero
t1∗∗ is given by

〈∂1KKP(t1∗, 0)u1, v1〉 =〈(HV0(t0∗∗)− ECC(t0∗∗) 0

ĤV0,V∠(t1∗∗) ĤV∠(t1∗∗)− ECC(t1∗∗)

)(
U0Φ0

U∠Φ0

)
,

(
V 0Φ0

V ∠Φ0

)〉
for all u1, v1 ∈ V1.

Proof. A calculation analogous to the one in the proof of Lemma 5.6 shows that
D(t1) := ∂1KKP(t1, 0) : V1 → (V1)∗ is given by

(5.40)
〈D(t1)u1, v1〉 = 〈[H(t0), U0]Φ0, V

0Φ0〉+ 〈[H(t1), U1]Φ0, V
∠Φ0〉

=: D1(t1) +D2(t1)

for all t1, u1, v1 ∈ V1. We set t1 = t1∗∗ and evaluate D1 and D2. Write

(U0)†V 0Φ0 =
∑

α∈Ξ(G1)∪{0}

〈U0Φα, V
0Φ0〉Φα,

from which,

〈U0H(t0∗∗)Φ0, V
0Φ0〉 = 〈H(t0∗∗)Φ0, (U

0)†V 0Φ0〉

=

( ∑
α∈Ξ(G0)

+
∑

α∈Ξ(G0)c

)
〈H(t0∗∗)Φ0,Φα〉〈U0Φα, V

0Φ0〉+ ECC(t0∗∗)〈U0Φ0, V
0Φ0〉.

Here, the first sum vanishes because of (5.32) and the second by the orthogonality of
V0 and V∠. Consequently,

D1(t1∗∗) = 〈(H(t0∗∗)− ECC(t0∗∗))U
0Φ0, V

0Φ0〉.

Analogously, (5.33) implies that

〈U∠H(t1∗∗)Φ0, V
∠Φ0〉 =

∑
α∈Ξ(G0)

〈H(t1∗∗)Φ0,Φα〉〈XαU
∠Φ0, V

∠Φ0〉

+ ECC(t1∗∗)〈U∠Φ0, V
∠Φ0〉,

and
〈U0H(t1∗∗)Φ0, V

∠Φ0〉 =
∑

α∈Ξ(G0)

〈H(t1∗∗)Φ0,Φα〉〈XαU
0Φ0, V

∠Φ0〉.

Thus,

D2(t1∗∗) = 〈(Ĥ(t1∗∗)− ECC(t1∗∗))U
∠Φ0, V

∠Φ0〉+ 〈Ĥ(t1∗∗)U
0Φ0, V

∠Φ0〉,

and the stated expression now follows.
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The preceding Lemma implies the index formula for the KP homotopy.

Theorem 5.39 (Index formula for KP – non-degenerate case). Suppose that
t1∗∗ ∈ V1 is a zero of KKP(·, 0). Then t1∗∗ is non-degenerate if and only if the conditions

(I) ECC(t0∗∗) 6∈ σ(HV0(t0∗∗)),

(II) ECC(t1∗∗) 6∈ σ(ĤV∠(t1∗∗))
both hold true, and in this case the topological index of KKP(·, 0) at t1∗∗ is given by

i(KKP(·, 0), t1∗∗) = (−1)ν
0+ν∠

,

where

ν0 = |{j : Ej(HV0(t0∗∗)) ∈ R, Ej(HV0(t0∗∗)) < ECC(t0∗∗)}|,

ν∠ = |{j : Ej(ĤV∠(t1∗∗)) ∈ R, Ej(ĤV∠(t1∗∗)) < ECC(t1∗∗)}|.

Proof. The proof follows from Lemma 5.38 along similar lines as Theorem 5.13,

i(KKP(·, 0), t1∗∗) = sgn
∏
j≥0

(Ej(HV0(t0∗∗))− ECC(t0∗∗))

× sgn
∏
j≥0

(Ej(ĤV∠(t1∗∗))− ECC(t1∗∗)).

5.6. An energy error estimate. In this this section we derive an energy error
estimate for general eigenstates for the KP homotopy using the results of Appendix D.

Theorem 5.40 (Energy error estimate). Let V1 = V(Gfull) and suppose that t1∗ ∈
V1 is a zero of A, and that t1∗∗ ∈ V1 is a zero of KKP(·, 0) = 0. If the nonorthogonality

condition 〈eT 0
∗∗Φ0, e

T 1
∗Φ0〉 6= 0 holds true, then

(5.41) |ECC(t1∗∗)− ECC(t1∗)| ≤ C(t0∗∗, t
1
∗∗)‖t∠∗∗‖V,

where C(t0∗∗, t
1
∗∗) ≥ 0 is given by

C(t0∗∗, t
1
∗∗) = (C2 +M)

‖ΠV∠(eT
0
∗∗)†ΠV∠eT

1
∗Φ0‖H1

|〈eT 0
∗∗Φ0, eT

1
∗Φ0〉|

and is independent of t∠∗∗. Here, C is the norm equivalence constant from Remark 3.29
and M = maxξ∈[t0∗∗,t

1
∗∗]
‖u1 7→ ΠV∠ [W(ξ), U1]‖L(V,H−1).

Proof. Setting Ψ = eT
1
∗Φ0 and λ = 0 in Theorem D.1 (II), we have

(5.42) |ECC(t1∗∗)− ECC(t1∗)| =
|〈(H(t1∗∗)−H(t0∗∗))Φ0,ΠV∠(eT

0
∗∗)†ΠV∠eT

1
∗Φ0〉|

|〈eT 0
∗∗Φ0, eT

1
∗Φ0〉|

.

Note that using (5.3) we may write

(H(t1∗∗)−H(t0∗∗))Φ0 = [F , T∠
∗∗]Φ0 + (W(t1∗∗)−W(t0∗∗))Φ0

=
∑

γ∈Ξ(G∠)

εγ(t∠∗∗)γΦγ + (W(t1∗∗)−W(t0∗∗))Φ0.
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Hence, we can bound the numerator of the right-hand side of (5.42) as∣∣∣ ∑
γ∈Ξ(G∠)

εγ(t∠∗∗)γ〈Φγ ,ΠV∠(eT
0
∗∗)†ΠV∠eT

1
∗Φ0〉

∣∣∣
+
∣∣∣〈(W(t1∗∗)−W(t0∗∗))Φ0,ΠV∠(eT

0
∗∗)†ΠV∠eT

1
∗Φ0〉

∣∣∣.
Using the Cauchy–Schwarz inequality, the first term may be further bounded as∑

γ∈Ξ(G∠)

εγ(t∠∗∗)γ〈Φγ ,ΠV∠(eT
0
∗∗)†ΠV∠eT

1
∗Φ0〉 ≤

∣∣∣∣∣∣t∠∗∗∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ΠV∠(eT
0
∗∗)†ΠV∠eT

1
∗Φ0

∣∣∣∣∣∣∣∣∣,
where the norm |||·||| was defined in Remark 3.29. For the second term, we use the
intermediate value inequality to obtain the bound

M‖t∠∗∗‖V‖ΠV∠(eT
0
∗∗)†ΠV∠eT

1
∗Φ0‖H1 .

Remark 5.41.
(i) If the nonorthogonality condition holds and t∠∗∗ = 0, then according to (5.32)-

(5.33), t0∗∗ is an FCC solution such that 〈eT 0
∗∗Φ0, e

T 1
∗Φ0〉 6= 0. In this case,

(5.41) implies that the energy error is zero: ECC(t0∗∗) = ECC(t1∗).
(ii) In the practically relevant case ρ ≥ 2, using (D.1), we have that ECC(t1∗∗) =
ECC(t0∗∗) so the left-hand side of (5.41) does not involve t∠∗∗ at all.

(iii) The appearance of the quantity ‖t∠∗∗‖V allows us to view the auxiliary equation
(5.33) as providing an a posteriori error estimate.

(iv) If the nonorthogonality condition does not hold, i.e. 〈eT 0
∗∗Φ0, e

T 1
∗Φ0〉 = 0,

then eT
0
∗∗Φ0 and eT

1
∗Φ0 represent different eigenstates if t1∗ is assumed to be

non-degenerate. While eT
0
∗∗Φ0 itself does not satisfy the Schrödinger equation,

it must be viewed as an approximation to an eigenstate different from eT
1
∗Φ0.

(v) Note that a local Lipschitz assumption (on a ball including t1∗∗ and t0∗∗) with
constant L on the mapping t 7→ W(t)Φ0 can be used to obtain the result of the
theorem with M replaced by L. Such an assumption is akin to Assumption
B.II in [51] where it is used for guaranteeing the local strong monotonicity of
the CC mapping.

6. Conclusions and further work. In the first half of the paper we proposed a
framework to describe the discretization scheme involved in CC-like methods. At the
core of the description is the concept of the excitation graph (Definition 3.4), which
completely determines all necessary building blocks such as excitation operators (sub-
section 3.3), cluster operators (subsection 3.4) and amplitude spaces (subsection 3.5).
The excitation graph concept admits a straightforward extension to the multirefer-
ence case (Definition 3.14). Another advantage of our approach is that it avoids the
use of second-quantized formalism and hence allowed us to prove the basic results
(such as Theorem 3.17 and Theorem 3.21) in a more transparent manner. Besides
these, we also pointed out a number of structural properties of the excitation graph in
subsection 3.2. It is important to note that some of these graph-theoretic properties
are reflected in the algebraic structure of the excitation operators (Theorem 3.16 and
Theorem 3.23). Some relevant combinatorial quantities have been calculated in Ap-
pendix B. Furthermore, we proposed an algorithm to determine the reference states
in an optimal fashion for the multirefence case in Appendix C.
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In section 4, we provided rigorous derivations of both the single-reference- (sub-
section 4.1), and a multireference (subsection 4.2) CC method. The derivations used a
general theorem (Theorem 4.1) motivated by a known method based on perturbation
theory.

The rest of the paper was concerned with the analysis of the SRCC method. We
began with the definitions and elementary considerations in subsection 5.1. Then
we considered the local properties of the SRCC mapping in subsection 5.2, mainly
in the finite-dimensional case. It turned out that the topological index of the CC
mapping (Theorem 5.13) is connected with the nonvariational property of the CC
method (Remark 5.16), and the eigenvalues of the Fock operator (Proposition 5.17).
In the degenerate case, the classic Leray reduction formula provided the topological
index (Theorem 5.18). We also discussed the case when the cluster amplitudes are
allowed to be complex in subsection 5.3.

In subsection 5.4, we discussed how certain homotopies can be used to analyze
the CC method, in particular to prove the existence of a truncated CC solution
through the use of topological degree theory. This was done using an idea well-known
both in nonlinear analysis and in quantum chemistry: that an appropriate homotopy
“connects” the truncated problem with the exact problem (essentially the Schrödinger
equation), therefore one is able to infer (homotopy-invariant) information regarding
the former problem from the latter. As an introductory example, we considered the
linear homotopy (Theorem 5.31).

Next, in subsection 5.5, motivated by the works of the chemists Kowalski and
Piecuch, we considered a homotopy that connects CC mappings corresponding to
different truncation levels. Using this, we proved an existence result for the said
homotopy (Theorem 5.34), which also implies the existence of a truncated CC solution
under certain assumptions. The index formula for the KP homotopy was also derived
in the non-degenerate case (Theorem 5.39). Using an known result about the KP
homotopy (Appendix D), we also derived an energy error estimate in subsection 5.6.

Finally, let us discuss some possible directions of research. Clearly, it would be
interesting to extend our analysis to the infinite-dimensional case. An obvious next
step would be the analysis of the JM-MRCC method (see subsection 4.2). It would be
also interesting to look at the Extended CC (ECC) [33] and the Unitary CC (UCC)
methods [5].

7. Acknowledgements. The authors would like to thank Fabian M. Faulstich
and Simen Kvaal for helpful discussions and comments on the manuscript.

Appendix A. Topological degree.
In this appendix, we state a few results about the topological degree. The stan-

dard textbooks on the topic are [13, 60, 42].
The following result says the degree is stable under (almost all) small perturba-

tions of the right-hand side of A(u) = 0, and that the degree provides a lower bound
for the number of solutions of the perturbed equation.

Theorem A.1. [13, Corollary 7.4] Let D ⊂ Rn be a bounded open set and let
A : D → Rn be a C1 mapping. If z 6∈ A(∂D), then there is a δ > 0 such that if
z′ ∈ B(z, δ) r E, then

deg(A, D, z) = deg(A, D, z′),

where E = {w ∈ B(z, δ) : detA′(u) 6= 0, A(u) = w} is the set of critical values of
A in B(z, δ). Furthermore, A−1(z′) consists of a finite number m of points, where
|deg(A, D, z)| ≤ m and m ≡ deg(A, D, z) (mod 2).
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The proof is based on Sard’s theorem, which says that E has n-dimensional Lebesgue
measure zero.

Theorem A.2. Let L : X → Z be a linear mapping with kerL 6= {0} and let Q
be a projector with kerQ = ranL. Also, let N : D × [0, 1] → Z be continuous, with
D ⊂ X open and bounded. Furthermore, assume the following hold true.

(i) Lu+ λN (u, λ) 6= 0 for all u ∈ ∂D and λ ∈ (0, 1].
(ii) QN (u, 0) 6= 0 for each u ∈ ∂D.

Then

deg(L+N (·, 1), D, 0) = i(L+Q) deg(QN (·, 0)|kerL, D ∩ kerL, 0).

Proof. We adapt the the proof of [14, Theorem 2.2.3]. Define the homotopy

A(u, λ) = Lu+ (1− λ)QN (u, λ) + λN (u, λ).

Fix λ ∈ (0, 1]. Projecting the equation A(u, λ) = 0 with Q and I − Q (i.e. onto the
complementary spaces ranQ and ran(I−Q) = kerQ = ranL), we get that A(u, λ) = 0
is equivalent to the system QN (u, λ) = 0, Lu + λ(I − Q)N (u, λ) = 0. But this is
equivalent to Lu+ λN (u, λ) = 0. By assumption (i), A(u, λ) 6= 0 for all u ∈ ∂D and
λ ∈ (0, 1]. Further, A(u, 0) = 0 is equivalent to the system u ∈ kerL, QN (u, 0) = 0,
hence by assumption (ii), A(u, 0) 6= 0 for all u ∈ ∂D. Using the homotopy invariance
and Leray’s second reduction formula with V = kerL, J = I and r = N (·, 1), we get

deg(A(·, 1), D, 0) = deg(A(·, 0), D, 0) = i(L+Q, 0) deg(QN (·, 0)|kerL, D ∩ kerL, 0),

which finishes the proof.

Next, we consider the complex case.

Definition A.3. Let U ⊂ Cn be open. A complex mapping A : U → Cn is said
to be holomorphic at a ∈ Cn if there is a C-linear mapping La : Cn → Cn and a
mapping ra : U r {a} → Cn with ra = o(1), such that

A(a+ h) = A(a) + Lah+ ra(a+ h)

for all h ∈ C such that a + h ∈ U . In this case, La = A′(a), where A′(a)h =
h1∂z1A(a) + . . .+ hn∂znA(a) and ∂zkA(a) denotes the kth complex partial derivative
of A at a.

We now remind the reader of some elementary linear algebra [46]. Every complex
vector space V is also vector space over R. This space will be denoted as VR and
called the realification of V . The realification of a linear operator A : V → W
over C is the linear map AR : VR → WR. If {e1, . . . , en} is a basis in V , then
{e1, . . . , en, ie1, . . . , ien} is a basis in VR. Further, if {e′1, . . . , e′m} is a basis in W , and
A = B+ iC with some real matrices B and C, then the matrix of AR with respect to
the bases {e1, . . . , en, ie1, . . . , ien} and {e′1, . . . , e′n, ie′1, . . . , ie′n} is(

B −C
C B

)
.

The determinant of the realification AR obeys the following important rule:

(A.1) detAR = |detA|2.
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This motivates that we define the realification of a mapping A : U → Cn with
A = (A1, . . . ,An) as AR : U → R2n via

AR(x, y) = (ReA1(z), ImA1(z), . . . ,ReAn(z), ImAn(z)),

where x = (x1, . . . , xn), y = (y1, . . . , yn) and z = x + iy. Notice that we do not
explicitly denote the realification of the set U .

Definition A.4. Let U ⊂ Cn be open, A : U → Cn be a holomorphic mapping
and D ⊂ U a domain. The degree ofA in D is defined as the degree of the realification,
deg(A, D, z) := deg(AR, D, z).

It can be proved using (A.1), that if A : U → Cn is holomorphic, then

detA′R(x, y) = |detA′(z)|2

for all z ∈ U . This innocent-looking identity has striking consequences, see [14,
Section 7.2.3].

Further in the holomorphic case, Theorem A.1 can sharpened as follows.

Theorem A.5. Let A : D → Cn be a holomorphic mapping and D ⊂ Cn bounded
and open. If z 6∈ A(∂D), then there is a δ > 0 such that if z′ ∈ B(z, δ) r E, then

deg(A, D, z) = deg(A, D, z′),

where E = {w ∈ B(z, δ) : detA′(u) 6= 0, A(u) = w} is the set of critical values of
A in B(z, δ). Furthermore, A−1(z′) consists of a finite number m of points, where
m = deg(A, D, z).

Proof. From Theorem A.1, we have deg(A, D, z) ≤ m and the converse inequality
m ≤ deg(A, D, z′) = deg(A, D, z) follows from [14, Theorem 7.2.2].

The following result is concerned with holomorphic extensions.

Theorem A.6. [59, Theorem 45.] Let A : Rn → Rn be a real analytic mapping

that can be extended to a holomorphic mapping Ã : Cn → Cn. Let D ⊂ Rn be an
open bounded set such that 0 6∈ A(∂D). Let

Dε = {x ∈ Cn : Rex ∈ D, | Imx| < ε}.

Then, for sufficiently small ε > 0,

|deg(A, D, 0)| ≤ deg(Ã, Dε, 0), deg(A, D, 0) = deg(Ã, Dε, 0) mod 2.

Appendix B. Properties of the excitation graph.
Here, we restrict ourselves to the single-reference case (M = 1) and drop the

subscript m’s from the notation. Recall that K denotes the cardinality of the orbital
set Λ. Given γ ∈ L, we introduce the set of paths of length n from 0 to γ in G,

Pn(γ) = {α ∈ L× . . .× L : there is a path 0→ γ in G having edges α}.

The following theorem sheds light on the combinatorial structure of the excitation
graph.

Theorem B.1. Let Gfull = (L,Efull) be the full SR excitation graph with K or-
bitals and 2N ≤ K particles. Then the following formulas hold true.

(i) The number of vertices in G is given by |L| =
(
K
N

)
.
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(ii) The number of vertices of rank r is |L(r)| =
(
N
r

)(
K−N
r

)
.

(iii) There are no edges in Efull entirely inside L(r), and the number of edges from
L(r) to L(r + s) is given by

|E(r, r + s)| =
(
K −N
r

)(
K −N − r

s

)(
N

s+ r

)(
s+ r

r

)
,

for all r = 0, 1, . . . , N and s = 0, . . . , N − r, and |E(r, r + s)| = 0 if s = N −
r+ 1, . . . , N . Furthermore, the symmetry property |E(r, r+ s)| = |E(s, r+ s)|
holds true.

(iv) The total number of edges is given by

|Efull| =
N∑
r=1

(
N

r

)(
K −N
r

)(
K − 2r

N − r

)
.

(v) The number of directed paths of length n ≤ r = rk(γ) from 0 to γ is given by
|Pn(γ)| = p(r, n), where

(B.1) p(r, n) =
∑

r1+...+rn=r
r1,...,rn≥1

(
r!

r1! · · · rn!

)2

.

Proof. (i) is trivial, so is (ii). As for (iii), we enumerate the pairs (α, β) in Efull

as follows. Fix α with rk(α) = r, then β must satisfy r + s ≤ N , where rk(β) = s, so
that |α∪β| = N is possible. In β, we must choose the missing internal letters from α
and there are r of them. For the remaining N − s− r elements, we may choose freely:
there are

(
N−r
N−s−r

)
possibilities to do this. Next, β must be disjoint from α, so there

are M −N −r letters to choose from, giving
(
M−N−r

s

)
possibilities. Multiplying these

independent choices by the number of ways α can be chosen for fixed r, we get

(B.2)

(
N

r

)(
M −N

r

)(
N − r

N − s− r

)(
M −N − r

s

)
for s = 1, . . . , N − r. This can be rewritten using the formula

(
n
h

)(
n−h
k

)
=
(
n
k

)(
n−k
h

)
as (

M −N
r

)(
M −N − r

s

)(
N

s+ r

)(
s+ r

r

)
.

Using the aforementioned formula for the first two factors, we also get the desired
symmetry property.

Next, to derive (iv) we sum up (B.2),

|Efull| =
N∑
r=0

N−r∑
s=1

(
N

r

)(
M −N

r

)(
N − r

N − s− r

)(
M −N − r

s

)
.

Using Vandermonde’s identity,

N−r∑
s=1

(
N − r

N − s− r

)(
M −N − r

s

)
=

(
M − 2r

N − r

)
− 1,

we get

|Efull| =
N∑
r=1

(
N

r

)(
M −N

r

)(
M − 2r

N − r

)
,
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where we used Vandermonde’s identity once more.
Next, we prove (v). We need to change 0 into γ in n steps (edges). Suppose that

the rank-increment of each step is r1, . . . , rn, and are such that r1 + . . .+ rn = r. In
the kth step we replace letters (α1, . . . , αrk) with (β1, . . . , βrk). These choices can be
done independently, so there are r!2 possibilities. However, the order of the α’s and
β’s is irrelevant in each step so we have to divide by (r1! · · · rn!)2. Summing over all
r1, . . . , rn gives the stated formula.

Remark B.2.
(i) It follows that the vertex density per rank is hypergeometric,

(B.3) νr =

(
N
r

)(
K−N

M−N−r
)(

K
N

) , where r = 0, 1, . . . , N.

Therefore, its mean is N
K (K −N) and its variance is (K−N)2N2

(K−1)K2 .

(ii) The formula (B.1) implies that |Pn(γ)| is independent of N and M and is
constant for all γ of fixed rank r.

(iii) If S truncation is in effect, we have pS(r, n) = r!2 if r = n and 0 otherwise.
(iv) For the SD truncation, note that the number of (r1, . . . , rn) tuples with rj ∈

{1, 2}, r1 + . . . + rn = r and |{j : rj = 2}| = k is given by
(
n
k

)
if r = n + k

and 0 otherwise. Therefore,

pSD(r, n) =
r!2

4r−n

(
n

r − n

)
.

(v) According to the proof of [50, Lemma 4.4.],

|{β ∈ L : β � α}| =
r−1∑
s=1

(
r

s

)(
r − 1

r − s

)
,

where r = rk(α).

Appendix C. Optimal choice of multireference determinants.
In this appendix, we describe an algorithm that can be used to automatically

determine an optimal set of multireference determinants. Let J ∈ N and let

{γ1, . . . , γJ} ⊂ S

be a fixed set of determinants. Also, fix an excitation rank truncation, e.g. S, SD,
SDT, etc. We want to select a minimal set of reference elements Ω = {01, . . . , 0M},
so that each γj is reachable through a direct S, SD, SDT, etc. excitation from Ω, this
is called “first-order interaction space” in MRCC theory.

Recall that each α ∈ 2Λ can be represented as a binary characteristic vector
−→α ∈ {0, 1}K such that

−→α t =

{
1 t ∈ α
0 t 6∈ α

The set {0, 1}K endowed with the Hamming metric

dH(−→α ,
−→
β ) = |{t : −→α t 6=

−→
β t, t = 1, . . . ,K}|



COUPLED-CLUSTER THEORY 55

is a complete metric space, called the Hamming space. The closed balls and the
spheres in this space are denoted as BH(−→α ,R) and SH(−→α ,R). Using this language,

S is simply SH(
−→
0 , N), where

−→
0 = (0, . . . , 0).16 Further,

rkm(α) =
1

2
dH(
−→
0m,
−→α )

for any m = 1, . . . ,M . Notice that dH(−→α ,
−→
β ) ≥ 2 for distinct −→α ,

−→
β ∈ SH(

−→
0 , N).

This way, our optimization problem may be formulated as a covering problem in
Hamming space. Let ρ denote the excitation rank truncation, e.g. ρ = 1, 2, 3, . . . for

S, SD, SDT, etc. Fix J ∈ N and Γ = {−→γ 1, . . . ,
−→γ J} ⊂ SH(

−→
0 , N). We need to find

a minimal set of Hamming balls {BH(
−→
0m, 2ρ) : m = 1, . . . ,M} with

−→
0m ∈ SH(

−→
0 , N)

such that

Γ ⊂
M⋃
m=1

BH(
−→
0m, 2ρ) ∩ SH(

−→
0 , N).

Obviously,
−→
0m ∈ Γ2ρ, where

Γ2ρ =

J⋃
j=1

BH(−→γj , 2ρ) ∩ SH(
−→
0 , N).

In other words, it is sufficient to look for the
−→
0m’s in the much smaller set Γ2ρ.

Let n = |Γ2ρ|, and introduce some indexing in Γ2ρ, say Γ2ρ = {−→α 1, . . . ,
−→α n}. The

geometric form of the covering problem may be rephrased as a binary integer linear
program (BILP) [53],

n∑
ν=1

cνxν → min!∑
−→γ j∈BH(−→α ν ,2ρ)

1≤ν≤n

xν ≥ 1, j = 1, . . . , J

x ∈ {0, 1}n


where c ∈ Qn is a given rational cost vector.

Remark C.1. If cν = 0 for some ν, then we will automatically have xν = 1 in the
solution, even if BH(−→α ν , 2ρ) does not cover. On the other hand, assigning a larger
(resp. infinite) cost cν will likely (resp. surely) end up xν = 0 in the solution.

The above problem is called a “multidimensional knapsack problem” in the opti-
mization community, which seems to be extensively studied. However, we just naively
solve the BILP using general ILP methods available in Mathematica. In our experi-
ence, the BILP can be built up and solved in a small amount of time for practically
relevant parameters N , K and J , even on an older machine.

The reason for the apparent efficiency might be that the number of variables n
in the the BILP above is significantly less then |S| =

(
K
N

)
. In fact, using the binary

entropy function H(x) = −x log2 x− (1− x) log2(1− x), we have the rough estimate

n

|S|
≤ J |BH(

−→
0 , 2ρ)|

|BH(
−→
0 , N)|

≤ J
√

8Kλ′(1− λ′)2−K(H(λ′)−H(λ)),

16We warn the reader that the notation
−→
0m for the vector representation of 0m is slightly colliding

with
−→
0 , the actual zero vector for the Hamming space.
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where λ = 2ρ/K and λ′ = N/K valid for 0 < λ, λ′ < 1
2 [12, Lemma 2.4.4]. Notice

that H(λ′) ≥ H(λ), so n/|S| → 0 as K →∞.

Appendix D. A short proof of the Kowalski–Piecuch theorem. To
close this section, we present the main theorem17 of Kowalski and Piecuch [44] in a
somewhat different form. Define the KP energy as

EKP(t1, λ) = 〈H(t0 + λt∠)Φ0,Φ0〉 = 〈HeT
0+λT∠

Φ0,Φ0〉,

so that EKP(t1, 0) = ECC(t0) and EKP(t1, 1) = ECC(t1). If ρ ≥ 2, then according
to (2.13), we simply have

(D.1) EKP(t1, λ) = 〈H(t0)Φ0,Φ0〉 = 〈HeT
0

Φ0,Φ0〉,

although we will not exploit this property in the proof.

Theorem D.1 (Kowalski–Piecuch).
(I) Suppose that Ψ = (c0I + C0)Φ0 ∈ H1

K , with c0 ∈ R and c0 ∈ V0, satisfies the
(weak) Schrödinger equation

(D.2) 〈HΨ,Φ〉 = E〈Ψ,Φ〉 for all Φ ∈ H1
K

for some E ∈ R and that

(D.3) 〈eT
0
∗∗(λ)+λT∠

∗∗(λ)Φ0,Ψ〉 6= 0,

where t1∗∗(λ) ∈ V1 is a zero of KKP(·, λ) for all λ ∈ [0, 1]. Then

EKP(t1∗∗(λ), λ) ≡ E for all λ ∈ [0, 1].

(II) Suppose that Ψ = (c0I + C1)Φ0, with c0 ∈ R and c1 ∈ V1, satisfies (D.2) for
some E ∈ R. If (D.3) holds true for some λ ∈ [0, 1] and t1∗∗ = t1∗∗(λ) ∈ V1

with KKP(t1∗∗, λ) = 0, then

EKP(t1∗∗(λ), λ)− E =
〈(H(t1∗∗)−H(t0∗∗ + λt∠∗∗))Φ0,ΠV∠(eT

0
∗∗+λT

∠
∗∗)†C∠Φ0〉

〈eT 0
∗∗+λT

∠
∗∗Φ0,Ψ〉

= (1− λ)
〈Γ(t1∗∗, λ)Φ0,ΠV∠(eT

0
∗∗+λT

∠
∗∗)†C∠Φ0〉

〈eT 0
∗∗+λT

∠
∗∗Φ0,Ψ〉

,

where Γ(t1, λ) is given by (D.6) below.

Furthermore, in case the energy blows up, we have the following.

Theorem D.2. Suppose that Ψ = (c0I+C1)Φ0, with c0 ∈ R and c1 ∈ V1, satisfies
(D.2) for some E ∈ R. Furthermore, assume that t1∗∗(λ) ∈ V1 is a zero of KKP(·, λ)
for all λ in a neighborhood of some λ0 ∈ [0, 1]. If |EKP(t1∗∗(λ), λ)| → ∞ as λ → λ0

and

(D.4) 〈Γ(t1∗∗(λ), λ)Φ0,ΠV∠(eT
0
∗∗+λT

∠
∗∗)†C∠Φ0〉 = O

(
1

1− λ

)
(λ→ λ0),

then
〈eT

0
∗∗(λ)+λT∠

∗∗(λ)Φ0,Ψ〉 → 0 (λ→ λ0).

17They call it the ”Fundamental Theorem of β-Nested Equation Formalism”.
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Part (I) of Theorem D.1 says that if one can solve the Schrödinger equation exactly
on V0 for an eigenvalue E and (D.3) holds true for a zero t1∗∗(λ) ∈ V1 of KKP(·, λ)
for all λ, then the KP energy EKP(t1∗∗(λ), λ) is identically E . Notice that t1∗∗(1) is

not required to represent Ψ, i.e. eT
1
∗∗(1)Φ0 6= Ψ is allowed. Also, no regularity of the

trajectory λ 7→ t1∗∗(λ) is demanded.
Part (II) stipulates that the Schrödinger equation can be solved on V1 with an

eigenvalue E and that the nonorthogonality condition (D.3) holds true for some t1∗∗ ∈
V1 zero of KKP(·, λ) for some λ. Then, the error in the energy can be expressed by
the stated formula. If one assumes the hypothesis for all λ ∈ [0, 1] in a neighborhood
of 1, then we can conclude that the KP energy EKP(t1∗∗(λ), λ) tends to E smoothly, as
λ→ 1. Again, no regularity of λ 7→ t1∗∗(λ) is needed.

Finally, Theorem D.2 considers the case when the KP energy diverges as λ →
λ0. Assuming the growth condition (D.4), we can conclude that the KP solution

eT
0
∗∗(λ)+λT∠

∗∗(λ)Φ0 becomes orthogonal to the eigenstate Ψ.
For the proof, we need the following lemma which recasts the KP equations in an

“unlinked” form.

Lemma D.3. Suppose that t1∗∗ = t1∗∗(λ) ∈ V1 is such that KKP(t1∗∗, λ) = 0 for
some λ ∈ [0, 1]. Then,
(D.5)

〈(H− EKP(t1∗∗, λ))eT
0
∗∗+λT

∠
∗∗Φ0, S

1Φ0〉 = −〈G(t1∗∗, λ)Φ0,ΠV∠(eT
0
∗∗+λT

∠
∗∗)†S∠Φ0〉,

where

G(t1∗∗, λ) = H(t1∗∗)−H(t0∗∗ + λt∠∗∗).

Moreover, G(t1∗∗, λ) = (1− λ)Γ(t1∗∗, λ), where

(D.6) Γ(t1∗∗, λ) =

2N∑
k=1

(1− λ)k−1

k!
e−(T 0

∗∗+λT
∠
∗∗)[H, T∠

∗∗](k)e
T 0
∗∗+λT

∠
∗∗ .

Proof. Assume that KKP(t1∗∗, λ) = 0, so using (5.34) we have

〈H(t0∗∗ + λt∠∗∗)Φ0, S
0Φ0〉+ 〈H(t1∗∗)Φ0, S

∠Φ0〉 = 0 for all s1 ∈ V1.

This can be rewritten as

〈H(t0∗∗ + λt∠∗∗)Φ0, S
1Φ0〉 = −〈(H(t1∗∗)−H(t0∗∗ + λt∠∗∗))Φ0, S

∠Φ0〉 for all s1 ∈ V1,

or,

〈H(t0∗∗ + λt∠∗∗)Φ0, S
1Φ0〉 = −〈G(t1∗∗, λ)Φ0, S

∠Φ0〉 for all s1 ∈ V1.

Then we can write

〈(H− EKP(t1∗∗, λ))eT
0
∗∗+λT

∠
∗∗Φ0, S

1Φ0〉

= 〈e−(T 0
∗∗+λT

∠
∗∗)(H− EKP(t1∗∗, λ))eT

0
∗∗+λT

∠
∗∗Φ0, (e

T 0
∗∗+λT

∠
∗∗)†S1Φ0〉

= 〈e−(T 0
∗∗+λT

∠
∗∗)HeT

0
∗∗+λT

∠
∗∗Φ0,ΠV1(eT

0
∗∗+λT

∠
∗∗)†S1Φ0〉

= −〈G(t1∗∗, λ)Φ0,ΠV∠(eT
0
∗∗+λT

∠
∗∗)†S1Φ0〉

= −〈G(t1∗∗, λ)Φ0,ΠV∠(eT
0
∗∗+λT

∠
∗∗)†S∠Φ0〉
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for all s1 ∈ V1. In the last step we used that ΠV∠(eT
0
∗∗+λT

∠
∗∗)† maps V0 to zero. The

“moreover” part is a simple expansion using (5.9),

G(t1∗∗, λ) = e−(T 0
∗∗+λT

∠
∗∗)(e−(1−λ)T∠

∗∗He(1−λ)T∠
∗∗ −H)eT

0
∗∗+λT

∠
∗∗

=

2N∑
k=1

(1− λ)k

k!
e−(T 0

∗∗+λT
∠
∗∗)[H, T∠

∗∗](k)e
T 0
∗∗+λT

∠
∗∗ .

Proof of Theorem D.1. We have using Lemma D.3,

0 = 〈(H− EKP(t1∗∗(λ), λ))eT
0
∗∗(λ)+λT∠

∗∗(λ)Φ0, (c0I + C0)Φ0〉

= (E − EKP(t1∗∗(λ), λ))〈eT
0
∗∗(λ)+λT∠

∗∗(λ)Φ0,Ψ〉.

Similarly, for part (II)

〈(H(t1∗)−H(t0∗∗ + λt∠∗∗))Φ0,ΠV∠(eT
0
∗∗+λT

∠
∗∗)†C∠Φ0〉

= 〈(H− EKP(t1∗∗(λ), λ))eT
0
∗∗+λT

∠
∗∗Φ0, (c0I + C0 + C∠)Φ0〉

= (E − EKP(t1∗∗(λ), λ))〈eT
0
∗∗+λT

∠
∗∗Φ0,Ψ〉.

Theorem D.2 also follows from the previous equality.

REFERENCES

[1] R. A. Adams and J. J. Fournier, Sobolev spaces, Elsevier, 2003.
[2] J. S. Arponen, Variational principles and linked-cluster exp S expansions for static and dy-

namic many-body problems, Ann. Phys., 151 (1983), pp. 311–382.
[3] V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules, Communications

in mathematical physics, 147 (1992), pp. 527–548.
[4] V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted

Hartree-Fock theory, in The Stability of Matter: From Atoms to Stars, Springer, 1997,
pp. 309–311.

[5] R. J. Bartlett, S. A. Kucharski, and J. Noga, Alternative coupled-cluster ansätze II. The
unitary coupled-cluster method, Chemical physics letters, 155 (1989), pp. 133–140.

[6] R. J. Bartlett and M. Musia l, Coupled-cluster theory in quantum chemistry, Reviews of
Modern Physics, 79 (2007), p. 291.

[7] R. Bishop, An overview of coupled cluster theory and its applications in physics, Theoretica
chimica acta, 80 (1991), pp. 95–148.
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