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Introduction 

The field of image processing has been the subject of intensive research and development activities for 

several decades. This broad area encompasses topics such as image/video processing, image/video 

analysis, image/video communications, image/video sensing, modeling and representation, 

computational imaging, electronic imaging, information forensics and security, 3D imaging, medical 

imaging, and machine learning applied to these respective topics. Hereafter, we will consider both 

image and video content (i.e. sequence of images), and more generally all forms of visual information. 

Rapid technological advances, especially in terms of computing power and network transmission 

bandwidth, have resulted in many remarkable and successful applications. Nowadays, images are 

ubiquitous in our daily life. Entertainment is one class of applications that has greatly benefited, 

including digital TV (e.g. broadcast, cable, and satellite TV), Internet video streaming, digital cinema, 

and video games. Beyond entertainment, imaging technologies are central in many other applications, 

including digital photography, video conferencing, video monitoring and surveillance, satellite 

imaging, but also in more distant domains such as healthcare and medicine, distance learning, digital 

archiving, cultural heritage or the automotive industry.  

In this paper, we highlight a few research grand challenges for future imaging and video systems, in 

order to achieve breakthroughs to meet the growing expectations of end users. Given the vastness of 

the field, this list is by no means exhaustive.  

A brief historical perspective 

We first briefly discuss a few key milestones in the field of image processing.  Key inventions in the 

development of photography and motion pictures can be traced to the 19th century. The earliest 

surviving photograph of a real-world scene was made by Nicéphore Niépce in 1827 [Hirsch, 1999]. 

The Lumière brothers made the first cinematographic film in 1895, with a public screening the same 

year [Lumière, 1996]. After decades of remarkable developments, the second half of the 20th century 

saw the emergence of new technologies launching the digital revolution. While the first prototype 

digital camera using a Charge-Coupled Device (CCD) was demonstrated in 1975, the first commercial 

consumer digital cameras started appearing in the early 1990s. These digital cameras quickly 

surpassed cameras using films and the digital revolution in the field of imaging was underway. As a 

key consequence, the digital process enabled computational imaging, in other words the use of 

sophisticated processing algorithms in order to produce high quality images.  

In 1992, the Joint Photographic Experts Group (JPEG) released the JPEG standard for still image 

coding [Wallace, 1992]. In parallel, in 1993, the Moving Picture Experts Group (MPEG) published its 

first standard for coding of moving pictures and associated audio, MPEG-1 [Le Gall, 1991], and a few 

years later MPEG-2 [Haskell et al., 1996]. By guaranteeing interoperability, these standards have been 

essential in many successful applications and services, for both the consumer and business markets. In 



particular, it is remarkable that, almost 30 years later, JPEG remains the dominant format for still 

images and photographs. 

In the late 2000s and early 2010s, we could observe a paradigm shift with the appearance of 

smartphones integrating a camera. Thanks to advances in computational photography, these new 

smartphones soon became capable of rivaling the quality of consumer digital cameras at the time. 

Moreover, these smartphones were also capable of acquiring video sequences. Almost concurrently, 

another key evolution was the development of high bandwidth networks. In particular, the launch of 

4G wireless services circa 2010 enabled users to quickly and efficiently exchange multimedia content.  

From this point, most of us are carrying a camera, anywhere and anytime, allowing to capture images 

and videos at will and to seamlessly exchange them with our contacts.  

As a direct consequence of the above developments, we are currently observing a boom in the usage of 

multimedia content. It is estimated that today 3.2 billion images are shared each day on social media 

platforms, and 300 hours of video are uploaded every minute on YouTube1. In a 2019 report, Cisco 

estimated that video content represented 75% of all Internet traffic in 2017, and this share is forecasted 

to grow to 82% in 2022 [Cisco, 2019]. While Internet video streaming and Over-The-Top (OTT) 

media services account for a significant bulk of this traffic, other applications are also expected to see 

significant increases, including video surveillance and Virtual Reality (VR) / Augmented Reality 

(AR).   

Hyper-realistic and immersive imaging 

A major direction and key driver to research and development activities over the years has been the 

objective to deliver an ever-improving image quality and user experience.  

For instance, in the realm of video, we have observed constantly increasing spatial and temporal 

resolutions, with the emergence nowadays of Ultra High Definition (UHD). Another aim has been to 

provide a sense of the depth in the scene. For this purpose, various 3D video representations have been 

explored, including stereoscopic 3D and multi-view [Dufaux et al., 2013].  

In this context, the ultimate goal is to be able to faithfully represent the physical world and to deliver 

an immersive and perceptually hyperrealist experience. For this purpose, we discuss hereafter some 

emerging innovations. These developments are also very relevant in VR and AR applications [Slater, 

2014]. Finally, while this paper is only focusing on the visual information processing aspects, it is 

obvious that emerging display technologies [Masia et al., 2013] and audio also plays key roles in many 

application scenarios.  

Light fields, point clouds, volumetric imaging 

In order to wholly represent a scene, the light information coming from all the directions has to be 

represented. For this purpose, the 7D plenoptic function is a key concept [Adelson and Bergen, 1991], 

although it is unmanageable in practice. 

By introducing additional constraints, the light field representation collects radiance from rays in all 

directions. Therefore, it contains a much richer information, when compared to traditional 2D imaging 

that captures a 2D projection of the light in the scene integrating the angular domain. For instance, this 

allows post-capture processing such as refocusing and changing the viewpoint. However, it also 

entails several technical challenges, in terms of acquisition and calibration, as well as computational 

image processing steps including depth estimation, super-resolution, compression and image synthesis 

                                                           
1 https://www.brandwatch.com/blog/amazing-social-media-statistics-and-facts/ (accessed on Feb. 

23, 2021) 



[Ihrke et al., 2016; Wu et al., 2017]. The resolution trade-off between spatial and angular resolutions is 

a fundamental issue. With a significant fraction of the earlier work focusing on static light fields, it is 

also expected that dynamic light field videos will stimulate more interest in the future. In particular, 

dense multi-camera arrays are becoming more tractable. Finally, the development of efficient light 

field compression and streaming techniques is a key enabler in many applications [Conti et al., 2020].  

Another promising direction is to consider a point cloud representation. A point cloud is a set of points 

in the 3D space represented by their spatial coordinates and additional attributes, including color pixel 

values, normals, or reflectance. They are often very large, easily ranging in the millions of points, and 

are typically sparse. One major distinguishing feature of point clouds is that, unlike images, they do 

not have a regular structure, calling for new algorithms. To remove the noise often present in acquired 

data, while preserving the intrinsic characteristics, effective 3D point cloud filtering approaches are 

needed [Han et al., 2017]. It is also important to develop efficient techniques for Point Cloud 

Compression (PCC). For this purpose, MPEG is developing two standards: Geometry-based PCC (G-

PCC) and Video-based PCC (V-PCC) [Graziosi et al., 2020]. G-PCC considers the point cloud in its 

native form and compress it using 3D data structures such as octrees. Conversely, V-PCC projects the 

point cloud onto 2D planes and then applies existing video coding schemes. More recently, deep 

learning-based approaches for PCC have been shown to be effective [Guarda et al., 2020]. Another 

challenge is to develop generic and robust solutions able to handle potentially widely varying 

characteristics of point clouds, e.g. in terms of size and non-uniform density. Efficient solutions for 

dynamic point clouds are also needed. Finally, while many techniques focus on the geometric 

information or the attributes independently, it is paramount to process them jointly. 

High Dynamic Range and Wide Color Gamut 

The human visual system is able to perceive, using various adaptation mechanisms, a broad range of 

luminous intensities, from very bright to very dark, as experienced every day in the real world. 

Nonetheless, current imaging technologies are still limited in terms of capturing or rendering such a 

wide range of conditions. High Dynamic Range (HDR) imaging aims at addressing this issue. Wide 

Color Gamut (WCG) is also often associated with HDR in order to provide a wider colorimetry.  

HDR has reached some levels of maturity in the context of photography. However, extending HDR to 

video sequences raises scientific challenges in order to provide high quality and cost-effective 

solutions, impacting the whole imaging processing pipeline, including content acquisition, tone 

reproduction, color management, coding, and display [Dufaux et al., 2016; Chalmers and Debattista, 

2017]. Backward compatibility with legacy content and traditional systems is another issue. Despite 

recent progress, the potential of HDR has not been fully exploited yet.  

Coding and transmission 

Three decades of standardization activities have continuously improved the hybrid video coding 

scheme based on the principles of transform coding and predictive coding. The Versatile Video 

Coding (VVC) standard has been finalized in 2020 [Bross et al., 2021], achieving approximately 50% 

bit rate reduction for the same subjective quality when compared to its predecessor, High Efficiency 

Video Coding (HEVC). While substantially outperforming VVC in the short term may be difficult, 

one encouraging direction is to rely on improved perceptual models to further optimize compression in 

terms of visual quality. Another direction, which has already shown promising results, is to apply deep 

learning-based approaches [Ding et al., 2021]. Here, one key issue is the ability to generalize these 

deep models to a wide diversity of video content. The second key issue is the implementation 

complexity, both in terms of computation and memory requirements, which is a significant obstacle to 

a widespread deployment. Besides, the emergence of new video formats targeting immersive 

communications is also calling for new coding schemes [Wien et al., 2019].  



Considering that in many application scenarios, videos are processed by intelligent analytic algorithms 

rather than viewed by users, another interesting track is the development of video coding for machines 

[Duan et al., 2020]. In this context, the compression is optimized taking into account the performance 

of video analysis tasks.  

The push towards hyper-realistic and immersive visual communications entails most often an 

increasing raw data rate. Despite improved compression schemes, more transmission bandwidth is 

needed. Moreover, some emerging applications, such as VR/AR, autonomous driving, and Industry 

4.0, bring a strong requirement for low latency transmission, with implications on both the imaging 

processing pipeline and the transmission channel. In this context, the emergence of 5G wireless 

networks will positively contribute to the deployment of new multimedia applications, and the 

development of future wireless communication technologies points towards promising advances [Da 

Costa and Yang, 2020].  

Human perception and visual quality assessment 

It is important to develop effective models of human perception. On the one hand, it can contribute to 

the development of perceptually inspired algorithms. On the other hand, perceptual quality assessment 

methods are needed in order to optimize and validate new imaging solutions.   

The notion of Quality of Experience (QoE) relates to the degree of delight or annoyance of the user of 

an application or service [Le Callet et al., 2012]. QoE is strongly linked to subjective and objective 

quality assessment methods. Many years of research have resulted in the successful development of 

perceptual visual quality metrics based on models of human perception [Lin and Kuo, 2011; Bovik, 

2013]. More recently, deep learning-based approaches have also been successfully applied to this 

problem [Bosse et al., 2017]. While these perceptual quality metrics have achieved good 

performances, several significant challenges remain. First, when applied to video sequences, most 

current perceptual metrics are applied on individual images, neglecting temporal modeling. Second, 

whereas color is a key attribute, there are currently no widely accepted perceptual quality metrics 

explicitly considering color. Finally, new modalities, such as 360° videos, light fields, point clouds, 

and HDR, require new approaches. 

Another closely related topic is image aesthetic assessment [Deng et al., 2017]. The aesthetic quality 

of an image is affected by numerous factors, such as lighting, color, contrast, and composition. It is 

useful in different application scenarios such as image retrieval and ranking, recommendation, and 

photos enhancement. While earlier attempts have used handcrafted features, most recent techniques to 

predict aesthetic quality are data driven and based on deep learning approaches, leveraging the 

availability of large annotated datasets for training [Murray et al., 2012]. One key challenge is the 

inherently subjective nature of aesthetics assessment, resulting in ambiguity in the ground-truth labels. 

Another important issue is to explain the behavior of deep aesthetic prediction models. 

Analysis, interpretation and understanding 

Another major research direction has been the objective to efficiently analyze, interpret and 

understand visual data. This goal is challenging, due to the high diversity and complexity of visual 

data. This has led to many research activities, involving both low-level and high-level analysis, 

addressing topics such as image classification and segmentation, optical flow, image indexing and 

retrieval, object detection and tracking, and scene interpretation and understanding. Hereafter, we 

discuss some trends and challenges.  

Keypoints detection and local descriptors 

Local imaging matching has been the cornerstone of many analysis tasks. It involves the detection of 

keypoints, i.e. salient visual points that can be robustly and repeatedly detected, and descriptors, i.e. a 



compact signature locally describing the visual features at each keypoint. It allows to subsequently 

compute pairwise matching between the features to reveal local correspondences. In this context, 

several frameworks have been proposed, including Scale Invariant Feature Transform (SIFT) [Lowe, 

2004] and Speeded Up Robust Features (SURF) [Bay et al., 2008], and later binary variants including 

Binary Robust Independent Elementary Feature (BRIEF) [Calonder et al., 2010], Oriented FAST and 

Rotated BRIEF (ORB) [Rublee et al., 2011] and Binary Robust Invariant Scalable Keypoints (BRISK) 

[Leutenegger et al., 2011]. Although these approaches exhibit scale and rotation invariance, they are 

less suited to deal with large 3D distortions such as perspective deformations, out-of-plane rotations, 

and significant viewpoint changes. Besides, they tend to fail under significantly varying and 

challenging illumination conditions.  

These traditional approaches based on handcrafted features have been successfully applied to 

problems such as image and video retrieval, object detection, visual Simultaneous Localization And 

Mapping (SLAM), and visual odometry. Besides, the emergence of new imaging modalities as 

introduced above can also be beneficial for image analysis tasks, including light fields [Galdi et al., 

2019], point clouds [Guo et al., 2020], and HDR [Rana et al., 2018]. However, when applied to high-

dimensional visual data for semantic analysis and understanding, these approaches based on 

handcrafted features have been supplanted in recent years by approaches based on deep learning. 

Deep learning-based methods 

Data-driven deep learning-based approaches [LeCun et al., 2015], and in particular the Convolutional 

Neural Network (CNN) architecture, represent nowadays the state-of-the-art in terms of performances 

for complex pattern recognition tasks in scene analysis and understanding. By combining multiple 

processing layers, deep models are able to learn data representations with different levels of 

abstraction.  

Supervised learning is the most common form of deep learning. It requires a large and fully labeled 

training dataset, a typically time-consuming and expensive process needed whenever tackling a new 

application scenario. Moreover, in some specialized domains, e.g. medical data, it can be very difficult 

to obtain annotations. To alleviate this major burden, methods such as transfer learning and weakly 

supervised learning have been proposed.  

In another direction, deep models have been shown to be vulnerable to adversarial attacks [Akhtar and 

Mian, 2018]. Those attacks consist in introducing subtle perturbations to the input, such that the model 

predicts an incorrect output. For instance, in the case of images, imperceptible pixel differences are 

able to fool deep learning models. Such adversarial attacks are definitively an important obstacle to the 

successful deployment of deep learning, especially in applications where safety and security are 

critical. While some early solutions have been proposed, a significant challenge is to develop effective 

defense mechanisms against those attacks.  

Finally, another challenge is to enable low complexity and efficient implementations. This is 

especially important for mobile or embedded applications. For this purpose, further interactions 

between signal processing and machine learning can potentially bring additional benefits. For instance, 

one direction is to compress deep neural networks in order to enable their more efficient handling. 

Moreover, by combining traditional processing techniques with deep learning models, it is possible to 

develop low complexity solutions while preserving high performance. 

Explainability in deep learning 

While data-driven deep learning models often achieve impressive performances on many visual 

analysis tasks, their black-box nature often makes it inherently very difficult to understand how they 

reach a predicted output and how it relates to particular characteristics of the input data. However, this 

is a major impediment in many decision-critical application scenarios. Moreover, it is important not 



only to have confidence in the proposed solution, but also to gain further insights from it.  Based on 

these considerations, some deep learning systems aim at promoting explainability [Adadi and Berrada, 

2018; Xie et al., 2020]. This can be achieved by exhibiting traits related to confidence, trust, safety, 

and ethics. 

However, explainable deep learning is still in its early phase. More developments are needed, in 

particular to develop a systematic theory of model explanation. Important aspects include the need to 

understand and quantify risk, to comprehend how the model makes predictions for transparency and 

trustworthiness, and to quantify the uncertainty in the model prediction. This challenge is key in order 

to deploy and use deep learning-based solutions in an accountable way, for instance in application 

domains such as healthcare or autonomous driving. 

Self-supervised learning 

Self-supervised learning refers to methods that learn general visual features from large-scale unlabeled 

data, without the need for manual annotations. Self-supervised learning is therefore very appealing, as 

it allows exploiting the vast amount of unlabeled images and videos available. Moreover, it is widely 

believed that it is closer to how humans actually learn. One common approach is to use the data to 

provide the supervision, leveraging its structure. More generally, a pretext task can be defined, e.g. 

image inpainting, colorizing grayscale images, predicting future frames in videos, by withholding 

some parts of the data and by training the neural network to predict it [Jing and Tian, 2020]. By 

learning an objective function corresponding to the pretext task, the network is forced to learn relevant 

visual features in order to solve the problem. Self-supervised learning has also been successfully 

applied to autonomous vehicles perception. More specifically, the complementarity between analytical 

and learning methods can be exploited to address various autonomous driving perception tasks, 

without the prerequisite of an annotated data set [Chiaroni et al., 2021]. 

While good performances have already been obtained using self-supervised learning, further work is 

still needed. A few promising directions are outlined hereafter. Combining self-supervised learning 

with other learning methods is a first interesting path. For instance, semi-supervised learning [Van 

Engelen and Hoos, 2020] and few-short learning [Fei-Fei et al., 2006] methods have been proposed for 

scenarios where limited labeled data is available. The performance of these methods can potentially be 

boosted by incorporating a self-supervised pre-training. The pretext task can also serve to add 

regularization. Another interesting trend in self-supervised learning is to train neural networks with 

synthetic data. The challenge here is to bridge the domain gap between the synthetic and real data. 

Finally, another compelling direction is to exploit data from different modalities. A simple example is 

to consider both the video and audio signals in a video sequence. In another example in the context of 

autonomous driving, vehicles are typically equipped with multiple sensors, including cameras, LIght 

Detection And Ranging (LIDAR), Global Positioning System (GPS), and Inertial Measurement Units 

(IMU). In such cases, it is easy to acquire large unlabeled multimodal datasets, where the different 

modalities can be effectively exploited in self-supervised learning methods. 

Reproducible research and large public datasets 

The reproducible research initiative is another way to further ensure high-quality research for the 

benefit of our community [Vandewalle et al., 2009]. Reproducibility, referring to the ability by 

someone else working independently to accurately reproduce the results of an experiment, is a key 

principle of the scientific method. In the context of image and video processing, it is usually not 

sufficient to provide a detailed description of the proposed algorithm. Most often, it is essential to also 

provide access to the code and data. This is even more imperative in the case of deep learning-based 

models. 



In parallel, the availability of large public datasets is also highly desirable in order to support research 

activities. This is especially critical for new emerging modalities or specific application scenarios, 

where it is difficult to get access to relevant data. Moreover, with the emergence of deep learning, 

large datasets, along with labels, are often needed for training, which can be another burden. 

Conclusion and perspectives 

The field of image processing is very broad and rich, with many successful applications in both the 

consumer and business markets. However, many technical challenges remain in order to further push 

the limits in imaging technologies. Two main trends are on the one hand to always improve the quality 

and realism of image and video content, and on the other hand to be able to effectively interpret and 

understand this vast and complex amount of visual data. However, the list is certainly not exhaustive 

and there are many other interesting problems, e.g. related to computational imaging, information 

security and forensics, or medical imaging. Key innovations will be found at the crossroad of image 

processing, optics, psychophysics, communication, computer vision, artificial intelligence, and 

computer graphics. Multi-disciplinary collaborations are therefore critical moving forward, involving 

actors from both academia and the industry, in order to drive these breakthroughs.  

The “Image Processing” section of Frontier in Signal Processing aims at giving to the research 

community a forum to exchange, discuss and improve new ideas, with the goal to contribute to the 

further advancement of the field of image processing and to bring exciting innovations in the 

foreseeable future.  
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