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WEIERSTRASS SECTIONS FOR SOME TRUNCATED
PARABOLIC SUBALGEBRAS.

FLORENCE FAUQUANT-MILLET

ABSTRACT. In this paper, using Bourbaki’s convention, we consider a
simple Lie algebra g C gl,, of type B, C or D and a parabolic subalgebra
p of g associated with a Levi factor composed essentially, on each side of
the second diagonal, by successive blocks of size two, except possibly for
the first and the last ones. Extending the notion of a Weierstrass section
introduced by Popov to the coadjoint action of the truncated parabolic
subalgebra associated with p, we construct explicitly Weierstrass sec-
tions, which give the polynomiality (when it was not yet known) for the
algebra generated by semi-invariant polynomial functions on the dual
space p* of p and which allow to linearize semi-invariant generators.
Our Weierstrass sections require the construction of an adapted pair,
which is the analogue of a principal slz-triple in the non reductive case.

Mathematics Subject Classification : 16 W 22, 17 B 22, 17 B 35.
Key words : Weierstrass section, adapted pair, slice, parabolic subalgebra,
polynomiality, symmetric invariants, semi-invariants.

1. INTRODUCTION.

The base field k is algebraically closed of characteristic zero.

1.1. Let g be a simple Lie algebra over k and p be a standard parabolic
subalgebra of g, acting by coadjoint action on its dual space p*. Denote by
Sy(p) the vector space generated by the semi-invariant polynomial functions
on p*. This is a subalgebra of the symmetric algebra S(p) of p. Moreover
there exists a canonically defined subalgebra pp of p, called the canonical
truncation of p or the truncated parabolic subalgebra associated with p, such
that the algebra Y (pa) of invariant polynomial functions on pj coincides with
the algebra Sy(p) (see 2.3 for more details). For some parabolic subalgebras
p which we define below, we will study whether Sy(p) is isomorphic to a
polynomial algebra over k and whether one can linearize generators of Sy(p).

1.2. Now we consider g simple of type B,,, C, or D,, and integers ¢ € N
and s € N* with s +2¢ < n.

Using Bourbaki’s labelling [2] for a chosen set m = {a1, ..., a,} of simple
roots of g with respect to some Cartan subalgebra §, we focus on several
standard parabolic subalgebras p of g associated with a particular subset 7’
of 7, where roughly speaking every second root in a chain of simple roots is
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More precisely we consider the parabolic subalgebra pg ¢ of g associated
with the subset ' C 7 such that

7 =7\ {as, Qsio, ..., Qsiop}

with s +2¢ < n.

When g is of type D,,, we also study some parabolic subalgebras associated
with a subset ©/ C 7w which does not contain the last two roots «,_; and
an and also does not contain every second root in a chain of simple roots.
Indeed we consider two other cases of parabolic subalgebras in g of type D,,
which we define below.

The first case consists in deleting «,, a;,—1 and then possibly every second
simple root preceding a,—1 until o, —1_9¢ with 0 < ¢ < (n —2)/2. Thus we
denote by py the parabolic subalgebra of g of type D,, associated with the
subset ' C 7 such that

7"-,:'7"-\{0%—1—2]67 Qn | 0<k SZ}

with 0 < /4 < (n—2)/2.

The second case consists in deleting av,, a,—1 and then every second simple
root from some simple root a, until agyop with s +2¢ < n — 2. Thus we
denote by q, , the parabolic subalgebra of g of type D,, associated with

7('/ =T \ {a87 Qg42, ooy Olgpop, Op—1, Oén}

with s +2¢ < n —4 or s +2¢ = n — 2. Note that, if s + 2¢ = n — 3, then
Us, (n—3—5)/2 = P(n—1—s)/2 OF simplier d,_3-2¢ ¢ = Pr41-

Roughly speaking, identifying g with a Lie subalgebra of some gl,, and
adopting the conventions in [3, Chap VIII] the Levi factor of every parabolic
subalgebra p as defined above is composed, on each side of the second di-
agonal, by £ successive blocks of size two, a first block and possibly a last
block (in type D, when «, € 7’ but a,,—1 € 7', we may notice that we
have a pair of blocks along the second diagonal, symmetric with respect to
the first diagonal). In other words the Levi subalgebra of such p is of type
Ag_1 X A{ x R;, where

s=n—1—-20and R, = {0} for py

Rr = An72fsf2€ for s, ¢
R, =B,_s_o¢ for ps ¢ and g of type B,
R, =Dj_s_o for ps. ¢ and g of type D,

with the convention that Ag = Bg = Dy = A? = {0}, By = D; = A; and
Dy = Aj; x A; (here, for any £ € N*, type {0} x Ay or Ay x {0}, resp.
{0} x Bg, resp. {0} x Dy, simply means type Ay, resp. By, resp. Dg).
Note that the parabolic subalgebra p, ¢ is a maximal parabolic subalgebra
and it has already been treated in [9], [14] and [15]. Thus we will not consider
this case. This work is a continuation and a generalization of [9], [14] and

[15].
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1.3. Let X be a finite dimensional vector space on which a reductive Lie
algebra a acts linearly. Denote by S(X*) the symmetric algebra of the dual
space X* of X, which may be identified with the algebra of polynomial func-
tions k[X] on X. Let S(X*)® denote the algebra of invariants in S(X™)
under the action of a (induced by the action of a on X), which is also the
algebra of invariant polynomial functions on X. By a Hilbert’s theorem
(see |34, II, Thm. 3.5| for an exposition), the algebra of invariants S(X™*)® is
finitely generated and Popov considered in [33, 2.2.1] the problem of lineariz-
ing invariant generators in S(X*)® by introducing the so-called Weierstrass
sections for the action of a on X. Now assume that a is a finite dimensional
Lie algebra, not necessarily reductive. We may extend Popov’s notion for
X = a* the dual space of a, on which a acts by coadjoint action, and define
a Weierstrass section for coadjoint action of a as an affine subspace . of
a* such that restriction of functions to .% induces an algebra isomorphism
between the algebra of symmetric invariants Y (a) = S(a)® and the algebra
of polynomial functions k[.#] on .. Then the existence of a Weierstrass
section for coadjoint action of a implies the polynomiality of Y (a), and the
restriction map gives a linearization of invariant generators of Y'(a). More
details on Weierstrass sections are given in 2.5.

In the semisimple case (that is, when a = g a semisimple Lie algebra, see
2.7), a Weierstrass section . was constructed by Kostant in [25] using a
principal slo-triple. This particular Weierstrass section is called the Kostant
slice, or Kostant section in [33]. The Kostant slice is also an affine slice in
the sense that, if G is the adjoint group of g, then G..% is dense in g* and
every coadjoint orbit in g* meets . in at most one point, and transversally.
In 2.6 are more details on affine slices.

In this article, our aim is to construct Weierstrass sections for coadjoint
action of the canonical truncation py of the standard parabolic subalgebra
p whenever p is either equal to psy or p, or g, , defined in the previous
subsection.

1.4. Similarly to the Kostant slice, a Weierstrass section for coadjoint action
of pa is also an affine slice to the coadjoint action of py by [13]. In particular
if there exists a Weierstrass section . C p} for coadjoint action of p, then
every coadjoint orbit in p} meets .7 in at most one point.

1.5.  Unlike the reductive case where a principal sls-triple exists, a Weier-
strass section in the non reductive case cannot be given by such a triple,
since the latter does not exist. To fill in this lack, the notion of an adapted
pair was introduced in [23]. Denote by hp := h N pp the Cartan subalgebra
of the truncated parabolic subalgebra py and by ad the coadjoint action of
pa on p3. An adapted pair for py is a pair (h, y) € ha x pj such that :

(1) adh(y) = —y and
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(2) y is regular in pj that is, there exists a subspace V of p} of minimal
dimension (called the index of py and denoted by indpy) such that
adpa(y) &V = pj}.

More details on adapted pairs are given in 2.4. Unfortunately adapted pairs
do not always exist and are quite hard to construct. They may not exist
even when Weierstrass sections for coadjoint action exist, as it was shown in
[22, Thm. 9.4] for the truncated Borel subalgebra by in type Boyt1, D, E
and Go. However in [22, 11.4 Example 2|, although Sy(b) = Y (b, ) is always
a polynomial algebra by [17], it was also noticed that a Weierstrass section
for coadjoint action of by does not exist for g of type Cs since the invariant
generators cannot be linearized in this case. As in [9],[14] and [15] we are
able in our present cases to construct Weierstrass sections thanks to adapted
pairs.

1.6. In [20] Weierstrass sections were constructed for coadjoint action of
any truncated (bi)parabolic subalgebra in a simple Lie algebra of type A.
Thus we do not consider this type.

1.7. Main result. Recall the notation of subsection 1.2. In this paper we
prove that Weierstrass sections exist for the following cases :

(1) for coadjoint action of the canonical truncation of p, ; when :
(a) g is of type B,, with n > 2, s odd and ¢ > 1.
(b) g is of type D,, with n >4, s odd and ¢ > 1.
(c) g is of type B, with n >4, s even and ¢ = 1.
(d) g is of type D,, with n > 6, s even, s <n —4 and £ = 1.
(e) gis of type C, with n >3 and ¢ > 1.
(2) for coadjoint action of the canonical truncation of p, for g simple of
type D,, when :
(a) n >4, and n even.
(b) n>5, n odd, and £ = 0.
(¢) n>5,no0dd, and ¢ = 1.
(3) for coadjoint action of the canonical truncation of g5 ; when g is of
type D,, with n > 5, n odd and s odd.

1.8. The proof. The proof is in two steps and via a case by case consid-
eration. Let p denote one of the above parabolic subalgebras and py its
canonical truncation.

Step 1 consists of constructing explicitly an adapted pair for pu, thanks to
Proposition 6.2 which uses extensively the notion of Heisenberg sets, general-
izing the sets of roots of generators in Heisenberg Lie algebras, see subsection
6.1.

Step 2 is to prove that this adapted pair gives the required Weierstrass
section. For this purpose, two means are available. The simplest way is
to check that the equality of a lower and an upper bounds for the formal
character of Sy(p) (see Sect. 4) holds. This equality implies polynomiality of
Sy(p) and then the existence of an adapted pair for p, implies the existence
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of a Weierstrass section for coadjoint action of pa (see also subsection 2.5).
However in some of our cases the lower and upper bounds mentioned above
do not coincide and then the polynomiality of Sy(p) = Y (pa) was not yet
known. We then check that the lower bound and a so-called improved upper
bound introduced in [21] (see Sect. 5) coincide. The latter method concerns
the cases 1c, 1d, 2b, 2c. The Weierstrass section we obtain in these cases
assures then the polynomiality of Sy(p).

2. SOME DEFINITIONS.

In what follows, we specify the notions mentioned in Sect. 1. Let a be an
algebraic finite dimensional Lie algebra over k, which acts on its symmetric
algebra S(a) by the action (denoted by ad) which extends by derivation the
adjoint action of a on itself given by Lie bracket. We denote by A the adjoint
group of a.

2.1. Algebra of symmetric invariants. An invariant of S(a) (symmetric
invariant of a for short) is an element s € S(a) such that, for all z € a,
adz(s) = 0.

We denote by Y (a) = S(a)® the set of symmetric invariants of a : it is
a subalgebra of S(a), called the algebra of symmetric invariants of a. We
may notice that the algebra Y (a) also coincides with the centre of S(a) for
its natural Poisson structure (and that is why it is sometimes also called the
Poisson centre of S(a) or of a for short). Moreover Y (a) also coincides with
the algebra S(a)4 of invariants of S(a) under the action of A by automor-
phisms.

2.2. Algebra of symmetric semi-invariants. An element s € S(a) is
called a (symmetric) semi-invariant of a, if there exists A € a* verifying
that, for all x € a, adz(s) = A(x)s. We denote by S(a)y C S(a) the
space of such symmetric semi-invariants. The vector space generated by all
symmetric semi-invariants of a will be denoted by Sy(a) : it is a subalgebra
of S(a), called the algebra of symmetric semi-invariants of a. A linear form
A € a* such that S(a)y # {0} is said to be a weight of Sy(a). We denote by
A(a) the set of weights of Sy(a). It is a semigroup. One has that Sy(a) =
@Drea(a) S(a)r. Since Y(a) = S(a)o, one always has that Y'(a) C Sy(a).

We will say that a has no proper semi-invariants when all the semi-
invariants of a are invariant that is, when Sy(a) =Y (a).

For example, when a = g is a semisimple Lie algebra, then g has no proper
semi-invariants. Moreover if § is a Cartan subalgebra of g, we will say that
s € S(g) is an h-weight vector if there exists p € h* such that for all x € b,
adz(s) = p(x)s. If p is a (standard) parabolic subalgebra of g, then the set
of weights A(p) of the algebra of semi-invariants Sy(p) of p may be viewed as
a subset of h* (see Sect. 3). Hence the h-weight vectors of Sy(p) are exactly
the semi-invariants of p.
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A special case of a parabolic subalgebra is a Borel subalgebra b =n® b
of g semi-simple, where n denotes the nilpotent radical of b. By [17] the
algebra of symmetric semi-invariants Sy(b), resp. the algebra of symmetric
invariants Y'(n) C Sy(b), is always a polynomial algebra, the former having
rank(g) = dim b generators. Moreover both algebras have the same set of
weights. (See |17, Tables I and II| and [11, Table| for an erratum, for an
explicit description of weights and degrees of generators).

2.3. Canonical truncation. Since a is algebraic, there exists by [1] a canon-
ically defined subalgebra of a, called the canonical truncation of a and
denoted by ap, such that Y(ap) = Sy(ar) = Sy(a). We also say that
ap is the truncated subalgebra of a : it is the largest subalgebra of a
which vanishes on the weights of Sy(a). In particular, the canonical trun-
cation of a has no proper semi-invariants. By say [35, 29.4.3] a parabolic
subalgebra p of a semisimple Lie algebra is algebraic, hence one has that
Sy(p) = Y(pa) = Sy(pa) where py is the canonical truncation of p. More-
over a result of Chevalley-Dixmier in [5, Lem. 7|, also known as a theorem
of Rosenlicht, implies that

ind py = degtry (Fract(Y (pa))).

In other words the index ind py of pp that is, the minimal codimension of
a coadjoint orbit in p}, is also equal to the cardinality of a maximal set of
algebraically independent elements in Sy(p) = Y (pa). It is not known in
general whether Sy(p) is or not finitely generated, but the transcendence
degree of its field of fractions was shown to be finite with an explicit formula
given in (1) of subsection 4.1. By [18, 7.9| (see also [8, Chap. I, Sec. B, 8.2|)
the algebra of symmetric invariants Y (p) of a proper parabolic subalgebra p
in a simple Lie algebra is always reduced to scalars, while by [6] its algebra
of symmetric semi-invariants Sy(p) is never. That is why we consider the al-
gebra of symmetric semi-invariants Sy(p) = Y (pa) of a parabolic subalgebra
p rather than its algebra of symmetric invariants. Moreover the structure
of Sy(p) may give informations about the field C(p) of invariant fractions
of S(p). Specifically assume that Sy(p) = Y (pa) is a polynomial algebra
(freely generated by semi-invariants of p). Then, since we have equality
Fract(Y(pa)) = C(pa), the latter is obviously a pure transcendental exten-
sion of k. Moreover by [26, Thm. 66| so is also the field C'(p), answering
positively to Dixmier’s fourth problem |7, Problem 4].

2.4. Adapted pairs. An adapted pair for a is a pair (h, y) € a x a* such
that ad h(y) = —y, where ad denotes here the coadjoint action of a, h is a
semisimple element of a and y is a regular element in a*, that is, there exists
a subspace V' of a* of minimal dimension such that ada(y) ® V = a* (the
dimension of V' is called the index of a, denoted by ind a).

Call an element of a* singular if it is not regular and denote by ag;,,, the
set of singular elements in a*. The set of regular elements in a* is open dense

in a* and the codimension of azmg is always bigger or equal to one. When
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equality holds the algebra a is said to be singular (nonsingular otherwise).
The nonsingularity property is also called in [28, Def. 1.1] the “codimension
two property”.

If (h, y) is an adapted pair for a, then y belongs to the zero set of the
ideal of S(a) generated by the homogeneous elements of Y (a) with positive
degree. When a admits an adapted pair and has no proper semi-invariants,
then it follows by |24, 1.7| that the algebra a is nonsingular. In particular if
a is a truncated parabolic subalgebra of a simple Lie algebra g and admits
an adapted pair (h, y) then by the above, a is nonsingular.

2.5. Weierstrass sections. A Weierstrass section for coadjoint action of a
(see [13]) is an affine subspace y + V of a* (with y € a* and V a vector
subspace of a*) such that restriction of functions of S(a) = k[a*] to y + V'
induces an algebra isomorphism between Y (a) and the algebra of polynomial
functions kjy+ V] on y+ V. Of course, since kly+ V] is isomorphic to S(V*),
the existence of a Weierstrass section for coadjoint action of a implies that
the algebra Y'(a) is isomorphic to S(V*) and then that Y (a) is a polynomial
algebra (on dim V' generators). Moreover, under this isomorphism, a set of
homogeneous algebraically independent generators of Y (a) is sent to a basis
of V*, hence each element of this set is linearized. In [22] Weierstrass sections
were called algebraic slices.

Assume that a has no proper semi-invariants, admits an adapted pair
(h, y), and that the algebra of symmetric invariants Y (a) is polynomial.
Then by |24, 2.3|, for any ad h-stable complement V' of ada(y) in a*, the
affine subspace y + V is a Weierstrass section for coadjoint action of a.

Suppose now that a = py is the canonical truncation of a proper parabolic
subalgebra p in a simple Lie algebra. By [11] there exist a lower and an upper
bounds for the formal character of Sy(p) = Y (pa) (see also Sect. 4). Assume
that these bounds coincide. This implies by [11] that Y'(pa) is a polynomial
algebra over k. Assume further that we have constructed an adapted pair
for ppo. Thus by the above, this adapted pair provides a Weierstrass section
for coadjoint action of p. This method will be used in roughly half of the
cases we will consider in this paper.

2.6. Affine slice. An affine slice to the coadjoint action of a is an affine
subspace y+V of a* such that A.(y+V) is dense in a* and y+V meets every
coadjoint orbit in A.(y + V') at exactly one point and transversally. Assume
that a has no proper semi-invariants. Then if there exists a Weierstrass
section y + V C a* for coadjoint action of a, one has by [13, 3.2] that y + V'
is an affine slice to the coadjoint action of a. The converse does not hold in
general, but if (y + V)sing 1= (y + V) N ag,, is of codimension at least two
in y 4+ V then it holds by [13, 3.3]. One may also find in [22] more details on
affine slices.

2.7. The reductive case. Take a = g semisimple. Then there exists a
principal sly-triple (z, h, y) of g with h € g a semisimple element and z
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and y regular in g ~ g*, such that [h, y] = —y. Then the pair (h, y) is an
adapted pair for g. Denote by g the centralizer of x in g. Then by [25]
y+ g" is a Weierstrass section and also an affine slice to the coadjoint action
of g. It is called the Kostant slice or Kostant section.

2.8. Magic number and nonsingularity. The magic number of a is
1
c(a) = §(dim a+inda).

It is always an integer. By |27, Prop. 3.1] one always has that c(ap) = ¢(a),
where ap is the canonical truncation of a. When a = g is semisimple, one
has that ¢(g) = dim b where b is a Borel subalgebra of g.

Assume that a has no proper semi-invariants and is nonsingular (which is
the case by 2.4 when a admits an adapted pair for instance). Let fi, ..., f
be | = ind a homogeneous algebraically independent elements of Y (a). Then
by [28, Thm. 1.2]

!
(deg) Zdeg(fi) > c(a).
i=1
Moreover by [24, 5.6] and [28, Thm. 1.2|, equality holds in (deg) if and only
if Y'(a) is generated by f1,,..., fi.

In particular when a = p, is the canonical truncation of a parabolic
subalgebra p then by the above the existence of a Weierstrass section for
coadjoint action of pu, given by an adapted pair for p, implies that equality
holds in (deg) for a set of indpy homogeneous algebraically independent
elements of Y'(pa).

3. NOTATION.

Let g be a semisimple Lie algebra over k and h be a fixed Cartan subalgebra
of g. Let A be the set of roots of g (or root system of g) with respect to b
and 7 a chosen set of simple roots. Denote by A* the subset of A formed
by the positive, resp. negative, roots of A, with respect to .

With each root o« € A is associated a root vector space g, and a nonzero
root vector zo € go. For all A C A, set g4 = P ey 8a and —A = {y €
A | —y € A}. We denote by a" the coroot associated with the root o € A.
Then (aY)aer is a basis for the k-vector space h. We denote by n, resp.
n~, the subalgebra of g such that n = ga+, resp. n= = ga-. We have the
following triangular decomposition

g=ndhdn .

A standard parabolic subalgebra of g is given by the choice of a subset
7/ of m. That is why we may denote it by p,/. Let Ajf, denote the subset
of A* associated to 7', namely Ai[, = +N7/ N A%, Set n:f, = ga+ . Then

pr =ndbhdn_,. Moreover p_, = njr, @ hdn~ is the opposite algebra of p,/.
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Via the Killing form K on g, the dual space p}, of p,s is isomorphic to p_,
which is then endowed with the coadjoint action of p,.

We denote by (, ) the non-degenerate symmetric bilinear form on h* x h*,
induced by the Killing form on h x h, and denote by H : h — h* the
isomorphism induced by the latter. The form (, ) is invariant under the
action of the Weyl group of (g, ). If g is simple of type B,,, C,, or D,,, resp.
A,,, we may also view the form (, ) as a scalar product on R", resp. on
R™*1. For all 7, 7/ € b*, one has that v(H~'(7")) = (v, v'). We have that
H(aV) = 2a/(a, ), for all @ € A so that, for all o, 3 € A, we have that
B(a¥) = (20/(a, a), B).

We use Bourbaki’s labelling for the roots, as in [2, Planches I, resp. II,
resp. III, resp. IV] when g is simple of type A, resp. By, resp. C,, resp.
D,,. We then set m = {a1, ...,a,} and denote by w;, or sometimes wy,,
1 < i < n, the fundamental weight associated with «;. Similarly, if 7/ =
{aiy, ..., ;. } C 7 we denote by w; , or sometimes w’aij, the fundamental
weight associated with a;; with respect to 7.

We denote by €;, 1 < ¢ < n, resp. 1 < i < n+ 1, the elements of an
orthonormal basis of R”, resp. R""! with respect to the scalar product (, )
and according to which the simple roots a;, 1 < ¢ < n, are expanded as in
[2, Planches II, III, TV, resp. I| for type By, C,,, Dy, resp. A,,.

Recall the definition of the canonical truncation given in 2.3 and denote
by prs, A the canonical truncation of p,-. Then one has that

ProA=ndD ha @ ﬂ;,

where hy C b is the largest subalgebra of h which vanishes on A(p,/), the
set of weights of Sy(p,/) which may be identified with a subset of h*. For
an explicit description of by, see [12, 5.2.2, 5.2.9 and 5.2.10] or [14, 2.2].
Denote by p’, the derived subalgebra of p, and set h’ = hNp’,. Then b’ is
the vector space generated by the coroots o with a € 7’ and §’ C h. Let
wp be the longest element of the Weyl group of (g, h). If wg = —Id then
ba = b’. In particular if g is simple of type B,,, C,, or Ds,,, then we have
that hp = b’. Now assume that g is simple of type D,, with n odd. Then if
both a,_1 and «;,, do not belong to 7/, we have that

ba =b @kH (@, — wn1) = @kH ' (en) = b D k(oy, — o)1),

otherwise hy = b'.
For convenience we will replace p,s by its opposite algebra p_, (simply
denoted by p from now on) and we will consider the canonical truncation

pa =P , of p=p_. We have that
PA=po =10 Bhy@nl
and its dual space p} may be identified via the Killing form K on g with p/ A

(since by [12, 5.2.2, 5.2.9] the restriction of K to h x hp is non-degenerate).
We will denote by g’ the Levi subalgebra of p (and of py), namely :

g=nL@ehon,.
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Then w(, will denote the longest element of the Weyl group of (g’, i’).

4. BOUNDS FOR FORMAL CHARACTER.

Keep the notation of previous Section. A h-module M is called a weight
module if M = ®,¢p+M,, with finite dimensional weight subspaces M, :=
{m € M | Vh € b, h.m = v(h)m}. For a weight module M one defines the
formal character ch M of M as follows :

chM = Z dim M, e”
veh*

where etV = ete” for all u, v € h*. Obviously the formal character is
multiplicative on tensor products that is, if M and N are weight modules,
then

ch(M ® N)=chMch N.

Hence if &7 C S(p) is a polynomial algebra with algebraically independent
h-weight generators a;, 1 < ¢ < [, each of them having a nonzero weight
Ai € b*, then

cho/ = H (1—eM)~L.

1<i<l

Moreover for weight modules M and N, we write ch M < ch N if dim M,, <
dim N, for all v € h*. Hence if M C N, then ch M < ch N and if equality
holds then M = N.

We will specify below (see subsection 4.4) the lower and upper bounds
for ch Y (pa) mentioned in subsection 2.5. For this, we have to summarize
results in [10], [11],[12] and [19].

4.1. Let i and j be involutions of 7 defined as in [12, 5.1] or as in [14, 2.2].
More precisely j = —wp and i(«) = —w((«) for all &« € 7’. If now o € w\ 7/,
then i(a) = j(a) if j(a) € 7, and otherwise i(a) = j(ij)"(«) where r is the
smallest integer such that j(ij)"(«) € 7’. Let E(n’) be the set of (ij)-orbits
in 7. By [12, 2.5] and [10, 3.2|, we have that

(1) indps = degtry (Fract(Y (pa))) = |E(x)].

4.2. Following [12, 5.2.1] one may set, for each ' € E(7') :
R STl SRR S g
vyerl ~vej(T) ~yel'nz’ ~vyey(I'nx’)

Note that, for all I' € E(n’), one has that «(I' N 7’") = j(T') N« by [11,
3.2.2].
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4.3. Let I' € E(n’). One sets dr = 3wy and dp = 3 cpp @7, and

one denotes by B := A(n@®h) C b*, resp. By := A(n;r, ®h') C b’ the set of
weights of the polynomial algebra of symmetric semi-invariants Sy(n & b),
resp. Sy(n; @h’) : generators of the set B, (and then also of B,/) are given
in |17, Table I and II| and in [11, Table|]. The set By, resp. By, is equal to
the set of weights of the polynomial algebra Y (n), resp. Y (n,), see below
subsection 4.5.

Then following [11, 3.2.7] one sets

. 1/2 ifT'=j(I')anddr € Brand d. € By
" otherwise.

(3)

Below we give some details on the set B, resp. B,s. For a real number z,
denote by [z] the integer such that x — 1 < [z] < .

Assume that g is simple of type B,,, with n > 2. Recall that j = Id,. Let
aem If a=ay withl <k <|[(n—1)/2], then wy € B,. Otherwise
2w, € B but w, € B

Now assume that g is simple of type D, with n > 4. Then the same as
above is true for the first n — 2 simple roots. Moreover if n is even then
j = Id; and if n is odd, then j(ay—1) = ay, and j is the identity if restricted
to the n — 2 first simple roots. In both cases, if & € {apn—1, an}, then
Wa + Wj(a) € B but w, € B.

If g is simple of type C,,, with n > 2, then, for all 1 < ¢ < n, 2w; € B,
but w; & B;.

Finally if & belongs to a connected component of 7’ of type A, then w/, +
wg(a) € B, but w!, &€ B,.

4.4.  Assume from now on that g is simple and that the parabolic subalgebra
p is proper that is, 7’ C 7. By [19, Thm. 6.7] (see also [11, 7.1]) one has
that

(4) I[I - <aaa)< [[ @-err)

TeE(n) TeE(n)

Assume now that both bounds in (4) coincide that is, that ep = 1 for all
I' € E(7'). For example, it occurs when g is simple of type A or C. Then
one deduces that Sy(p) = Y(pa) is a polynomial algebra over k on |E(7')|
homogeneous and h-weight algebraically independent generators. One gen-
erator corresponds to every I' € E(n’) and has a weight op given by (2)
above (recall that one has assumed that the parabolic subalgebra p contains
the negative Borel subalgebra n~ @ h) and a degree dr which may be easily
computed by [11, 5.4.2]. To explain how one may compute this degree (see
(5) or (6) below), we have to recall results in subsection below.

4.5. By [17] Y(n})) C Sy(nf, & '), resp. Y(n) C Sy(n @ bh), is a poly-
nomial algebra whose set of homogeneous and h'-weight, resp. h-weight,
algebraically independent generators is formed by the elements Qpr 5 TESP.
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ap., : their weight ,0’7, resp. p-, and their degree are given in [17, Table I
and II] and in |11, Table| and we precise them below. Recall the sets B,
resp. By, of subsection 4.3 and that these sets are also the sets of weights of
Y(njr,), resp. of Y(n). One has that, for all v € ©’, resp. v € ,
,ofy = w,’y if wfy € By, resp. py =wy if w, € Br.
Otherwise
p; = wi/ + wgm, IeSP. Py = Wy + Wj(y)-
Assume that g is simple of type B,,, resp. D,,. Forall 1 <u <[(n—1)/2],
resp. 1 <u < [(n —2)/2], one has that
deg(a’pazu) = deg(aw2u) =u
and for all 1 <wu <[n/2], resp. 1 <u <[(n—1)/2],
deg(aﬂagu,l) = deg(a2w2u71) = 2U/

Moreover for g of type By,
deg(ay,, ) = deg(aze, ) = [(n +1)/2].
For g of type Dy, then for « € {a,_1, o}, one has that
deg(ap,) = deg(awa-i-wj(a)) = [n/2].

Finally assume that g is simple of type A,, resp. C,. Then for all
1 <u < [(n+1)/2], resp. for all 1 < u < n, one has that deg(a,,,) =
deg(tw, twpi1_u) = U, Tesp. deg(a,,, ) = deg(aze, ) = u.

4.6.  Assume now that, for all I' € E(n’), one has ep = 1.
Let I" € E(n’) be such that I' = j(I'). The degree Or of the homogeneous
generator of Y'(pp) corresponding to I' verifies

(5) or= Z 2deg(ay.,) + Z deg(a,., )+

YEL | py =m0y YET | pyF oy
E 2deg(a, ) + E deg(a, ).
yernn’|pl,=w), yerns’|pl, #w!,

Let I' € E(n’) be such that ' = {a} with a € 7\ 7’ and i(a) # «.
Then necessarily one has that I' # j(I') (by [12, 5.2.6]) and there exist
two homogeneous generators sp and tr of Y (pa) corresponding to I' (more
precisely one corresponds to I' and the other to j(I')) whose weight ér = ;)
is given by (2) and whose degree Or, resp. Jj(r), is given by the formula :

(6)  Or =deg(sr) = deg(ay,) and Jjry = deg(tr) = deg(a,,) + 1.

The latter situation can occur when g is simple of type D,, with n odd
and when both «,—1 and «a;, do not belong to ' (see Sect. 14).
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5. IMPROVED UPPER BOUND.

Keep the notation and hypotheses of Section 3 and assume that py admits
an adapted pair (h, y) € hp x p}. Since y is regular in p} there exists an
ad h-stable complement V' to adpa(y) in p} of dimension indpp. Moreover
by [13, 2.2.4] we may assume that V = gy with T"C A" LU A~ that is,
adpa(y) ® gr = pj, with |T'| = indpy. Assume further that y = >° g2,
with S € AT U A, and that Sy, 1s a basis for . Then for each v € T,
there exists a unique element s() € QS such that v + s(y) vanishes on hy.
By [21, Lem. 6.11], one has that

(7) ch (Y(pa)) < [J (1 — e OFs0M)-1,

yeT

The right hand side of the above inequality is called an improved upper
bound for ch (Y (pa)).
Assume now that

(8) H (1 _ eér)—l _ H(l _ e—(v-i—s('y)))—l‘

TeE(n’) ~eT

Then by (4) of Sect. 4 equality holds in (7) and by [21, Lem. 6.11] the
restriction map gives an isomorphism Y (ps) = k[y + gr]. Then y + gr is a
Weierstrass section for coadjoint action of py as defined in 2.5.

This implies that Y (py) is a polynomial algebra over k on |E(n’)| =
|T'| algebraically independent homogeneous and h-weight generators, each of
them having or, for I' € E(n), as a weight, given by (2) of Sect. 4 (this
weight is also equal to —(y + s(7y)), for some v € T'). Moreover the degree
of each of these generators is equal to 1 + |s(v)|, v € T, where |s(y)| =
Y oaes Ma,~ if 5(7) = 3 cgMa,~a (Ma, € N, actually). For all v € T, the
integer |s(y)| is also equal to the eigenvalue of z. with respect to ad h. (For
more details, see [21, 6.11]).

Conversely if y + gr is a Weierstrass section for coadjoint action of pjy,
then equality holds in (7) by [21, Remark 6.11].

6. CONSTRUCTION OF AN ADAPTED PAIR.

As we already said in the previous sections, our Weierstrass sections re-
quire the construction of an adapted pair. This construction uses the notions
we already introduced in [9], [14] and [15]. For convenience we recall some
of them, notably the Heisenberg sets and the Kostant cascades.

6.1. Heisenberg sets and Kostant cascades. A Heisenberg set with cen-
tre v € A (|9, Def. 7]) is a subset I'y of A such that v € I'; and for all
a € T, \ {7}, there exists a (unique) o/ € ', \ {7} such that a + o/ =~. We
may take care to not be confused by the above notation of a Heisenberg set
and an element I' € E(n’), resp. T'y, € E(n’), which denotes an (ij)-orbit in
m, the (ij)-orbit of «,, € 7.
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A typical example of Heisenberg set is given by the Kostant cascade of
g (see also [9, Example 8]). More precisely assume that the semisimple
Lie algebra g admits a set of roots A = | |;.; A; with I C N*, each A;
being a maximal irreducible root system with highest root ;. Then take
(Ai)g, ={a € A | (a, B;) = 0}. Forevery i € I, set (A;), = |;c; Aij with
J C N* and A;; being a maximal irreducible root system with highest root
B;;. Continuing we obtain a subset K(g) C N*UN*2U. .. with Card K(g) <
rank g, irreducible root systems Agx, K € K(g) and a maximal set [, of
strongly orthogonal positive roots fx, K € K(g), called the Kostant cascade
of g. The subset K(g) admits a partial order < through K < L if K = L or
if L={K,l,..., 1} with [; € N*. In type A or C, this order is actually a
total order, since the sets (Ag)g, are already irreducible. So one can index
the subset 3; of AT simply by N in these types, so that the roots in 3, are
simply denoted by f;, 1 <1i < Card K(g). In type B or D, the order is not
total. In type B, or Da,t1, resp. Doy, for the elements fx, K € K(g), we
use the notation f3;, By, resp. fi, By, Bi» with order relation 7 < 4/, resp.
i < i and i < ¢". For more details, see for example [11, Table|, [14, Table 1],
[15, Sect. 7] or [17, Tables I, II, III|.

Let Bx be an element of the Kostant cascade 8, of g and set

HﬁK = {Oz S AK ‘ (Oé, BK) > 0}.

Then Hg, is a Heisenberg set with centre Sk : it is the largest Heisenberg set
with centre B which is included in A by ii) of Lemma below. Moreover
the vector subspace g Hg,, of g associated with Hg, (with the notation in
Sect. 3) is a Heisenberg Lie subalgebra of g by iv) of Lemma below. Of
course all the Heisenberg sets are not necessarily associated with Heisenberg
Lie subalgebras and even not with Lie subalgebras of g, since iv) of Lemma
below need not be true for a Heisenberg set in general.

By [17, Lem. 2.2] (see also [14, Lem. 3|) we have the following Lemma,
which is very useful to construct adapted pairs thanks to the Kostant cascade
Br and to the largest Heisenberg sets Hg, 8 € B, which are defined above.

Lemma. [17, Lem. 2.2]
Let B, denote the Kostant cascade of g. Then we have that :
i) AT =||gcp, Hp (disjoint union,).
i) If v, 6 € AT are such that v+ 6 = B € Br then v, 6 € Hg \ {B}.
i) If vy € Hg,, and 6 € Hg, are such that v+ 0 € Hg,, with K, L, M €
K(g), then K < L (resp. L < K) and M = K (resp. M = L).
w) If v, € Hg, B € Br, and v+ € A then v+ = .

For an explicit description of Kostant cascades, see for example [14], [15] or
[17]. The Heisenberg sets (not only the largest Heisenberg sets Hg, 8 € ()
are very helpful for the construction of an adapted pair. They were used in
[20], resp. in [9],[14] and [15], to build adapted pairs for every truncated
biparabolic subalgebra in a simple Lie algebra of type A, resp. for truncated
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maximal parabolic subalgebras. Below is a proposition where Heisenberg
sets appear to be crucial for constructing an adapted pair.

6.2. A proposition of regularity. The following proposition (see |9, Prop.
9]) is a generalization of [20, Thm. 8.6]. We keep the notation of Sect. 3 and
consider S, T and T* disjoint subsets of AT UA and set y =3 g,

Proposition. [9, Prop. 9]

We assume that, for each y € S, there exists Ty C AT LA, a Heisenberg
set with centre vy and that all the sets I, for v € S, together with T' and T™
are disjoint.

We also assume that we can decompose S into ST 11 S~ where ST, resp.
S~ is the subset of S containing those y € S withT, C AT, resp. T, C A

For ally € S, set Fg =D\ {7}, O0=L]es Fg and OF = L es+ Fg.

We assume further that :

(i) Spy, i a basis for b.

(ii) If a € Fg with v € ST, is such that there exists 3 € O, with

a+pes, thenﬁefg and o+ 3 =1.

(i) If o € FQ/ with v € S7, is such that there exists B € O™, with

a+p eSS, thenﬁef‘g and o+ 3 =1.

(iv) AYUAL =[] s Ty UTUT™

(v) For all « € T*, go C adpa(y) + gr-

(vi) |T| = ind py.

Then y is reqular in P\ and

adpp(y) ® g7 = ).

Moreover we can uniquely define h € hp by y(h) = —1 for all v € S, and
then (h, y) is an adapted pair for p.

We give below the proof of the above proposition for the reader’s conve-
nience.

Proof. Condition (iv) implies that pp = by D g_o0 P g—s D g—71+ P g—r and
that p}, = ba © go © 95 ® g7+ © 97

Let ®, denote the skew-symmetric bilinear form defined by ®,(z, 2’) =
K(y, [z, 2']) for all z, 2’ € g where recall K is the Killing form on g.

Conditions (i7) and (7i¢) imply by [20, Lem. 8.5 that the restriction of @,
to g_o X g—o is non-degenerate. Then go C adg_o(y) +bha+9s+ 97+ gr+-

But since ONS = () one has that for all x € go and 2’ € g_p, the element
x — adz'(y) belongs to the orthogonal of hp for the Killing form. Then
go Cadg—o(y) +9s + 9r + gr=.

Condition (i) implies that gg = adha(y) and that hy C adg_s(y)+ go +
gs + gr + gr+. Condition (v) implies that gr« C adpa(y) + gr. Hence
PA=bAaBg0PgsDgr-Dgr C adpa(y)+ gr. Finally condition (vi) implies
that the latter sum is direct, since dim g7y = ind py < codim ad px(y). O
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Remarks. (1) Notice that [20, Thm. 8.6] is a special case of the above

Proposition, with 7% = . Here we need to take sometimes a set

T* # () as in [9].

(2) In[15, Lem. 3.2 and Lem. 6.1] lemmas were given to insure condition
(v) in the above Proposition. In this paper, as in [9], we verify by
hand that condition (v) of the above Proposition is satisfied, using if
necessary Lemma and Prop. 6.3 below.

(3) Assume that there exists an adapted pair (h, y) for py and denote
by gr a complement of adpy(y) in p}, with 7 C AT LA

(a) Assume further that ep =1 for all I' € E(n’) (as defined in (3)
of Sect. 4). Then Y (pa) is a polynomial algebra and by what
we said in subsection 2.5 one has that y + gr is a Weierstrass
section for coadjoint action of py (since gr is ad h-stable).

(b) Assume now that there exists I' € E(7’) such that ep = 1/2.
Assume further that (8) of Sect. 5 holds. Then by what we said
in Sect. 5, y + gr is a Weierstrass section for coadjoint action
of PA-

6.3. Condition (v) of Prop. 6.2. Keeping the notation of Sect. 3, we
consider S, T, T* C AT LI A, three disjoint subsets and y = Y g Za. We
give in the Proposition below a sufficient condition which implies condition
(v) of Prop. 6.2 for some roots a € T*. Recall Sect. 3 that for all & € A, we
have fixed a nonzero root vector z, € g,, that we will rescale if necessary,
except those associated with the roots o € S, since y = 3 g T4 is fixed.

Lemma. Let v1, 72, 73 € S and 7}, 7, ¥4 € (A~ UAL)\ S such that

(1) vi+~ € (ATUA_N\S forall1 <i<3

(2) 247 =+

(3) 13 +75="72+m

(4) m+n+rel

(5) m+7EA 2+t dA n+ysgA

Then y1+74 = v3+74 and up to rescaling the nonzero root vectors Tyt € PA

for all 1 <1 <3 and the nonzero root vectors x.,, SRV pr for all 1 < i <3,
we have that

[x'yiv Ty) = [x~/§7 Try) = Loy 44
(%) [l"yév "E’YQ] = [m’yé’ x’ﬂ] = Typtv4
[x'ygv Toyg] = [w'y{7 Toy,) = Loyz+4

Proof. The equality 71 + 7 = 73 + 74 comes directly from the equalities
(2) and (3). Moreover the rescaling of the nonzero root vectors z., and
LA (which is possible since the roots v/ and 7; + v} do not belong to S)
gives for example the last two equalities of (X). Then we obtain the first

one, since we prove easily that [z, ,,] = [z, 24,]. Indeed by applying
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Jacobi identity several times, it is easy to prove, under the assumptions, that
[z, 2y ]s Typ] = [[15 T3], 24,] and using (4) one can conclude. O

We then have directly the following proposition.

Proposition. Letv; and v, for 1 < i <3, be roots satisfying the hypotheses
of previous lemma. Recall that'y =3 g xy and let X, X', X" be vectors
in P such that, after a possible rescaling of some suitable root vectors, we
have

1

adx /(y) = T4y —I—mw_wé + X'

ad Lyt (y) = Loy} + Loyg+4 +X
T2
ad 24 (Y) = Toyng + Ty + X7
with
X & Vect(y, 145 Tyzyy) \ {0}
X' & Vect(Ty, 1y, Tyyiyy) \ {0}
X" & Vect(Ty, iy, Tystqy) \ {0}

If X, X', X" € adpp(y) + gr, then z., ./ € adpa(y) + gr for all1 <i < 3.

Actually we will apply the previous proposition with X, X', X” being
vectors for which it will be immediate to verify that they belong to ad pa (y)+
gr by direct computation. Moreover one of the v; + +/ will belong to the
subset T*. See for example proof of Lemma 9.3.

6.4. The Kostant cascade in type A. Keep the notation of Sect. 3 and
assume that g is a simple Lie algebra of type By, C, or D,. We consider
p=n &ho njr, the standard parabolic subalgebra of g containing the
negative Borel subalgebra b~ = n~ @ bh and associated to the subset 7’ C .
Recall that we are interested in studying p which is equal to p, ¢, resp. py,
resp. (s ¢ with s € N* and ¢ € N, as defined in subsection 1.2. Then the
subset 7 associated to p is 7 = 7w\ {as, Qst2, .., Qspop) With 1 < s <
n—20, resp. ™ =7\ {apn_1-20, ..., @n_1, an} and g of type D, resp.
7 =7\ {as, asya, ..., Qsio0, A1, ap} with s +2¢ <n — 2 and g of type
D,.

If s > 2 and in the cases of ps ¢ or of qs ¢, 7] = {1, @2, ..., a1} will
denote the connected component of 7’ of type As;_1 and in the case of py,
7 = {1, ag, ..., ap_o_9¢} will denote the connected component of 7’ of
type A, _9_op, if n —2 —2¢ > 1. To keep homogeneous notation we will set
in this subsection s = n — 1 — 2¢ when we are in the latter case. We denote
by Bﬂzl the Kostant cascade (see 6.1) of the simple Lie subalgebra O of the

Levi subalgebra g’ of p which is of type A, ;. We also denote by 7" the
subset of b’ formed by the coroots a¥ with € 7] and by AY, := AT NNxl.
1

We have that

By ={Bi=ci—esp1-i [ 1<i < [s/2]} C AL
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Set ﬁ?fi = B \ (ﬁﬂ/l Nrp). If s is odd, then *823 = By, and if s is even, then
,6’23 ={Bl|1<i<(s—2)/2}. The following lemma will be useful for the

next sections, notably to prove that, for a suitable subset S C A™ L A, one
has that S), is a basis for b} (see Lemma 8.2 or Lemma 10.2). If s is even,
set t := [s/4] and if s is odd, set t := [(s + 1)/4]. We consider the subset
{P h<j<is-1)721 C 71", with the following order. If t = s/4 with s even,
resp. t = (s +1)/4 with s odd, then

(Wi} ={hy 1 =ag; 4, By =af 531 <j<t—1,hy | =ay 4}
If t = (s — 2)/4 with s even, resp. t = (s — 1)/4 with s odd, then
{hi} ={hb; 1 = ag; 1, hy; =al 4,31 <j <t}
Lemma. Let A be the square matriz of size [(s — 1)/2] which entries are
=Bi(h}) with 1 <, j < [(s —1)/2]. Then A is a lower triangular matriz
with —1 on the diagonal. Hence det A = (—1)ls=1)/2]

Proof. Recall the construction of the Kostant cascade of g,/ (see 6.1). Set
Al = A;Z, then set A = {a € Af; (o, 8]) = 0}. Here B is the highest
root of gr and i = @) + w,_;. Then A7 = AT NNz where 75 =
7 \{a1, as_1}. Continuing we set Af, | = {o € AF; (a, B]) = 0} where f3] is
the highest root of A;. Then we have that Af; C A} C--- C Af and then
(B, @) =0 for all v € A;r with 7 > 4. Finally observe that, for all 1 < j <
[(s +1)/4], agj1 € A3, as—aj € AT, By (ag; 1) = (By;_y, agj—1) =1
and that By (o) o;) = (Bh;, as—2;) = 1 while 2j < (s — 1)/2. Hence the
lemma. O

7. SOME EXAMPLES.

Before stating the main result (see subsection 1.7), we give below two
examples which will enlighten our construction of a Weierstrass section, each
of these examples using a different method to obtain the latter from the
adapted pair we construct. Thus case lc of subsection 1.7 (see also Sect. 9)
is illustrated by the first example and case 3 of subsection 1.7 (see also Sect.
14) is illustrated by the second example. We keep the notation of Sect. 3.

7.1. Comparison of multiplicities. Assume that we have constructed an
adapted pair (h, y) € ha x p} for po via Prop. 6.2. Let A € k and set
t=bha @ go D gs D gr- C p} (one has that ¢t @ gr = p}). Recall that the
endomorphism ad h of p}, resp. of pp (with ad the coadjoint action, resp.
the adjoint action) is semisimple. Then A is an eigenvalue of ad h on p} if
and only if —\ is an eigenvalue of ad h on py. Write m/, for the multiplicity
of A in t, my for the multiplicity of X in py and m} for the multiplicity of A
in p}. Then by the above m_y = m} and obviously m) < m_y. Moreover
since ad h(y) = —y and that p} = adpa(y) ® gr, we must have that

(9) mh < map
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(see also [9, 7.1]).
In the examples below, we will check that inequality (9) is satisfied.

7.2. First example. We assume that the Lie algebra g is simple of type Bg
and we set 7 = 7\ {ag, ay}. Then we consider the parabolic subalgebra
p = p,, as defined in Sect. 3. We are then in case lc of subsection 1.7. We
take S = ST U S~ with

— /!
ST ={e1+e3, 69, e4+e5}, 8™ ={-B] =—e5—¢c6}
where 1 is an element of the Kostant cascade of g,
T = {e1 +¢ea, €1 — €3, €2+ €4, €4 — €5, €4 — €3, €6 — €5},

*
T* = {e3 + €6, €2 + €5, €2 — €1, €2 — €5, €2 — €4, E2 — €3, €6, E2 — 6 }-
We set

F€1+€3 - {61 + €3, €1 + €4, €3 — &4, €1 + €5, €3 — €5,
€1 + €6, €3 — €6, €1, €3, €1 — €6, €3 T €6,
€1 — €5, €3 + €5, €1 — €4, €3 + €4, €1 — €2, €2 + €3},

FEQ == {52}7
Ceytes = {€a+ €5, €4+ €6, €5 — €6, €4, €5, €4 — €6, €5 + €6}
F*€5*€6 = {_85 — &6, —€5, _56} = _Hﬁil

where H gy 1s the largest Heisenberg set with centre 3} included in A:,, as
defined in 6.1.

By setting y = 3 g, one verifies (see for more details Sect. 9) that
all conditions of Proposition 6.2 are satisfied (indeed it is more complicated
than what we have to do in the second example). Then h € b’ such that
v(h)=—1forall y € Sis:

h=e1 —eg — 263+ 264 — 365 + 456 = af — 2§ — 3a +1/2ay.

Hence the pair (h, y) is an adapted pair for py. This adapted pair is not
sufficient a priori to give a Weierstrass section for coadjoint action of py,
since there is one I' € E(n’) such that ep = 1/2. But we can easily check
that (8) in Sect. 5 holds. Hence by Remark 3b of subsection 6.2 one has that
y + gr is a Weierstrass section for coadjoint action of pp, and then Y (py)
is a polynomial algebra over k (result which was not yet known since the
criterion that ep = 1 for all I' € E(n’) is here not satisfied).

To convince oneself that (h, y) given above is indeed an adapted pair for
pa (although the inequality (9) of 7.1 is just a necessary condition), one gives
in the table below the multiplicities m/, and m} = m_, for all eigenvalue
A € k of adh on p} and one easily checks that inequality (9) of 7.1 holds.

) 7] 6] 5] 4]3]2]-1]0
my 1 |1 |2 3[4 4]5]5
m_y 1|1 |23 4456
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) 1 [ 234567
mly 44321170
m_y 5 1 4 | 4| 3] 2 1|1

7.3. Second example. Here we assume that g is simple of type Dg and
consider 7" = 7\ {1, a3, as, ag, ag} and the parabolic subalgebra p = p_,
associated with 7/. Here we are in case 3 of subsection 1.7. We take S =
ST U ST with

ST ={B1=¢c1+¢e2, fr=c3+¢4, B3 =65+¢6 Ba=P01—ag=¢c7+¢eo}

and ST = {*ﬁi’ =8 — 66}.

Here 8; = €9;—1 + €2; (1 < i < 4) are elements of the Kostant cascade S,
of g and A7 is an element of the Kostant cascade 8, of g’. More precisely
setting 62, = Bx \ (B N7'), we have that S~ = — 67?,. We also set

T ={e1 — €9, €3 — €4, €5 — €6, €7 + €8, €7 — €9, €8 — €9, €3 — €2, €5 — 4}

and T = 0.

For all 1 <14 < 3, we take I'3, = Hg, where Hg is the largest Heisenberg
set with centre 8 € 8 which is included in AT as defined in subsection 6.1.
We set FB4 = {,84, E7 — €8, €8 + 59} and F—ﬂf = _HBY where Hﬂil C A:/
is the largest Heisenberg set with centre 3] which is included in AY,. Since
Hp, UHa, =T U (T N Hpg,), Lemma 6.1 i) gives condition (iv) of Prop.
6.2. Moreover Lemma 6.1 i7) and ¢ii) gives conditions (i7) and (#ii) of Prop.
6.2. Finally we verify by hand that conditions (i) and (vi) of Prop. 6.2 are
satisfied, noting that hy = b’ D k(ag — ). Setting

h=—a3 —2a) —3ay + 4o —4(ag —ag) € by

and y = Y g Ta, one checks that (h, y) is an adapted pair for py. Moreover
one checks easily that both bounds in (4) of Sect. 4 coincide, then Y (py) is
a polynomial algebra and by what we said in Remark 3a of subsection 6.2,
y + g1 is a Weierstrass section for coadjoint action of ps. In the table below
we give the multiplicities m/, and m} = m_j for all eigenvalue A € k of ad h
on p} and one easily checks that inequality (9) of 7.1 holds.

) 2[-11]-10] 9] 8] -7] 6] 5 4] -3
A T2 22233334«
mx 1 |2 2223333/«
) 2 -1]0] 1 |2]3]4]5]6]7
mly 5 1717 |5 43| 3 ]3] 3] 2
m_y 5 | 71716 | 5|55 | 4] 3] 2

) 8 | 9 |10 11 | 12| 13 14] 15

A 2 | 2 100 0] 0

My 2 22100101
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8. CASES 1A AND 1B FOR TYPE B ORrR D.

In this Section we consider truncated parabolic subalgebras described in
la and in 1b of subsection 1.7. More precisely (with the notation of Sect. 3
and of subsection 1.2) let p=ps p=n"Hh P n;t, be a parabolic subalgebra
associated to the subset 7’ = 7\ {as, ast2,...,a519¢} with £ € N and s an
odd integer, 1 < s < n — 2/, in a simple Lie algebra g of type B,,, resp. D,
with n > 2, resp. n > 4.

If £ = 0, then the parabolic subalgebra p is maximal and this case was
already treated in [14]. Thus we will assume from now on that ¢ > 1. Note
that by = b/, in type B, but also in type D,, with the above hypotheses,
by what we said in Sect. 3 (since it is not true that ,_1 and «,, are both
deleted from 7).

Here we will show (see lemma 8.5) that the lower and upper bounds for
ch (Y (pa)) in (4) of Sect. 4 coincide, and then the algebra of symmetric in-
variants Y (pa) is polynomial. By Remark 3a of subsection 6.2 the existence
of an adapted pair for p, is sufficient to give a Weierstrass section for coad-
joint action of pp. Our construction of an adapted pair for py generalizes the
construction of an adapted pair in [14, Sect. 4 and 5| in case of a maximal
parabolic subalgebra.

We will use Proposition 6.2, which here is quite easy to apply. Indeed
it suffices to take S U T to be the union of the Kostant cascade in g and
the opposite of the Kostant cascade in g’. Moreover for each v € S*, resp.
v € S7, we take the Heisenberg set I';, to be equal, resp. to be the opposite,
to H,, resp. of H_,, where H,, resp. H_,, is the largest Heisenberg set
with centre ~, resp. —7, included in A™, resp. A:Tr,, as defined in 6.1. Here
moreover we set T* = (). Then Lemma 6.1 will give most of conditions of
Prop. 6.2.

8.1. The Kostant cascades.
Recall 6.1 the Kostant cascade 8, of g and set 82 = S, \ (B N7). If g is
of type B,, then we have that

BY={B; =e2i—1+e2|1<i<[n/2]},

and if g is of type D,, then
By ={Bi =e2i-1+e2|1<i<[(n—1)/2]}.

Moreover if g is of type B, then we have that

BN ={a-1|1<i<[(n+1)/2]}.
If g is of type D,, and n odd, then we have that

BrNm={az-1|1<i<(n-1)/2},
and if g is of type D,, and n even, then we have that

Br N ={an, agi—1 |1 <i<n/2}.
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Now for the Kostant cascade S, of ¢/, set similarly 8%, = B, \ (B N 7). If
g is of type By, then we have that

By = {B=ei—est1ii | 1<i<(s—1)/2,
B = esyarraj1 + esyarna; | 1<5 < [(n—s—20)/2]}

and

B N7’ = {asroeyaio1, aspoj1 |1 <i<[(n—s—2041)/2], 1 <j<(}.
Now suppose that g is of type D,, and that s + 2¢ < n — 2. Then we have
that

BY, = {Bi=ei—esp1—i | 1<i<(s—1)/2,
BY = esparraj—1 +Esparray | 1< J < [(n—s—1-20)/2]}.

If moreover n is odd then

Brr N = {aru g4 2042i—1, As4+25—1 ‘ 1<:< (n —S5— QE)/Q; 1<;< E}
and if n is even then

B N7’ = {asyoes2i-1, dsy2j-1 |1 <i<(n—s—20—-1)/2,1<j </}

Now assume that g is of type D,, and that s +2¢ € {n — 1, n}. Since
the case 7' = 7 \ {as, @s42,...,Qsp20—2, ap—1} and the case 7' = 7\
{as, asy2,..., 5902, a,} are symmetric, one may suppose that we are
in the latter case. More precisely if n is odd then we assume that 7/ =
7\ {as, Qst2y .., Qn_2, an} and if n is even then we assume that 7’ =
7w\ {as, asya, ..., an_3, ap}t. If nis odd then

Y ={Bl=ei—esp1-i ; 1 <i < (s—1)/2}
and B N7’ = {as+2i_1 = €s42i1 —Esy2i; 1 <i<l=(n-— s)/2}.
If n is even then
52/ = {Bé =& —€spl—i, Bl =€n—2—€n; 1 <i< (s — 1)/2}
and B N7 = {Qsy2i-1 = Esqaim1 —Esp2i; 1 <i<l—1=(n—3—5)/2}.

8.2. Conditions (i) to (v) of Proposition 6.2.
For g of type D,, with n even and s + 2¢ < n — 2, we set
St =BYU{Bn2 = an =en_1+en}.

Otherwise we set ST = Y.
For g of type D,, with n odd and s + 2¢ < n — 2, we set

S™ = =B U{—B{2e_oyj2 = —an = —(en—1+n)}.

Otherwise we set S~ = —52,.
For g of type D,, with n even and s + 2¢ < n — 2, we set

T = (B N7)\ {an}.
For g of type D, with n odd and s 4+ 2¢ < n — 2, we set

T~ = —(Bo N7)\ {—an}.
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Otherwise we set Tt = B, N7 and T~ = —(By N 7’'). Finally we set
S =8TuUS, T =T"uT and T* = (. Then ST,TT C AT and
S—,T— C A_,. Inall cases we have that 8, = STUTT and —f =S~ UT".

Then for all v € ST, resp. v € S7, we choose Iy = H.,, resp. I, = —H_,,
where H., resp. H_,, is the largest Heisenberg set with centre v € 3, resp.
—~ € By, included in AT, resp. A:,, as defined in 6.1. Observe also that, if
a € BN, resp. « € B N, then Hy, = {a}.

By Lemma 6.1 i) we have that At = Les+ Iy U T+, resp. A, =
LJ,es- I'y T, hence condition (iv) of Proposition 6.2 is satisfied. Condi-
tions (#¢) and (i4i) of Proposition 6.2 follow from Lemma 6.1 4i). Moreover
condition (v) of Prop. 6.2 is empty since T* = (). Below we check condition
(7) of Proposition 6.2.

Lemma. Sjy, is a basis for b}.

Proof. Recall that hy = b’ and remark that |S| = dimb' =n — ¢ — 1.

Assume first that g is of type D,, with n odd and that s + 2¢ = n. Then
|S|=(n—1)/2+ (s —1)/2 =n —{—1 and one may order the elements s,
of S as

/617 1627 ey /B(nfl)/Za _/Bia _ﬂév LR _625—1)/2
and choose the following (ordered) basis h, of b’ :

hi=ay, 1<i<(n-1)/2,
hn1)/242j1 = Mogjo1 = i1 Apn1)/ata; = hyy = @y,
1<j<[(s+1)/4]

without repetition for the h’’s. Then observe that, for all 1 <14 < (n—3)/2,
one has 8; = €9;_1+¢€9; = w9; —wo;_9 if we set wyg = 0 and B(nfl)/2 =Ep—2+
En—1 = Wn—1+ @n — @Wn-3. It follows that the matrix (sy(hv))1<u, v<(n—r—1)

has the form
A 0
*x B

where A = (Bi(hj))1<i, j<(n-1)/2 18 a (n —1)/2 x (n — 1)/2 lower triangular
matrix with 1 on the diagonal, and B = (=5;(h}))1<i j<(s—1)/2 18 a (s —
1)/2 x (s — 1)/2 which by Lemma 6.4 is a lower triangular matrix with —1
on the diagonal. Hence det(su(hy))1<y,v<(n—t—1) # 0 and we are done in
this case.

Assume now that g is of type D, with n even and that s + 20 = n —
1. Then consider the parabolic subalgebra p of g associated to #’ = 7\
{ag, g2, ooy ap—3, ap} (1 < s < n — 3 is still an odd integer). Then
S| =(n—2)/2+(s—1)/2+1=mn—{¢—1 and one may order the elements
Sy, Of S as

/Bl) 527 ey /B(nf2)/27 _/61> _ﬁév ] _ﬂzs_l)/2> En —En-2
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and choose the following (ordered) basis h, of §’ :

hi=ay, 1<i<(n-2)/2,
hin—2)/2+2j-1 = h/2j—1 = 0‘2vj—17 hin-2)/2+2; = h/2j = 04;/—2]'7
1<j<[(s+1)/4],
hn,g,1 = 047\1/_1

without repetition for the h;-’s. Similarly as above one obtains that the
matrix (su(hv))1<u, v<(n—¢—1) has the form

)

where A = (8i(hj))i1<i, j<(n—2)/2 18 a (n — 2)/2 x (n — 2)/2 lower trian-
gular matrix with 1 on the diagonal, and B is a (s + 1)/2 x (s + 1)/2
lower triangular matrix with —1 on the diagonal by Lemma 6.4. Hence
det(su(hv))1<u, v<(n—t—1) 7 0 and we are done in this case.

Assume that g is of type B,,. Then one may order the elements s, of S as
follows :

5=, 1 <i < [n/2],
Snj2l4j = —B5 1 <j < (s —1)/2,
Sin/2)+(s—1)/24k = =By 1 <k <[(n—s—20)/2)]

and choose the following (ordered) basis h, of ' :

hi =ay;, 1 <i<[n/2
Rinj2v2j—1 = Roj 1 = g1, hinjoyo; = Py = af_5: 1 <5 < [(s+1)/4]
Rin /24 (s—1) 24k = Ogqappony 1 Sk <[(n—20—5)/2]

without repetition for the h;-’s. Now if g is of type D, with s +2¢ < n —
2, we take the same set S ordered as above and the same basis of §’, up
to replacing «a,/ by 2e,. Then by what we explained before, the matrix
(Su(hv))lguﬂjg(n,g,l) has the form

A 0 O

* B 0

x x C
where A is a [n/2] x [n/2] lower triangular matrix with one on the diagonal
(except for the case n even where 2 is the last entry of the diagonal), B is a
(s —1)/2 x (s — 1)/2 lower triangular matrix with —1 on the diagonal (by
Lemma 6.4) and C' is a [(n — s — 20)/2] x [(n — s — 2¢) /2] lower triangular
matrix with —1 on the diagonal (except for the case n odd where —2 is the
last entry of the diagonal). Hence det(su(hv))i<u,v<n-r—1) # 0 and the
proof is complete. O

8.3. Condition (vi) of Proposition 6.2.

Lemma. One has that |T| = ind py.
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Proof. Recall (1) of Sect. 4, that indpy = |E(7")| where E(7’) is the set of
(1j)-orbits in 7. Assume first that g is of type D,, and that s+2¢ € {n—1, n}.
If n is odd, then

E(x) = {ru = {aw, as_u}, 1< u < (s — 1)/2,
Fo={a}, s v <02, Tyt = {an, an-1}.

If n is even, assuming that 7’ = 7 \ {as, @syo,..., Qsro0_2, ap}, with s +
20 — 2 =n— 3, then

E(ﬂ'/) = {Fu = {aua Oésfu}a I1<u< (3 - 1)/27
ry,= {av}u s<v<n—-31,1= {an—27 an—l}’ I = {an}}

Hence indppy = [E(7")] =n— (s+1)/2.

On the other hand, one has that : for n even, |TT| =n/2+ 1 and [T~| =
{—1=(n—-3-s)/2,and for n odd, |Tt| = (n—1)/2, |T"| =¢ = (n—s)/2.
Then |T'| = ind pp in both cases.

Now assume that g is of type B,,. Then

E(r') = {ru — {0, @), 1 <u < (s—1)/2,
Iy={a}, s<v< n}
Hence indpy = |E(7")| = n— (s —1)/2 and one checks that this is also equal
Erlz;l{y assume that g is of type D,, and that s +2¢ <n — 2. Then
E(n') = {ru = {0, Qs_u}, 1 <u < (s—1)/2,
Iy={ay}, s<v<n—-2T,1={ap1, an}}.

Hence indpy = |E(n")| = n— (s+1)/2 and one checks that this is also equal
to |7 O

8.4. All conditions of Proposition 6.2 are satisfied, thus one can deduce the
following corollary.

Corollary. Set y = Y cqTa. Then y is reqular in p} and more precisely
adpp(y) ® gr = p}. Moreover since Sy, is a basis for b}, there exists a
uniquely defined element h € by such that a(h) = —1 for all « € S. Thus
the pair (h, y) is an adapted pair for py.

8.5. Coincidence of bounds of Sect. 4. Recall Remark 3a of subsection
6.2 that it suffices to show that both bounds in (4) of Sect. 4 coincide to
obtain a Weierstrass section for coadjoint action of ps. This is the following
lemma.

Lemma. For allT € E(n'), one has that ep = 1. Then Y (pp) is a polyno-
mial algebra over k.
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Proof. Recall subsection 4.3. We will show, for all ' € E(n’) such that
J(I') =T, that dr & By or d- & By, hence er = 1. Recall the (ij)-orbits in
E(n’) given in the proof of Lemma 8.3.

For all 1 < u < (s —1)/2, one has that dp, = w, + ws—y, & Br since u
and s — u are of different parity. Hence er, = 1.
For s < v < n — 2, (with the restriction that v < n — 3 if n even and g of
type D,, with s +2¢ = n — 1) one has that dp, = w, ¢ B, if v is odd and
dp, = @, & By if v is even. Hence er, = 1.
Now if g is of type D,,, s +2¢ = n — 1 and n even, one has that dr, , =
Wp—2 + wWn—1 & Br and dr,, = wy, & Br. Hence er, |, =¢ep, = 1.
If g is of type Dy, s +2¢ = n and n odd, then dr, |, = w,—1 + @, € By, but
dp, | =w, 1 & By. Henceer, , = 1.
If g is of type Dy, s +2¢ < n —2, then dr,_, = wp—1 + @y, and d, | =
w), _, +w),. One of them does not belong to By, resp. By, since ¢’ is of type
D;,—s—2¢, and since n and n — s — 2/ are of different parity. Hence er,, , = 1.
Finally assume that g is of type B,, and take v € {n — 1, n}. Then dr, =
wy € By if n is even. If now n is odd then dr, = w, & B, while dp, , =
wWn—1 € Br. But since n is odd, a,,_1 € 7’ and di“n_1 =w/,_; & By. Hence
er, = 1. This completes the proof. O

n—1

8.6. A Weierstrass section. Summarizing the above results, we obtain by
Remark 3a of subsection 6.2 the following Theorem.

Theorem. Let g be a complex simple Lie algebra of type By, resp. Dy, with
n>2 resp. n>4 andletp =n" G hd n;r, be a parabolic subalgebra
associated to ™ = 7\ {as, Qst2, ..., Qsyor} where s, L € N* and 1 < s <
n—2¢, s odd. Then there exists a Weierstrass section for coadjoint action of

PA-

8.7. Weights and Degrees. For completeness we give below the weights
and degrees of a set of homogeneous and h-weight algebraically independent
generators of Y (pa). Since both bounds in (4) of Sect. 4 coincide then, for
all T' € E(r’), each homogeneous and h-weight generator has dr as a weight
given by (2) of Sect. 4 and a degree 9r given by (5) of Sect. 4 (since here
for all T' € E(n’), we have that j(I') =T).

Below are weights and degrees of a set of homogeneous and h-weight al-
gebraically independent generators of Y (py ), each of them corresponding to
an (ij)-orbit I'; in E(7).

Assume that g is of type B,, and that s +2¢ < n :
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(ij)-orbit in E(7) Weight Degree
Ty ={au, as—u}, —2w, s+14+2u
1<u<(s—1)/2
Iy ={a}, —210, v+1
v=s+2k 0< k<Y
r,= {av}) —Wy—1 — Wy+1 v+1
v=s+2k—-1,1<k</
ry={a}, —2w0s 90 20+1—s5—2¢
s+20+1<v<n-1
T, ={an} —Wsio0 n—0+(1—s)/2
Assume that g is of type B,, and that s +2¢ = n (hence n is odd) :
(1j)-orbit in E(r") Weight Degree
Iy = A{au, as—}, — 270, s+142u
I1<u<(s—1)/2
Iy ={ay}, —2w, v+1
v=5+2k 0<k<l—1
ry,= {Oév}, —Wy—1 — Wy+1 v+1
v=s+2%k—1,1<k<l—1
1= {an—l} —Wp—2 — 2Wy n
Iy ={an} —2wy, (n+1)/2
Assume that g is of type D,, and that s +2¢ <n —2:
(1j)-orbit in E(r") Weight Degree
Ty = {aw, as—q}, — 210, s+142u
1<u<(s—1)/2
ry={a}, —210, v+1
v=s+2k 0<k</
r,= {av}a —Wy—-1 — Wy+1 v+1
v=s+2k—-1,1<k</
Iy ={ay}, —2w4 90 20+1—s5—2/0
s+28+1<v<n-—2
I =A{an—1, an} —2t0g 190 2n—s—20—1

Assume that g is of type D,, and that s + 2¢ = n (hence n is odd) :

(ij)-orbit in E(7) Weight Degree
Iy = {au, as—q}, — 270, s+142u
1<u<(s—1)/2

Ly ={a}, —2w0, v+1

v=s5+2k 0<k</l-1
Iy = {av}7 —Wy—-1 — Wy+1 v+1
v=s+2k—-1,1<k</l-1

Iy 1= {an—la an} —Wp—2 — 2y n

27

Assume that g is of type D,, and that s+2¢ = n — 1. Hence n is even and

we assume that 7’ = 7\ {as, asia, ..

-y 03, Oén} :
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(ij)-orbit in E(7) Weight Degree
Ty ={au, as—u}, —2w, s+1+2u
I1<u<(s—1)/2
'y ={a}, — 2w, v+1
v=5+2k 0<k<l—1
ry= {av}y —Wy—1 — Woy+1 v+1
v=s+2k—1,1<k</{-1
R {an—ly an—Q} —2(wn—3 + wn) 3”/2
Iy ={an} —2wy, n/2

8.8.

Remark. Assume that the simple Lie algebra g is of type B, or D,, and
that 7’ = 7 \ {as, ast4}, with s odd and consider the truncated parabolic
subalgebra pj associated to «’. In this case the lower and upper bounds for
ch (Y (pa)) in (4) of Sect. 4 do not coincide in general and then we do not
know for the moment whether polynomiality of Y (ps) holds or not. However
the adapted pair that we have constructed in subsection 8.2 using the set
S = BoU (=B%) (at least for type B,) does no more work in this case.
Indeed one may notice that for all 3 € 82, and for all 5’ € ,6’2,, one has
Blay ) = B'(afs) = 0 while ay, 5 € ha. It follows that the restriction of
B2 U (—pB2) to ha cannot give a basis for b}.

9. CASES 1Cc AND 1D FOR TYPE B OR D.

Recall the notation of subsection 1.2 and Sect. 3. In this Section the Lie
algebra g is simple of type By, n > 4, resp. D,, n > 6, and we consider
the parabolic subalgebra p = ps 1 = p_, of g associated to the subset 7’ =
7\ {as, ast2} of simple roots, with s an even integer, 2 < s < n — 2, resp.
2 < s<n-—4. We are then in the cases 1c and 1d of subsection 1.7.

The Levi subalgebra g’ of p is isomorphic to the product slg x sly X $0,,,
with m € N*, and m > 4 if g is of type D,,. More precisely if g is of type
B,, one has that m = 2n — 2s — 3, and when g is of type D,, one has that
m = 2n — 2s — 4. We adopt the convention that so; = {0}, so3 = sly,
504 = 5[2 X 5[2 and 506 = 5[4.

In these cases the lower and upper bounds given by (4) of Sect. 4 do
not coincide, hence we cannot conclude with this criterion that the algebra
Sy(p) =Y (pa) is or not polynomial. However we will construct an adapted
pair for the truncated parabolic subalgebra pp associated to p. We will then
prove that the improved upper bound defined in Sect. 5 is equal to the lower
bound (namely that equality (8) of Sect. 5 holds). This implies by Remark
3b of subsection 6.2 that there is a Weierstrass section for coadjoint action
of pp and then that the algebra of symmetric invariants Y (py) = Sy(p) is a
polynomial algebra over k for which the weights and degrees of homogeneous
and h-weight generators may also be computed.
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We will still use Proposition 6.2 but here the set S cannot be taken to
contain B2U(—BY) as in Sect. 8. Indeed assume that S contains the elements
B1; - -, Bsy2 of the Kostant cascade of g. Then the semisimple element i of
the adapted pair should verify both equalities ws(h) = ((e1 + &2) + ... +
(es—1 +¢5))(h) = (—1) x $/2 and ws(h) = 0 by definition of hy (see Sect.
3) and since h € hp and —2w, € A(p) by (4) of Sect. 4. Hence we obtain
a contradiction. Also for each v € S, a more complicated Heisenberg set
I', with centre v than the set H, used in previous section will be taken in
general. We will also take T™* # ().

9.1. Condition (i) of Proposition 6.2. For type B,,, we set

St = {63, Bi = €2i—1 + €2y €s—1 + €541, €25 + €2j+1;
1<i<s/2-1,8/2+1<j<[(n—1)/2]}
and
S™ = {es—i =i, =B} (sra)/2 = —€2j-1 — €25
1<i<s/2-1,s/2+2<j<[n/2]}
For type D,,, we set

St = {63 — En, Es + En, Bi = €2i—1 + €2, €s-1 + €541, €25 + €2541;
1<i<s/2-1,s/2+1<j<[(n—2)/2]}
and
ST = {854 — Eiy _B;/_(5+2)/2 = —€2j-1 — €24}
1<i<s/2-1,8/24+2<j<[(n—1)/2]}

Remark that the above sets ST contain the same elements as those defined
in [15] or in [9] for maximal parabolic subalgebras, except for one of them
which is missing, namely the element —es11 — €542, since it does no more
belong to A~.

As we already noticed in Sect. 3 for type B,,, and also for type D,, (since
s < n—4) we have that hy = b’. Asin [15, Lem. 7.1], we prove the following
lemma.

Lemma. Set S = ST 1S~ as above. Then Sy s a basis for bj.

Proof. The proof is quite similar to that of [15, Lem. 7.1]. We give it below
for the reader’s convenience. First observe that |S| = n — 2. The elements
of S will be denoted by s;, with 1 <i <n—2. When g is of type B,,, we set
Sp—3 = €s and S,,_9 = €,_1 + &, if nis odd, resp. s,,_9 = —€,_1 — &y, if N i8
even. When g is of type D,,, we set s,,_3 = s —¢, and s,,_2 = €5 +&,. Then
we set s, = s; for all 1 <i <n—2if gis of type B,. If g is of type D,,, we
set s, =s;foralll <i<mn-—4,s) _5=¢e5ands]_, = ¢e,. It suffices to verify
that, if {hj}lgjgnfg is a basis of bA = b/, then det(s;(hj))lgmgn,g 75 0.
To prove this, we order the basis {h;}1<j<n—2 of ba as
{ay,, 1 <i<s/2-1,
oy, Qg g, a9 g, 1< < [s/4],
ay, s+1§k§n,k#s+2}
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without repetitions. The elements s, 1 <1i <n — 2, are ordered as

{egic1 +e2, 1<i<s/2-1,
€5, €5—j — €5, 1 <G <5/2—1, 651 + €541,
€2k + E2k41, —E2k+1 — E2k42, §/2+1 <k < [(n—3)/2],
(=1)™(en—2 + €n-1), Sh_o}

without repetitions.

with A, resp.

A
Then one verifies that (s}(h;))1<i, j<n—2 = :

* g o

0
0
C

O OO

x *x x D
B,a(s/2—1)x (s/2—1), resp. s/2 x s/2, lower triangular matrix with 1,
resp. —1, on its diagonal.

/
Moreover C' = (1) and D = <l: lg”) with D" a (n—s—4) x (n—s—4)

lower triangular matrix with alternating 1 and —1 on its diagonal, and D"
an invertible 2 x 2 matrix. U

9.2. Conditions (i), (iii) and (vi) of Proposition 6.2. To each v € S,
we need now to associate a Heisenberg set I'y with centre .

Recall that f5; := e9;_1+¢e9;, for all 1 <i < s/2—1, is a positive root which
belongs to the Kostant cascade of g. We then set, for all 1 <i < s/2 — 1,
I's, = Hg, where Hg, is the largest Heisenberg set with centre 3; included in
AT as defined in 6.1.

For g of type B,, we set

Loy iqesis = f{es—1+est1,66-1 65 €541 Fei 5 s+2<i<n,
€s—1; €541, €s—1 — Es, € +5s+1}-
For g of type Dy, I'c, | 4¢,., is taken to be the same set as above but without
€s—1 and €441 which are not roots in this type.
For s/2+1 < j <[(n—1)/2] for type B, resp. s/2+1<j <[(n—2)/2]
for type Dy, we set

Deyjbenn = {625 +€2541, €25, €251,
€2j * €r, €2j41 Fens 25 +2 < k <nj,

resp. the same set as above but without e2; and e9;41.
Forall 1 <i<s/2—1, we set
Fas,i—ai = {Es—i — &y Es—i — &5, € — &4 1+ 1 S] <s —1— 1}
For all s/2+42 < j < [n/2] for type By, resp. s/2+2 < j <[(n—1)/2] for
type Dy, we set I'_ = —Hc,, ,tey; Where He,, | 1c,; is the largest
= €9j-1 t+ €35 € B included in Ajr_,,

€2j-1—€2j
Heisenberg set with centre B;.’_ (
as defined in 6.1.

Finally for g of type B, we set I'., = {e5} and for g of type D,,, we set
Feove, ={es+en}and I'c ., = {es —en}.

s+2)/2
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By construction all the above sets I'y, v € S, are Heisenberg sets with
centre v and they are pairwise disjoint.

Moreover the above sets I'y, v € S, are chosen to be the same as in [9] (for
type By), except for Ie, ,1e,,, Where here the roots 51 — &5 and €5 + €541
are added. However the proofs of |9, Lem. 14 and 15|, themselves based on
Lemma 6.1 4i) and 44i), can still be applied to show that conditions (i) and
(797) of Proposition 6.2 are satisfied.

Now for the set T" we take

T= {es—1+es Es-1 — €41, €5 + €512,
€2i—1 — €2i) €s+2j — €s+2j+1, —Es+2k—1 T Es42k ;
1<i<s/2-1,1<)<[(n—s—1)/2, 1<k < [(n—s)/2}

One checks that 7 C AT LUA~, and that T is disjoint from I' = L es T
Note also that this set 7" has the same elements as the set T in [9], except
that as_1 = €51 —&s now belongs toI'c,_, 1., ,, and is replaced by es+€42.
We check below that condition (vi) of Proposition 6.2 is satisfied.

Lemma. We have that |T| = ind py.

Proof. One checks that |T| = n — s/2 4+ 1. Recall (1) of Sect. 4, that
indpy = |E(7")| where E(n’) is the set of (ij)-orbits in 7.

Denote by 7}, m5, m5 the three irreducible components of 7/. Then 7} is
of type As_1, mh is of type A; and 7§ is of type By, _s_o, resp. D, s 2 if g is
of type B,,, resp. D,,.

Then bt exchanges oy and as—¢ for all 1 <t < 5/2 — 1 and fixes a9,
iy, = Idyy and (i), = Idy since n and n—s—2 are of the same parity (and
n—s—2>2if gis of type D,,). Moreover for all @« € 7\ 7/, i(a) = j(a) = a.
Then the set E(7’) of (ij)-orbits in 7 is

E(r") = {{a, as_t}, {ag ol {au}; 1<t <s/2 -1, s <u<nj.
They are n — s/2 4+ 1 in number. Hence the lemma. O

9.3. Condition (iv) and (v) of Proposition 6.2. If g is of type B, we
take :

T ={es—¢ei,es+¢€j, (—1)"epn; 1<i<n,i#s,s+3<j<n}

If g is of type D,,, we take :
T" = {es—ei, €5+, (-1)" ta,;1<i<n—1,i#s s+3<j<n—1}.
In type By, note that this set 7 is the same as T™ in [9], except that two
elements here are missing : €5 + €541 which now belongs to I';,_, 1, ,, and
€s+ €s+2 which now belongs to T'. By construction 7™ is disjoint from I'UT'.

Denote by AZ, the set of negative roots in the case when 7’ = 7\ {,} (that
is, the set of negative roots for the parabolic subalgebra pz/ as considered
in [9]) and recall that we denote by A, the set of negative roots for p,
in our present case when 7’ = 7\ {as, ast2}. Then one has that AZ, =
A U—He , ye, ,, where H. 1. ., is the largest Heisenberg set with centre
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€s+1+Es+2 which is included in A;, as defined in 6.1. By a similar proof as in
[9, Lem. 13] and using Lemma 6.1 ), one checks that AT LA, = TUTUT™.
Hence condition (iv) of Proposition 6.2 is satisfied. It remains to verify
condition (v) of Proposition 6.2. The proofs of [9, Lem. 16, 17, 18, 19|
can still be applied in type B,. In type D,, they have to be adapted. For
completeness, we give a proof below. Set y = Zye g Try-

Lemma. Lety € T*. Then g, C adpa(y) + g7.

Proof. Recall (Sect. 3) that py =n~ @b & n:rr, and that we have chosen,
for each o € A, a nonzero root vector &, € go. Given v, § € AT such that
v+0 € A%, one has that ad z,(2s) = [z, 25| € 9,45\ {0} by say [7, 1.10.7],
then it is a nonzero multiple of zs.

Assume that g is of type B, and rescale if necessary the nonzero root
vectors z, v € A\ S.
Let s+3<j<n—1and j odd. Then one has that

adxfj (y) = Tegte; T Togjyy
adx—és—€j+1(y) =T—gjy1-
Hence ¢ ye; = ad (v, — T c,—¢;,,)(y) € adpa(y). If j = n is odd, then
Teste, = ade, (y) € adpp(y). Let s +4 < j < n and j even. Then
Tegte; = ad (ij - $75576j71)(y) S adPA(y)
Let 1<i<s—3andiodd,ors+2<i<n-—1andieven. Then
Tey—e; = A (Togy — Teyyy—ey + Toey; 5—e,)(y) ifi<s/2-2
Teyo; = 0d (T_g; — Ty —2,)(Y) otherwise.
Hence z.,_¢, € adpa(y). Let 2 <i<s—2andieven, or s+3 <i<n and
1 odd. Then
Tey—e; = ad (T, = Tey e, +Toe yyn—e,)(y) 4 <0< s/2
Tey—e; = ad (Tocy = Tey—c, + Toeymeupr)(Y) if i =2
Teyee, = ad (T_g; — e, _1—c,)(Y) otherwise.
Hence z.,_., € adpa(y). If i = s — 1 then
x65—6571 = ad (x_esfl - x55+1_55)(y) € adpA(y)
If i = s+ 1 then
Tey—egpy = A (Tocy ) — e, y—c,)(y) € adpa(y).
If i = n is even, then
xfs_an = adaj_sn (y) € adpA(y)

Finally, if n is odd, then x_., = adz_.,_¢,(y) € adpa(y) and if n is even,

then z., = adz_c 4., (y) € adpa(y). Hence the lemma for g of type B,,.
Assume now that g is of type D,,.

Let s+3 < j <n—2and j odd. One may apply Lemma 6.3 with v, =

Esten €S, VM =¢j—en €S, 12=—¢€j—¢€jt1 €S, 7% =¢€;+en &89,
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Y3 =¢€s—¢en €85, 75 =—es —€j+1 € S. Then up to rescaling the nonzero
root vectors Te;—¢,, T—cy—c; 415 LTejten in pp and T—gji1—ens Tep—eji1r Leste,
in py, one has that, by Lemma 6.3

[:Usj—sny xss—i-sn] = [xej+ena wss—sn] = Tey+e;
[:L'Ej*ETN ‘T*Ej*8j+1] = [x*€s*€j+1> Te,—e,] = L—ejii—en
[$_55_€j+17 x55+5n] = [zfj+5n7 x_Ej_EjJrl] = Lep—ejq1-

It follows that

Tegte; T Xogj—en = adxaj—an (y) € adpa(y)
Tgjpr—en T Tep—gjpq = adx_55_5j+l(y) € adpA(y)
Tep—ejp1 T Tegte; = adwsj+5n (y) € adpa(y)
Hence z. 1c; € adpa(y).
Now if j = n — 1 is odd, then zc 4., , = adze, ,—c,(y) € adpa(y). Let

s+4<j<n-—1and jeven. Then similarly as above (by Lemma and Prop.
6.3), one has that

Legte; + Legj_1—en = adxaj—é‘n(y) € a’dpA(y)

T—gj 1—en T Tep—ej 4 = ad x*Es*Ej—l(y) € adpa(y)

Tep—ej g T Tegte; = adx5j+5n (y) € adpa(y)
Hence zc 1c; € adpa(y).

Let 1<i<s—3andiodd,or s+2<i<n-—2andieven. Again, up to
rescaling some nonzero root vectors, Lemma and Prop. 6.3 imply that

Tey—e; T Teipy—e, = 0d T, (y) € adpa(y)
Tej1+en T Teg—e; = ad xenfsi(y) S adp/\(y)
xs,urlfsn + $€7j+1+5n E adpA(y)
since
Teiy1—en + Lejr1ten — ad (x5i+1_5s - x—Es—i—z—Es)(y) if 4 < 8/2 -2
Tepp)—en + Tepprqen, = 0d e, e (Y) otherwise.
Hence z.,_., € adpp(y). For i = n — 1 even, one has that z.,_., , =
adze, ¢, (y) € adpp(y). For2<i<s—2andieven,ors+3<i<n-—

and ¢ odd, a similar computation shows that one also has that z. .,
adpa(y) in these cases. Let i = s — 1. Then Lemma 6.3 implies that

M =

Teg—e, y tTegiy—e, =T, ¢, (v)
$55+175n + x55+1+5n = ad xss«}»lffs (y)
Tegi14en T Teg—es g = adxe, <, ,(y)-

Hence z.,_.,_, € adpa(y). A similar computation shows that z. ., €

adpa(y)-
Finally assume that n is even. Then adz_.,_., ,(y) = v_q, + T—qa, , €
adpp(y) and x_q, , € gr. Thus z_,, € adpa(y) + gr. If n is odd, then
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adze, -, (Y) = Ta, + Ta, , € adpa(y) and x4, , € gr. Thus z,, €
adpa(y) + gr. The proof is complete. O

9.4. All conditions of Proposition 6.2 are satisfied. Thus one has the fol-
lowing corollary.

Corollary. Keep the above notation. One has that

adpp(y) © g = p)

with dim(gr) = ind(pa) that is, y is reqular in p. Moreover, by Lemma 9.1,
there exists a uniquely defined element h € hp such that y(h) = —1 for all
v € S. Then (h, y) is an adapted pair for py.

9.5. The semisimple element of the adapted pair. By direct computa-
tion, one may give the expansion of the semisimple element A of the adapted
pair for pp obtained in Corollary 9.4.

Lemma. In terms of the elements ¢;, 1 < i < n, the semisimple element
h € ba of the adapted pair (h, y) obtained in Corollary 9.4 has the following
expansion. Set u = 0 in type Dy, resp. u =1 in type B,,.

h= Y(s/2 42k — V)eg 1 + 30 2[8/14 1 (38/2 — 2k)eny_y
2 (s/2 + 2h)ea — 30371 (Bs/2 + 1 — 2k)eay
(3/2)55 1—¢es—(8/24+ Dest

+ ZL(; - Hu)/zl(?k —1+5/2)esta
"ot/ 9k — 2 4+ 5/2)eq 211

In terms of the coroots o), 1 <k <n, k & {s, s+ 2}, the element h has the
following expansion. Set

H= — iy by + XL (s/2 + By

+ Zk 3/4]+1(33/2 +1=3k)ag,_,

+ ans 22?1 2 (k—1-s/2)as;

*an /121?1 /2 ka2k 1

Then

h:H+(n—s—2)/4a7\1/ if g is of type B,, with n even
h=H-—(n+ 1)/4av if g is of type B, with n odd
h = H—n/4( a,)_q +ay ) if g is of type D,, with n even

h=H+(n—s—3)/4(a,_; + ) if gisof type D,, with n odd.

9.6. Computation of the improved upper bound and the lower
bound. Recall the notation of Sect. 4 and 5. One obtains the following
Lemma.

Lemma. If g is of type B, resp. D,,, then
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H (1 _ 66F)_1 — H(l _ 6—(’74‘3(7)))—1
TeE(n') veT
More precisely one has the following.
(i) If g is of type By, and s+ 2 < n, then
ch(Y(pa)) = (1 — e 2)5/2(1 = =) 1(1 — ¢~ 2mwe)~(n=s-2)
(1—e @s+2)"1(1 — e—(ws+ws+z))—1‘

(ii) If g is of type B, and n = s + 2, then

ch(Y(pp)) = (1 —e2%s)75/2(1 — ¢=@s)~ 1
(1 — 672Ws+2)71<1 _ 67(w5+2ws+2))71.

(iii) If g is of type D, then

ch (Y (pa)) = (1= 27) =21 —emm) (1 — )<
(1 —e ®s+2)72(1 — 6_(ws+ws+2))_1.

Proof. Recall the set E(n’) given in the proof of Lemma 9.2 and set for
all 1 <t <s/2 -1, T = {ay, as—}, I'sjo = {ag)2} and Ty = {a,} for all
s < u < n. Observe that j(I') =T (and then ¢(T'N7") = j(I')N7’ = T'N#’) for
all ' € E(n'), except in type Dy, with n odd, for I' = {ay,—1} or ' = {a, }.
Recall for all ' € E(n’) the weight dr defined in (2) of Sect. 4. One checks
that :

V1<t<s/2—1,6r, =2(w), — @+ @, — Ws—t) = —20s.
Moreover dr, ,, = 2(w;/2 — W,/2) = —Ws, Or, = —2w, and or, , = —2wWs 2.
Finally or,., = 2(@w} | — @wst1) = —(ws + wst2), for type D, and for type
B, if s +2 < n. For type B, with s +2 = n one checks that dr,, , =
—(ws + 2wst2).

If s4+3 <u < n—1fortype B, resp. s+3 < u < n—2 for type D,,, then one
checks that dp, = —2wsy2. If u = n for g of type B,, (and s+ 2 < n), resp.
u=mn—1oru=n for gof type D;,, then one checks that dr, = —ws2.
Thus [[rep(ry (1 — e’r)~! is equal to the right hand side of (4), (i7) or (i44).
It remains to check that []pepm (1 — er)~l = [T er(l— e~ (rts(M)))—1,
Recall the set T given before Lemma 9.2.
For v = e5,_1 + €4, one checks that

s(v)=(e1+e2)+ ...+ (6s—3 + €5-2)
so that v + s(v) = ws.
For v = g5,_1 — €541, one checks that, if g is of type B,

s(y) =2((e1+e2) + ...+ (es—3 + €5-2)) + (s—1 + €541) + 2¢5

and if g of type D,,, then
s(7) =2((e1+e2) +...+(es—3+Es-2)) + (€51t Es41) + (€5 +6n) + (65 —€n)
and for both types that v + s(v) = 2w;.
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For v = g4 4+ €442, one checks that
s(y) =(e1+€e2) + ...+ (es-3 +€5-2) + (€s—1 + Es41)

so that v + s(v) = ws42 for g of type D,, or g of type B,, with s +2 < n,
and that v + s(y) = 2ws42 for g of type B,, with s+ 2 = n.

Let 1 <i<s/2—1 and set v = e9;_1 — €2;. As in [15, Proof of Lem. 7.9],
one checks that :

—If s < 4i— 2, then

s—21 s/2—1i
s(€2i—1 — €2i) = 2) (eaj—j) T4 ) (e2j-1 +e2)
j=1 Jj=1
i—1
+2 Z (€2j—1 +€25) + (e2i—1 + €2:) + 2¢5
j=s/2—i+1

in type B, and the same as above in type D, but with 2¢; replaced by
(es+en)+ (es —en)-
—If s > 4i — 2, then

2i—1 i—1
s(e2i—1 —€2:i) = 2 2(63—3' — &)+ 4Z(€2j—1 + €25)
j=1 j=1
s/2—i
+2 Z (€2j—1 + €25) + 3(€2i—1 + €2i) + 2¢5
j=it+1

in type B, and the same as above in type D, but with 2¢4 replaced by
(s +¢en) + (65 — €n). In both cases one obtains that v + s(v) = 2w;.
Let 1 <j <[(n—s—1)/2] and set v = €542 — €5+2j+1. One checks that :

s(v) =2((e1+e2) +...+ (es-3 +es5-2)) +2(es-1 + €541)

—2 Zi:2(€s+2k—1 + esqor) +2 Ei:z((%ﬁk—z + Esq2k—1)
+(est2j + €sy2j41) + 266

in type By, resp. in type D,, with n even (with 2¢4 replaced by (¢5 —&,,) +
(s —€n)), so that v + s(7) = 2w,+0.
In type D,, with n odd, for all 1 < j < [(n—s—1)/2]—1, one also obtains that
v+5(7) = 2wsqa. If gis of type Dy, with n odd, then for v = e449; —€512j41
with j =[(n —s—1)/2] = (n — s — 1)/2, one has that
s(7) =(e1+e2)+... .+ (es—3+Es—2) + (€51 + Est1)
+(€s+2 + 53+3) + ... (57173 + 5n*2)
—((es43 +esqa) + ...+ (en—2+en1)) + (€5 + €n)
so that v + s(y) = wsta.
Let 2 <k <[(n—s)/2] and set v = —e519k—1 + Es12k. One checks that
s(v) =2((e1+e2) +... 4 (es-3 +€5-2)) + 2(€5-1 + €541)

25 o (Esyar3 F Esiar—2) + 250 o((Esr2e—a + Espar1)
—(es42k—1 + Esyar) + 2e5
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in type By, resp. in type D, with n odd (with 2¢4 replaced by (g5 — &y,) +
(es —€n)), so that v+ s(v) = 2wsyo. If g is of type D,,, with n even, then
for all 2 < k <[(n —s)/2] — 1, one also obtains that v + s(v) = 2ws2.
Now for g of type D,, with n even and for v = —es49p-1 + €542k, With
k=[(n—s)/2] = (n—s)/2, one has that

8(7) = (51 + 52) +...+ (5573 + 5572) + (5371 + 5s+1)
+(est2 +€543) + ... (En—2 + En—1)
—((5s+3 + 5s+4) + ...+ (5n73 + 5n72)) + (55 - 5n)

so that v + s(v) = wst2.
Finally set v = €542 — €541 = —asy1 € T. Then one has that

s(v)=2((e1+e2) + ...+ (es—3 + €5-2)) + 2(e5-1 + €5+1) + 265

so that v+ s(y) = ws + w42 if s +2 < n and if s + 2 = n (necessarily in
type By,) then v+ s(v) = ws + 2ws42.

It follows that the lower and the improved upper bounds for ch (Y (pa))
coincide, then equalities in (7), (i7) and (4i7) hold. O

9.7. A Weierstrass section. By Sect. 5 we deduce from Corollary 9.4 and
Lemma 9.6 that y + gr is a Weierstrass section for coadjoint action of py.
On can then write the following theorem.

Theorem. Let g be a complex simple Lie algebra of type By, resp. Dy, with
n >4 resp. n > 6 andletp =n" Shd n;rL, be a parabolic subalgebra
associated with ™ = m\ {as, asyo}, s even, 2 < s <n—2, resp. 2 < s <
n — 4. Then there exists a Weierstrass section y + gr for coadjoint action
of the canonical truncation pa of p. It follows that the algebra of symmetric
invariants Y (pp) = Sy(p) is a polynomial algebra over k on n — s/2 + 1
algebraically independent homogeneous and h-weight generators.

9.8. Weights and Degrees. One may associate with each v € T" an ho-
mogeneous generator p, € Y (pa) so that the set {p,; v € T} is a set of
algebraically independent and h-weight generators of the polynomial algebra
Y (pa). By what we said in Sect. 5, for each v € T', the weight of p, is
wt(py) = —(v + s(y)) and the degree of p, is deg(py) = 1+ [s(7)| (also
equal to the eigenvalue plus one of x, with respect to ad h, where recall A is
the semisimple element of the adapted pair for p, that we have constructed,
see 9.5). It suffices then to use the proof of Lemma 9.6 to compute all these
weights and degrees, since there all the s(7), for v € T, have been computed.
Set, for all 1 <i <s/2—1, v = e9i—1 — £9.

Assume first that g is simple of type B,,, with s +2 < n or g is of type
D,,, where recall s +2 <n — 2.
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vET wt(p4) deg(py)
i, 1 <1< [s/4] —2w; s+ 4i
Yis [s/4]+1<i<s/2-1 —2w; 3s —4i+2
Y= Es—1 — €541 —2w, s+2
Y =€s_1+¢€s — T, s/2
V= Es + €542 —Wsi2 s/2+1
v =(-1)"(en — €n—1), g of type D,, —Wet2 n—s/2-1
v = (=1)"(e, — €n_1), g of type B, —2w, 42 2n — s —2
€s+2j — Es42j+1, 1 < j < [(n—s—2)/2] —2w0,49 s+4j
Estok — Est2h—1, 2 <k <[(n—s—1)/2] —2wg12 s+ 4k —2
Y= Es12 — Esi1 —(ws + wWs42) 5+3

Assume now that g is of type B,,, with n = s + 2.

VeT wi(py) deg(p,)
i, 1 <1< [s/4] —2w, s+ 4i
Vi, [$/4]+1<i<s/2—-1 —2w; 3s —4i+2
Y =Es—1 — €s+1 —2w, s+ 2
Y =¢€s_1+¢€s — g s/2
Y = €5+ Es42 —Tgt9 s/241
Y = Es+2 — €s+1 —(ws+2w5+2) s+3=n+1

9.9.

Remark. Assume that g is simple of type B, with n > 6 and that 7’ =
7w\ {as, asyo, asyq} with s an even integer and consider the parabolic sub-
algebrap=n"@®h P n;r, associated to 7’. Then one may easily check as in
the proof of Lemma 9.2 that indpy = n — s/2 + 1. Take the same set ST as
this chosen for the case 7/ = 7\ {as, as42} in subsection 9.1 and the same
set S~ but without the element —e443 — €544 which does no more belong to
A_,. Then restriction to h’ = hp of S = ST US™ is still a basis for h3. Take
also the same sets T" and T™ as in subsections 9.2 and 9.3, which still lie in
ATUAZ,. Unfortunately condition (v) of Proposition 6.2 is no more satisfied
since ¢ 4e, ., and x4, ., in T* do no more belong to adpy(y) + gr. Thus
our construction cannot be generalized to the more general case of ps , with
s even and ¢ > 2.

10. CASE 1E FOR TYPE C

In this Section, we consider a parabolic subalgebra p = ps ¢ = p_, =
n~ @ h @ nl, associated to the subset 7' = 7\ {as, Qgi2,..., a5} with
¢ € N and s an even or an odd integer, 1 < s < n — 2/, in a simple Lie
algebra g of type C,, with n > 3. Hence we are in the case le of subsection
1.7.

If £ = 0, such a parabolic subalgebra is maximal and this case was already
treated in [14]. Thus we will assume that ¢ > 1. By subsection 4.4, the
lower and upper bounds for ch (Y (pa)) in (4) of Sect. 4 always coincide

and then Y (pp) is a polynomial algebra. However Weierstrass sections were
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not yet exhibited. As we said in Remark 3a of subsection 6.2, it suffices to
construct an adapted pair to obtain a Weierstrass section for coadjoint action
of pp in the present case. Our construction generalizes the construction of
an adapted pair in case of a maximal parabolic subalgebra in type C (see

[14, Sect. 6]).

10.1. The Kostant cascades. The Kostant cascade 3, for g simple of type
C,, is given by

Br =1{B8i =2¢;; 1 <i < n}.
The Kostant cascade S8, of g’ is given by

Br = B =€ — €sy1-is Qst2j—1, Bl = 2654204k 5
1<i<[s/2),1<j<f1<k<n—s—20}.

We want to construct an adapted pair for py =n~ @ §' @ n:,. (Recall that
here hy = §’). For this purpose we will use Prop. 6.2. First we give a set
S =S5TUS™ c AT UA] such that S), is a basis for b .

10.2. Condition (i) of Proposition 6.2. Since, for all 1 <k <n—s—2(,
one has that 8 = Bsy204k, we will not be able to take S = B2 U (-2 as
we did for type B, in Sect. 8.

Instead we will take elements which are a kind of deformation of roots of
the Kostant cascade, by setting v; = 8; —a; = ¢;+¢€;41 forall 1 <¢ <n-—1.
Assume first that s is odd. We set

St = {72i-1 = €21 +¢€2; 1 <i<[n/2]}

and
ST = {=8] = est1-i — €, =725 = —(e25 + €2541) ;
1<i<(s—1)/2,(s+20+1)/2<j<[(n—1)/2]}.
Assume now that s is even and set ¢ := [s/4]. We set
S* = {Batr1, v2i-1, 1255 1 < i <t t4+1 <5 <[(n—1)/2]}
and

ST = {0 =cot1—i — €is —72j41 = —(€2j41 + €2j+2) ;
1<i<(s—2)/2,(s+20)/2<j<[(n—2)/2]}.
In both cases for S = ST U S™, one easily checks that |[S| =n—¢—1 =

dimb’ = dim h. The following lemma establishes condition (i) of Proposi-
tion 6.2.

Lemma. S)y, is a basis for b} .

Proof. Assume first that s is odd. Then we order the elements s, of S as
follows :
8; =Y2i-1, 1 <i < [n/2]
Sinj2l+j = —Vst2042j-1, L << [(n—1)/2] = (s +2(—-1)/2
Sp—te1—(s—1)/24k = By L <k < (s —1)/2
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and order the elements h, of a basis of b as follows :

hi =ay;, 1 <i<[n/2]

hinj2tj = 0)pop40j, L <G < [(n=1)/2] = (s + 20— 1)/2
hpp—1-(s—1)/242k—1 = Roj_y = Qg1 hp—t—1—(s—1) /242K = ho = of_op
1<k<[(s+1)/4]

without repetitions for the h’’s.
Set

A= (Su(hv))1§u,vg[n/2],

B = (8n/2+u(Pn/2)4+v))1<u, v<[(n—1) /2] — (s4+20—1) /25
C= (_ﬁz{(h;'))lgi,jg(s—l)/?

By observing that v; = w11 — w;—1 for all 1 <i <n—1 (with @y = 0) one
obtains that A, resp. B, is a lower triangular matrix with 1, resp. —1, on its
diagonal. Moreover C' is a lower triangular matrix with —1 on its diagonal
by Lemma 6.4. Then one obtains that the matrix

A 0 O
(Su(hv))lﬁu,vgn—é—l =|*x B 0
* *x C

is such that det(sy(hy))1<u,v<n—e—1 # 0.
Assume now that s is even. Recall that ¢ = [s/4]. We order the elements s,
of S as follows :
Si = Y2i-1, 1 <1<,
St+1 = Pary1 = 2€2¢41,
St4145 = Vo(t4j)s 1 <7 < [(n—1)/2] — ¢,
S[(n41)/2+k = —Vst26+2k—1, L <k <[(n—2)/2] — (s + 20 —2)/2,
Sp—l—1—(s—2)/24r = _67/“7 l<r< (3 - 2)/2'
We order the elements h,, of a basis of b’ as follows :
hi:a\Z/i, 1§i§t,
hiy1 = 04\2/t+1>
ht+1+j = a;/(t+j)+l’ 1<y< [(n - 1)/2] —t,
hn+1) 214k = a§+2§+2k» 1 Svk <[(n—2)/2] - (s+2¢ —/2)/2, ,
hp—p-1-(s—2)/242r—1 = hop 1 = @315 hyp 1 (s—2)/242r = hop, = @g_9,,
1<r<t
without repetitions. More precisely : if t = (s — 2)/4 then hy = ay, =
gy # hyy = o)y, then both are taken and if ¢ = s/4 then hy = o, =
hi then one takes h; but not hb,. Then by the above one obtains that the
matrix

A

(Su(hv))lgu, v<n—€—1 =

* % ¥ DN O

0 O
0 O
B 0
x C
%

Joocoo

* X X X
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( v)) 1<u, v<ty

B = (3t+1+u<ht+1+v)) 1<u, v<[(n—1)/2]—t>

C= (5[(n+1)/2]+u(h[n+1)/2]+v))1<u v<[(n—2)/2]—(s+2¢—2)/2>
(_B (h/))lgz,gg(s 2)/2

is such that det(sy(hv))i<u,v<n—¢—1 # 0. Indeed the above matrices are
lower triangular matrices with 1 (for A and B), resp. —1 (for C' and D), on
their diagonal. ([l

10.3. Conditions (ii) and (iii) of Proposition 6.2. For each v € ST,
resp. v € 57, we will take a Heisenberg set I', with centre 7 included in
AT, resp. A, such that [(AT UAL)\ (L,esTy)| = indpa (here we will
take 7% = () in Prop. 6.2) and such that conditions (i¢) and (iii) of Prop.
6.2 are satisfied.

For this purpose we use (see 6.1) the largest Heisenberg set Hg, with centre
B; € By included in A*, and —Hpg, resp. —Hgy where Hpg, resp. Hpgy, is
the largest Heisenberg set in A, with centre 3/, resp. 3/, belonging to the
Kostant cascade B, of g¢'.

For each B; € fx, set H&' = Hpg, \ {6} and each B/ € S, Hgﬂg, =

—Hpgr \ {—B]'}. Asin [14, Sect. 6|, for each v € St N Br, we set 'y, = H,
and for each v € S™ N (—fy), we set I'y = —H_.,. Moreover for the roots
Vi = Bi —a; € ST, we set T, = Hj U Hg,,, and for the roots —;' =
—Yst20+i = —(B — Qsro04i) €57, weset I'_ = H° Jpp U (—Hgy )
As in [14, Sect. 6] one easily checks that, for each v € S, I is a Heisenberg
set with centre v and these sets I'y, v € S, are pairwise disjoint by Lemma 6.1
i). Below we will show that conditions (ii) and (#i7) of Prop. 6.2 are satisfied.
Recall that, for each v € S, we set Fg =T, \ {7} and O* = Ll est Fg.

Lemma. Let v € ST and a € pr such that there exists 3 € OT with
a+p€eS. Thenﬂel“g and o+ B = .

Proof. Assume first that o + 8 € ST N B;. Then the assertion follows from
Lemma 6.1 i7). Assume now that a + 8 =; = 8; — a; € ST. We will show
that v = ;. We have that v; € H0 then by Lemma 6.1 4ii), one has that
«a € Hg, or f € Hg,. Suppose that a ' Hp,. Then « # f3; since (3 is a positive
root and we have a € HOZ, C I'y,. Since the Heisenberg sets I'y, v € S, are
pairwise disjoint, one deduces that v = ;. Since I'y is a Heisenberg set, it
follows that 5 € Fg. Now if 8 € Hg, then for the same reason as before
B e Hgi C I'y,. But 8 € O7 then there exists v/ € ST such that 8 € I‘g,. As
before one deduces that 4/ = ~; and then that o € Fg, hence v = v = ~;.
Since all roots in ST are of the above form, we are done. U

Condition (7i7) of Prop. 6.2 follows similarly.
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10.4. Condition (vi) of Proposition 6.2. Here we will show that condition
(vi) is satisfied, with T'= (AT UA )\ [ |,cg Ty Set TT = AT\ ] (o4 Ty
and 77 = A\ || c5-T. Then T'=T" UT". Recall Lemma 6.1 i) that

Assume first that s is odd. Then

TH ={Ba_1|1<i<[(n+1)/2]}
and
T~ ={—as2i-1, —Bst2042j-1, | 1 <i <01 <j<[(n+1-5)/2] — ¢}
Assume that s is even. Then
TH ={Bai—1, B2j | 1 <i<t, t+1<j<[n/2]}
and
T ={—ag, —ast2i-1, —Bstaer2j—1 | 1 <i <L, 1 <5 < [(n+1-s)/2]—L}.
Below we establish condition (vi) of Prop. 6.2.
Lemma. One has that |T'| = indpy.

Proof. Recall that indpy is equal to the number |E(7)| of (ij)-orbits in 7
(see Sect. 4). Here, since j = Id,, the set E(x’) of (ij)-orbits in 7 is the
following. If s is odd, then

E(r") = {{ai, as—i}, {as—14i} |1 <i<(s—1)/2,1<j<n-—s+1}.
If s is even, then
E(n') = {{ai, as—i}, {ago}, {os-145} [ 1 <0< (s-2)/2, 1 < j <n—s+1}.
One checks that |T'| = |[E(n’)|. Hence the lemma. O

Finally if we set T* = (), then by construction condition (iv) of Prop. 6.2
is also satisfied and condition (v) is empty.

10.5. A Weierstrass section. By the above, all conditions of Prop. 6.2
are satisfied. Set y = Ewes T~. Since Sjp, is a basis for b} there exists a
unique h € hy such that for all v € S, v(h) = —1. Then by Prop. 6.2 (h, y)
is an adapted pair for py. Moreover by subsection 4.4, for all T' € E(n’),
er = 1. Then by Remark 3a of subsection 6.2, one deduces that y + gr is
a Weierstrass section for coadjoint action of p,. Summarizing we obtain the
following theorem.

Theorem. Let g be a complex simple Lie algebra of type C,, (n > 3) and
letp=n"dhe n; be a parabolic subalgebra of g associated to 7' = 7\
{ag, g2,y asyopt (s, € N*)and 1 < s <n—20. Then y+ gr is a
Weierstrass section for coadjoint action of the canonical truncation pp of p.
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10.6. Weights and degrees. Here both bounds (see (4) in Sect. 4) for
ch(Y (pa)) coincide and then Y(pp) is a polynomial algebra whose homoge-
neous and h-weight generators have weights and degrees which can be easily
computed. To each T' € E(r’) is associated an homogeneous and h-weight
generator of Y (pp) which has weight dr given by (2) of Sect. 4 and a degree
Or given by (5) of Sect. 4.

Below we give for completeness weights and degrees of a set of homoge-
neous and h-weight algebraically independent generators of Y (py), each of
them corresponding to an (ij)-orbit ', in E(7’).

Assume first that s is odd :

(17)-orbit in E(n") Weight Degree
Ly ={au, as—n}, 1 <u<(s—1)/2 —2w, s+ 2u
Fy={ap}, v=5+2k, 0<k </ -2, v
Fy=Aav}, v=5+2k—1,1<k</{| —wy_1 — Wyt1 v+1
Iy=Aay}, s+20+1<v<n —2t051 90 20 —s—2
Assume now that s is even :
(17)-orbit in E(r") Weight Degree
Iy ={ow, as—u}, 1 <u<(s—2)/2 —2w, s+ 2u
Lo = {2} —Ws S
Fy={ap}, v=5+2k, 0<k </ -2, v
Fy=Aav}, v=5+2k—1,1<k</{l| —wy_1 — Wyt1 v+1
Iy ={aw}, s+20+1<v<n —2t051 90 20—s—2

11. CASE 2A FOR TYPE D.

In this Section we consider the Lie parabolic subalgebra p = p, of the
simple Lie algebra g of type D,,, withn > 4, nevenand £ € N, 0 < / <
(n — 2)/2, associated with the subset 7’ = 7\ {@p—1-2k, an | 0 < k < £},
This is the case 2a of subsection 1.7. Recall 8.1 the Kostant cascade (3, for
g of type Dp. Recall 6.4 the Kostant cascade 8, C B for the simple Lie
subalgebra g,/ of the Levi subalgebra g’ of p of type A, 290 if £ < (n—2)/2.
One has

Bor ={Bi =i —en-2ri | 1<i <[(n—1-20)/2]}

We denote (as in 8.1) 82 = B \ (B= N) and B2, = B \ (B N 7).

Then we have that 82 = {f; = €21 + €2 | 1 <i < (n—2)/2} and
52, = Bﬂi since n is even.

We set ST =30 = {8 [1<i<(n—2)/2} and S~ = =40, = {5/ [ 1 <
i<(n—2-20)/2}.

For all v € S*, we set I, = H, the largest Heisenberg set with centre
v which is included in A" as defined in subsection 6.1 and for all v € S,
we set I, = —H_,, where H_, is the largest Heisenberg set with centre —v
which is included in AY,. Finally we set 7T = 8, Nw, T~ = —(By N 7'),
T=TYUT and T* = (.
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11.1. Conditions (i) to (v) of Proposition 6.2. By i) of Lemma 6.1 and
since Hg = {8} for all B € fr N7, condition (iv) of Prop. 6.2 is satisfied.
Moreover conditions (7i) and (ii7) of Prop. 6.2 are satisfied by i) of Lemma
6.1. Condition (v) is empty since T* = ). Condition (i) follows from the
following Lemma.

Lemma. Set S = ST US~. Then Sy, is a basis for b}.

Proof. Here j = Id, and then (see Sect. 3) we have that h’ = hp and we
observe that |S| =n —2 — ¢ = dimb’ = dim ha. The proof is similar to the
proof of Lemma 8.2. We order the elements s,, of S as

617 BQa SRR B(n—?)/?? _617 _ﬁé7 SRR _ﬁzn_Q_Qé)/Q

and we choose the following ordered basis (hy)1<p<n—2-¢ of b’ :

hi=ay, 1<i<(n—2)/2
h(n—2)j2+2j-1 = hj_1 = a3; 1, hn_2) 2425 = My = 4o o5,
1<j<[(n—20)/4]

without repetitions for the hz-’s.
Then the matrix (sy(hy))1<u, v<n—2—¢ has the form

)

Here A = (Bi(hj))i<i, j<(n—2)/2 18 & (n — 2)/2 x (n — 2)/2 lower trian-
gular matrix with 1 on its diagonal since B; = wy; — wy;—2. Moreover
B = (—Bg(h;.))1975(”_2_24)/2 isa(n—2-—20)/2x (n—2—20)/2 lower
triangular matrix with —1 on its diagonal, by Lemma 6.4.

Hence det(sy(hy))i<u, v<n—2—¢ # 0. O

11.2. Condition (vi) of Proposition 6.2. We obtain the following Lemma.
Lemma. We have that |T'| = ind py.

Proof. Recall (1) of Sect. 4 that indpy = |E(n’)|. Here the set E(n’) of
(1j)-orbits in 7 is the following :

E(n') = {Ty = {au, an-1-90u}, 1 Su < (n—2-20)/2,
y={ay},n—1-2{ <v<n}.

Hence indppy = (n+ 2+ 20)/2.

On the other hand we have that T = B, N7 = {ay, a1, 1 <i<n/2}
by 8.1, and T~ = —(By N7') = {—ag;, (n—20)/2 <i < (n—2)/2}. Hence
|TT|=n/2+1and |[T~| =¢. Thus |T| = ind py. O
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11.3.  All conditions of Prop. 6.2 are satisfied. Thus one can deduce the
following corollary.

Corollary. Keep the above notation and sety =3 g To. Theny is regular
in pi and more precisely one has that adpa(y) ® gr = py. Moreover there
exists a uniquely defined h € hp such that a(h) = —1 for all « € S. Thus
the pair (h, y) is an adapted pair for py.

11.4. Existence of a Weierstrass section. By Remark 3a of subsection
6.2, the existence of an adapted pair for pp is sufficient to produce a Weier-
strass section for coadjoint action of pp provided one has the following
Lemma.

Lemma. Keep the above hypotheses and notation. One has that er = 1 for
allT € E(n').

Proof. Recall subsection 4.3 and the (ij)-orbits in E(7n’) described in the
proof of Lemma 11.2.

For Ty, = {au, ap—1-20—n} for 1 < u < (n —2 — 2¢)/2, one has that
dr, = Wy + Wn-1-20—u & Br since u and n — 1 — 2¢ — u are not of the same
parity.

Let n—1—2¢ <wv < n. If vis even, then dr, = w, € B, but d’v =w, &
B, since «, belongs to a connected component of 7’ of type A;. If v is odd,
then dr, = w, & By. Finally dr, = w,, &€ B;. Hence the lemma. O

One can then deduce the following Theorem.

Theorem. Let g be a simple Lie algebra of type D,,, with n even, n > 4. Let
¢ €N be such that 0 < £ < (n—2)/2 and p; be the parabolic subalgebra of g
associated with the subset ™ = 7\ {ap_1-9k, an | 0 < k < £}. Then there
exists a Weierstrass section for coadjoint action of the canonical truncation

of pe.

11.5. Weights and degrees. Here both bounds (see (4) in Sect. 4) for
ch(Y (pa)) coincide by Lemma 11.4 and then Y (py) is a polynomial algebra
whose homogeneous and h-weight generators have weights and degrees which
can be easily computed. To each I' € E(n') is associated an homogeneous
and h-weight generator of Y (pa) which has weight dr given by (2) of Sect.
4 and a degree Or given by (5) of Sect. 4.

Below we give for completeness weights and degrees of a set of homoge-
neous and h-weight algebraically independent generators of Y (py), each of
them corresponding to an (ij)-orbit ', in E(7').

Assume first that ¢ > 1 :
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(ij)-orbit in E(7) Weight Degree
r,= {aua an—l—%—u} —2wp 12 n— 20+ 2u
1<u<(n—2-20)/2

Iy ={a} — 210, v+1
v=n—1—-2k 1<k</{
ry= {av} —Wy—1 — Wy+1 v+1
v=n—2k 2<k</
[yo = {an—Q} —Wnp—3 — Wp—-1 — Wn n—1
1= {Oénfl} —2w0p, 1 TL/2
r, = {Oén} —2wy, n/2

Finally assume that ¢ = 0, that is, 7’ = 7\ {@n—1, an} :

(1j)-orbit in E(r") Weight Degree

Iy =Aau, an—1-u}, 1 <u<(n—2)/2 | =2(wp-1 +w@n) | n+2u
1= {an—l} —2w, n/2
Iy ={an} —2w,, n/2

11.6.

Remark. Assume now that g is simple of type D,, with n odd and consider
the parabolic subalgebra p = p, with 0 < ¢ < (n — 2)/2. Assume that we
have found an adapted pair (h, y) for py with y = Zwes ry, SCATUA
and h € hy.

First assume that £ = 0. Then by (4) of Sect. 4, —(wy—1 + w,) must be
a weight of Sy(p), hence (w;,—1 + @y )(h) = 0 by definition of the canonical
truncation (see 2.3). It follows that the set S cannot contain B2, that is
cannot contain all 5;, for 1 < i < (n —1)/2, as in the case n even. Indeed
one has that @, + @, =e1+... +en—1 = B1 + ... + Bp_1)/2 and then
otherwise we would have both (w,—1 + @,)(h) = 0 and (w,—1 + w,)(h) =
(=1) x (n —1)/2, a contradiction.

Assume now that ¢ > 1. Then by (4) of Sect. 4, for all 1 < k < ¢,
—2t0,_1_9, must be a weight of Sy(p), hence by the same argument as
above, we cannot have that S contains £, ..., Bup—1-2k)/2-

12. CASE 2B FOR TYPE D.

Here we consider the parabolic subalgebra pg of g of type D, with n > 5,
n odd. This is the parabolic subalgebra of g associated with the subset
7' =7\ {an—1, an}. Then it is the case 2b of subsection 1.7.
We set S = ST LIS~ with
St ={B;i =es—1+ex; 1<i< (n-3)/2 Bn—1)/2 = En—2 + €n,
Bin+1)/2 = En—2 — En}
and

S ={-B] =en-1—¢1, —B{ =¢ep—i—1—¢&i;2<i<(n-3)/2}.
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For all 1 <i < (n —3)/2, we set I'y, = Hp, and we set I'_g = —Hp,
where Hg,, resp. Hg, is the largest Heisenberg set with centre 5; € 3, resp.

B} € Bn, which is included in AT, resp. in A, as defined in subsection 6.1.
We set

FB(n71>/2 = {ﬁ(n—l)/?a En—2 —€En—1, En—1 t €n}a FB(n+1)/2 = {B(n+1)/2}

For all 2 <i < (n— 3)/2, we set
L'z ={-Bl, en-i-1—¢jej—¢ei;i+1<j<n—i-2}
We also set
T ={en—2—€2, En—2+En1, En—1 — €n, €2i—1 — €2;; 1 <1 < (n—3)/2}

and
T*Z{snfgfﬂ; 3§i§n73}

By construction for all ¥ € ST, resp. v € S~, we have that ', C A™, resp.
I'y € A, is a Heisenberg set with centre v and all the sets I'y, for v € S,
together with the sets T" and T™ are disjoint. We easily verify that condition
(iv) of Prop. 6.2 is satisfied, using 7) of Lemma 6.1. Conditions (4i) and (i)
of Prop. 6.2 follow easily from i), 4i7) and iv) of Lemma 6.1.

12.1. Condition (i) of Proposition 6.2. This condition follows from the
lemma below.

Lemma. S)y, is a basis for b.

Proof. First we observe that hy = b’ @ H~!(e,), where recall H : h — b*
is the isomorphism induced by the Killing form on h x h by Sect. 3.

Then dim hy = dimb’ + 1 =n — 1. We have that |S| =n — 1.

Now set s; = f3; for 1 < i < (n — 3)/~2, S(n—1)/2 = Ens S(n+1)/2 = En—2,
S(nt3)/2 = —B1 and then s(,13)/91; = —f;, forall 1 <j < (n—5)/2 and
we take the elements of S in this order.

For a basis (h;) of ha we take, in this order :
ag;, 1<i<(n—3)/2, H ' (en), Q3 1, Qg s 1

n—2»

j<l(n—1)/4]

<
without repetitions. Then it suffices to prove that det(s;(h;))i<i, j<n—1 # 0.
We easily check that (s;(h;)) = :1 g where A, resp. B, is a lower
triangular matrix of size (n+1)/2, resp. (n —3)/2, with 1, resp. —1, on the

diagonal. Hence the lemma. O

12.2. Condition (v) of Proposition 6.2. Sety = > x,. Condition (v)
of Prop. 6.2 follows from the lemma below.

Lemma. Let k € N such that3 <k <n—3. Thenx., ,—c, € adpa(y)+gr.
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Proof. Suppose first that k is odd (3 < k < n—4) and set y1 = e,_2+¢,, € 5,
Yy = €kt1 — En—2 € A;\S, Yo =¢€n—o2—€n €5, =¢en—€r € AT\ S,
Y3 = Epr1+er €5, 75 = —ep—en € AT\ S. We will show that the hypotheses
of Lemma and Proposition 6.3 are satisfied. We have that v; +7] = 41 +
en €AT\ S, o+ =en2—er €A \S, 13+ =¢ckt1 —en € AT\ S.
Moreover 72 + 795 = 71+ 73, 13+ =2+, 1+ + 72 € A and
Y1ty € A, yo+v3 &€ A, v1+v3 € A. Hence, by Lemma 6.3, up to rescaling
some root vectors in a complement of gg in g, we have that

ad Lepy1—en_2 (y) = Tepi1+en + Lepi1—en + X
adze, ¢, (y) = Tepyr1ten T Tepoo—ey
adr ¢, —¢,(y) = Tepi1—en T Tep_o—ey

with X =2, , ,—c, o =adz_ , . c, ,(y) €adpp(y) +97r if 3 <k <
(n—5)/2, and X = 0 otherwise. Hence z., ,—., € adpa(y) + gr for k odd,
3 <k <n—4. A similar computation shows that x., ,—., € adpa(y) + gr
for k even, 4 <k <n—3. O

12.3. Condition (vi) of Proposition 6.2. It follows from lemma below.
Lemma. We have that |T| = indpy = |E(7)].
Proof. The set E(r") of (ij)-orbits in 7 is the following :

E(n') = {Fu ={ay, an—1-u}, 1 <u < (n—3)/2, Ti_1y0 = {am-1)2},
I'—1= {an—l}a r,= {an}}
Then |E(7)] = (n —3)/2+ 3 = (n+ 3)/2 and it is equal to |T]. O

12.4. The semisimple element of the adapted pair. All conditions of

Proposition 6.2 are satisfied. Hence y = Zve g T~ is regular in p} and there

exists a uniquely defined h € hp such that (h, y) is an adapted pair for py.
Below we give the semisimple element h :

b= = E M ko T (= 172 + Rja,
SR B 1)/2 41— 3k)aY,_, — (h—1)/2)a¥_, € B C by

12.5. Computation of the improved upper bound. However forn > 7,
both bounds in (4) of Sect. 4 do not coincide since for I' = {ag, a,_3} €
E(7') one has dr = wy + wy—3 € By and d. = w) + w),_3 € By, hence
er = 1/2. We then need to compute the improved upper bound mentioned
in Sect. 5.

Lemma. We have that

ch(Y(pp)) = (1 _ e—2(wn71+wn))*(n73)/2 (1 B 6—(wn71+wn))73
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Proof. It suffices to prove that (8) of Sect. 5 holds. Recall the (ij)-orbits
computed in the proof of Lemma 12.3 and the lower bound for ch(Y (pa))
given by (4) in Sect. 4, with the weights o, for all T' € E(x’), given by (2).
For 1 < u < (n — 3)/2, we have that op, = —2(wy + @Wp—1-v) + 2(w), +
@ 1) = —2(wn-1 + wy,). Then 6p(n_1)/2 = —2wW(p_1)/2 + 2w2n_1)/2 =
—(wp—1 + wy). Finally observe that j(I',—1) = T'y, and then o, , =
—(wp—1 + @wp) = or,. It follows that the lower bound for ch(Y (py)) is
equal to the right hand side of equality in the lemma. Now we have to com-
pute the improved upper bound and for this purpose we have to compute,
for all v € T', the s(y) € QS such that v + s(v) vanishes on ha, that is, we
have to determine s(y) € QS such that v+ s(v) = k(wn—1 + @y ) for some
k € Q (in fact k£ € N). Recall the sets S and T given in the beginning of
this Section. For 1 < i < (n — 3)/2, set ; = €9;—1 — £2;. Assume first that
1 <i<[(n—1)/4]. Then one checks that

s(i) = Q(En 1—¢€1) + (en—2 —&n) + (sn a+en)+
22 (5n —j— 1_5J)+4ZJ 1(523 1+ €25)+
22]” zj_l/Z Z(EQj—l + 52]) + +3(€21—1 + 821) e NS

so that v; + s(y;) = 2(wn_1 + wp,).
Now assume that [(n — 1)/4] < i < (n — 3)/2. Then one checks that

s(i) = 28000 P (en1y — 55) F AN P egj 1 + e0y)+
2 ZZ 1n 1)/2— iv1(82j—1 +€25) + (e2i-1 + €2:)+
2(5n 1— 51) + (5n 2 — En) + (€n72 + En) e NS

so that v; + s(v;) = 2(wp_1 + @p)-
For v = e,_9 — g2 € T, one checks that s(y) = 2(e1 + €2) + (63 + €4) +
oo+ (en—g +en-3) + (en—1 — 1) € NS so that v+ s(v) = @wp_1 + @n.
For v =e,_9+e,-1 € T, one checks that s(v) = (1 +e2) + (€3 + €4) +
..+ (en—a +en_3) € NS so that v+ s(y) = @wn_1 + @n.
Finally for v = ,-1 — &, € T, one checks that s(y) = (g1 + €2) + (e3 +
€q)+ ...+ (en—a+éen-3)+ (en—2+en) € NS so that v+ s(v) = wyp—1 + @y
We deduce that the improved upper bound is equal to the right hand side
of equality in the lemma. Hence the lemma, by what we said in Sect. 5. [

12.6. Existence of a Weierstrass section for coadjoint action. By
what we said in Sect. 5 (see also Remark 3b of subsection 6.2) we have the
following Theorem.

Theorem. Let g be a simple Lie algebra of type Dy, with n > 5, n odd,
and p be the standard parabolic subalgebra of g associated with the subset
7' = m\ {an-1, an} of the set ™ of simple roots of g. Then there exists a
Weierstrass section for coadjoint action of the canonical truncation pp of p
and it follows that the algebra of symmetric invariants Y (pp) is a polynomial
algebra over k.
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12.7. Weights and degrees of a set of generators. By what we said in
Sect. 5 to each v € T is associated an element p, such that {p,; v € T}
is a set of algebraically independent homogeneous and h-weight generators
of the polynomial algebra Y (ps). Moreover for all v € T, p, has a weight
wt(py) equal to —(y+ s(7y)) and a degree deg(p-) equal to 14 [s(y)|. Below
we give the weight wt(p,) and the degree deg(p,) of p,, for all v € T'. Set,
for all 1 < ) < (n — 3)/2, Yi = €2i—1 — £€2-

veT wt(py) deg(p)
vi, 1 <1< [(n—1)/4] —2(wp—1+wy) | n—1+4i
Yi, [(n=1)/4]+1<i<(n—3)/2 | —2(wp_1+wp) | 3n—4i—1
Y =En—2 —E2 *(’Zﬂn,1 + wn) (TL + 3)/2
Y =¢Epn_2+En_1 —(wp—1+w@n) | (n—1)/2
Y =éEn-1—€n —(wn-1+wn) | (n+1)/2

13. CASE 2C FOR TYPE D.

In this Section we consider a simple Lie algebra g of type Dy, n > 5,
n odd and the standard parabolic subalgebra p = p; associated with 7/ =
7\ {an—3, an—1, ay}. It corresponds to the case 2¢ of subsection 1.7. As in
previous case, both bounds in (4) of Sect. 4 do not coincide. Hence the exis-
tence of an adapted pair for pp will not produce immediately a Weierstrass
section for coadjoint action of pp. We will have to compute the improved
upper bound mentioned in Sect. 5 and show that the latter coincides with
the lower bound in (4), namely that equality (8) holds. Then by Remark 3b
of subsection 6.2 this will produce a Weierstrass section for coadjoint action
of PA-

Recall the elements B; = €9;_1 + €9; of the Kostant cascade (B, of g. We
set S = ST LS with

St = {Bu 1<4< (n - 5)/27 En—4 tEn—2, En_3+En, En—3 — 5n}
and
ST ={epn—3-k—¢€k, 1 <k <(n->5)/2}.
For all 1 < i < (n—5)/2, we set I'3, = Hg, the largest Heisenberg set

with centre 3; which is included in AT, as defined in subsection 6.1.
We also set

Fan_4+an_2 - {En—4 +éEn—2, En—4+En—1, En—2 — En—1,
En—4+tEn, En—2 —Eny En—4 — En—1, Ep—2 + En—1,
En—4 —En, En—2 + Eny En—4 —En—3, Ep—2 + <C:n—?)}?

anfs—i-an = {En—?) +€n, En—3 —En—1, En—1 * En}a

]‘—‘57L7375n = {€n73 - En}
and for all 1 <k < (n—25)/2,

Loy p—ex ={6n3-k — ks En3-k —€j, & — €k k+1<j<n—4—k}
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Finally we set

T ={ep-3—¢ei; 1 <k<n-—2 k+#n-—23}

and
T ={egi—1 —€2; 1 <1< (n—5)/2, en_s + en—3,
En—4 — En—2, En—3 + En—1, En—1 — En, En—1 — En—Q}‘

By construction for all v € ST, resp. v € S, we have that I, C AT,
resp. 'y C A, is a Heisenberg set with centre v and all the sets I'y, for
v € S, together with the sets 7" and T™ are disjoint. We easily verify that
condition (iv) of Prop. 6.2 is satisfied, using ) of Lemma 6.1. Conditions
(73) and (#ii) of Prop. 6.2 follow easily from i), i) and iv) of Lemma 6.1.

13.1. Conditions (i) of Proposition 6.2. We have the following lemma.
Lemma. We have that Sy, is a basis for b .

Proof. First as in previous Section, one has that dimhy = dimb’ + 1 since
br =0 @ H Hwp — @wno1) = b @ H () by Section 3. We check that
|S| =n—2=dimb,.

Set s; = f; for all 1 < i < (n—5)/2, $(_3)2 = €n-3, S(n-1)/2 = En;
S(n+1)/2 = En—4 +En—2, S(nt1)/24k = En—3—k — €k, 1 <k < (n—5)/2 and we
take the elements of S in this order.

For a basis (hy) of by, we take in this order,

Oégﬁ 1<j< (n - 5)/27 0‘7\{—47 Hil(gn)a O‘X—Zﬂ
Qg1 Oy g opi L <k < [(n—3)/4]
without repetitions for the last coroots.

Then it suffices to show that det(sy(hy))i<u, v<n—2 # 0.
One can easily verify that

A 0 00 O
*x —1 0 0 O
(su(hp))=1|=* = 1 0 0
* x x 1 0
*x % *x x B

where A, resp. B, is a lower triangular square matrix of size (n — 5)/2,
with one, resp. —1, on its diagonal. Hence the lemma. U

13.2. Condition (v) of Proposition 6.2. It follows from lemma below.
Set y = > cs Ta-

Lemma. For all1 < k < n -2, k # n— 3, we have that z., , ., €
adpa(y) + g7
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Proof. We will use Lemma and Proposition of subsection 6.3. First assume
that £ =n — 2 and set
Y =¢€naten2€S, Y =—€r—En2¢gS8
Yo =€Ep-3+té&p € S: ’Yé = E&n—4 —En-3 ¢ S
V3 =¢€n-3—en €S, Vs =¢€n—€En2¢g§8
One checks easily that all conditions of Lemma 6.3 are satisfied. Moreover
since one can take the vectors X, X', X” in Prop. 6.3 equal to zero, one
deduces that x., ,—c, , € adpa(y) + gr.
Assume now that £ =n — 4 and set
M =€En-3+en €S, ’Yi = —E&p —En—4 QS
Y2 =¢€én—2+En—4q € 57 f}é =E&n —En—4 g S
Y3 =€En-3—€En €5, ’)’é =ep2—€Ep3¢€S
One checks that all conditions of Lemma 6.3 are satisfied. Moreover since

one can take the vectors X, X', X" in Prop. 6.3 equal to zero, one deduces
that z., ¢, _, € adpa(y) + g7.
Assume that 1 < k <n — 6, k odd, and set
M =€n-3+en €S,V =—¢cr—en &S
Yo=¢k+Ept1 €S, Vo =¢€n—cr &S
Y3 =€n—3—En €5, 73 =Ckt1—En-3 &S
One checks that all conditions of Lemma 6.3 are satisfied. Moreover
since one can take in Prop. 6.3, X = X' =0 and X" = 2., _, , ¢, 5 =
adx_c, . e, s(y) if B < (n—7)/2, X" = 0 otherwise, one deduces that

Te,_g—e, € adpA(y) + g7
A similar computation for 2 < k < n — 5, k even, shows that z., .., €

adpa(y) + o7 O
13.3. Condition (vi) of Proposition 6.2. It follows from lemma below.
Lemma. One has that |T| = indpy = |E(7)|.

Proof. Recall that E(n’) is the set of (ij)-orbits in m. One easily checks that

E(n') = {Fu ={ow, an—3-u}; 1 Su<(n—5)/2, Tz = {am-_3)2},
Fn73 = {anf?;}, Iy_—o= {an72}a 1= {anfl}y I, = {an}}

Hence indpy = |E(7')| = (n —5)/2 4+ 5 = (n + 5)/2, which is equal to |T|
(see beginning of this Section). O

13.4. The semisimple element of the adapted pair. All conditions of
Proposition 6.2 are satisfied. Hence y = Z«/e g T~ is regular in p} and there
exists a uniquely defined semisimple element h € hp such that adh(y) =
—y, namely such that (h, y) is an adapted pair for py. Below we give the
semisimple element A :
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n—>5 2 n—3) 4
h=— l(c 15)/2 2k+2k A ((n=3)/24 k)ag,_+
S (B = 3)/2+ 1 — 3k)ay, +
0‘7\;—4 (n=1)/2)a;_5 €h Chy

13.5. Computation of the improved upper bound. Here both bounds
in (4) of Sect. 4 do not coincide since, for I' = I';,_3 € E(n’), we have that
er,_s = 1/2 (recall (3) of subsection 4.3). Indeed by subsection 4.3, we have
that dr, , = w,_3 € By and d] ., = 0 € By Hence the existence of an
adapted pair for p, is not sufficient to assure the existence of a Weierstrass
section for coadjoint action of pp. We will show below that (8) of Sect.
5 holds and by what we said in Sect. 5 it will be sufficient to provide a
Weierstrass section.

Lemma. We have that

ch (¥ (pa)) = (1 — e-22-1)~0-3)/2 (1 — gn-2) 1
(1-— e_(w"*3+wn71+wn))—1 x (1 — e~ (@n-1t@n))—2

Proof. We will prove that the improved upper bound mentioned in Sect. 5
is equal to the lower bound appearing in left hand side of (4) of Sect. 4,
namely that (8) of Sect. 5 holds.

Recall that the lower bound for ch (Y'(pa)) is equal to [re gy (1— eor)~1
where Or is given by (2) of subsection 4.2.

Recall the set E(n') computed in the proof of Lemma 13.3 and that for
all ' € E(n’) one has that i(I'N#") = j(T') N7’ (by 4.2). Then for 1 <u <
(n—1>5)/2, and 'y, = {ow, an—3_4}, one has that

or, = —2(wy+ wn—3-u)+2(w, +w, 5 ,)
= —2(€1+ .tEytEL T+ ...t Ep—3— u)+
2(81 —Ep—3+ ...+t Ey— En_g_u)
= —2wn_3.

For I'(,,_3)/2 = {(n—3)/2}, one has that

6F(n73)/2 = —2W(n-3)2 2w2n—3)/2
= —2(e1+... +E(n,3)/2)+
2(51 —ép-3te2—€pa+t...+ €n—-3)/2 — 6(71—1)/2)
= —(61 + ...+ Enfg) = —TWp—3.

Then for I',,_3 = {an—3}, one has that ér, , = —2w,_3. For I',_y =
{an—2}, one has that

(5an2 = —2wp_9o+ 2w;1_2
= _2(51 +...+ 511—2) + <5n—2 - gn—l)
= —2(61 + ...+€n_3) — Ep—92 — En—1
= _(wn—3 + -1+ wn)
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Finally for I';,-1 = {ap,—1} and for T, = {a,} = j(T'h—1), one has that
or,_, = 0r,, = —(wn—1 + wn). Hence the right hand side of equality of the
lemma is equal to the lower bound for ch (Y (py)).

Now the improved upper bound for ch(Y'(pa)) is equal to [ (1

e~ (s~ where we have that adpj(y) © gr = p} with dim g7 = indpy
and where, for all v € T, s(y) € QS is such that v + s(vy) vanishes on by,
that is, v + s(v) = kwn—3 + k¥ (wn—1 + @), with k, k' € Q.

Set, for all 1 <i < (n—05)/2, vi =¢e9i—1 —e2 €T.

Assume first that 1 < i < [(n — 3)/4]. Then one has that

s(vi) = (en-3—¢n)+ (En-s+en) + 2375 (en-3—j — &)+
43 (egj-1 +€25) + 2 Zyn zil/Q "(eaj-1+ £2)) + B(e2i-1 + £24)

so that v; + s(y;) = 2wp—3.
Now for [(n —3)/4] +1 < i < (n —5)/2, one has that

S(/yl) = (671 3~ 5n) + (571 3+ 5n) + 227@ 5 2Z(€n737j — 5])
3)/2—
+4Z(n / 1(523—1 + 523) + 22;':1n_3)/2_i+1(52j—1 + 52]')
+(e2i—1 + €2;)

so that v; + s(y;) = 2wp—3.

For v =¢e,_4+ep—3 € T, one has that s(y) = (e1+e2)+. ..+ (en—6+€n—5),
so that v + s(v) = wp—3.

For v =¢e,_4 —€p—o € T, one has that s(y) =2((e1 +e2) + ...+ (en—6 +
5n—5)) + (571—4 + 5n—2) + (571—3 + 5n) + (En—?, - 5n) so that v+ 5(7) = 2wn—3-

For~y = ¢e,_3+en—1 € T, one has that s(y) = (e1+e€2)+. . .+ (en—6+en—5)+
(en—a+en—2) so that y+s(y) = e1+ea+. .. +en_3+en_9+en—1 = Wn—1+why.

For v = €,-1 — &, € T, one has that s(y) = (e1 +e2) + ... + (en—6 +
€n—5) + (En—a +en—2) + (en—3 + €,) so that v + s(7) = wp—1 + @p.

Finally for v = e€,-1 — en—2 € T, one has that s(y) = 2((e1 + €2) +

oot (en—6 +en-5)) +2(en—a +en—2) + (€n—3 + €n) + (n—3 — €n) so that

vy+s(y)=2(e1+...+en-3) +en—2+en—1=wn-3+ wp_1+ w@,. Thus we
obtain that the improved upper bound is also equal to the right hand side of
the equality in the lemma, which gives the lemma, by what we said in Sect.
5. O

13.6. Existence of a Weierstrass section. By the above (see also Remark
3b of subsection 6.2) one can deduce the following Theorem.

Theorem. Let g be a simple Lie algebra of type Dy, with n > 5, n odd,
and let p be a standard parabolic subalgebra of g associated with the subset
of simple roots " = 7\ {an—3, @n_1, an}. Then there exists a Weierstrass
section for coadjoint action of the canonical truncation pp of p and it follows
that Sy(p) = Y (pa) is a polynomial algebra over k.
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13.7. Weights and degrees of a set of generators. As in subsection 12.7
we give below the weights and degrees of each element of a set {p,; v € T'}
of homogeneous and h-weight algebraically independent generators of the
polynomial algebra Y (pa). Recall that the weight wt(p,) of p, is equal to
—(v+ s(v)) and the degree deg(py) of py is equal to 1 4 |s()| and that we
set y; = e9;-1 —eg; for all 1 <i < (n—5)/2.

veT wi(py) deg(p)
Ys —2wy,_3 n—3+44
1<i<[(n-3)/4
Yi —2wn_3 3n—41—7
(0= 3)/4 +1 i < (n—5)/2
Y= ¢€p—4 +En-3 —TWn—3 (n—3)/2
Y =En—4 —En-2 —2w;, 3 n—1
Y =En—3+En_1 —(@Wn—1+ @n) (n—1)/2
Y =En-1—"En _(wnfl +wn) (n+1)/2

Y =En—1—En-2 _(wn—?: + wp—1+ wn) n

14. CASE 3 FOR TYPE D.

Here we consider the parabolic subalgebra p = q,  of g simple of type D,
with n odd, n > 5, s odd et £ € N such that s + 2¢ < n — 2 (note that in
this case one has that s + 2¢ # n — 3, hence it does not coincide with some
pe). This corresponds to the case 3 of subsection 1.7 that is, the parabolic
subalgebra q; ¢ of g associated with 7’ = m\{as, asy2, ..., Astp20, 1, O}

When s + 20 < n — 2, there exists a connected component of 7’ of type
A, _9_4_9; which we denote by 7). Then, when moreover s > 3, there
exist two connected components of 7’ of type Ay with & > 2, namely =}
of type As_1 and 7 above. Denote by 5”2 C B the Kostant cascade of
the simple factor of g’ associated with =) for k& € {1, 2}. We have that
B ={Bi =ci—esy1-i | L <i < (s—1)/2} and By = {B = esv20i —€n—i |
1 <i< (n—s—20—2)/2}. Recall that 8% = B \ (B N7’). Then
B, = B U Bry. We also have that (see subsection 8.1) B2 =B\ (B=N7) =
{Bi=¢2i-1+¢2 |1 <i<(n—1)/2}. We set

St = {Bi; 1<i<(n—3)/2, B(n—l)/? = B(n—l)/Q —Qn-1=¢&n2+ent,
Si - —62/
and S =STUS™.

14.1. Conditions (i) to (v) of Proposition 6.2. For all 3; € ST with
1 <4< (n-3)/2, weset 'y, = Hg, C AT and for all v € S, we set

I'y = —H_, C A_, with the notation of subsection 6.1. Finally we set
anfg—&—en = {gn—Q + éen, En—2 — En—1, En—1 + €n}, T+ = {/B(nfl)/% En—2 —
Eny En—1 — €n, €2i—1 — €93, 1 <1 < (n — 3)/2} and T~ = _(/Bvr’ N 7T/). By

construction every set I'y, for v € S, is a Heisenberg set with centre v such
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that, if v € ST, then Iy C A™ and if v € S~, then I, C A_,. Moreover,
for all 1 < i < (n —1)/2, we have that e9;1 — €9; = agi—1 € B N7 (see
subsection 8.1) and H,,, , = {a2i—1}. We observe that H5<n71>/2 UH,, ,=
L., ote, U(TTN Hg, ). Then by i) of Lemma 6.1, the sets T+, T~ and
the I',)’s, v € S, are disjoint and one has that A*T = Uyes+ 'y U T+ and
AL, = U,eg-I'y UT™. Then by setting T* = (), condition (iv) of Prop. 6.2
holds, with 7= T" UT~. One also deduces by i), #ii) and iv) of Lemma
6.1 that conditions (i7) and (éi7) of Prop. 6.2 are satisfied. Condition ()
follows from the following Lemma.

Lemma. S‘hA is a basis for b.

Proof. First we observe that hy = b’ @kH ~!(s,) by what we said in Sect. 3.

Hence dimbhy = dimb' +1=n—£¢—-3+1=mn—£— 2. We first verify that

IS|=mn—-3)/2+1+(s—1)/24+(n—s—20—-2)/2=n—{—2=dimbh,.
Then we order the elements s, of S as follows :

Bla AR B(n—?))/% _617 SRR _/82571)/27 19+ B(n 5—20—2)/2> En—2 T €n

Set t = [(s +1)/4] and ¢’ = [(n — s — 2¢]/4]. For a basis (h,) of b we take,
in this order,

VARY; v
, , 32,&47...7an_3, , Y
., hy —a}/,h 0 =0Q._o,... h2t 1—04275 1,ht/— oy %/t,
W = a9 hy = 0‘3+2z+27 ?—[ h(Qt’ )1 = an oty Moy = Qgioptop
€n

without repetitions for the h;’s and the h;’ ’s. Recall that 8; = wo; — w92
(where wy = 0) and Lemma 6.4. Then we obtain that

(Su(hv))lgu, v<n—2—f —

* ¥ ¥

0
B
*
*

_ o o O

0
0
C
*

with A = (Bu(as,))1<u,v<(n—3)/2> 1esp. B = (=B, (hy))1<u, v (s—1)/2, and
C = (=B (M) 1<u, v<(n—s—20—2) /2, Which are lower triangular matrices with
1, resp. —1 on their diagonal. Hence the lemma. ([

14.2. Condition (vi) of Proposition 6.2. Condition (vi) of Prop. 6.2
follows from the following Lemma.

Lemma. We have that |T'| = ind py.
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Proof. One easily checks that

E(r) = {ru = {aw, asu}, 1<u < (s—1)/2,

Fs+2€+v = {as+2€+v7 an—l—v}y 1<v< (n —s5—20— 2)/27
Fs+k = {as+k}> 0<k< 2&

Lot = {an 1} T = {an}

hence indpy = |E(7')| = (s —1)/24+ (n—s—20—2)/2 4+ 20+ 1+ 2
(n—3)/2+L4+3=|T"|+|T"|=]T|.

o

14.3. All conditions of Proposition 6.2 are satisfied, hence setting y =
nyes xz, and h € hp such that for all v € S, y(h) = —1, we obtain that
(h, y) is an adapted pair for py. This is sufficient by Remark 3a of subsec-
tion 6.2 to provide a Weierstrass section for coadjoint action of pp, by the
following Lemma.

Lemma. For every I' € E(x’), we have that ep = 1.

Proof. Recall the set E(n') given in the proof of Lemma 14.2. Recall subsec-
tion 4.3. Set 1 < wu < (s—1)/2. Thendr, = wy+ws—y & By since u and s—u
are of different parity. For the same reason, for 1 <v < (n—s—2(—2)/2, we
have that dr_,,,., ¢ B,. Now for 0 < k < 2/ and k odd, dr,,, = @Wstk € B,
but d/1“8+k = @y, & B since a,yy, belongs to a connected component of 7/
of type Aj. If 0 < k < 2¢ and k even, then agyp &€ 7' and dfsM =0¢€ By
but dr,,, = @wsix ¢ Br. Finally dr,_, ¢ By and dr, ¢ Br. Hence the
lemma. ([

We then obtain the following Theorem.

Theorem. Let g be a simple Lie algebra of type Dy, with n > 5, n odd and
let s, £ be integers such that s is odd and s + 20 < n — 2.

Let qs,¢ be the parabolic subalgebra of g associated with the subset ' =
m\{as, Qst2, ..., Qsyap, An_1, an}. Then there exists a Weierstrass section
for coadjoint action of the canonical truncation of qs. ¢.

Proof. Indeed (with the notation in Prop. 6.2) y+gr is a Weierstrass section
for coadjoint action of the canonical truncation of g, , by Remark 3a of
subsection 6.2. (]

14.4. Weights and degrees. Here both bounds (see (4) in Sect. 4) for
ch(Y (pa)) coincide and then Y(pp) is a polynomial algebra whose homoge-
neous and h-weight generators have weights and degrees which can be easily
computed. To each T' € E(r’) is associated an homogeneous and h-weight
generator of Y (py) which has weight dp given by (2) and a degree dr given
by (5) or by (6) of Sect. 4.

Below we give for completeness weights and degrees of a set of homoge-
neous and h-weight algebraically independent generators of Y (py), each of
them corresponding to an (ij)-orbit ', in E(7’).
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(ij)-orbit in E(n) Weight Degree
Ty = {aw, as—y} —2w, s+14+2u
1<u<(s—1)/2
Fsio0i0 = {as+2€+v7 an—l—v} _2(wn—1 + wn) n+3s + 64 + 2v
1<v<(n—s—20-2)/2
]._‘5+k = {O[$+]€} —2w5+k s+ k + 1
0< k<2l keven
Potr = {oeyr} —Wstk—1 — Wstk+1 2(s + k)
1<k<20—1kodd
I, 1= {O‘nfl} —Wn—-1 — Wn (n — 1)/2
r, ={an} — Wy — W1 (n+1)/2
14.5.
Remarks. (1) Consider now the parabolic subalgebra p = q5 ¢ in g of

type D,,, with s an even integer and assume that we have found an
adapted pair (h, y) € ha x p}; for pa. Then the set S cannot contain,
as in the case s odd and n odd, the set {3; | 1 < i < [(n — 3)/2]},
at least for s/2 < [(n —3)/2]. Indeed by (4) of Sect. 4, one has that
—2w; € A(p) then necessarily ws(h) =0 <= f1+...+ 8,2 =01in
contradiction with the fact that, for all 1 <4 < [(n—3)/2], one should
have also that 3;(h) = —1. Moreover for s = n — 2 (with s even),
the set S = {f;; 1 <i < (n—4)/2, Bn_g)/2 = en—3+en-1}U(=5L)
is such that Sjy, is not in general a basis for h} (since for all s € S,
s(ay p_4) =0 for n > 8).

Now consider in g simple of type D,,, the parabolic subalgebra p =
qs,¢ With s odd and n even, and take for S a similar set as in case
s odd and n odd, namely S = {f;; 1 < i < (n—4)/2, B(n_2)/2 =
én-3+ en—1} U (—B2). Then either Sj, is not a basis for b} or in
case it is, then take the Heisenberg sets similar as those taken in case
n and s odd (with Fﬁ(nfz)/z = {ﬁ(n_g)/g, En_3Eten, En_1FEn, En_3—
En—2, En—2 + en—1}). Take also T and T™* disjoint sets such that
conditions (iv) and (vi) of Proposition 6.2 hold. But then condition
(v) of Proposition 6.2 is not satisfied.

Finally consider a parabolic subalgebra p of g simple of type B,, or
Cp, associated with the subset 7' = 7\ {as, asio, ..., Qsiop, Qn}
for s +2¢ <n — 1. Then a similar construction as this made for q; »
for g simple of type D,, with n and s odd does not give a regular
element y in pj.
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