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ABSTRACT
This last decade, a plethora of handcrafted-based image qual-
ity metrics has been proposed in the literature. Some of them
are based on structural analysis, while some others exploit
mutual information or perceptual characteristics. Nowadays,
deep learning-based methods are widely used in several do-
mains due to its ability to well fit the target directly from the
image. In this paper, we study the impact on the performance
of combining handcrafted and Deep Learning-based (DL)
features, since each of them extracts specific information.
Indeed, DL-based image quality assessment methods often
extract local information by extracting small patches, while
the handcrafted ones provide global information through a
global analysis. We analyzed the performance before and af-
ter combining the two using bilinear pooling strategy. Experi-
mental results on commonly used datasets show the relevance
of combining both approaches.

Index Terms— Image Quality, Deep learning-based Fea-
tures, Handcrafted Features, Bilinear Pooling

1. INTRODUCTION

Quality of multimedia contents is a sensitive notion in several
applications such as computer vision where the performance
depends on the quality of the data, medical imaging where
the region-of-interest must be not affected by any distortion,
biometrics where the data collected must allow to well iden-
tify the person, etc. To answer this request, numerous studies
were carried out in order to propose efficient metrics that en-
sure a high quality of experience. Existing metrics can esti-
mate the quality with reference (FR), without reference (NR)
or by extracting only some information from the reference im-
age (RR). In this article, we focus on the NR approach since
the latter is more applicable in most real applications.

Traditional NR metrics employ handcrafted features to
characterize the distortion. For instance, the perceptual qual-
ity of blurred images is often estimated by analyzing edges
[1], while the perceptual impact of block-based processing
such as JPEG compression is often measured by analyzing
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the neighborhood of blocks [2]. This kind of metrics is
dedicated to specific distortions that limits their use. To over-
come this limitation, multi-degradation metrics have been
then proposed. The latter are used to estimate the quality
of any distorted image (blocking, blurring, ringing, noise,
combined degradations, etc.). These metrics are generally
based on two steps: feature extraction and feature combina-
tion through a machine learning algorithm such as Artificial
Neural Networks (ANN) [3] or Support Vector Machine [4].

Nowadays, a large part of the published work focuses on
Deep Learning-based methods. This is mainly due to their
performance and their ability to automatically learn features
from the raw data. In [5], the authors used their own CNN
model to estimate the quality of 2D images. The idea is quite
simple and provides promising results. An RGB color image
is first decomposed into patches of size 32 × 32 × 3. After
a local normalization, these patches are used as inputs to a
CNN model and the overall quality score is computed by av-
eraging the predicted patch scores. In [6], the method was
extended to predict the quality and degradation type simulta-
neously. The two previous methods use the subjective score
of the whole image, often called Mean Opinion Score (MOS),
as the target (i.e. desired output) of each patch without con-
sidering additional information from the whole image. The
authors assumed that the patches extracted from a given im-
age have the same perceptual impact which is not totally in
accordance with our Human Visual System (HVS). In order
to overcome this assumption, some studies proposed to con-
sider perceptual characteristics. In [7], the authors considered
rather saliency information as patch selector. In [8, 9], the
author considered rather scanpath. In [10, 11, 12], a similar
approach was applied for quality assessment of 3D meshes.

In this work, we study the impact on the performance
of combining both approaches (i.e. handcrafted and Deep
Learning-based (DL) features), since each of them extracts
specific information. Indeed, DL-based image quality assess-
ment methods often extract local information, while the hand-
crafted features provide global information. The idea is to
compensate the lack of these patch-based methods by inte-
grating global information from the whole image. To this end,
we first extract DL-based feature vectors for each patch of the
image as well as a handcrafted feature vector from the whole



Fig. 1. Flowchart of the proposed method.

image. Then, we combine those vectors through the Bilin-
ear Pooling (BP) strategy. The resulting vectors are finally
fed to a CNN model to predict the quality. Our method was
evaluated on well known databases and the results showed the
improvement given by the proposed strategy. It is worth not-
ing that in [13], the author studied the impact of combining
DL-based features.

Our paper is organized as follows: In Section 2, we
present the proposed method by describing the CNN model
and the handcrafted features used. In Section 3, we show
the results obtained in terms of correlation with the subjective
judgments and we discuss the impact of the combination step.
The last section is dedicated to the conclusion.

2. PROPOSED METHOD

The pipeline of the proposed method is summarized in Fig.
1. For a given image I, we first extract handcrafted features
VH(I) from the whole image and DL-based feature vectors
VDL(I, p) for each patch p of the image I (i.e. one VDL(I, p)
per patch). The extracted vectors are then pooled using BP
strategy and the resulting vectors are fed to Fully Connected
(FC) layers. The overall quality index is finally given by av-
eraging the predicted patch scores.

2.1. Handcrafted features

A lot of handcrafted features has been used to estimate the
quality. Some of them are based on structural information
[14], while some others exploit degradation types [4] or even
statistical information [15]. In this study, we focus more on
statistical features, since damage caused by distortions imply
an alteration of the statistics of the image. Here, we employ
statistical features based on Gradient Magnitude (GM) and
Laplacian of Gaussian (LOG) that have been widely used
in computer vision for image matching and were efficiently
used for image quality in [16]. More precisely, we employed
the marginal probability distributions of GM and LOG as
well as their independency measures. The former allow to
get information about the statistical distribution of the image,
while the latter give information about the statistical interac-
tion between GM and LOG. All these features are computed

after applying a joint adaptive normalization that aims to re-
move content-dependent characteristics. For more details, the
reader is referred to [16] where the authors well demonstrated
the impact on the performance of each set of features. At the
end, 10 features are extracted for each statistical set. So, our
handcrafted feature vector VH is constituted of 40 features,
extracted from the whole image.

2.2. Deep Learning-based features

Several CNN models have been employed in the literature
with different strategies (i.e. from scratch, transfer learning
or fine-tuning). In this work, DL-based features are extracted
from a modified version of VGG that was fine-tuned [17].
This model, initially pre-trained on ImageNet [18], was pro-
posed in 2014 by the Oxford Visual Geometry Group. Its
initial input is an image of size 224x224x3, while its output
is composed of 1000 classes. For a given image, P feature
vectors of size 128 are thus extracted from the image I (i.e
[VDL(I, 1), VDL(I, 2), ..., VDL(I, P )]).

2.3. Bilinear Pooling

To combine the handcrafted and DL-based features, Bilinear
Pooling (BP) is applied [19]. It allows a multiplicative inter-
action between all features of the two vectors and thus im-
proves the interaction between the local (i.e. DL-based) and
global (i.e. handcrafted) features. It consists of applying the
outer product of two vectors as follows:

V BPI,p(VDL, VH) = VDL(I, p)⊗ VH(I) (1)

where VDL(I, p) is the DL-based feature vector of the patch
p of the image I. VH(I) is the handcrafted feature vector
extracted from the image I. ⊗ represents the outer product.

Before combining the vectors, we projected the DL-based
features into a lower dimensional space. This makes it possi-
ble to reduce the number of learnable parameters and above
all, to have a balanced representation of the features (i.e.
handcrafted and DL-based). For that, the well-known Count
Sketch (CS) projection function is used to obtain a vector
V PDL of size D from a vector V of size N with D < N
[20]. Fig. 2 summarizes this procedure.



Fig. 2. Bilinear Pooling applied between the handcrafted and
DL-based features.

The resulting matrix is of size D × 40 that is then vector-
ized and fed to three FC layers. The first FC layer is followed
by a ReLu layer and a dropout layer, while the second FC
layer is followed by only a ReLu layer. The third FC layer
is a logistic regression layer with one output (i.e. predicted
MOS). The model was trained through the Stochastic Gradi-
ent Descent (SGD) optimization method using the MSE as
loss function. The learning rate and momentum were set to
0.1 and 0.9, respectively. The batch size was fixed to 32 and
the number of epochs was equal to 20. The model was saved
after each epoch and the training set was shuffled. The model
that provided the best result was retained. The overall qual-
ity index was finally obtained by averaging all the predicted
patch scores.

2.4. Datasets

Our experiments were carried-out on four well-known datasets:

• LIVE - Phase 2 (LIVE2-P2) [21]: LIVE-P2 dataset
is one of the first publicly available datasets and is still
commonly used to evaluate existing metrics. It contains
29 pristine images from which 982 degraded images
were derived. Five different degradation types were
considered: JPEG2000, JPEG, White Noise, Gaussian
Blur and Fast Fading. The DMOS (Differential Mean
Opinion Score) was used to annotate the degraded im-
ages (0 indicates the best quality, while 100 indicates
the worst quality).

• TID 2008 (TID08) [22]: Constituted of 17 degradation
types, TID08 dataset consists of 1700 degraded images
obtained from 25 pristine images (i.e. 100 degraded
images per degradation) and their corresponding MOS
(Mean Opinion Score). The latter varies between 0 and
9 where 0 denotes the worst quality and 9 the best qual-
ity.

• TID 2013 (TID13) [23]: TID13 dataset is an extended
version of the previous one. More degradation types
were considered (24 instead of 17) with more degraded
images per degradation type (125 instead of 100). A
total of 3000 degraded images and their corresponding
MOS are provided.

• CSIQ [24]: This dataset is composed of 866 degraded
images achieved from 30 pristine images and 6 degra-
dation types (JPEG2000, JPEG, White Noise, Contrast,
Gaussian Blur and Pink Gaussian Noise). The normal-
ized DMOS are given for each degraded image. This
value varies between 0 and 1, where 0 corresponds to
the best quality and 1 the worst quality.

3. EXPERIMENTAL RESULTS

3.1. Evaluation Criteria

The performance evaluation is carried out by computing the
Pearson (PCC) and Spearman (SROCC) correlation coeffi-
cients. These values are calculated between subjective scores
and the corresponding predicted ones. A correlation of 1
means a perfect prediction, while a correlation of 0 indicates
no correlation. The predicted scores are mapped to the subjec-
tive ratings using the following non-linear logistic function:

Q = β1(
1

2
− 1

e−β2(Qp−β3)
) + β4 ∗Qp + β5 (2)

where Qp and Q are the predicted and the mapped scores,
respectively.

3.2. Individual Evaluation

Our method is first evaluated by randomly splitting the LIVE-
P2 database into 60%, 20% and 20% for the training, valida-
tion and test sets, respectively. This procedure is repeated 10
times to ensure the generalization ability of our method and
the mean correlation across the 10 iterations is computed and
used as performance indicator. We compare the performance
of each extracted features individually. Table 1 presents the
PCC and SROCC obtained. As expected, DL-based features
achieve better results (PCC=0.967) than the handcrafted ones
(PCC=0.955). The combination of the two allows an im-
provement of 1.14% and 2.41% compared to the DL-based
and handcrafted features, respectively. Therefore, the inte-
gration of global information through the handcrafted features
has a benefit impact on the performance.

Table 1. Mean PCC and SROCC of the handcrafted and DL-
based features on the LIVE-P2. The best results are repre-
sented in bold.

Features PCC SROCC
Handcrafted 0.955 0.951
DL 0.967 0.971
BP(DL,Handcrafted) 0.978 0.977

Fig. 3 shows the PCC of the CNN model (red line) for
each iteration as well as the PCC obtained after combination



of the two features (blue line) across the 10 iterations. As can
be seen, the combination allows an improvement for each it-
eration. The mean, the maximum and the minimum PCC im-
provements are equal to 0.010, 0.013 and 0.008 respectively.

Fig. 3. PCC of the DL-based features (red line) and the com-
bined ones (blue line).

A one-way ANalysis Of VAriance (ANOVA) test is car-
ried out to show the statistical significance of improvement
gain. Fig. 4 presents the boxplot of the predicted and sub-
jective scores. This plot depicts the distribution of our data
around their median values. It can be seen that the predicted
scores of the combined features and subjective scores have
close distributions with similar median and variance values.
The predicted scores of the DL-based features has a higher
variance. We compute the p-value between the predicted
scores using the combined features and the DL-based fea-
tures. The value is less than the significance level 0.05, which
means that the improvement gain is statistically significant.

Fig. 4. Boxplot for Anova test of the subjective scores and the
predicted scores obtained by the CNN and those obtained by
the combination of both kinds of features.

We compare bilinear pooling strategy to some common
strategies: Concatenation, Summation and Multiplication.
Table 2 shows the correlations obtained for each of them. As
can be seen, bilinear pooling outperforms all the compared

Table 2. Comparison of some pooling strategies using the
LIVE-P2 dataset.

Pooling strategy PCC SROCC
Concatenation 0.970 0.969
Summation 0.967 0.971
Multiplication 0.970 0.971
Bilinear Pooling 0.978 0.977

Table 3. Performance comparison on LIVE-P2 and CSIQ
datasets. Mean PCC and SROCC of each dataset across 10
random splitting. The first three best methods are marked in
bold and DL-based methods are in italic. The overall best
result is with a grey background.

LIVE-P2 CSIQ
PCC SROCC PCC SROCC

FR-IQA PSNR 0.856 0.866 0.800 0.806
SSIM [14] 0.906 0.913 0.861 0.876
FSIM [25] 0.960 0.964 0.919 0.931
DeepIQA [26] 0.981 0.982 0.891 0.871
DIQa-FR [27] 0.980 0.970 — —

NR-IQA DIIVINE [28] 0.917 0.916 0.900 0.880
BLIINDS-II [29] 0.930 0.931 0.930 0.910
BRISQUE [15] 0.942 0.940 0.797 0.756
CORNIA [30] 0.935 0.942 0.781 0.714
IQA-CNN [5] 0.953 0.956 0.954 0.948
IQA-CNN++ [6] 0.950 0.950 — —
SOM [31] 0.962 0.964 — —
CNN-Prewitt [32] 0.966 0.958 — —
Image-wise CNN [33] 0.963 0.964 0.791 0.812
BIECON [34] 0.960 0.958 0.823 0.815
DIQA [35] 0.972 0.970 0.880 0.844
DIQa-NR [27] 0.972 0.960 — —
Our method 0.978 0.977 0.970 0.949

methods. Concatenation, Summation and Multiplication
achieve close results. These results are certainly due to the
fact that bilinear pooling allows a multiplicative interaction
between all features and thus combines the advantages of
the Concatenation and Multiplication strategies. Indeed,
Concatenation permits an interaction between all features,
while Multiplication permits only a multiplicative interaction
element by element.
3.3. Comparison with the state-of-the-art

Our method is compared to the state-of-the-art including
handcrafted-based FR and NR metrics (PSNR, SSIM [14],
FSIM [25], DIIVINE [28], BLIINDS-2 [29], BRISQUE
[15] and CORNIA [30]) as well as CNN-based FR and NR
metrics (DeepIQA [26], IQA-CNN [5], IQA-CNN+/IQA-
CNN++ [6], SOM [31], CNN-Prewitt [32], BIECON [34],
DIQA [35], DIQa-FR & DIQa-NR [27] and Image-wise
CNN [33]). Two well-known databases are used (LIVE-P2
and CSIQ). The protocol described in Section 3.2 is applied
on both databases. Table 3 shows the results obtained. The
first three best methods are marked in bold and CNN-based
methods are in italic. The overall best result is represented



with a grey background. On LIVE-P2 database, our method
achieves the third best result outperforming all the compared
NR methods and being competitive to CNN-based FR meth-
ods. DeepIQA and DIQa-FR obtain the best results on this
database with a PCC equal to 0.981 and 0.980, respectively.
However, the latter necessitate the pristine image (FR-IQA).
In addition, CNN-based methods outperform all the hand-
crafted metrics for both approaches (FR-IQA and NR-IQA),
which confirms the contribution of such methods. On CSIQ
database, our method achieves the best result with high cor-
relation (PCC=0.970). The second best result is obtained
by a CNN-based method (IQA-CNN). The latter use only
patches of the whole image to predict the quality and thus not
integrate information from the whole image.

3.4. Cross-database Evaluation

Finally, we evaluate the generalization ability of our method
to predict the quality whatever the dataset. For that, we apply
a cross-database evaluation by training our method on LIVE-
P2 dataset and testing it on CSIQ, TID08 and TID13 datasets.
Table 4 shows the correlations for the three datasets. As can
be seen, our method predicts well the quality for all datasets.
The best result is obtained for CSIQ (0.896), but still close to
those obtained for TID13 (0.894).

Table 4. Cross-dataset evaluation. The model was trained
on LIVE-P2 dataset and tested on CSIQ, TID08 and TID13
datasets.

PCC SROCC
CSIQ 0.896 0.878
TID08 0.881 0.863
TID13 0.894 0.873

4. CONCLUSION

In this paper, we studied the impact of combining handcrafted
and DL-based features. For that, bilinear pooling was em-
ployed after decreasing the size of the DL-based features
through a Count Sketch (CS) projection. We compared the
performance of both kinds of features individually and af-
ter their combination. We also evaluated the impact of the
CS projection on the performance as well as the statistical
differences between the predicted scores of the DL-based
features and those obtained after combination. The best con-
figuration was retained and compared to the state-of-the-art.
Experimental results showed the contribution of handcrafted
features.

As future work, we plan to study other handcrafted fea-
tures (i.e. quality indexes) as well as other pooling strate-
gies using a feature selection method. We will also try to
improve the generalization ability of our method, since the
performances obtained are not high as expected.
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