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Abstract: In this paper, a multiscale monogenic analysis is applied to 2D interference fringe 
patterns. The monogenic signal was originally developed as a 2D generalisation of the well-known 
analytic signal in the 1D case. The analytic and monogenic tools are both useful to extract a 
phase information, which can then be directly linked with physical quantities. Previous studied 
have already shown the interest of the monogenic signal in the field of i nterferometry. This 
paper presents theorical and numerical illustrations of the connexion between the physical phase 
information and the phase estimated with the monogenic tool. More specifically, the ideal case of 
pure cosine waves is deeply studied, and then the complexity of the fringe patterns is progressively 
increased.
One important weakness of the monogenic transform is its singularity at the null frequency, 
which makes the phase estimations of low frequency fringes diverge. Moreover, the monogenic 
transform is originally designed for narrowband signals, and encounters difficulties when dealing 
with noised signals. These problems can be bypassed by performing a multiscale analysis based 
on the monogenic wavelet transform. Moreover, this paper proposes a simple strategy to combine 
the information extracted at different scales in order to get a better estimation of the phase. The 
numerical tests (synthetic and real signals) show how this approach provides a finer extraction of 
the geometrical structure of the fringe patterns.

1. Introduction

It is well known [1] that, when two waves are superimposed, a new wave that has its own 
frequency is generated. This phenomenon is called interference [1] and can be observed for all 
types of waves (sound, light, radio, etc...). In particular, when a network of alternatively opaque 
and transparent lines is overlaid on another network of similar frequency, a third network of 
lower frequency appears. This network is called a Moiré pattern [2]. Moiré patterns are of great 
interest for measuring various dynamical processes like structure deformation because they are 
purely optical and thus do not require any physical perturbation of the analysed material [3, 4]. 
A network of periodic fringes can be modelled by a luminous intensity function f : R2 → R,



defined as follows

f (x) = a(x) + b(x) cos(ϕ(x)), x = (x1, x2) ∈ R
2,

where a(x) is a direct current term, b(x) the amplitude of the fringe and ϕ(x) its phase at each point
(x1, x2) of the image [5]. Because the geometrical structure of the fringe network is contained
in the phase and can be directly linked with physical quantities of the studied image (like relief
and deformation), its estimation is of great importance [4]. Currently, the most widely used
techniques are based on phase shifting [6], which consists in generating several fringe patterns by
moving one of the two networks. The values of a, b and ϕ are then extracted point by point using
these shifted images (see, e.g., [6] for further details about phase shifting techniques). The main
problem of this technique is its lack of practical use when dynamic processes come into play,
because it would require several phase shiftings at each time, which is complicated to perform in
practice. In order to solve this problem, a phase estimation method based on one single image
rather than several images is hence needed. Some previous works have tried to apply signal
processing tools like the Fourier and Hilbert transforms to this task, but these 1D techniques show
their limits when dealing with complex 2D patterns [7]. Fourteen years ago, a technique requiring
only one image, the polynomial Modulated Phase Correlation (pMPC), has been developped
in [4] and is more suitable to 2D signals than 1D techniques. This method consists in dividing the
image into patches, then fitting the parameters of a fixed model on each patch. Such a procedure
can be very time consuming especially when the number of patches is high [4], while a smaller
number of patches gives a far less reliable phase estimation. Furthermore, local singularities may
appear because of the segmentation, hence the need of a better approach.
New solutions arose when 2D generalisations of the Hilbert transform have been suggested.
In [5], Larkin introduced a directional Hilbert transform (called vortex in [5]), and used it to
extract the phase of 2D fringe patterns. Later, in [8], Seemantula also provided a good phase
extraction technique on 2D fringe patterns based on the Riesz transform and the monogenic signal
introduced in [9]. As Larkin said in [5], the monogenic transform is equivalent to his vortex
operator. Both [5] and [8] concluded that their respective 2D generalised Hilbert operators were
particularly well-suited for slow varying signals, which in terms of the spectrum is equivalent
to narrow frequency bands [10]. Larkin went even further and proved that the quality of the
monogenic phase extraction decreases with the curvature of the original phase function [5].
During the last decade, the introduction of the monogenic wavelet transform enabled a more
refined analysis of 2D signals [11] [12] [13] [14]. These wavelets provide a way to decompose
general signals into a combination of narrowband sub-signals on which the Riesz transform can
then be applied [15]. The aim of this paper is to give theorical and numerical illustrations of the
connection between the physical phase information and the phase estimated with the monogenic
tool, then show how the monogenic wavelets improve the Riesz-based phase extraction technique
by making it suitable to signals containing low frequency fringes or noise. Moreover, with a
simple strategy based on monogenic energy, a signal-adaptative phase estimation is suggested.
This multiscale approach was not used in the previous papers dealing with Riesz-based analysis
of fringe patterns [5, 8]. Although the mathematical background of this multiscale analysis is the
same as in Olhede’s [14] work, here it is applied to fringe patterns rather than random fields,
and its quality is measured through numerical tests. A comparison of the monogenic phase
measure with the pMPC technique is also performed to confirm numerically the relevance of the
monogenic tool in the context of interferometry.
This paper is organised as follows. In Section 2, a general presentation of the mathematical
concepts and objects necessary to define the monogenic signal and wavelets are given. Then in
Section 3 the relevance of the monogenic tool in the context of interferometry is investigated,
and numerical illustrations of some theorical properties given in [5] and [8] are performed, a
discussion that was not carried out in their studies. Finally, in Section 4 a multiscale analysis



of fringe patterns based on monogenic wavelets is performed to show its benefits compared to
Larkin’s and Seemantula’s works.

2. The monogenic tool

This section introduces the mathematical tools that will allow us to give a proper definition of the
local phase in the 1D and 2D cases, respectively, as well as techniques to extract it. Like Larkin
did in [5], it is assumed that the direct current (DC) term a(x) is constant and has been removed
for the sake of simplicity (for example by resorting to a high pass filter).

2.1. 1D signal

In the 1D case, wave signals can be modelled as follows [10]

f (t) = b(t) cos(ϕ(t)), t ∈ R, (1)

where b(t) denotes the amplitude of f and ϕ(t) its phase at each instant (or position) t. In practice,
f is the only known function, while b and ϕ have to be estimated from it. In order to reach this
goal, the signal f is uniquely extended to the complex domain, then its amplitude and phase are
defined as the modulus and argument of this complex signal [10]. By denoting by F the Fourier
transform, the Hilbert transform [16]H is defined in the Fourier domain as follows

F {H f }(ω) = H(ω)F { f }(ω), ω ∈ R∗, (2)

where H(ω) = −j ω
|ω | , ω ∈ R

∗. The Hilbert transform could also be defined in the time domain
as the convolution product between f and a kernel function h whose Fourier transform is
exactly H, but this expression is quite complex and working in the Fourier domain is much
more convenient for our application [9]. The complex analytic extension of f is then defined as
fA(t) = f (t) + jH f (t) and is called the analytic signal of f [10]. The modulus and argument of
fA, denoted by a(t) and φ(t) respectively, give an instantaneous measure of amplitude and phase.

2.2. 2D signal

The analytic tool is well known in the signal processing community [10] and is of great interest
to detect local features of a signal [17]. The aim now is to generalise it to 2D signals, then use it
to define a local amplitude and phase. 2D fringe patterns can be modelled as follows

f (x) = b(x) cos(ϕ(x)), x ∈ R2. (3)

The Hilbert transform can be generalised in the 2D case by using the Riesz transforms [9] Rs for
s ∈ {1,2}, which are defined in the Fourier domain as follows

F {Rs f }(ω1,ω2) = −j
ωs√

ω2
1 + ω

2
2

F { f }(ω1,ω2), (4)

with (ω1,ω2) ∈ R
2\{(0,0)}. Again, the Riesz transforms are defined in the frequency domain

rather than in the time domain in order to deal with more concise expressions [9]. The 3D signal
whose components are f , R1( f ) and R2( f ) respectively, is called the monogenic signal of f [9].
The spherical coordinates yield to definition of the monogenic amplitude a(x) and two angular
information at each point x, the monogenic phase φ(x) and the orientation θ(x) respectively.



Remark

Note that in Equations (1) and (3), the functions b and ϕ are not unique. For example, for any
function u : R2 →]0,1] , f (x) could be written as

f (x) = b̃(x) cos(ϕ̃(x)), (5)

with b̃(x) = b(t)
u(x) and ϕ̃(x) = arccos[u(x) cos(ϕ(x))]. Consequently, the notions of local amplitude

and phase are ambiguous. However, thanks to the monogenic tool, one particular pair of functions
b and ϕ is characterised, yielding an unambiguous notion of local amplitude and phase.
In this section, the whole monogenic theory has been defined for continuous signals. However, in
practice, only discrete signals can be processed. This requires the definition of all the previsouly
introduced monogenic tools in the discrete domain.

2.3. Discrete monogenic signal

Let ( jTx, kTy)(j ,k)∈{0,...,M−1}×{0,...,N−1} be a 2D grid, with M and N positive integers, Tx and
Ty the horizontal and vertical sampling periods respectively. The continuous signal f is then
measured at each point of the grid, yielding a 2D discrete signal f = ( fj ,k)j ,k . Using the 2D
discrete Fourier transform defined in [18], the Fourier transform of f , denoted by F = (Fj ,k)j ,k ,
can be computed. The Riesz kernel is then applied to F (see [19] and [20] for more details
about the way the Riesz kernel is computed), and the discrete Riesz transform of f , denoted by
R f , is obtained by reversing the 2D discrete Fourier transform [18]. Since F is not symmetric,
meaning that it does not satisfy F(−ω) = F(ω), R f is a complex signal. The three components
of the discrete monogenic signal of f are then f itself, the real part of R f and its imaginary part
respectively. The discrete amplitude, phase and orientation are finally computed from these three
components.
At this point, no new mathematical notion has been introduced. The notions of amplitude and
phase defined previously, as well as their dicretisation, are totally in line with the works of both
Larkin [5] and Seemantula [8]. However, in these previous studies the monogenic tool was
applied on fringe patterns directly, without taking into account the frequency band where the
fringes lie. As seen in Section 2.2, the Riesz transform is not defined at the null frequency,
and Section 4 shows how this singularity alters the phase estimation of low frequency fringes.
Furthermore, random perturbations may also cause the quality of the estimation to drop as
Section 3 shows it. The Bidimensional Empirical Mode Decomposition (BEMD) introduced
in [21] was specifically designed to bypass these diffculties. This technique is used to extract
the different modes of a signal, on which the monogenic transform is then applied, but requires
complex operations like interpolation. Another approach is Unser’s multiscale analysis based on
wavelets [22], which relies on filterbanks to decompose the signal and is hence numerically more
simple. Here this multiscale approach is applied to fringe patterns. The monogenic wavelets that
enable this multiscale analysis are introduced in the next Sub-Section.

2.4. Monogenic wavelets

The amplitude, phase and orientation of the monogenic signal can be interpreted as a measure of
energy, geometrical structure and main direction respectively [9]. An important condition for
this model to be valid is that the signal has to be narrowband [8, 10]. A first reason comes from
the meaning of phase that indicates oscillation. Another reason is the mathematical constraint of
the Hilbert and Riesz transforms having a singularity at ω = 0 in the Fourier domain - which
excludes all signals having low frequency energy. Finally, random perturbations occurring in the
signal may cause the frequency range to become too wide for a monogenic analysis.
This clearly suggests using the monogenic analysis in a multiscale manner through some subband
decomposition in order to handle non-narrowband signals as well. In 2009, a monogenic wavelet



transform was proposed in [11] ans [14], that is specially defined for 2D signals. The scheme
of [11] performs multiresolution monogenic analysis by using two parallel filterbanks : one
‘primary’ transform tied to a real continuous wavelet frame and a so-called ‘Riesz-Laplace’
wavelet transform tied to a complex frame. Multiresolution analyses are built from the nearly
isotropic polyharmonic B-spline of [23].
The wavelet for the ‘primary’ decomposition ψ is a Mexican hat-like nearly isotropic function
and the ‘Riesz-Laplace’ wavelet ψR is derived from it (in the Fourier domain) as follows

ψR
F
←→

jω1 + ω2
‖ω‖

ψ̂(ω). (6)

For i ∈ N and m ∈ Z2, let ψi,m(x) = 2iψ(2ix − m/2) be the scaled and shifted version of ψ
(same for ψR). From these functions, by denoting ψi for ψi,0, the following decomposition can
be defined:

ci,m =
〈
s,ψi,m

〉
= (ψi ∗ s) (2−(i+1)m), (7)

di,m =
〈
s,ψRi,m

〉
= {R (ψi ∗ s)}(2−(i+1)m), (8)

where 〈., .〉 and ∗ denote the scalar and the convolution product in L2(R2), respectively. These
wavelet coefficients form an exact monogenic signal at each scale. For all i ∈ N and m ∈ Z2,
ci,m ∈ R and di,m ∈ C are merged into 3-vectors and turned into spherical coordinates as
presented in Section 2.2, and the wavelet coefficients contain the same physical information
(energy, geometrical structure and orientation) as the monoscale monogenic representation but at
different scales of the image.
The original work of Unser uses a pyramid-like dyadic subsampling scheme, which is justified
by the need of a little redundancy and “tight frame” condition [11]. However in our work, the
undecimated design will help us to precisely analyze the phase information through the scales.
This is why we propose to release the tight constraint for an undecimated scheme.
Because the essential action of the Riesz transform is a pure phase-shifting operation, the low-pass
and high-pass filters Hi and Gi are required to be perfectly neutral with respect to the signal’s
phase. Their frequency response must then be radial, positive and real-valued. The filterbank is
efficiently computed in the FFT domain with a global linear computational complexity [22]. The
wavelet design for our purpose is introduced in [15] and [19].
Contrary to what Larkin and Seemantula did in [5] and [8], we do not apply the Riesz transform on
the signal f directly, but rather decompose it in a set of L narrowband sub-signals f (i) (i = 1, . . . L,
L ∈ N∗+) on which the Riesz transform is better defined. Each sub-signal f (i) corresponds to the
information contained in the original signal f at the frequency band [2−(i+1); 2−i], and can be
written in the spherical coordinates as (a(i), φ(i), θ(i)). Furthermore, using the energy information
provided by the monogenic amplitude a(i), the information contained in the different scales are
combined in order to get a better estimation of the phase. At each pixel ( j, k), the scale i for
which the amplitude is maximal is selected. Hence, the phase value at ( j, k) is given by

φ j ,k = φ
(i0)
j ,k

, with i0 = arg max
i=1,...,L

{a(i)
j ,k
}. (9)

3. Properties of the monogenic tool and synthetic tests

As explained in the previous section, the monogenic amplitude and phase functions are not the
only pair of functions b and ϕ satisfying Equation (3). Therefore, if a signal is generated from a
particular choice of functions b and ϕ, there is apparently no reason for the measured monogenic
phase φ to coincide with ϕ. Both [5] and [8] gave certain conditions under which the monogenic
phase φ matches the physical phase ϕ and extracts the expected geometrical structure of the



fringes. These conditions were then illustrated by highlighting the visual similarity between the
original fringe patterns and their respective computed monogenic phases. In this section, further
numerical details about this "similarity" are given by doing numerical comparisons between the
physical phase, used to generate the signal, and the monogenic phase computed from the signal.

3.1. A numerical measure of similarity

Let b = (bj ,k)j ,k and ϕ = (ϕj ,k)j ,k denote the discrete physical amplitude and phase of the signal
f respectively, and φ = (φ j ,k)j ,k the discrete monogenic phase defined in the previous paragraph.
As said before, the question is how close the measured monogenic phase φ stands from ϕ, hence
the need of a numerical measure of similarity between two discrete signals. It should also not
be forgotten that the phase information is an angle defined modulo 2π. Values like −π + ε and
π − ε (ε being a small positive real number) may thus be deemed as highly different while they
hold the same angular information. Comparing the cosine of the phase values instead of the
phase values directly is a good way to bypass this difficulty. In this paper, numerical comparisons
are performed using the Best Fit (BFT) defined in [24] and the Variance Accounted For (VAF)
defined in [25], which are calculated as follows

BFT(ϕ, φ) = max{100(1 − ‖ cosφ−cosϕ ‖2
‖ cosϕ−cosϕ ‖2 ),0},

VAF(ϕ, φ) = max{(100(1 − V (cosφ−cosϕ)
V (cosϕ) ),0},

(10)

where for all M × N matrix A,

• ‖A‖22 =
∑M−1

j=0
∑N−1

k=0 A2
j ,k
,

• A = 1
MN

∑M−1
j=0

∑N−1
k=0 Aj ,k ,

• V(A) = 1
MN ‖A‖

2
2 − A

2.

The BFT and VAF criteria should be interpreted as a bias and variance information respectively,
which is very instructive when testing an estimation technique. Histograms and quantiles of the
cosine error cos(φ − ϕ) are also used to determine how this error is distributed on the image.
Note that both BFT and VAF are not defined for constant signals, but these are obviously out
of the scope of this study. Before dealing with real fringe patterns, the monogenic tool is first
applied to the special case of pure cosine waves, which are in both 1D [10] and 2D [5,8] cases
the most canonical signals from the analytic/monogenic point of view.

3.2. Pure cosine wave

A 1D signal is a pure cosine wave if it has a constant amplitude and a linear phase, that is

f (t) = b0 cos(ωt), (11)

with t ∈ R, and both b0 > 0 and ω > 0. Its Hilbert transform (see [10], Chapter 2) is given by

H f (t) = b0 sin(ωt), (12)

which implies, using the previously introduced notations, that

φ(t) = ϕ(t) = ωt . (13)

Pure cosine waves are generalised to the 2D case as follows

f (x) = b0 cos(kTx), (14)



where k = ω(cosα, sinα)T is the wave vector and x = (x1, x2)
T the position respectively [26].

The Riesz transforms of such a signal are given by [8, 26]
R1 f (x) = b0 sin(kTx) cosα,

R2 f (x) = b0 sin(kTx) sinα.
(15)

Themonogenic signal of f has thus two spherical representations (b0,kTx, α) and (a(x), φ(x), θ(x))
as defined previously. By identification of the spherical coordinates term by term, both monogenic
and physical definitions of phase can be identified due to the uniqueness of the spherical
coordinates, hence

φ(x) = ϕ(x) = kTx. (16)

Of course this equality does not imply that Equation (14) is the unique way to express f as
b(x) cos(ϕ(x)). What this equation says is that applying the monogenic tool to a pure cosine waves
will always give a constant amplitude and a linear phase. Note that the monogenic orientation
defined in the previous section is exactly the angle α, which in the case of a cosine wave is
constant.
In both [5] and [8], a theorical study of pure cosine waves was already performed in both 1D and
2D cases, leading to the same conclusion as ours. In this paper, these properties are illustrated
with numerical simulations, something which was not carried out in the previous works. The
cosine wave is computed on a discrete square grid ( jTx, kTy)(j ,k)∈{0,...,N−1}×{0,...,N−1}, as follows

fj ,k = b0 cos[2π f0( jTx cosα + kTy sinα)], (17)

with f0 =
N0
N and N0 an integer. This ensures that the signal contains an integer number of

periods, hence avoiding edge-mismatching. The monogenic tool is then applied to a cosine wave
generated with Tx = Ty = 0.1, N = 100, b0 = 0.5, N0 = 20 and α = π

4 respectively. Note that Tx

and Ty have been chosen small enough to fit the Shannon-Nyquist bound. The identification of
the physical and monogenic phases is numerically confirmed as can be seen in Figure 1, which
shows a 2D cosine wave, its physical phase kTx and the monogenic phase calculated using the 2D
Fast Fourier Transform. The white zones correspond to values close to −π while the black zones
correspond to values close to π. The monogenic and physical phase look very close, and this is
confirmed by the very high values of BFT and VAF, 99,58% and 100% respectively. Furthermore,
99.44% of the cosine error values cos(φ − ϕ) are higher than 0.999, and almost 100% are higher
than 0.99, which shows how φ and ϕ are close. This gives a good numerical illustration of what
Larkin [5] and Seemantula [8] had theorically proved in their respective studies.
Because pure cosine waves correspond to parallel fringes, the frequency is constant in the whole
image. Consequently, if a multiscale analysis is performed, all the information of the signal
should be contained in one single frequency band [2−(i+1); 2−i]. In this particular case, the
numerical frequency is constantly equal to f0Tx = f0Ty = 0.02, and thus lies in the frequency
band associated with the scale i = 5, i.e., [2−6; 2−5] (approximately [0.0156; 0.0313]). Figure
2 shows the phase (left) and amplitude (right) obtained by applying the monogenic wavelet
transform to a cosine wave at six scales. The highest values of both amplitude and phase
correspond to the white zones. Because the amplitude gives a measure of the local energy of the
signal, the frequency band in which this energy is maximal indicates that the fringes lie in this
particular band. In this example, the maximal energy corresponds to scale i = 5, which is exactly
what was expected. Working at different scales does not have any impact on the estimation of
the phase, which is in all cases well estimated. This shows that the straightforward monogenic
analysis defined in [5] and [8] is enough when dealing with cosine waves.



Fig. 1. Phase estimation of a 2D cosine wave

Fig. 2. Phase estimation of a 2D cosine wave at different scales. Phase (left) and amplitude
(right)



The next paragraph deals with more complex patterns and gives some details about the importance
of having slow varying signals.

3.3. Parabolic chirp

The previous section has shown that the monogenic phase estimation technique gives very good
results when dealing with pure cosine waves, i.e., signals with constant amplitude and linear
phase. However, this model is not enough to deal with the more complex fringe patterns studied
in the last section of this paper. In the case of 1D signals, one natural way of increasing the
complexity of the phase is to assume it quadratic rather than linear, while the amplitude stays
constant. This is indeed the first example of 1D non cosine wave introduced in [10]. Such a wave
is called a parabolic chirp, modelled as

f (t) = cos(a2t2), (18)

with a > 0. Its Hilbert transform is given by

H f (t) =

√
2
π
[A(t) sin(a2t2) + B(t) cos(a2t2)], (19)

with A(t) and B(t) two functions verifying A(∞) =
√
π
2 and B(∞) = 0 respectively (again,

see [10] for further details). When t tends to infinity, H f (t) is equivalent to sin(a2t2), which
implies that the physical and monogenic phases are asymptotically equal. The parabolic chirp
can be generalised in the 2D case as

f (x) = b0 cos[a2(x2
1 + x2

2)]. (20)

Because the phase is not linear anymore, the monogenic phase is not equal to the original
quadratic phase. However, Larkin has proved in [5] that the phase estimation error ∆φ(x) is
directly linked with the curvature of the phase function. Applying the equation he gave in [5] to
2D parabolic chirp yields to

∆φ(x) ≈
1

2a2 | |x| |2
. (21)

Hence, when a or | |x| | increase, the phase estimation error decreases. In other words, 2D
parabolic chirps behave asymptotically as cosine waves, and the similarity between the estimated
monogenic phase φ and the physical phase ϕ also increases for greater values of the a parameter.
This stands totally in line with Picinbono’s work in the 1D case [10]. Note that, contrary
to the case of pure cosine waves, the local frequency of parabolic chirps increases with | |x| |.
Consequently, when generating a parabolic chirp, it is impossible to choose a sampling period
that avoids aliasing on the whole image. The size of the image must hence be reduced when
a increases in order to avoid such a sampling problem. Figure 3 shows how the similarity (in
cosine) between the computed monogenic phase and the original quadratic phase increases with
a, confirming what Equation (21) was suggesting. Figure 4 gives an example of a 2D parabolic
chirp with a = 0.2 (the discretisation parameters being the same as in Section 3.2), its physical
phase ans its estimated monogenic phase. Both phases look alike except at the top left corner. The
BFT and VAF criteria are equal to 92.13% and 99.38% respectively, which is very satisfactory.
Furthermore, 96.18% of the cosine error values are higher than 0.99, and 98.45% are higher than
0.95, which is not as high as in the linear case, but still very close to 1.
Because the frequency of the fringes increases with | |x| |, the energy is not contained in a single
frequency band. Figure 5 shows the phase (left) and amplitude (right) obtained by applying
the monogenic wavelet transform to a parabolic chirp at six scales. Most of the signal lies at
scale i = 4, except for the top left corner which lies in lower frequency bands (i = 5 and i = 6).



Fig. 3. Influence of the a parameter on the quality of the estimation

Fig. 4. Phase estimation of a 2D parabolic chirp



Using Equation (9), a new estimation for the phase is obtained, which is represented in Figure 6
along with the original phase and the straightforward monogenic phase. Both techniques give
similar results, the straightforward approach performing slightly better according to the BFT and
VAF criteria (BFT = 92.13% and V AF = 99.38% for the straightforward monogenic phase,
BFT = 90.97% and V AF = 99.18% for the multiscale monogenic phase). These good results
confirm that Riesz-based estimation techniques perform well on cosine waves and parabolic
chirps, and does not need multiscale analysis to be improved. The next section gets further away
from the ideal case of cosine waves and deals with a more complex fringe pattern to illustrate the
benefits of the multiscale analysis.

Fig. 5. Phase estimation of a parabolic chirp at different scales. Phase (left) and amplitude
(right)

3.4. Influence of noise on the phase estimation

As explained in Section 2.4, the monogenic transform is well-suited for narrowband signals,
while the multiscale approach has been designed to better deal with signals that do not fit
this property. Therefore, the phase of noised signals is more likely to be well estimated
by a multiscale approach than by a monoscale one. This section aims at illustrating this
asumption. Let f = (bj ,k cos ϕj ,k)j ,k∈{0,...M−1}×{0,...N−1} be a discrete 2D signal and ε =
(εj ,k)j ,k∈{0,...M−1}×{0,...N−1} a 2D Gaussian white noise with variance σ2. Applying the
monogenic tool to the noised signal f̃ = f + ε yields to a noised estimation of the phase, denoted
by φ̃. It is then possible to determine how far φ̃ stands from the physical phase ϕ by using the
BFT and VAF criteria.
The straightforward and multiscale monogenic estimation techniques are now applied to the same
cosine wave and parabolic chirp as those studied in Section 2.2 and 2.3, respectively. Figure
7 and 8 show how the similarity criteria between the noised estimated phase and its theorical



Fig. 6. Original image (left), straightforward monogenic phase (centre) and multiscale
monogenic phase (right)

counterpart is affected by the standard deviation of the noise σ, for both techniques and both
signals. As expected, the quality of the estimation drops when the noise becomes too important,
but this decrease occurs much later when applying the multiscale analysis. Both BFT and VAF
reach 0% when σ exceeds 0.05 in the monoscale case, while they still have high values when
σ = 1 (BFT ≈ 90%, V AF ≈ 100%). This gives a good illustration of how the multiscale
approach deals better with noised signals.

Fig. 7. Influence of noise on the quality of the estimation (cosine wave)



Fig. 8. Influence of noise on the quality of the estimation (parabolic chirp)

4. Application to 2D fringe patterns

In this section, a numerical comparison is performed between the phase computed by the
monogenic estimation with its physical counterpart in cases when mathematics cannot ensure
their identification, i.e., the signals are neither pure nor asymptotic cosine waves. These results
are then compared with those given by the pMPC method previously developed in [4]. In the
pMPC procedure, the image is first divided into patches of equal size and an a priori model
is chosen for the amplitude and phase of the fringes located inside the patches. At each patch,
several fringe patterns are generated (with different parametrisations depending on the chosen
model) and the closest to the original fringes according to statistical correlation is selected.

4.1. Concentric circular fringes

The most canonical example treated in [4] was the case of concentric circular fringes. These
fringes are modelled by a constant amplitude and a phase defined by

ϕ(x) =
2π
p

√
(x1 − xc1 )

2 + (x2 − xc2 )
2, (22)

where p > 0 denotes the interfringe and (xc1 , x
c
2 ) ∈ R

2 are the coordinates of the central pixel of
the image. In practice, such fringes may correspond to level sets on a spherical dome [4]. After
generating a discrete sample of concentric circular fringes, the straightforward and multiscale
monogenic procedures are applied, then the local phase is computed at each point, and compared
with the phase obtained by the pMPC in [4]. Figure 9 shows the estimated phases obtained by
the pMPC, straightforward monogenic, multiscale monogenic techniques. All three techniques
perform well, but the monogenic approaches give better results at the center of the image. In
Figures 10, the histograms show that the monogenic estimation cosine error stays very close to 1,
especially with multiscale analysis, while the pMPC error can take lower values.



Fig. 9. Theorical (top left), pMPC (top right), straightforward monogenic (bottom left) and
multiscale monogenic phase (bottom right)

Table 1 gives a numerical confirmation of these qualitative observations. The multiscale
monogenic estimation gives the highest values of BFT and VAF, followed by the straightforward
monogenic estimation and then the pMPC. Besides the improved similarity, the monogenic
estimation techniques (with or without multiscale analysis) require neither the choice of an a
priori model for the phase, nor segmentation of the image. Consequently, they rely much less on
human choices and perform more automatically.

pMPC straightforward monogenic multiscale monogenic

BFT 80.56% 90.82% 95.25%

VAF 96.23% 99.16% 99.78%

Table 1. Similarity between the theorical and computed phases

4.2. Application of a real pattern

In the previous case, the monogenic phase estimation has proved its relevance beyond the ideal
case of cosine waves. Besides, the multiscale analysis has improved the already good results
of the straightforward monogenic approach. These procedures are now applied to a real fringe
pattern, and then compare the results to the phase estimated by the pMPC in [4]. The comparision
can only be qualitative since the "theorical" phase is unknown. As can be seen in Figure 11, the
lower part of the image is well estimated while, in the upper part, the straightforward monogenic
technique fails to extract the structure of the image. The pMPC however works the same way in
every part of the image. As seen earlier, the Riesz operator has a singularity at the zero-frequency,
and numerical problems happen when dealing with low frequency fringes, which is the case in



Fig. 10. pMPC (top), straightforward monogenic (centre) and multiscale monogenic (bottom)

the upper half of the image. The multiscale analysis, applied with L = 3, performs better in this
zone, even though the estimation is heavily disturbed near the borders. Figure 12 shows that the
straightforward and multiscale monogenic tools both extract the finer details of the circular fringes
better than the pMPC. This confirms that the monogenic tool can provide a precise estimation
of the phase, which is totally in line with Larkin’s and Seemantula’s works. The multiscale
analysis, which was not performed in neither of these two studies, enables the monogenic tool to
better extract the phase when the frequency band of the fringes slows down and makes the Riesz
operator diverge. Furthermore, it is more suitable to non-narrowband signals, particularly noised
signals. In Figure 13, the monogenic tools are applied to another fringe patterns. Again, the
straightforward and multiscale monogenic estimations both give good results, but the multiscale
analysis makes the final phase estimation smoother, especially in zones where the frequency of
the fringes is low. This illustrates how the multiscale approach based on wavelets improves the
monogenic estimation of the phase.
Remember that the local phase is computed using the spherical coordinates, and is thus only
known modulo 2π. However, in the case of fringe patterns, two different phases that share the
same principal value are not associated with the same physical quantities [27]. For example, if
two adjacent pixels are associated with the phase values π + ε and π − ε respectively (ε being a
very small but strictly positive number), an abrupt jump will appear in the phase while in fact
their respective phase values are very close. This constitutes the phase unwrapping problem, and
an essential part of fringe analysis, but it is out of the scope of this paper.



Fig. 11. Original image (top left), pMPC (top right), straightforward monogenic (bottom
left) and multiscale monogenic phase (bottom right)

Fig. 12. pMPC (left), straightforward monogenic (centre) and multiscale monogenic phase
(right)



Fig. 13. Original image (left), straightforward monogenic (centre) and multiscale monogenic
phase (right)

5. Conclusion and perspectives

Similarly to the analytic signal of the 1D case, the monogenic signal gives a proper, unambiguous
notion of local amplitude and local phase in the case of 2D wave signals. The monogenic
phase defined this way can be computed just from one single image and does not require any
segmentation contrary to the MPC while being much faster. While Larkin and Seemantula had
already illustrated this fact, this paper strenghtens it by giving numerical comparisons between
the MPC and monogenic phase extraction techniques. Furthermore, this paper introduces a
multiscale approach based on monogenic wavelets which had not been used in the previous
studies dealing with Riesz-based analysis of fringe patterns [5,8]. This technique provides a finer
extraction of the phase in the case of more complex fringe patterns with low frequency zones or
random perturbations, a fact that has been illustrated both theorically and numerically.
The analytic signal has been the subject of much theorical and numerical studies in the second
half of the 20th century [10]. Now that a consistent 2D notion of phase has been defined thanks
to the Riesz transform, there are lots of interesting results that could be generalised to 2D signals
in order to have a better idea of the geometrical information extracted by the monogenic tool
when the signal is not a pure cosine wave.
One other important issue that has not been treated in this study is the inherent periodicity of
the phase, the so-called phase unwrapping problem evoked at the end of Section 4.2. Various
techniques have been developped to solve this problem [27,28], but none of them works perfectly,
and few have yet been applied to a monogenic phase.
Finally, as it would be irrealistic to model any structure with deterministic equations, later
studies will have to include stochastic elements. Looking at how random perturbations affect the
estimation of the phase and what properties can be extracted from a randomly distributed phase
stand among the main axes of reflexion.
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