
HAL Id: hal-03231085
https://hal.science/hal-03231085

Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thin film modeling of crystal dissolution and growth in
confinement

Luca Gagliardi, Olivier Pierre-Louis

To cite this version:
Luca Gagliardi, Olivier Pierre-Louis. Thin film modeling of crystal dissolution and growth in confine-
ment. Physical Review E , 2018, 97 (1), pp.012802. �10.1103/PhysRevE.97.012802�. �hal-03231085�

https://hal.science/hal-03231085
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 97, 012802 (2018)

Thin film modeling of crystal dissolution and growth in confinement
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(Received 12 September 2017; published 26 January 2018)

We present a continuum model describing dissolution and growth of a crystal contact confined against a
substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled
within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension.
Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal
interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure
solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with
a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then
surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead
to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in
steady state, the crystal never touches the substrate when pressed against it. This result is independent from the
nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

DOI: 10.1103/PhysRevE.97.012802

I. INTRODUCTION

Pressure solution is the stress-induced dissolution of solids
in the presence of an applied load. This phenomenon, for
example, contributes to the evolution of the structure of
sedimentary rocks, which are initially constituted of porous
or loose assemblies of grains. When these rocks are under
pressure, grains dissolve in areas of relatively high stresses
located in contact regions between grains, and reprecipitate
elsewhere, leading to a slow compaction of the global structure.
Hence, pressure solution is recognized as one of the main
mechanism of rock diagenesis and metamorphism. Pressure
solution, and the opposite problem of crystallization force (the
mechanical stress generated by crystal growth), have attracted
attention since the beginning of the 20th century [1–8].

The material dissolved during pressure solution is usually
evacuated away from the contact region toward a macro-
scopic reservoir through the thin liquid film between the
crystal surface and a confining substrate (pore surface or
other crystals) [9–11]. While the thermodynamic equilibrium
description provides fundamental understanding of the forces
at play in this problem [11], the nonequilibrium kinetics of
the relevant transport processes induce additional complexity
via the combined effects of attachment-detachment kinetics at
crystal-solution interface, diffusion of solute crystal ions or
molecules, and convection.

Following the seminal phenomenological approach by Weyl
[12], some theoretical efforts have been devoted to the descrip-
tion of crystal growth and dissolution in grain-grain or grain-
pore contacts [13–18]. However, one systematic limitation of
these studies is the lack of description of microscopic inter-
actions between the solid surface and the substrate, which are
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usually described via the disjoining pressure in thin films [19].
These interactions combine with the spontaneous remodeling
of the surface via dissolution and growth to determine the
contact morphology and dynamics. In past decades, surface
force apparatus (SFA) has allowed one to probe interactions
between surfaces at the nanoscale. These experiments have
provided quantitative tests for standard theories such as the
DLVO (Derjaguin, Landau, Verwey and Overbeek) theory
[19,20], combining an exponential electrostatic repulsion with
a power-law van der Waals attraction. However, if on the one
hand double layer repulsion is considered as the prototypical
interaction; on the other hand it was found to be accurate at
all separations only for smooth crystalline surfaces in dilute
electrolyte solutions [21].

For other surfaces and solutions, significant deviation espe-
cially at short range (few nanometers) was measured [21–25].
These non-DLVO contributions to the interaction have been
found to depend on the specific nature of the surfaces, the
solvent, the ions in the solvent, and the ions adsorbed on the
surfaces. Using SFA or atomic force microscopy (AFM) on
systems relevant to pressure solution such as silica compounds
(mica, silica colloids) and soluble salts, different authors have
revealed the existence of additional repulsive interactions at
short distances (a few nanometers) referred to as hydration
forces [21,26,27]. These interactions, the exact mathematical
form of which is still matter of debate, are often recognized
to be exponentially decaying. Beyond hydration forces, other
specific interactions include [19] oscillations at the molecular
scale due to liquid ordering, solute-induced effects, depletion
effects, etc. Owing to this wide variety of behaviors, we aim
at developing an approach which is able to relate the form
of the interaction potential and the dynamics during pressure
solution or growth. In this paper, we focus on generic repulsive
interaction potential, such as exponential or power law. Our
first goal is to question the role of the form of the interaction
potential on the dynamics of pressure solution.
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A second goal is to identify the consequences of hydrody-
namic convection in the thin liquid film. Indeed, convection
has long been recognized to be important for solids growing
with unconstrained interfaces, both in dendritic growth aris-
ing from solidification [28], and in growth from a solution
[29]. However, its consequences have not been discussed in
confined geometries. In the absence of dissolution or growth,
the hydrodynamics of squeezed films have been extensively
studied in the literature. This is known to lead to an evolution
of the thickness of the film exhibiting a nontrivial dependence
on the solid geometry and dimensionality [30]. In pressure
solution, the geometry of the dissolving surface evolves in
time and emerges from a coupling between different forces
and mass transport processes at play in the system. However, a
complete description of growth with hydrodynamics (see, e.g.,
Refs. [31–33]) requires considerable numerical effort since it
involves the concomitant solutions of the three-dimensional
Navier-Stokes equation and of the evolution of the morphology
of the crystal-liquid interface.

Here we propose to tackle this problem, accounting consis-
tently for thermodynamics, interaction effects (i.e., disjoining
pressure), and nonequilibrium transport processes including
diffusion and convection within a thin film approach which
exploits the natural geometric slenderness of the contact region
via the lubrication approximation [34]. This method leads to a
reduction of dimensionality, thereby facilitating numerical and
analytical investigations.

The first part this paper in Sec. II presents a three-
dimensional continuum model which takes into account dis-
solution or growth, disjoining pressure effects, diffusion, and
hydrodynamics. The key assumption that the film is thin in
the contact region and is then formalized with the help of a
multiscale expansion defining the lubrication limit [34]. This
limit, widely employed in engineering (trust bearing) [30],
physics (nanoscale dewetting) [35,36], and biophysical models
(membranes) [37,38], results in nonlinear and nonlocal thin
film evolution equations for the profile of the crystal surface.
The end of Sec. II presents equations for pressure solution
in single contacts with some simplifying assumptions such as
equal densities between the liquid and the solid, imposed sym-
metry (left-right symmetric ridge or axisymmetric contact),
and dilute limit.

Section III is devoted to the discussion of relevant dimen-
sionless numbers, and numerical methods.

In Sec. IV, we focus on the analysis of pressure solution
for a single contact. We investigate steady states with a
time-independent surface profile and a fixed contact area. We
consider two different classes of repulsive interactions between
the crystal surface and the substrate: divergent at contact and
finite at contact.

The dissolution rate is found to increase indefinitely with
increasing load in the case of diverging repulsions. Viscosity
effects then become relevant for sufficiently large loads.
However, in the case of finite repulsions, the dissolution rate
is independent both on the viscosity and on the load at large
loads.

Moreover, as expected intuitively, the shape of the solid
is flattened in the contact region for diverging repulsions.
However, we find sharp and pointy contact shapes for finite
repulsions. In the limit of large loads, surface tension is found

FIG. 1. Sketch of an arbitrarily shaped crystal in the vicinity of a
flat substrate. The panel on the right side presents an enlargement of
the contact region.

to be irrelevant for diverging repulsions, while it is crucial in
the case of finite repulsions to regularize the pointy shapes at
small scales.

We have also investigated the effect of dimensionality via
the comparison of one-dimensional ridge contacts and two-
dimensional axisymmetric contacts. Dimensionality does not
induce any qualitative change in the behavior of pressure so-
lution for diverging repulsions. However, for finite repulsions
and when surface tension is neglected, the minimum distance
between the dissolving solid and the substrate decreases
exponentially with the load in the ridge geometry, while it
reaches zero for a finite force in the axisymmetric case. Surface
tension then comes into play at sufficiently large loads and
forbids real contact in the axisymmetric geometry.

Finally, the results are summarized and discussed in Sec.V.

II. MODEL EQUATIONS

A. Dissolution and growth in a liquid

The system under study is represented in Figs. 1 and 2. For
the sake of clarity, we designate the growing or dissolving solid
by the name “crystal.” However, our model equally applies to

FIG. 2. Sketch of the contact region with some variables and fields
of the model. See text for notations.
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amorphous phases or any other solid phases that can grow and
dissolve. We consider a crystal in a liquid medium, growing
or dissolving in the vicinity of a substrate, and subjected to an
external force or load FC(t). The crystal is assumed to be rigid;
that is, we neglect the contribution of elastic deformations on
the interface shape and chemical potential. For the sake of
simplicity, we also discard crystal rotations and consider only
translations. The substrate at z = hs(x,y) is immobile, i.e.,
∂ths = 0, and impermeable. The liquid crystal interface (LC)
at z = h(x,y,t) evolves with time.

We assume an incompressible fluid with constant density
ρL

∇ · uL = 0 . (1)

Neglecting inertial effects (which are known to be negligible
in the lubrication limit considered below [34,39]), the liquid
obeys the Stokes equation:

η∇2uL = −∇p , (2)

where η is the viscosity and p(x,y,z,t) is the pressure. Global
mass conservation at the LC interface (neglecting possible
mass excess at the interface) reads [29]

ρL(uL · n̂ − vn) = ρC(uC · n̂ − vn) , (3)

where ρC is the constant crystal density, uC is the translational
velocity of the rigid crystal, n̂ is the normal vector of the LC
interface, and vn is the normal velocity of the interface. Note
that whenever a three-dimensional field such as uL appears in
an equation evaluated at an interface, we consider implicitly
the value of this field at this interface. Finally, we assume no
slip and no penetrability at the liquid-substrate (LS) interface

uL = 0 (4)

and a no-slip condition at the LC interface

uL‖ = uC‖ , (5)

where the index ‖ indicates the projection of a vector on the
plane tangent to the LC interface.

Local mass conservation of the solute (crystal ions or
molecules in the fluid) reads in the liquid bulk

∂tc + uL · ∇c = −∇ · j , (6)

where j is the diffusion flux. We assume that diffusion is
governed by Fick’s law

j = −D(c)∇c. (7)

At the LC interface, solute mass conservation imposes

�−1(vn − n̂ · uC) = c(vn − n̂ · uL) − n̂ · j , (8)

where � is the molecular volume in the crystal.
Assuming that the substrate is impermeable at the LS

interface, we have

j · n̂s = 0 , (9)

with n̂s being the LS interface normal.
The crystallization-dissolution rate vn − n · uC is assumed

to depend linearly on the departure from equilibrium

vn − n · uC = �ν(c − ceq) , (10)

where ν is a kinetic coefficient and ceq(x,y,t) the local
equilibrium concentration. In the ideal limit, where the activity
coefficient is equal to 1, we have

ceq = c0e
�μ/kBT , (11)

where �μ is the local chemical potential of the crystal at
the interface and c0 is the equilibrium concentration for an
interface in an infinitely large crystal far from the substrate
(solubility). The chemical potential at the LC interface reads

�μ(x,y,t)

�
= γ̃ : κ + W ′(x,y,h) +

(
ρC

ρL

− 1

)
σnn , (12)

where γ̃ (x,y) is the stiffness tensor [40], κ is the curvature
tensor, and W ′ = ∂hW (x,y,h) is the disjoining pressure [41].
The potential W (x,y,h) is taken to depend on x and y to
account for the possible spatial heterogeneities of the substrate
height hs and of the substrate material properties. The liquid
stress tensor components are defined as σij = σ ′

ij − δijp with
σ ′

ij = η(∂juLi + ∂iuLj ), and the index n indicates the normal
direction. The last term of Eq. (12) accounts for the energy cost
associated to the volume change during the phase transforma-
tion.

Finally, since the crystal is a rigid body, and since we neglect
inertia, we write a global force balance on the crystal as

FC =
‹

LC

dS [−n̂ · σ + n̂(γ̃ : κ + W ′)] , (13)

where the surface integral is performed along all the LC
interface (since we discard crystal rotations, we do not consider
the equilibrium of torques).

The system of equations reported above describes the
dissolution or growth dynamics of a rigid crystal interacting
with a frozen and impermeable substrate. In the following, we
specialize the discussion to the contact region.

B. Contact region

In this section, we rewrite mass conservation and force
balance in a form which makes use of the geometry of the
contact region. We assume that the LS and LC interfaces exhibit
no overhang.

For any field g(x,y,z) defined everywhere in the liquid, we
consider the following integrated quantity along z:

〈g〉(x,y) =
ˆ hs (x,y)

h(x,y)
dz g(x,y,z). (14)

Using the incompressibility condition, Eq. (1), the immobility
of the substrate, Eq. (4), and global mass conservation at the
LC interface, Eq. (3), we obtain a two-dimensional equation
for liquid mass conservation:

ρC

ρL

vCz = −∇xy · 〈uLxy〉 − ∂t (hs − h) . (15)

Here and in the following, vectors with the index xy indicate
the two-dimensional vector in the x,y plane without the z

component. In addition, we have used the geometric relations

n̂ = (−∇xyh,1)

[1 + (∇xyh)2]1/2
, (16)
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vn = ∂th

[1 + (∇xyh)2]1/2
, (17)

and we have defined the crystallization-dissolution rate along
z:

vCz = ∂th − uCz + uCxy · ∇xyh . (18)

Similarly, using Eqs. (8) and (9), mass conservation for the
solute concentration c can be rewritten in a two-dimensional
form:

vCz

�
+ ∂t 〈c〉 + ∇xy · 〈uLxyc〉 = −∇xy · 〈jxy〉 . (19)

In order to write the force balance at the contact, we make
use of two additional physical assumptions. First, we assume
that the pressure outside the contact is approximately constant
and equal to pext . Second, we assume that the interaction term
vanishes, i.e., W ′ ≈ 0, away from the contact.

Finally, assuming that σ ′ vanishes outside the contact region
force balance, Eq. (13), is rewritten as

FC =
¨

contact
dS [n̂(p − pext + W ′(x,y,h)) − n̂ · σ ′] .

(20)
This equation makes use of fact that the total force exerted by
surface tension or by a constant external pressure on a crystal
of arbitrary shape vanishes:‹

LC

dS n̂(γ̃ : κ) = 0,

‹
LC

dS n̂ pext = 0. (21)

These two identities are proved in Appendix A.

C. Lubrication limit in the contact region

Here, we show that lubrication limit based on the small slope
approximation allows one to express the quantities integrated
along z in Eqs. (14), (19), and (20), thereby leading to closed-
form equations for three quantities. The two first quantities
are time- and space-dependent fields: the pressure p and the
thickness of the liquid film

ζ (x,y,t) = hs(x,y) − h(x,y,t). (22)

The third quantity is the time-dependent crystal velocity uC .
The lubrication limit [39] makes use of a disparity of

length scales: the lateral extent of the film is assumed to
be large x ∼ O(ε−1) as compared to the film thickness ζ =
(hs − h) ∼ O(1) with ε 	 1. The mathematical procedure to
derive these equations is well known [34,39], and we therefore
only provide the main steps of the derivation. Formally, we
identify a small parameter ε = h0/l, where l is the typical
extent of the contact region and h0 is the typical gap between
the crystal and the substrate. Spatial coordinates then scale
with this small parameter as x ∼ y ∼ � ∼ h0/ε and z ∼ h0.
Furthermore, assuming that the typical fluid velocity parallel
to the substrate is uLxy ∼ u0, we also consistently choose
uLz ∼ εu0, pressure p ∼ ηu0/(εh0), and time t ∼ h0/εu0.

Substituting these scalings of physical variables in the
model equations, we obtain the lubrication expansion [34,39].

To leading order, Eq. (2) reduces to

∂zp = 0 , (23)

−∇xyp + η∂2
z uLxy = 0 . (24)

The first equation indicates that the pressure does not depend
on z, but only on x,y, and t . Solving the second equation using
the boundary conditions Eqs. (4) and (5) results in a Poiseuille
(parabolic) flow for uxy ,

uLxy = − (hs − z)(z − h)

2η
∇xyp + hs − z

ζ
uCxy . (25)

Integrating over the film thickness, we obtain

〈uLxy〉 = − ζ 3

12η
∇xyp + ζ

2
uCxy . (26)

Combining Eqs. (15) and (26), we obtain

ρC

ρL

vCz = ∇xy ·
[

ζ 3

12η
∇xyp − uCxy

ζ

2

]
− ∂t ζ. (27)

A similar procedure is applied to the concentration field.
Assuming c ∼ O(1), we obtain to leading order from Eq. (6):

∂z[D(c)∂zc] = 0 . (28)

Integrating this relation and using local conservation of mass
at the boundaries Eqs. (8) and (9), we obtain ∂zc = 0, showing
that the concentration does not depend on z. Furthermore,
assuming finite attachment-detachment kinetics ν ∼ O(1) in
Eq. (10) we obtain

c = ceq(x,y,t) . (29)

Hence for finite attachment-detachment kinetics, the concen-
tration to leading order in the lubrication limit is equal to the
local equilibrium concentration. This is the consequence of the
smallness of the film thickness which enforces slow diffusion
along the film, leaving ample time for local equilibration of
the concentration via attachment and detachment of the LC
interface. We may now write Eq. (19) using Sec. IIA in the
lubrication limit as

vCz

�
+ ∂t [ζceq] − ∇xy ·

[
ζ 3

12η
ceq∇xyp

]
+ uCxy

2
· ∇xy[ceqζ ]

= ∇xy · [ζD(ceq)∇xyceq ]. (30)

This relation involves ceq , which depends on the chemical
potential via Eq. (11). Let us compare the different contri-
butions of the chemical potential. The lubrication expansion
imposes p ∼ O(ε−1). For disjoining forces to be able to
balance viscous forces, we choose W ′(x,y,h) ∼ O(ε−1). As
a consequence, the pressure term and the interaction term
in Eq. (12) are of the same order of magnitude. In addition,
since the curvature κ ∼ ∂xxh ∼ ∂yyh ∼ ε2 is small, only large
stiffnesses γ̃ ∼ O(ε−3) can make the capillary term γ̃ : κ

relevant. However even if surface stiffness is not so large,
the capillary term can be relevant in two cases: (i) if the
curvature locally blows up and (ii) far from the substrate where
the potential term W ′ can be neglected. We will see in the
following that these conditions can be reached during pressure
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solution. Therefore, in order to include all relevant cases for
the discussion below, we keep the capillary term leading to

�μ(x,y,t)

�
= −γ̃1∂x1x1h − γ̃2∂x2x2h

+W ′(x,y,h) +
(

ρC

ρL

− 1

)
p , (31)

where x1 and x2 are the directions of principal curvature of the
LC interface, and γ̃1,γ̃2 are the related surface stiffnesses [40].

Finally, since W ′ is of the same order as p in the lubrication
limit, force balance Eq. (20) reads

FCz =
¨

contact
dA (p − pext + W ′(x,y,h)) , (32)

FCxy =
¨

contact
dA

(
ηuCxy

ζ
− (p − pext )∇xy

(
hs − ζ

2

))
,

(33)

where dA = dx dy. To derive the last relation, we have
assumed that, at the boundary of the contact zone, p = pext is
constant and ζ is large enough for W ′ to be negligible.

As a summary, we have derived a thin film model for the
contact region during dissolution and growth, which consists
of two equations, Eqs. (27) and (30), for the coupled two-
dimensional space and time-dependent fields p and ζ , and
an additional vectorial integral constraint, Eqs. (32) and (33),
which determines the time-dependent crystal velocity uC . This
system is not only nonlinear but also nonlocal due to the
force balance equation. In the following, we explore some
consequences of the model in the specific case of pressure
solution of a single contact.

D. Ridge and axisymmetric contact

We now consider the pressure solution of a single contact
with some simplifying assumptions:

(i) equal densities between the liquid and the crystal ρC =
ρL;

(ii) no lateral motion uCxy = 0 and no lateral force FCxy =
0;

(iii) diffusion constant independent of concentration
D(c) = D;

(iv) isotropic surface tension γ̃1 = γ̃2 = γ ;
(v) flat substrate hs independent of x and y. We use the

interaction potential U , defined by U (ζ ) = W (x,y,h), and it
follows that W ′(h) = ∂hW (h) = −∂ζ U (ζ ) = −U ′(ζ );

(vi) small concentrations �ceq 	 1;
(vii) linearized Gibbs-Thomson relation �μ/kBT 	 1.
In addition, we consider two simple geometries. The first

one is a one-dimensional ridge, which is invariant along y, and
left-right symmetric with h(x) = h(−x). The second geometry
is an axisymmetric contact, the shape of which depends only
on the distance r from the origin in the x,y plane. In the
following, we will often refer to the symmetric ridge as 1D
and the axisymmetric contact as 2D.

1. Symmetric ridge

Consider first the ridge case obeying the x → −x sym-
metry, with a system length 2L. Assuming ρC = ρL, the

integration of Eq. (27) leads to

p = pext + uCz

ˆ L

x

dx
12ηx

ζ 3
. (34)

Plugging this expression into Eq. (32) provides us with a
nonlocal relation between the crystal velocity and the surface
height:

2uCz

ˆ L

0
dx

ˆ L

x

dx ′ 12ηx ′

ζ 3
= F 1D

Cz + 2
ˆ L

0
dx U ′(ζ ) . (35)

This equation relates the sum of the load and interaction
forces between the crystal and the substrate on the right-hand
side to the forces caused by viscous dissipation in the film
on the left-hand side. In the viscous term, the crystal velocity
uCz is multiplied by the hydrodynamic mobility of the crystal
which depends on the interface profile ζ . The expression of
this mobility is well known in the lubrication limit [30].

In the limit of small concentrations �ceq 	 1 and equal
densities ρL = ρC , Eq. (30) takes a simple form:

∂t ζ = −D�∂x[ζ∂xceq] − uCz . (36)

Assuming that �μ/kBT 	 1 in Eq. (11) and using Eq. (31),
we obtain

∂tζ = −De∂x{ζ∂x[γ ∂xxζ − U ′(ζ )]} − uCz , (37)

where by definition

De = D�2c0

kBT
. (38)

2. Axisymmetric contact

Let us now consider an axisymmetric contact. Using cylin-
drical coordinates in a contact zone of radius R, we obtain in
a similar way the following equations:

2uCz π

ˆ R

0
dr r

ˆ R

r

dr ′ 6ηr ′

ζ (r ′)3
= F 2D

Cz + 2π

ˆ R

0
dr rU ′(ζ ) ,

(39)

∂t ζ = −De

1

r
∂r

{
rζ∂r

[
γ ∂rrζ + γ

r
∂rζ − U ′(ζ )

]}
− uCz ,

(40)

where the quantity proportional to γ is the mean curvature in
axial symmetry [42,43].

3. Interaction potentials

We chose to study two generic types of repulsive interaction
potentials. The first one diverges when the film thickness ζ

vanishes,

U (ζ ) = A

ζn
, (41)

where A is a constant. In practice, numerical results have
been obtained with n = 3. However, we will keep an arbitrary
exponent n in the discussions.

The second type of potential exhibits a finite repulsion when
ζ → 0

U (ζ ) = Ae− ζ

λ , (42)

012802-5



LUCA GAGLIARDI AND OLIVIER PIERRE-LOUIS PHYSICAL REVIEW E 97, 012802 (2018)

where λ is a decay length representing for instance the Debye
length in the case of electrostatic interactions [19].

The essential difference between these potentials is that
Eq. (41) leads to an infinite repulsion force when ζ → 0,
whereas this force is finite for Eq. (42).

III. METHODS

A. Normalization

In order to perform simulations and to analyze the results
of the model, we write the model equations in a dimensionless
form and identify the relevant dimensionless parameters. All
variables appearing in normalized units are labeled with a top
bar.

We start by defining the dimensionless repulsion strength
Ā. For the exponential potential we set Ā = A/γ , while
for power-law repulsions with the case n = 3, we use Ā =
A/(γ λ3). The normalized film thickness is ζ̄ = ζ/λ, and the
normalized coordinates are x̄ = xĀ1/2/λ, ȳ = yĀ1/2/λ. The
normalized time is defined as t̄ = tDeγ Ā2/λ3. The normalized
equations are showed in Appendix B. Notice that the scale λ is
imposed by the expression of U in the case of an exponential
repulsion, while it is an arbitrary length scale corresponding to
the actual film width in the case of power-law repulsions.

The normalized repulsion strength Ā comes into play in
spatiotemporal scales but not as a parameter of the normalized
equations. As a consequence, it cannot change the model be-
havior qualitatively. The only parameters explicitly appearing
in the normalized equations are the normalized viscosity η̄ and
external load F̄Cz. The normalized viscosity reads

η̄ = De

λ2
η = D�2c0

λ2kBT
η .

Since the loads have different dimensionality in 1D (force per
unit length) and 2D (force), their normalization is different:

F̄ 1D
Cz = F 1D

Cz

γ Ā1/2
, F̄ 2D

Cz = F 2D
Cz

γ λ
.

Below, all simulations are performed with normalized vari-
ables and coordinates. However, the analysis of the equations
is performed in physical coordinates to make the physical
interpretation more transparent.

B. Numerical methods

We solved Eqs. (35) and (37) or Eqs. (39) and (40) using an
explicit Euler method, where derivatives are calculated with
the help of a finite difference scheme. We imposed a fixed
interface height at the boundary of the contact region, ζ = ζbc,
where x = ±L or r = R. The gap ζbc between the crystal
and the substrate at the boundary is chosen to be large as
compared to the range of the interaction potential, but small as
compared to the contact region width L, or R. We also impose a
constant supersaturation at the boundary �C = ceq/c0 − 1 ≈
�μ/(kBT ) to mimic a macroscopic concentration bath outside
the contact.

The boundary conditions introduce three additional dimen-
sionless parameters: the normalized system size

L̄ = LĀ1/2

λ
or R̄ = RĀ1/2

λ
, (43)

the normalized film thickness at the boundary

ζ̄bc = ζbc

λ
, (44)

and the normalized supersaturation

�C = kBT λ

Āγ�
�C. (45)

Simulations are performed with L̄,R̄ = 100, substrate po-
sition h̄s = 2, film thickness at the boundary ζ̄bc = 12, and
boundary supersaturation �C = 0. The discretization bin size
is �x̄ = 0.2 for most simulations. However, in some cases,
to be able to resolve the contact shape at very high external
forces (see Sec. IV B and Fig. 7), it was necessary to increase
the spatial resolution up to 16 times.

The simulations were always started with a flat profile (see
top panel of Fig. 3). When applying a concentration higher
than the equilibrium one at the boundary, we observe crystal
growth: The crystal translates downward by addition of growth
units at the surface, and uCz < 0. When applying an external
load, FCz, with sign in the positive direction, hence pushing
the crystal toward the substrate, we observe dissolution, i.e.,
pressure solution and uCz > 0. The latter case is the main focus
of this paper.

IV. RESULTS: SINGLE CONTACT PRESSURE SOLUTION

As an illustrative example, we show in Fig. 3 the numerical
solution for the profile of a ridge obeying Eqs. (35) and (37)
when an external load pushes the crystal upward against the
substrate and when the interaction is in the form of a singular
repulsion, Eq. (41). A similar shape is observed when solving
Eqs. (39) and (40) for an axisymmetric contact looking at
the section along the radius. The simulation shows that the
interface profile reaches a steady state characterized by a
constant crystal velocity (dissolution rate) and fixed interface
position.

As discussed earlier in Sec. II C, in the contact region and in
the absence of blowup of the curvature, we expect the surface
tension contribution to be small. Neglecting this contribution,
steady-state solutions with a constant profile, i.e., ∂tζ = 0,
obey respectively in 1D or 2D

0 = ucz − De∂x[ζ∂xU
′(ζ )] , (46a)

0 = ucz − De

r
∂r [rζ∂rU

′(ζ )] . (46b)

This equation is integrated as

x2

2De

uCz = Ũ (ζ (r)) − Ũ (ζ0) , (47a)

r2

4De

uCz = Ũ (ζ (r)) − Ũ (ζ0) , (47b)
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(a)

(b)

(c)

FIG. 3. Pressure solution dynamics. Snapshots of the numerical
solution of Eq. (37) representing a dissolving contact ridge. Size
of the simulation box L̄ = 100 (physical size L ≈ 1 μm) under an
external pressure p = 26 MPa. The viscosity is η̄ = 0.5. The crystal
is in white, and the black arrows are proportional to the crystal velocity
uCz. The time increases from the top panel to the bottom one. (a) Initial
condition. As an example, using physical constants related to calcite
(see Sec. VB), physical time frames are (b) 10 s and (c) 6.7 min. The
color map (in arbitrary units) shows the amplitude of the x component
of liquid velocity field uLxy , as obtained from Eqs. (25) and (34). The
vertical scale is in nanometers. The substrate is located at hs = 2 nm.

where ζ0 = ζ (0), and Ũ (ζ ) is defined via the relation

Ũ ′(ζ ) = ζU ′′(ζ ) , (48)

which, up to an additive constant leads to Ũ (ζ ) = ζU ′(ζ ) −
U (ζ ). Since we expect physically that the interaction potential
tends to a constant as ζ → ∞, i.e., that U (∞) is a constant,
then Ũ (∞) should also be a constant. Therefore, Ũ cannot
increase indefinitely when ζ → ∞ on the right-hand side of
Eqs. (47a) and (47b). As a consequence, there are finite xm or
rm where ζ → ∞ and they obey

x2
m

2De

uCz = Ũ (∞) − Ũ (ζ0) , (49a)

r2
m

4De

uCz = Ũ (∞) − Ũ (ζ0) . (49b)

Since ζ diverges at some finite distance xm or rm from the center
of the contact, the size of the contact in steady-state pressure
solution is always finite.

In the limit of large forces, we expect ζ0 to become small.
The situation then turns out to be very different depending on
how Ũ (ζ0) behaves when ζ0 is small. The following sections
discuss separately the cases of finite and diverging interaction
potentials U (ζ ), corresponding to finite or diverging Ũ (ζ ) as
ζ → 0.

A. Singular repulsion: Power-law case

Let us start with the analysis of the results for a singular
power-law repulsion between the crystal surface and the
substrate. Combining Eqs. (41) and (48), we find

Ũ (ζ ) = −(n + 1)A

ζn
. (50)

Inserting this expression in Eqs. (47a) and (47b) provides us
with the steady-state profile:

ζ (x) =
(

ζ n
0

1 − x2/x2
m

)1/n

, (51a)

ζ (r) =
(

ζ n
0

1 − r2/r2
m

)1/n

. (51b)

These profiles diverge at x = xm or r = rm, which is related to
the minimum distance in the contact via Eqs. (49a) and (49b):

x2
m = 2De(n + 1)A

ζn
0 uCz

, (52a)

r2
m = 4De(n + 1)A

ζn
0 uCz

. (52b)

The distance xm or rm at which the profile diverges should a
priori be distinguished from the size of the contact region. In-
deed, far away from the substrate, the influence of the potential
vanishes, and as a consequence surface-tension effects should
become dominant, so that Eq. (47) is not valid anymore. Let us
define Lc as the half-width of the contact region in 1D, and Rc

as the radius of the contact region in 2D. An intuitive definition
of the contact region is the zone which is close enough to
the substrate to be under the influence of the interaction
potential U .
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FIG. 4. Flattened steady-state for power-law repulsion. Cross
section of the steady-state profile projected along r̄ (solid line)
dissolving under an external load, F̄Cz = 108, at η̄ = 1 against a flat
substrate (h̄s = 2). Geometry: axisymmetric contact in a simulation
box of size R̄ = 100. The interaction with the substrate is a singular
power-law repulsion, Eq. (41) with n = 3. The red dashed line is the
analytical prediction from Eq. (51) with rm = R and ζ0 ≈ 0.29 as a
fitting parameter.

For large contacts, we expect that the distance separating
xm and Lc, or rm and Rc should be negligible as compared to
the size of the contact region. As a consequence, we assume
xm ≈ Lc or rm ≈ Rc. Furthermore, we perform simulations
with a fixed ζbc, which is large as compared to ζ0 but small
as compared to the size L, or R of the simulation box.
Thus, the contact region should fill most of the simulation
box, and finally we expect xm ≈ Lc ≈ L or rm ≈ Rc ≈ R. In
Fig. 4, we show the steady-state cross section obtained from
the simulation (solid line) at large times, which is in good
agreement with Eq. (51) using rm = R (dashed line) and ζ0 as
a fitting parameter. Using Eq. (52) and the fitted value of ζ0, we
obtain a value for uCz. For instance, in 2D with F̄ = 108 and
R̄ = 100, this procedure leads to ζ̄0 = 0.290 and ūCz = 0.022
being compared with ζ̄0 = 0.291 and ūCz = 0.016 measured
directly in the numerical solution of the full model. The
agreement with the numerical results improves as the external
load is increased.

Similar agreement is obtained in 1D. As a consequence, the
profile is well predicted at large forces, and we can safely use
it in the force balance equation.

In 1D, using Eq. (51) with Eq. (52a) and xm = Lc, we obtain
from force balance Eq. (35)

F 1D
Cz

Lc

= 24ηφ

(
n + 3

n

)
n
√

π

(n + 3)

[
1

DeA(n + 1)

] 3
n
(

L2
c

2
uCz

) n+3
n

+φ

(
n + 1

n

)
2n

√
πA− 1

n

(
1

De(n + 1)

) n+1
n

×
(

L2
c

2
uCz

) n+1
n

(53)

where

φ(z) = �(1 + z)

2�
(

3
2 + z

) ,

with � being the Euler � function.
Similarly, in 2D force balance, Eq. (39) imposes

F 2D
Cz

πR2
c

= 12η
n2

(2n + 3)(n + 3)

[
1

DeA(n + 1)

] 3
n
(

R2
c

4
uCz

) n+3
n

+ n2

2n + 1
A− 1

n

[
1

De(n + 1)

] n+1
n

(
R2

c

4
uCz

) n+1
n

(54)

(some technical details about the derivation of this relation can
be found in Appendix C 1). Using Eq. (54), we find two separate
regimes depending on the value of η: For large viscosities we
identify a hydrodynamic regime

u1D
Cz = C1D

h L
− 3n+6

n+3
c

(
F 1D

Cz

η

) n
n+3

, (55a)

u2D
Cz = C2D

h R
− 4n+6

n+3
c

(
F 2D

Cz

η

) n
n+3

, (55b)

while for small viscosities a diffusion regime is found, with

u1D
Cz = C1D

d L
− 3n+2

n+1
c

(
F 1D

Cz

) n
n+1 , (56a)

u2D
Cz = C2D

d R
− 4n+2

n+1
c

(
F 2D

Cz

) n
n+1 . (56b)

The expressions of the constants C1D
h ,C2D

h ,C1D
d ,C2D

d are re-
ported in Appendix C 1. In Fig. 5, we compare the prediction
of Eqs. (55b) and (56b) using Rc = R (solid and dashed lines)
and the results in 2D obtained from the complete numerical
solution of the model (circles). The analytical prediction is in
good agreement with the numerical solution for large external
loads.

In order to probe the sensitivity of the results with respect
to the value of the film thickness at the boundary ζ̄bc, we
monitored the consequences of the variation of ζ̄bc. We found
small quantitative effects but no influence on the qualitative
behavior of the relevant observables. This is exemplified with
the variations of the dissolution rates in the top panel of Fig. 5.

Using Eq. (52) to eliminate uCz in the expression of the force
Eqs. (53) and (54), a relation between external load and the
minimum thickness ζ0 can be obtained, which is found to be in
good agreement with the simulations. For the sake of concision,
the expression of this relation in 2D and its comparison with the
numerical solution of the full model are shown in Appendix C
(Eq. (C8) and Fig. 9).

As an additional remark, Eqs. (53) and (54) show that there
is no substantial difference between one and two dimensions
except, as expected from dimensional analysis, a different
scaling with the contact size. Finally, it is interesting to
assess the critical length and load separating the diffusive
and hydrodynamic regimes. Equating the expressions of the
velocity in the two regimes for the ridge case, we find that the
critical size above which the force is dominated by the diffusion
term is given by

L∗ = B1Dη
n+1

2 F 1D
Cz (57)
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FIG. 5. Dissolution rate for (singular) power-law repulsion (n =
3) as a function of the applied load. Geometry: axisymmetric contact.
Lines represent asymptotic analytical predictions with R̄c = R̄ =
100: Solid blue line, hydrodynamic regime Eq. (55b); dashed red
line, diffusion regime Eq. (56b). (a); the symbols show simulation
results obtained using different boundary thickness ζbc. (b) η̄ = 10−3.
The results are shown in normalized units.

in 1D, while for the axisymmetric contact is

R∗ = B2Dη
n+1

4
(
F 2D

Cz

)1/2
, (58)

where B1D and B2D are constants reported in Appendix C1.
Hence, at fixed force, large contacts will be dominated by
the diffusion term. Also, as the external load is increased
at constant contact size, the hydrodynamic term in the force
balance become dominant. Once again, good agreement with
the simulations is found, and a detailed discussion is reported
in Appendix C1.

B. Finite repulsion: Exponential case

In the case of an exponential repulsion, Ũ (ζ = 0) is finite.
As a consequence, the behavior of steady-state solutions is dif-
ferent. First, the dissolution rate is asymptotically independent
of the load. Second, the shape of the contact is sharp and pointy.
Third, in the absence of surface tension, touching contact (i.e.,
ζ = 0) would be observed in 2D for a finite loading force, but
not in 1D. Finally, as opposed to what observed so far, surface

F̄Cz/η̄

ū
C

z

10-6

10-5

10-4

10-3

100 101 102 103 104 105 106

FIG. 6. Dissolution rate as a function of the external load for an
exponential finite interaction. Geometry: 1D ridge contact. Triangles
η̄ = 0.5, squares η̄ = 5 × 10−4, circles η̄ = 5 × 102. Dashed line:
analytical prediction Eq. (61a) using L̄c = L̄ = 100 and ζ0/λ = 0.
The results are in normalized units.

tension becomes relevant at large enough forces both in 1D
and 2D, and prevents contact also in 2D.

1. Without surface tension

Neglecting surface tension, we proceed in a similar way
as in the power-law case. Recalling Eq. (48) and using the
exponential interaction potential Eq. (42), we now have

Ũ (ζ ) = −A

λ
(λ + ζ )e− ζ

λ . (59)

As opposed to the power-law repulsion case, we now have a
function Ũ (ζ ) that cannot be inverted explicitly. Therefore, ζ

cannot be explicitly obtained from Eq. (47). However, since Ũ

is a monotonic function of ζ , it is still possible to compute r

as a function of ζ without ambiguity from Eq. (47).
In the large force limit, since we expect ζ0 	 λ (this will

be confirmed below using force balance) and since Ũ (0) is
finite, we find that the dissolution rate reaches a constant value
independent of the load and of the viscosity. Indeed, from
Eq. (49),

u1D
Cz ≈ De

2A

L2
c

(
1 + ζ0

λ

)
e− ζ0

λ , (60a)

u2D
Cz ≈ De

4A

R2
c

(
1 + ζ0

λ

)
e− ζ0

λ . (60b)

Taking the limit ζ0 → 0, we find

u1D
Cz = De

2A

L2
c

, (61a)

u2D
Cz = De

4A

R2
c

. (61b)

Again assuming that Lc ≈ L, or Rc ≈ R at large forces, these
results are confirmed in Fig. 6 from the comparison with the
numerical solution of the full model. The different viscosities,
indicated by circles (η̄ = 1000), triangles (η̄ = 1), and squares
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FIG. 7. Pointy steady state for exponential repulsion. Cross sec-
tion of the steady-state profile projected along r̄ (solid line) dissolving
under an external load F̄Cz = 1.7 × 105, at η̄ = 1 against a flat
substrate (h̄s = 2). Geometry: axisymmetric contact in a simulation
box of size R̄ = 100. The interaction with the substrate is a finite
exponential repulsion, Eq. (42). Blue dotted line: analytical prediction
Eq. (40), assuming the contact area to be equal to the surface size R.
Red dashed line: analytical prediction Eq. (40) with a smaller contact
size Rc. The inner plot shows a zoom of the tip.

(η̄ = 0.001), affect the absolute value of the applied force
needed to reach the plateau but not the plateau value itself.

A second consequence arising from the finiteness of the
exponential interaction is the sharp pointy shape of the steady-
state profile showed in Fig. 7. Indeed, since Ũ ′(ζ = 0) = 0
from Eq. (48), we have Ũ (ζ ) ≈ Ũ (0) + Ũ ′′(0)ζ 2/2 for ζ 	 λ.
Using this expansion into Eq. (47) and letting ζ0 → 0, we find
that the profile ζsing in the center of the contact region is a
singular wedge in 1D and a cone in 2D:

ζsing ≈
(

uCz

DeŨ ′′(0)

)1/2

|x| =
(

uCz

DeA

)1/2

λ|x| , (62a)

ζsing ≈
(

uCz

2DeŨ ′′(0)

)1/2

|r| =
(

uCz

2DeA

)1/2

λ|r| . (62b)

When ζ0 	 λ, the complete profile for arbitrary ζ (i.e., smaller
or larger than λ) can be obtained from Eqs. (47) and (59).
Using the axisymmetric contact, with Rc = R and uCz given by
Eq. (61b), this expression (dotted blue line) is seen to be in good
agreement with the simulation in Fig. 7. Better agreement (red
dashed line) can be reached using the numerical value of uCz

obtained from the simulation (which is equivalent to assuming
a smaller effective size, Rc < R). Nevertheless, as shown by
the inner panel in Fig. 7, close to the tip the numerical solution
is smoothed and exhibits a parabolic shape. This regularization
discussed in the next section is due to the contribution of the
surface tension.

Using Eq. (35), force balance in 1D now reads

F 1D
Cz

Lc

=
[

12ηDe

A

λ3
ψ1

(
ζ0

λ

)
+A

λ
ψ2

(
ζ0

λ

)](
e

ζ0
λ

1 + ζ0

λ

) 1
2

, (63)

F̄Cz/S̄

ζ̄ 0

10-5

10-4

10-3

10-2

10-1

100

101

10-4 10-3 10-2 10-1 100 101 102 103 104

FIG. 8. Minimum film thickness of the liquid film as a function
of the applied load. The plot shows the minimum distance ζ̄0 between
the crystal and the substrate versus the external load normalized
by surface area S̄ (scaled pressure). Red, ridge contact (1D); blue,
axisymmetric contact (2D). Circles (1D) and squares (2D) show
the numerical results. Solid lines report the analytical predictions
neglecting surface tension, Eqs. (63) and (65) (blue) and using L̄c =
L̄ = 100, R̄c = R̄ = 100. Dashed lines indicate prediction adding
the singular contribution of the surface tension term Eqs. (68a)
and (68b) to the previous expression and using the parameters uCz and
∂xxζ0 or ∂rrζ0 from the simulations. Dash-dotted lines: full analytical
prediction using Eqs. (70a) and (70b). 1D viscosity, η̄ = 0.5; 2D
viscosity, η̄ = 1. The results are in normalized units. The critical force
in 2D, Eq. (66), provides the maximum value of F̄ 2D

Cz /S̄ for the solid
blue line and corresponds to p ≈ 3.3 MPa.

where the functions ψ1 and ψ2 defined in Eqs. (C14) and (C15)
exhibit the following limits:

lim
z→0

ψ1(z) =
√

2 ln
1

z
+ C1 ,

lim
z→0

ψ2(z) = C2 ,

with C1 ≈ 1.645 and C2 ≈ 0.8398. It follows that when ζ0 	
λ and ζ0 	 λ exp[−C2/(12

√
2η̄)], we have

F 1D
Cz ≈ 12

√
2η̄

LcA

λ
ln

(
λ

ζ0

)
. (64)

This relation indicates that the minimum distance in the contact
region decreases exponentially with the applied load in 1D.
The prediction Eq. (63) using Lc = L, which is represented in
Fig. 8 by the red solid line, compares well with the numerical
results (red circles) when ζ0 is not too small.

In addition, we obtain in 2D (some details of the derivation
are reported in Appendix C 2)

F 2D
Cz

πR2
c

=
[

12ηDe

A

λ3
ψ

(
ζ0

λ

)
e

ζ0
λ

1 + ζ0

λ

+ A

4λ

(
2ζ0

λ
+ 1

)
e− ζ0

λ

1 + ζ0

λ

]
, (65)
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where the function ψ obeys

lim
z→0

ψ(z) = (1 − ln 2) .

Hence, within this approximation, the LC interface touches the
substrate (i.e., ζ0 = 0) for a finite force

F 2D
c =

{
12ηDe

A

λ3
[1 − ln(2)] + A

4λ

}
πR2

c . (66)

The external force is plotted as a function of ζ0 in Fig. 8.
Equation (65) with Rc = R is represented by the blue solid
line and has to be compared with the blue squares obtained
by direct numerical integration. Once again, this expression
agrees with the numerical results for sufficiently large ζ0.

2. With surface tension

An inspection of Fig. 8 reveals that the agreement between
the predicted force-minimum distance relation and the full
numerical solution of thin film equations is accurate only when
the forces are not too large. However, as we keep increasing
the external load, this prediction (solid lines) fails to reproduce
the numerical results. As anticipated previously, the shape of
the crystal close to the tip (see inner panel of Fig. 7) is not
well described by Eq. (49). Indeed, as ζ0 → 0, the curvature at
the tip diverges, leading to the singular pointy shape reported
in Eq. (62). Thus, surface tension effects proportional to the
curvature become relevant.

We here resort to a simple matching procedure to account
for the consequences of surface tension. First, in the tip region
for x < x∗ or r < r∗, where x∗ and r∗ are the tip width in 1D
and 2D respectively, a Taylor expansion of ζ leads to

ζ tip = ζ0 + x2

2
∂xxζ0 , (67a)

ζ tip = ζ0 + r2

2
∂rrζ0 , (67b)

where ∂rrζ0 and ∂xxζ0 are the second derivative of ζ calculated
at x = 0 or r = 0.

Using this solution, let us compute the contribution of the
tip region to force balance Eqs. (35) and (39). We obtain

F 1D
tip = 2

Ax∗
λ

(
1 − ζ0

λ
− ∂xxζ0

x2
∗

6λ

)
+ η

6πuCz√
2(∂xxζ0)3/2ζ

3/2
0

,

(68a)

F 2D
tip = πAr2

∗
λ

(
1 − ζ0

λ
− ∂rrζ0

r2
∗

4λ

)
+ η

6πuCz

(∂rrζ0)2ζ0
, (68b)

where we used ζ/λ 	 1 in the tip region. From this expression,
it appears that, if x∗ or r∗ is not increasing too quickly when
the load increases and ζ0 → 0, the dominant term is the one
proportional to the viscosity.

To confirm the validity of this statement, we checked that
the increase of the force at small ζ0 is well predicted by adding
the singular contribution corresponding to the last term of
Eqs. (68a) and (68b) to the previous expressions. The result
reported in Fig. 8 agrees well with the deviations at small ζ0.
However, this relation is still not fully predictive, since we used
∂xxζ0 and ∂rrζ0 obtained from the numerical solution. In order
to find an additional relation linking ζ0 and ∂xxζ0 or ∂rrζ0, we

match the solutions far from and close to the tip in the limit
ζ 	 λ.

Far from the tip, we assume a small deviation δζ from the
singular solution Eq. (62), leading to ζ = ζsing + δζ . To find an
expression for δζ , we insert the previous relation into the full
steady-state differential equation in the presence of curvature
terms

0 = uCz + De∂x[ζ (γ ∂xxζ − U ′(ζ ))] , (69a)

0 = uCz + De

1

r
∂r

[
rζ

(
γ ∂rrζ + γ

r
∂rζ − U ′(ζ )

)]
, (69b)

for the 1D and 2D respectively. Matching the height and the
slope of the tip solution Eq. (67) with the perturbative solution
outside the tip region ζ = ζsing + δζ at some position x∗ or r∗
leads to two equations. These two equations are used to obtain
x∗ or r∗, and ∂xxζ0 or ∂rrζ0, as a function of ζ0. We therefore
have a profile with two regions that is completely determined
by ζ0. The details of the derivation are quite cumbersome and
are therefore reported in Appendix D.

Two important remarks are in order. First, due to the
correction δζ , the profile becomes wider when approaching
the tip region, in agreement with the shape observed in the full
numerical solution in Fig. 7.

As a second remark, the matching analysis shows that ∂xxζ0

and ∂rrζ0 tend to a constant for ζ0 → 0. Using these results in
the expression of the force, we obtain asymptotically a power-
law dependence of the force on ζ0

F 1D
tip = 12πηγ 3/2Deλ

3/2

C
3/2
1D

√
2AL2

c

1

ζ
3/2
0

+ nonsingular terms , (70a)

F 2D
tip = 24πηγ 2Deλ

2

C2
2DAR2

c

1

ζ0
+ nonsingular terms , (70b)

where the constants C1D = ∂x̄x̄ ζ̄0(ζ̄0 = 0) and C2D =
∂r̄r̄ ζ̄0(ζ̄0 = 0) are the values of the normalized second deriva-
tives at the tip when ζ̄0 → 0. From simulations, we find
C1D ≈ 0.017 and C2D ≈ 0.015 (see Fig. 11). Note that we
used the approximated expression of the dissolution rates uCz

given by Eq. (61).
The sum of the contribution without surface tension,

Eqs. (63) and (65), with the contribution of the tip, Eqs. (70a)
and (70b), are presented in Fig. 8 by the dash-dotted lines. The
agreement with the full numerical solution is not quantitative
but is satisfactory considering the heuristic character of the
matching procedure. Fitting the numerical results with power
laws at large forces, we obtain for the wedgelike contact
FCz ∼ ζ−1.3

0 to be compared with the prediction FCz ∼ ζ
−3/2
0

from Eq. (70a), while for the conical contact FCz ∼ ζ−1.1
0 to

be compared with FCz ∼ ζ−1
0 from Eq. (70b).

As a final comment, the critical force for which surface
tension becomes relevant is given by Eq. (66) in 2D. In 1D, the
comparison of Eqs. (64) and (70a) suggest a critical force

F 1D
c ≈ 24ηDe

A

2λ3
Lc ,

up to logarithmic corrections.
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V. DISCUSSION

A. Summary of results

In this paper, we have obtained a thin film model describing
the evolution of a rigid crystal that is able to grow or dissolve, in
the vicinity of a substrate. The model includes hydrodynamics,
diffusion, the disjoining pressure effects, and surface tension.

Using this model, we have studied pressure solution against
a flat wall in ridgelike (1D) and axisymmetric (2D) contacts.
This study has been performed using some simplifying as-
sumptions, including equal density between the liquid and the
crystal, the linearization of Gibbs-Thomson relation, and the
dilute approximation.

We have also considered two different types of repulsions
between the substrate and the crystal. These led to different
behaviors.

In the case of a power-law repulsion diverging at contact,
the crystal interface flattens under load, and the dissolution
rate exhibits a power-law dependence on the load. A change
in this power law is found at large loads and viscosities when
the forces induced by viscous dissipation surpass those due to
disjoining pressure.

In contrast, a finite exponential repulsion produces pointy
contacts and a dissolution rate asymptotically independent of
the load and the viscosity. For large loads, the sharp pointy
shape of the tip is regularized by surface tension, and the force
balance is dominated by viscous effects. Touching contact (i.e.,
ζ0 = 0) is found only in 2D and in the absence of surface
tension.

To summarize, we found that for large external loads the
dissolution rate uCz and minimum distance ζ0 between the
dissolving crystal and the substrate obey scaling laws

uCz ∼ F
αu

CzL
βu

c , ζ0 ∼ F
αζ

CzL
βζ

c , (71a)

uCz ∼ F
αu

CzR
βu

c , ζ0 ∼ F
αζ

CzR
βζ

c , (71b)

where FCz is the external load and Lc and Rc are the contact
sizes for the ridge and the axisymmetric contact, respectively.
The exponents αu, βu, αζ , and βζ displayed in Table I are
found to depend on dimensionality (ridge or axisymmetric),
on viscosity, and on the type of interaction potential (diverging
as a power law or finite at contact).

B. Orders of magnitude and model limitations

Before discussing precise systems, we provide some orders
of magnitude describing the energy scale of the interactions.
Various experiments and standard textbooks [19] indicate
that the order of magnitude of disjoining pressures is typi-
cally U ′ ∼ MPa when the distance between the surfaces is
ζ ∼ nm. For exponential interactions with decay length λ ∼
nm (corresponding, e.g., to the Debye length or to hydration
scales), we obtain that A ∼ λU ′ ∼ mJ m−2. As a consequence,
the dimensionless repulsion strength (see Sec. III A) is Ā =
A/γ ∼ 10−2. For power-law interactions, with a typical dis-
tance λ ∼ nm, we have A ∼ U ′λn+1. As a consequence, we
also find Ā = A/γλn ∼ 10−2.

We now consider two different crystals: calcite CaCO3 and
sodium chlorate NaClO3. For calcite, we use [44,45] solubil-
ity c0 ≈ 10−3 mol/l ≈ 1024/m3 (at 25 ◦C), molecular volume

� ≈ 100 Å
3
, ionic diffusion constant D ≈ 10−5 cm2/s, water-

solution interfacial tension [46] γ ≈ 100 mJ, and T ≈ 300 K.
For each variable y in physical units, and the corresponding

variable ȳ in normalized units, we define the scaling factor
sy from the relation y = syȳ. These scaling factors have to
be applied to the simulation results to recover physical units.
Their precise expressions are given in Appendix B. In the case
of calcite, we estimate from Eq. (B3) that

sζ = O (1 nm), sx = O (10 nm),

st = O (10−1 s), sp = O (M Pa),

sη = O (102 Pa s) .

Considering now NaClO3 with, from Refs. [47,48],

c0 ≈ 1028/m3(at 25 ◦C), � ≈ 100 Å
3
, D ≈ 10−5 cm2/s, γ ≈

10 mJ, and T ≈ 300 K, and using the same assumption on the
interaction range and strength, we have Ā = 10−1 and

sζ = O (1 nm), sx = O (1 to 10 nm),

st = O (10−6 s), sP = O (M Pa),

sη = O (10−2 Pa s) .

As an illustrative example for the use of these scaling
factors, simulations were performed in a box of normalized
width 100 with an initial distance equal to 1 between the
dissolving crystal and the substrate. For both cases of calcite
and sodium chlorate, this corresponds to thicknesses of the

TABLE I. Summary of the asymptotic regimes at large loads following the notation of Eq. (71). For exponential potentials in the absence
of surface tension effects, the dependence of uCz and ζ0 on the load and system size is not a power law. In 1D, the dependence is logarithmic,
Eq. (64), and in 2D ζ0 vanishes (i.e., the crystal touches the substrate) for a finite force F 2D

c , Eq. (66).

Repulsion Power law Exponential

Regime Hydrodyn. Diffusion. 1D no surf. tens. 1D surf. tens. 2D no surf. tens. 2D surf. tens.
η̄ � 1 η̄ 	 1 F 1D

Cz 	 F 1D
c F 1D

Cz � F 1D
c F 2D

Cz < F 2D
c F 2D

Cz � F 2D
c

αu
n

n+3
n

n+1 0 (constant) 0 (constant) 0 (constant) 0 (constant)

βu − 4n+6
n+3 − 4n+2

n+1 −2 −2 −2 −2

αζ − 1
n+3

−1
n+1 Exponential −2/3 ζ0 → 0 as F 2D

Cz → F 2D
c −1

βζ
2

n+3
2

n+1 Exponential −4/3 −2
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order of the nanometer. In addition, contact widths are ∼1 μm
for calcite, and ∼100 nm to 1 μm for sodium chlorate.

Some remarks are in order. First, the order of magnitude of
the relevant pressures does not depend much on the system. In
contrast, the order of magnitude of the time scale and of the
relevant viscosities depend strongly on the solubility c0, which
can vary by many orders of magnitude from one material to
another.

As discussed previously for dissolution with singular
(power-law) repulsions, one could discriminate between dif-
fusive and hydrodynamic regimes. The simulation results
show that the high-viscosity regime (hydrodynamic regime)
is expected for η̄ � 1 (top panel of Fig. 5) for FCz/S ∼
102 MPa to 10 GPa with S = πR2, and micrometric crystals
(R̄ = 100 ↔ R = 1 μm). For calcite, this would be expected
for η ∼ 102 Pa s, which is much larger of the value for water
(≈mPa s). As a consequence, for this system the observation
of such regime should be difficult in natural environments.
However, for highly soluble salts such as NaClO3, we would
need η ∼ 10 mPa, much closer to the value of water. Therefore,
the hydrodynamic dissolution regime should be easier to
observe in this type of systems.

However, physical parameters such as viscosity and diffu-
sion can also depend on pressure, temperature, and pH or be
affected by phenomena inherent to confinement. For example,
large pressures are know to lead to variation of the viscosity
[49] while nano confinement when double layer is present
on the surfaces could promote higher effective viscosities
(electroviscosity) [50].

One should keep in mind that there are limits in the
application of our continuum model. For instance, when ζ0

reaches the molecular scale, the continuum approach will break
down and one should resort to different models based on
molecular methods. An interesting step in this direction was
recently proposed in the literature using kinetic Monte Carlo
simulations [51]. Atomistic simulations may also allow one
to tackle discontinuities of the surface profile such as atomic
steps, which where shown to be relevant for pressure solution
experiments [52].

Moreover, one of the approximations used in our study of
pressure solution is the linearization of the Gibbs-Thomson
relation. The full nonlinear expression of the Gibbs-Thomson
relation must be kept when U ′(ζ ) 	 kBT /�. At room temper-
ature, kBT /� ∼ 1MPa for molecular crystals and kBT /� ∼
1GPa for atomic crystals. As discussed at the beginning of this
section, we may assume maximum disjoining pressures U ′ of
the order of the MPa, and the assumption U ′(ζ ) 	 kBT /�,
although not systematically valid, should apply in many cases.
As discussed in Appendix E, our analysis can be extended
to the case where the full nonlinearity of the Gibbs-Thomson
relation is kept. This leads to similar results as those discussed
above in the presence of an exponential potential. The only
important difference appears for power-law interactions: The
functional form of the dissolution rate and minimum distance
with the force are not power law anymore. Instead, they exhibit
an essential singularity, as discussed in Appendix E.

Another limitation of our model is the absence of elastic
or plastic displacements in the solid. However, our results
show that even in the absence of elasticity or plasticity,

significant shape changes can be observed in contact zones
due to dissolution or growth kinetics in the presence of
disjoining pressure effects. Hence, elasticity or plasticity are
not the only pathways toward flat contact shapes in pressure
solution, and dissolution alone is a sufficient mechanism.
Beyond displacements, elasticity also gives rise to an additional
contribution to the chemical potential [53] ∼�σ 2/2E, where
E is the Young modulus. For this contribution to be dominant
as compared to that coming from disjoining pressure �U ′, one
should have stresses larger than (2EU ′)1/2. Taking U ′ ∼ MPa,
and E ∼ 10 GPa, we obtain that stresses should typically
exceed 102 MPa for elastic effects to be relevant in the chemical
potential. In addition, pointy morphologies such as those
obtained in our model for finite repulsions should lead to
a concentration of stresses, which could result in significant
elastic or plastic effects. Further studies in this direction are
needed.

Finally, one major assumption of our study is the constant
size of the contact region. While specific needlelike crystal
shapes may indeed present a constant contact area during
dissolution, it is clear that more general shapes, e.g., conical
or spherical crystals, would exhibit a growing contact area
as dissolution proceeds. In addition, redeposition of material
ouside the contact could also change the contact area during
pressure solution. Our description could still hold if the change
in the contact area was slower than the relaxation of the crystal
profile within the contact. Such a separation of time scales,
where a steady state is reached within the contact as if the
contact size was constant at all times, will be denoted as the
quasistatic approximation.

In the following, we discuss the validity of this approxi-
mation. Effects such as redeposition, growth, or dissolution
outside the contact are assumed to be smaller than the dis-
solution in the contact region. From dimensional analysis of
Eq. (40), neglecting the contribution of surface tension, the
relaxation time trelax toward a steady-state profile ζs(r) with
a contact of size Rc is trelax ∼ R2

c /[DeŨ
′(ζs)]. In addition

from force balance, Eq. (39), we have F ∼ R2
cU

′(ζs). Since
U ′(ζs) ∼ Ũ ′(ζs), we find trelax ∼ R4

c /(DeF ). Assuming a small
contact angle θext at the edge of the contact, dissolution
induces a growth velocity for the contact radius dRc/dt =
uCz/θext. We must therefore require that the relaxation time
is smaller than the time associated with the growth of the
contact radius: trelax 	 Rc/(dRc/dt), leading to R4

c /(DeF ) 	
Rcθext/uCz. For example, in the case of a power-law potential
in the diffusion-dominated regime, uCz is given by Eq. (56b),
and this condition leads to F � A/(θn+1

ext Rn−1
c ). Using the

relation stated above in this subsection, A ∼ U ′λn+1, and
the force balance F ∼ R2

cU
′, we finally obtain a simple

condition λ/Rc 	 θext. Since we assumed λ/Rc ∼ 10−5 above
(with λ ∼ nm and Rc ≈ 100 μm), this result suggests that
for contact angles not too small θext � 10−5, the quasistatic
approximation should be valid.

Within this approximation, the dissolution rate will depend
on the shape of the dissolving solid. For example, for a
cone of half angle θcone, assuming no redeposition outside
the contact region, the radius of the contact area obeys
dRc/dt = uCz tan θcone. Similarly, for a sphere of radius R0,
we have dRc/dt = uCz(R2

0/R
2
c − 1)1/2. Since uCz ∼ R

βu
c from
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Eq. (71b), we find that Rc ∼ t1/(1−βu) and uCz ∼ tβu/(1−βu) at
constant force in the conical case, and Rc ∼ t1/(2−βu) and uCz ∼
tβu/(2−βu) at constant force in the spherical case when Rc 	
R0. Choosing again the example of power-law repulsion in
the diffusion limited regime where βu = −(4n + 2)/(n + 1),
we find uCz ∼ t−(4n+2)/(5n+3) and uCz ∼ t−(2n+1)/(3n+2) for the
conical and spherical cases respectively.

C. Comparison with existing models and experiments

Since it relates deformation strains, contact size, and stress
on single-contact dissolution (eventually connecting it to the
overall grain compaction problem) in an axisymmetric geom-
etry, Weyl’s model [12] is a first natural candidate for com-
parison to our model. Weyl predicts that uCz = 8DλbFCz/R

2
c ,

where D is the diffusion constant, λ is the film thickness, b is a
linear stress coefficient linking local solute concentration with
the applied stress, and Rc is the contact size.

Other models consider the phenomena at the scale of
the grain rather than the contact region [13,14,16–18]. Rut-
ter [15] summarizes most of the previously cited models
(for diffusion-controlled kinetics) and also treats the global
problem at the thin film contact area, as done by Weyl. In
cylindrical symmetry and for small external stresses, Rut-
ter [15] predicts uCz = 32C0DwV FCz/(RgTρCd3), while
for high external stresses (>100 MPa) Rutter finds uCz =
40c0Dw exp[FCzV/(2.3RgT )]/(d3ρC), where c0 is the con-
centration at the interface, ρC is the crystal density, D is the
diffusion at the grain boundary, w is an effective width, Rg is
the gas constant, and d is the grain size (proportional to the
contact size).

The relations predicted by Weyl and Rutter are in general not
in agreement with our predictions both for power-law repulsion
and finite exponential repulsion, Eqs. (55b), (56b), and (61b).

Globally, the absence of description of microscopic physical
ingredients such as viscosity, interaction potential, and surface
tension in these models lead to a very different and nonspecific
behavior.

Previous modeling attempts have also addressed the regime
of slow interface kinetics [17]. They suggest that the dis-
solution rate could then be independent of the contact area.
The investigation of this limit is an interesting perspective for
further development of our model.

A number of experimental observations have suggested
power-law relations between strain rates (crystal velocity) and
applied stress and or grain size [54–56]. This is compatible with
the results we obtained for the singular repulsive power-law
potential in Eqs. (55a), (55b), (56a), and (56b) and Fig. 5.
However, Croizé et al. [57] underline that though there exists
a positive correlation between the strain rate and the applied
stress, this dependence is weak. With the support of both
original measurements on calcite pressure solution and data
from the literature, they claim that other effects such as
the grain size are likely to be dominant. These observations
are consistent with the scenario predicted for exponential
interaction in Eq. (61) and Fig. 6.

Using the pressure range 1 to 103 MPa, which is the one
usually considered in pressure solution experiments, the ve-
locities (dissolution rates) obtained by our simulations are
10−3 to 10−1 nm s−1 for calcite and 10−1 to 10 μm s−1 for

sodium chlorate. The observable usually reported in pressure
solution experiments is the strain rate. Experimental values
of the strain rates for calcite [54,57] vary between 10−9 and
10−4 s−1. Using ε̇ = uCz/Rc as the definition of the strain rate
[57], we obtain values between 10−6 and 10−4 s−1, compatible
with the experimental ones. For NaClO3, because of the faster
time scales due to the much higher solubility, the dissolution
rate and as a consequence the strain rate increases of a factor
of about 105. This is in disagreement with the literature [56],
where similar orders of magnitude as those of calcite are found.
Such discrepancy could be caused by the fact that in our
system exhibits an undersaturated concentration bath at the
boundaries of the contact. In multicontact systems where the
liquid reservoir per contact is finite, the global supersaturation
of the bath should increase due to the release of crystal
molecules in the liquid. This should lead to a decrease of
the dissolution rates. The study of such interactions between
different contacts is therefore an important perspective for our
modeling approach to address systems with multiple contacts.

As far as the morphology of the contact is concerned,
some experiments on quartz grains aggregates [58] showed
that in addition to relative smooth interfaces, irregular ridge
and plateau structures can develop at the grain contacts after
undergoing pressure solution. The appearance of pointlike
and ridgelike singularities for exponential repulsions in our
model could be a first step toward the understanding of these
morphologies.

In general, further experimental investigation involving
observations at the scale of one microscopic contact would
be useful to test our model predictions.

VI. CONCLUSIONS

In conclusion, we have presented a thin film model for the
dynamics of lubricated contacts during dissolution and growth
under load, accounting for surface tension, interactions, dif-
fusion, and hydrodynamics. This model describes the coupled
evolution of the space-dependent pressure field p in the liquid
and the film thickness ζ via Eqs. (27) and (30). An additional
constraint originating in global force balance Eqs. (32) and
(33) determines the crystal velocity uC .

Using this model, we have discussed the dynamics of
pressure solution for single contacts of fixed or slowly varying
size and with symmetric geometries, using some simplifying
assumptions. We find that the dissolution rate and contact
morphology exhibit distinctive behaviors depending on the
finiteness of the repulsion at contact. Furthermore, we find that
crystal-substrate touching contact is never reached in steady
state for any load when viscosity and surface tension are taken
into account.

Much yet remains to be done to explore the different regimes
emerging for our thin-film model. However, this model paves
the way for a systematic and physically consistent analysis of
the influence of different microscopic ingredients on pressure
solution and growth in confined environments.
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APPENDIX A: IDENTITIES RESULTING FROM
TRANSLATIONAL INVARIANCE OF THE FREE ENERGY

Here we derive some integral identities that are used in the
main text. These identities express the fact that the total force
resulting from a translational-invariant energy must vanish.

Consider a generic free energy functional FD acting over a
domain D in d dimensions and with boundary ∂D in (d − 1)
dimensions. Let us assume that its variation can be written as
a surface integral

δF =
ˆ

∂D
dS (δr · n̂)

δFD
δr

, (A1)

where δr is a d-dimensional infinitesimal variation of the
domain boundary.

Assume now that FD is invariant under translations. Then,
δF must vanish under infinitesimal translations, i.e., when
δr = dr is an arbitrary constant (independent on space co-
ordinates). As a consequence,

0 = dr ·
ˆ

∂D
dS n̂

δFD
δr

. (A2)

Since this is true for any dr, we find that the force acting on
the domain surface vanishes:

0 =
ˆ

∂D
dS n̂

δFD
δr

. (A3)

This relation is valid for arbitrary shapes of the domain D.
In particular, consider the surface energy

FS =
ˆ

∂D
dS γ (n̂) , (A4)

whose variation is given by
ˆ

∂D
dS n̂ (κ : γ̃ ) = 0 , (A5)

where γ is a general surface tension (function of the orienta-
tion), γ̃ is the stiffness tensor, and κ is the curvature tensor. In
the special case where the surface tension is isotropic, i.e., γ

does not depend on n̂, we obtain a known equality: The integral
of the mean curvature times the normal vector of an arbitrary
(sufficiently regular) surface vanishes [59]

ˆ
∂D

dS n̂ H = 0 , (A6)

where H is the mean curvature.
Finally, another useful relation is obtained when choosing

an energy proportional to the volume of the domain D:
ˆ

∂D
dS n̂ = 0 . (A7)

We find that the integral of the normal vector vanishes on any
closed regular surface.

APPENDIX B: RESCALING AND UNITS

Let us recall the type of substrate-crystal interactions
considered, Eqs. (41) and (42):

U (ζ ) = A

ζn
Singular at contact,

U (ζ ) = Ae− ζ

λ Finite at contact.

For simplicity, we only show the scaled equations in 1D. In the
case of the power-law repulsion, Eq. (41) with n = 3, we have

∂t̄ ζ̄ = −∂x̄

[
ζ̄ ∂x̄

(
∂x̄x̄ ζ̄ + 1

ζ̄ 4

)]
− ūCz , (B1a)

ūCz

ˆ L̄

0
dx̄

ˆ L̄

x̄

dx̄ ′ 24η̄x̄ ′

ζ̄ 3
= F̄Cz + 2

ˆ L̄

0
dx̄

1

ζ̄ 4
,

(B1b)

where ūCz, η̄, and F̄ are the rescaled velocity, viscosity, and
external force, respectively. For the exponential repulsion,
Eq. (42), we have

∂t̄ ζ̄ = −∂x̄[ζ̄ ∂x̄(∂x̄x̄ ζ̄ + e−ζ̄ )] − ūCz , (B2a)

ūCz

ˆ L̄

0
dx̄

ˆ L̄

x̄

dx̄ ′ 24η̄x̄ ′

ζ̄ 3
= F̄Cz + 2

ˆ L̄

0
dx̄ e−ζ̄ .

(B2b)

If y is an arbitrary variable and ȳ is its normalized coun-
terpart used in simulations, we define sy the scaling factor
that has to be applied to recover the natural variables from
the normalized simulation variables: y = syȳ. Defining Ā as
a nondimensional quantity equal to A/γ for the exponential
repulsion, and equal to A/(γ λ3) for the power-law repulsion,
the scaling factors are for both Eqs. (B1) and (B2)

sζ = λ, (B3a)

sx = λ

(
1

Ā

)1/2

, (B3b)

st = λ3 kBT

D�2c0γ Ā2
, (B3c)

s1D
F = γ Ā1/2, (B3d)

s2D
F = γ λ, (B3e)

sp = γ Ā

λ
(B3f)

sη = λ2 kBT

D�2c0
, (B3g)

suCz
= D�2c0γ Ā2

kBT λ2
. (B3h)

The superscripts 1D and 2D explicitly indicate those scalings
which differ in the ridge and axisymmetric system. Also note
that sp = s1D

F /sx in 1D, while sp = s2D
F /s2

x in 2D.
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APPENDIX C: STEADY STATE IN THE ABSENCE
OF SURFACE TENSION

We here illustrate how to derive some relations of Secs. IV A
and IV B 1 for the axisymmetric system (2D). An analogous
procedure can be followed in 1D. In 2D, a single integration
of Eq. (46) leads to

r

2
uCz = Deζ∂rζU ′′(ζ ) . (C1)

Using the previous relation to express the differential rdr as
a function of dζ and considering only the contribution of the
contact area, we can rewrite Eq. (39) in a more convenient
form:

FCz = 2π

ˆ Rc

0
r12ηDe dr

ˆ ζ (Rc)

ζ (r)
dζ

U ′′(ζ )

ζ 2

− 2π

ˆ Rc

0
dr rU ′(ζ (r)) . (C2)

1. Singular power-law repulsion

Using Eq. (51) together with Eq. (41) in Eq. (C2), we find

F 2D
Cz = 12ηC1(rm,Rc)

(
R2

c uCz

) n+3
n

+C2(rm,Rc)
(
R2

c uCz

) n+1
n , (C3)

where

C1 = De

n(n + 1)πA

n + 3

{
−R2

c

ζ n+3(Rc)
+ nr2

m

(2n + 3)ζ n+3
0

×
[(

R2
c

r2
m

−1

) n+3
n

+1

](
r2
m/R2

c

4De(n + 1)A

) n+3
n

}
,

C2 = πn2Ar2
m

(2n + 1)

[(
R2

c

r2
m

− 1

) 2n+1
n

+ 1

](
r2
m/R2

c

4De(n + 1)A

) n+1
n

.

For large external loads, we have rm ∼ Rc and ζ (r = Rc) �
ζ0, leading to Eq. (54).

The constants used in the main text in Eqs. (55a), (55b),
(56a), and (56b) were obtained considering that one of the two
terms in Eq. (C3) dominates in the force balance depending on
the value of the viscosity. Their expressions are

C1D
h = 2[DeA(n + 1)]

3
n+3[ 24n

√
π

n+3 φ
(

n+3
n

)] n
n+3

, (C4)

C2D
h = 4[DeA(n + 1)]

3
n+3[

12πn2

(2n+3)(n+3)

] n
n+3

, (C5)

C1D
d = 2DeA

1
n+1 (n + 1)[

2n
√

πφ
(

n+1
n

)] n
n+1

, (C6)

C2D
d = 4DeA

1
n+1 (n + 1)(

πn2

2n+1

) n
n+1

. (C7)

As discussed in the main text, the force can also be written
as a function of the distance ζ0 between the substrate and the

FIG. 9. Minimum film thickness ζ0 as a function of the applied
load for (singular) power-law repulsion. Geometry: axisymmet-
ric contact. Lines represent analytical predictions extracted from
Eq. (C8) with R̄c = R̄ = 100; circles indicate simulation results.
Solid blue line, hydrodynamic regime; dashed red line, diffusion
regime. (a) η̄ = 1; (b) η̄ = 10−3. The results are given in normalized
units.

crystal surface at the center of the contact:

F 2D
Cz

πR2
c

= 12ηDe

n2(n + 1)A

(2n + 3)(n + 3)

( 1

ζ0

)n+3

+ n2A

(2n + 1)

( 1

ζ0

)n+1
, (C8)

leading to the asymptotic scaling reported in Sec. V A. These
results are confirmed by the numerical solution as showed in
Fig. 9.

Finally, as showed in Fig. 10, we have explored the transition
between the diffusion and hydrodynamic scaling laws. This
was done using an intermediate viscosity, η̄ = 0.1, and looking
at the dissolution rates in a 2D contact of size R̄c ≈ R̄ = 100.
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ū
C

z

FIG. 10. Dissolution rate as a function of the applied load for
power-law (singular) repulsion. Geometry: axisymmetric contact. The
viscosity is η̄ = 10−1. Lines represent analytical predictions with
R̄c = R̄ = 100, circles indicate simulation results. Solid blue line,
hydrodynamic regime, Eq. (55b); dashed red line, diffusion regime,
Eq. (56b). The black dashed line represents the expected threshold
between the two regimes according to Eq. (58). The results are shown
in normalized units.

The constants appearing in Eqs. (57) and (58) are

B1D =
⎧⎨
⎩ 24De(n + 1)φ

(
n+3
n

)
(n + 3)

[
2φ

(
n+1
n

)] n+3
n+1

⎫⎬
⎭

n+1
2

1

nA
√

π
, (C9)

B2D =
[

12De(n + 1)(2n + 1)
n+3
n+1

(2n + 3)(n + 3)

] n+1
4 1

n
√

Aπ
. (C10)

From Eq. (58), with R̄∗ = 100, η̄ = 0.1, n = 3 (since in
simulations units De = 1 and A = 1/3, B2D ≈ 5.4), we expect
the diffusion limited regime approximately for F̄Cz < 3.5 ×
104 and the hydrodynamic regime otherwise. The threshold
indicated in the figure by the dashed vertical line is compatible
with the observed trend.

2. Finite exponential repulsion

In the case of a finite exponential repulsion, manipulations
similar to those presented in the previous section lead to the
following form of the force balance relation:

F 2D
Cz = 48η

πD2
eA

2

λ3uCz

ψ

(
ζ0

λ

)
+ πDeA

2

λ

(
2ζ0

λ
+ 1

)
e− 2ζ0

λ

uCz

,

(C11)

with

ψ(z0) = λ

ˆ ∞

z0

dz e−z[e−z + zEi(−z)] , (C12)

where Ei is the exponential integral defined as

Ei(x) = −
ˆ ∞

−x

e−s

s
ds . (C13)

Inserting the expression of uCz from Eq. (61b) into Eq. (C11),
we obtain Eq. (65).

3. 1D case

In 1D, the derivations are similar to the 2D case. We obtain
Eq. (63), where the two functions ψ̃1 and ψ̃2 are defined as

ψ̃1(z0) =
ˆ ∞

z0

e−z[e−z + zEi(−z)]

[(1 + z0)e−z0 − (1 + z)e−z]
1
2

dz , (C14)

ψ̃2(z0) =
ˆ ∞

z0

ze−2z

[(1 + z0)e−z0 − (1 + z)e−z]
1
2

dz . (C15)

APPENDIX D: SURFACE TENSION CONTRIBUTION
IN FINITE REPULSION

We here report a derivation of the relation between the
second derivative of the interface ∂xxζ0 or ∂rrζ0 and the
minimum film width ζ0. This relation is obtained through a
procedure where we match the two approximate solutions at
the tip ζtip in Eq. (67), and far from the tip ζsing in Eq. (62).

1. 1D case

In 1D we proceed as follows. Integrating two times
Eq. (69a), we have

0 = x2

2De

uCz − A

2λ

(
ζ 2 − ζ 2

0

)
+ γ

[
ζ∂xxζ − ζ0∂xxζ0 − 1

2
(∂xζ )2

]
, (D1)

where we used the parity condition ∂xζ0 = 0 and the expansion
of Ũ [given for the exponential repulsion by Eq. (59)], up to
second order in ζ : Ũ ≈ A[−1 + ζ 2/(2λ2)].

Adding a perturbation δζ to ζsing = ω|x| given by Eq. (62a),
we have

ζfar = ζsing + δζ

with

ω =
(

uCz

DeA

) 1
2

λ .

We then insert this relation in Eq. (D1) to determine δζ far
from the tip. Neglecting the terms of smaller than δζ for large
x, we find

δζ = γ
− 1

2ω2 − ζ0∂xxζ0

A
λ2 ωx

. (D2)

We define x∗ as the value of x at which we match the
solutions ζsing and ζtip. We obtain two independent relations.
The first one accounts for the matching of the surface profiles
at x = x∗, leading to ωx∗ + δζ (x∗) = ζ0 + ∂xxζ0x

2
∗/2. The

second relation comes from the matching of the slopes ω +
∂xδζ (x)|x∗ = ∂xxζ0x∗. Combining the two relations, we obtain
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the following system of equations:

3

2
∂xxζ0x

2
∗ − 2ωx∗ + ζ0 = 0,

ωx∗ − γ

(
ω2

2
ζ0∂xxζ0

)
λ2

Aωx∗
= ζ0 + ∂xxζ0

2
x2

∗ . (D3)

2. 2D case

In the axisymmetric system (2D), we follow a similar proce-
dure. However, extra terms connected to the different expres-
sion of the curvature appear. Following the same steps as for the
derivation of Eq. (D1), we Eq. (69b) two times. Then, given the
parity condition and the expansion of Ũ for small ζ , we obtain

0 = r2

4De

uCz − A

2λ

(
ζ 2 − ζ 2

0

) + γ

[
ζ∂rrζ − 2ζ0∂rrζ0

− 1

2
(∂rζ )2 + ζ∂rζ

r
−
ˆ r

0
dr ′ (∂r ′ζ )2

r ′

]
. (D4)

To derive an explicit expression for the correction to ζsing,
we insert its expression Eq. (62b) plus a perturbation δζ in
Eq. (D4). Thus, Eq. (D4) becomes

0 = − A

λ2
ωrδζ − γ

[
(∂rrζ0)2 r2

∗
2

+ 2ζ0∂rrζ0

]

+ γ

[
1

2
ω2 − ω2 ln

( r

r∗

)
+ ω

δζ

r

+ 2ω

ˆ r

r∗
dr

∂rδζ

r
+ ωr∂rrδζ

]
, (D5)

where now in 2D

ω =
(

uCz

2DeA

) 1
2

λ .

Note that the integral term of Eq. (D4) was rewritten as follows:

ˆ r

0
dr

(∂rζ )2

r
=
ˆ r∗

0
dr

(∂rζtip)2

r
+
ˆ r

r∗
dr

(∂rζsing)2

r

= −γ (∂rrζ0)2 r2
∗
2

+ ω2 ln

(
r

r∗

)

+ 2ν

ˆ r

r∗
dr

∂rδζ

r
.

If in the matching procedure, for r � r∗, we keep only
dominant terms, as done above for the 1D case, we would
obtain δζ ≈ 1/r . Since this does not behave properly we make
a crude approximation and keep only one higher order term
ωδζ/r to account for higher order contributions in Eq. (D5)
(indeed, as r → r∗ the integral term vanishes and we expect the
other relevant term r∂rrδζ to be of the same order as ωδζ/r).
With these assumptions we find

δζ = γ

1
2ω2 − 2ζ0∂rrζ0 − ω2 ln r

r∗
− 1

2 (∂rrζ0)2r2
∗

A
λ2 ωr − γω 1

r

. (D6)

As before, to obtain the matching between the two solutions
ζtip and ζsing we use two conditions. First, we consider the
matching of the thicknesses ωr∗ + δζ (r∗) = ζ0 + ∂rrζ0r

2
∗/2.

A second relation accounts for the matching of the slopes
ω + ∂rδζ (r)|r∗ = ∂rrζ0r∗. Since in this case ∂rδζ (r) does not
diverge for r → 0, and since r∗ is assumed to be small, we

10-3
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10-1

10-5 10-4 10-3 10-2

ζ̄0

∂
r̄
r̄
ζ̄ 0

∂
x̄
x̄
ζ̄
,

FIG. 11. Curvature at the tip as a function of the tip-substrate gap
ζ̄0. Red circles: simulations result for the wedge contact (1D); blue
squares: simulations result for the axisymmetric conical contact (2D).
Sizes of the simulation boxes are L̄ = R̄ = 100; dashed red and blue
lines analytical prediction using the solution of Eq. (D7) and Eq. (D3),
respectively, using the the assumption Lc ≈ L, Rc ≈ R. The results
are in normalized units.

neglect the contribution ∂rζ |r∗ in the slope. This lead to the
following system of equations:

ωr∗ + γ

[
ω2

2
− 2ζ0∂rrζ0 − (∂rrζ0)2

2
r2
∗

](
A

λ2
ωr∗ − γ η

1

r∗

)−1

= ζ0 + ∂rrζ0
r2
∗
2

,

∂rrζ0r∗ = ω . (D7)

3. Numerical solution

Inserting the asymptotic analytical expression of the dis-
solution rate uCz, Eq. (61), we solved the linear systems of
Eqs. (D3) and (D7) using MINPACK routine [60]. We obtain
values of x∗ (r∗) and of ∂xxζ0 (∂rrζ0) for a given minimum
distance ζ0. The results, displayed in Fig. 11, are represented
by the dashed lines and compared with the simulation results.
In particular, we find (in normalized units) for ζ0 = 0, ∂x̄x̄ ζ̄0 ≈
0.0167 and ∂r̄r̄ ζ̄0 ≈ 0.0153.

APPENDIX E: BEYOND THE LINEARIZATION
OF THE GIBBS-THOMSON RELATION

A simple substitution allows one to include the effect of the
exponential term in the analysis of the contact profile in the
absence of surface tension:

U ′(ζ ) → kBT exp

[
U ′(ζ )

kBT

]
. (E1)

This leads to a different definition of Ũ from the relation

Ũ ′(ζ ) = ζU ′′(ζ ) exp

[
U ′(ζ )

kBT

]
. (E2)

The same procedure as that discussed in Sec. IV can then be
applied with this new expression for Ũ .
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For power-law potentials, this leads to an essential singu-
larity in Ũ when ζ → 0:

Ũ (ζ ) = ζkBT

⎡
⎣e

− Anζ−n−1

kB T −
E1+ 1

n+1

(
Anζ−n−1

kBT

)
n + 1

⎤
⎦ , (E3)

where

Em(z) =
ˆ ∞

1
dt

e−zt

tm
. (E4)

This essential singularity appears in the relation between uCz

and the minimum thickness ζ0 when ζ0 → 0:

uCz = 4De[Ũ (ζ0) − Ũ (∞)]. (E5)

In contrast, there is no significant change in the case
of an exponential potential. Indeed, the central property of
being finite when ζ0 → 0 is not affected by Eq. (E1). Thus,
the exponential potential again leads to a pointy shape, and
constant dissolution rate obeys Eq. (61). Moreover, the details
of the regularization of the tip due to surface tension can be
affected but we do not expect major changes.
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