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Construction of the multi-solitons for a generalized derivative nonlinear Schr'ódinger equation

Introduction

In this paper, we consider the following generalized derivative nonlinear Schrödinger equation:

i∂ t u + ∂ 2 x u + i|u| 2σ ∂ x u = 0, (1.1) 
where σ ∈ R + is a given constant and u : R t × R x → C. The equation (1.1) was studied in many works. In the special case σ = 1, local well-posedness, global well posedness, stability of solitary waves and stability of multi-solitons have been investigated. In [START_REF] Ozawa | On the nonlinear Schrödinger equations of derivative type[END_REF], Ozawa gave a sucient condition for global well posedness of (1.1) in the energy space by using a Gauge transformation to remove the derivative terms. In [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], Colin-Ohta showed that the equation has a two parameters family of solitary waves and proved the stability of these particular solutions by using variational methods. In [START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], Kwon-Wu gave a result on stability of solitary waves when the parameters are at the threshold between existence and non-existence. In [START_REF] Coz | Stability of multisolitons for the derivative nonlinear Schrödinger equation[END_REF], Le Coz-Wu proved stability of multi-solitons in the energy space under some conditions on the parameters of the composing solitons.

In the general case, the local well-posedness and global well-posedness of (1.1) was studied in [START_REF] Hayashi | Well-posedness for a generalized derivative nonlinear Schrödinger equation[END_REF] when the initial data is in the Sobolev space H 1 0 (Ω), where Ω is any unbounded interval of R.

In this work, Hayashi-Ozawa used an approximation argument. In [START_REF] Santos | Existence and uniqueness of solution for a generalized nonlinear derivative Schrödinger equation[END_REF], Santos proved the local well-posedness for small size initial data in weighted Sobolev spaces. The arguments used in this work follow parabolic regularization approach introduced by Kato [START_REF] Kato | Nonstationary ows of viscous and ideal uids in R 3[END_REF].

The equation (1.1) has a two parameters family of solitons. The stability of the solitons has attracted the attention of many researchers. In [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF], by using the abstract theory of Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], Liu-Simpson-Sulem proved that in the case σ ⩾ 2, the solitons of (1.1) are orbitally unstable; in the case 0 < σ < 1, they are orbitally stable and in the case σ ∈ (1, 2) they are orbitally stable if c < 2z 0 √ ω and orbitally unstable if c > 2z 0 √ ω for some constant z 0 ∈ (0, 1). In the critical case c = 2z 0 √ ω, Guo-Ning-Wu [START_REF] Guo | Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the critical frequency case[END_REF] proved that solitons are always orbitally unstable. In [START_REF] Bai | Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations[END_REF], Bai-Wu-Xue proved that when σ ⩾ 2, the solution is global and scattering when the initial data small in H s (R), 1 2 ⩽ s ⩽ 1. Moreover, the authors showed that when σ < 2, the scattering may not occur even under smallness conditions on the initial data. Therefore, in this model, the exponent σ ⩾ 2 is optimal for small data scattering. In [START_REF] Tang | Stability of the sum of two solitary waves for (gDNLS) in the energy space[END_REF], in the case σ ∈ (1, 2), Tang and Xu proved the stability of the sum of two solitary waves in the energy space using perturbation arguments, modulational analysis and an energy argument as in [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF][START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. In this chapter, we show the existence of multi-solitons in energy space in the case σ ⩾ 5

2 . Before stating the main result, we give some preliminaries on multi-solitons of (1.1).

As mentioned in [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF], the equation (1.1) admits a two-parameters family of solitary waves solutions given by

ψ ω,c (t, x) = φ ω,c (x -ct) exp i ωt + c 2 (x -ct) - 1 2σ + 2 x-ct -∞ φ 2σ ω,c (η) dη , (1.2) 
where ω > c 2 4 and

φ 2σ ω,c (y) = (σ + 1)(4ω -c 2 ) 2 √ ω cosh(σ √ 4ω -c 2 y) -c 2 √ ω
.

(1.

3)

The prole φ ω,c is a positive solution of ω,c (η) dη.

-∂ 2 y φ ω,c + ω - c 2 4 φ ω,c + c 2 |φ ω,c | 2σ φ ω,c - 2σ + 1 (2σ + 2) 2 |φ ω,c | 4σ φ ω,c = 0.
(1.6)

Clearly, we have ψ ω,c (x, t) = e iωt ϕ ω,c (x -ct).

(1.7) and ϕ ω,c solves

-∂ 2 y ϕ ω,c + ωϕ ω,c + ic∂ y ϕ ω,c -i|ϕ ω,c | 2σ ∂ y ϕ ω,c = 0, y ∈ R. (1.8) Let K ∈ N. For each 1 ⩽ j ⩽ K, let (ω j , c j , x j , θ j ) ∈ R 4 be parameters such that ω j > c 2 j 4 . Dene, for each j = 1, ..., K R j (t, x) = e iθj ψ ωj ,cj (t, x -x j )
and dene the multi-soliton prole by

R = K j=1 R j .
(1.9)

For convenience, dene h j = 4ω j -c 2 j , for each j = 1, ..., K. Our main result is the following.

Theorem 1.1. Let σ ⩾ 5 2 , K ∈ N * and for each 1 ⩽ j ⩽ K, (θ j , ω j , c j , x j ) be a sequence of parameters such that x j ∈ R, θ j ∈ R, c j ̸ = c k , for j ̸ = k. The multi-soliton prole R is given as in (1.9). There exists a certain positive constant C * such that if the parameters (ω j , c j ) satisfy

C * (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) ⩽ v * = inf j̸ =k h j |c j -c k |, (1.10) 
then there exists a solution u of (1.1) such that

∥u -R∥ H 1 ⩽ Ce -λt , ∀t ⩾ T 0 ,
for positive constants C, T 0 depending only on the parameters ω 1 , ..., ω K , c 1 , ..., c K and λ = 1 16 v * .

We have the following comment about the restriction σ ⩾ 5 2 .

Remark 1.2. The following inequality holds for σ ⩾ 2:

(a + b) 2(σ-2) -a 2(σ-2) ≲ b 2(σ-2) + ba 2(σ-2)-1
, for all a, b > 0.

(1.11)

The condition σ ⩾ 5 2 ensures that the order of b on the right hand side of (1.11) is larger than 1.

This is used in the proof of Lemma 3.3.

The condition (1.10) is an implicit condition on the parameters. Below, we show that for large, negative and enough separated velocities, the condition (1.10) holds.

Remark 1.3. We prove that there exist parameters (ω j , c j , θ j , x j ) for 1 ⩽ j ⩽ K such at the

condition (1.10) is satised. Let M > 0, h j > 0, d j < 0, for each 1 ⩽ j ⩽ K. We chose (c j , ω j ) = M d j , 1 4 (h 2 j + M 2 d 2 j
) . We verify that this choice satises the condition (1.10) for M large enough. Indeed, we see that c j < 0 and h j ≪ |c j | for M large enough. We have

φ 2σ ωj ,cj ≈ h 2 j 2 √ ω j cosh(σh j y) - cj 2 √ ωj ∂ x φ ωj ,cj ≈ h 2 j 2 √ ω j 1 2σ
-sinh(σh j y) cosh(σh j y) -

cj 2 √ ωj 1+ 1 2σ . Using | sinh(x)| ⩽ | cosh(x)| for all x ∈ R we have |∂ x φ ωj ,cj | ⩽ h 2 j 2 √ ω j 1 2σ 1 (cosh(σh j y) - cj 2 √ ωj ) 1 2σ ≲ |φ ωj ,cj |. Thus, ∥R j ∥ L ∞ L ∞ = ∥φ ωj ,cj ∥ L ∞ ≲ 2σ h 2 j |c j | ≪ 1 ∥∂ x R j ∥ L ∞ L ∞ = ∥∂ x ϕ ωj ,cj ∥ L ∞ L ∞ ≲ ∥∂ x φ ωj ,cj ∥ L ∞ + c j 2 φ ωj ,cj - 1 2σ + 2 φ 2σ+1 ωj ,cj L ∞ ≲ ∥φ ωj ,cj ∥ L ∞ + |c j |∥φ ωj ,cj ∥ L ∞ ≲ 2σ h 2 j |c j | + |c j | 2σ h 2 j |c j | . Hence, ∥R∥ L ∞ L ∞ ≲ j 2σ h 2 j |c j | ≲ 1 ∥∂ x R∥ L ∞ L ∞ ≲ j   2σ h 2 j |c j | + |c j | 2σ h 2 j |c j |   . Furthermore, ∥R j ∥ 2 L ∞ H 1 = ∥R j ∥ 2 L ∞ L 2 + ∥∂ x R j ∥ 2 L ∞ L 2 = ∥φ ωj ,cj ∥ 2 L 2 + ∥∂ x φ ωj ,cj ∥ 2 L 2 ≲ ∥φ ωj ,cj ∥ 2 L 2 ≲ h 2 j 2 √ ω j 1 σ 1 cosh(σh j y) 1 2σ 2 L 2 ≲ h 2 j 2 √ ω j 1 σ ∥e -h j 2 |y| ∥ 2 L 2 ≈ h 2 j 2 √ ω j 1 σ 1 h j ≲ h 1 σ j h -1 j = h 1 σ -1 j
, where we use h j ⩽ 2 √ ω j . Thus,

∥R∥ 2 L ∞ H 1 ≲ j h 1 σ -1 j
.

The condition (1.10) satises if the following estimate holds:

C *     1 + j h 1 σ -1 j     1 + j   2σ h 2 j |c j | + |c j | 2σ h 2 j |c j |       ⩽ inf j̸ =k h j |c j -c k |.
(1.12)

We see that the left hand side of (1.12) is order M 1-1 2σ and the right hand side of (1.12) is order M 1 . Hence, the condition (1.10) satises if we choose M large enough.

Our strategy of the proof of Theorem 1.1 is as follows. First, we dene φ, ψ based on u in such a way that φ and ψ satisfy a system of nonlinear Schrödinger equations without derivatives (see (2.3)). Let R be a multi-soliton prole which satises the assumptions of Theorem 1.1. Then R solves (1.1) up to a small perturbation. Let (h, k) be dened in a similar way as (φ, ψ) but replace u by R. We see that (h, k) solves (2.3) up to small perturbations. Setting φ = φ -h and ψ = ψ -k, we see that if u solves (1.1) then ( φ, ψ) solves a system and a relation between φ and ψ holds and vice versa. By using the Banach xed point theorem, we prove that there exists a solution ( φ, ψ) of this system which exponential decays in time on H 1 (R) for t large. Combining with the assumption (1.10), we can prove a relation between φ and ψ. Thus, we easily obtain the solution u of (1.1) satisfying the desired property. This chapter is organized as follows. In Section 2, we prove the existence of multi-solitons for the equation (1.1). In Section 3, we prove some technical results which are used in the proof of the main result Theorem 1.1. More precisely, we prove the exponential decay of perturbations in the equations of h, k (Lemma 3.1) and the existence of decaying solutions for the system of equations of φ, ψ (Lemma 3.3).

Before proving the main result, we introduce some notation used in this chapter.

Notation.

(1) We denote the Schrödinger operator as follows

L = i∂ t + ∂ 2
x .

(2) Given a time t ∈ R, the Strichartz space S([t, ∞)) is dened via the norm

∥u∥ S([t,∞)) = sup (q,r) admissible ∥u∥ L q t L r x ([t,∞)×R) .
We denote the dual space by N [t, ∞) = S([t, ∞)) * . Hence for any (q, r) admissible pair we have

∥u∥ N ([t,∞)) ⩽ ∥u∥ L q ′ t L r ′
x ([t,∞)×R) .

(

) For a, b ∈ R 2 , we denote |(a, b)| = |a| + |b|. (4) Let a, b > 0. 3 
We denote a ≲ b if a is smaller than b up to multiplication by a positive constant and denote a ≲ c b if a is smaller than b up to multiplication by a positive constant depending on c. Moreover, we denote a ≈ b if a equals to b up to multiplication by a positive constant.

Proof of the main result

In this section we give the proof of Theorem 1.1. We use the Banach xed point theorem and Strichartz estimates. We divide our proof in three steps.

Step 1. Preliminary analysis. Let u ∈ C(I, H 1 (R)) be a H 1 (R) solution of (1.1) on I. Consider the following transform:

φ(t, x) = exp(iΛ)u(t, x), (2.1) 
ψ = exp(iΛ)∂ x u = ∂ x φ - i 2 |φ| 2σ φ, (2.2) 
where

Λ = 1 2 x -∞ |u(t, y)| 2σ dy.
As in [6, section 4], using |u| = |φ| and Im(u∂ x u) = Im(φψ), we have

∂ t Λ = -σIm(|u| 2(σ-1) u∂ x u) + σIm x -∞ ∂ x (|u| 2(σ-1) u)∂ x u dy - 1 4 |u| 4σ .
Thus, using |u| = |φ| and Im(u∂ x u) = Im(φψ), we have

∂ t Λ = -σ|φ| 2(σ-1) Im(φψ) + σ x -∞ ∂ x (|u| 2(σ-1) )Im(u∂ x u) dx - 1 4 |φ| 4σ = -σ|φ| 2(σ-1) Im(φψ) + σ x -∞ ∂ x (|φ| 2(σ-1) )Im(φψ) dx - 1 4 |φ| 4σ .
Since u solves (1.1), we have

Lφ = L(exp(iΛ))u + exp(iΛ)Lu + 2∂ x (exp(iΛ))∂ x u = L(exp(iΛ))u + exp(iΛ)(Lu + i|u| 2σ u) = L(exp(iΛ))u = (i∂ t + ∂ 2 x )(exp(iΛ))u, = -exp(iΛ)∂ t Λ + ∂ x (exp(iΛ) i 2 |u| 2σ ) u = -φ∂ t Λ + exp(iΛ) -1 4 |u| 2σ + i 2 exp(iΛ)∂ x (|u| 2σ ) u = -φ∂ t Λ + φ - 1 4 |φ| 4σ + i 2 ∂ x (|φ| 2σ ) = σ|φ| 2(σ-1) φIm(φψ) -σφ x -∞ ∂ x (|φ| 2(σ-1) )Im(φψ) dx + 1 4 |φ| 4σ φ - 1 4 φ|φ| 4σ + iσ|φ| 2(σ-1) φRe(φ∂ x φ) = σ|φ| 2(σ-1) φ(Im(φψ) + iRe(φ∂ x φ)) -σφ x -∞ |φ| 2(σ-2) (σ -1)∂ x (|φ| 2 )Im(φψ) dx = σ|φ| 2(σ-1) φ(Im(φψ) + iRe(φψ)) -σ(σ -1)φ x -∞ |φ| 2(σ-2) 2Re(φψ)Im(φψ) dx = iσ|φ| 2(σ-1) φ 2 ψ -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy.
As in [6, section 4], we have

Lψ = L(exp(iΛ)∂ x u) = exp(iΛ) - i 2 ∂ x (|u| 2σ )∂ x u + σ|u| 2(σ-1) Im(u∂ x u)∂ x u -σ x -∞ Im(∂ x (|u| 2(σ-1) u)∂ x u) dy∂ x u = - i 2 ∂ x (|φ| 2σ )ψ + σ|φ| 2(σ-1) Im(φψ)ψ -σ x -∞ ∂ x (|u| 2(σ-1) )Im(u∂ x u) dyψ = - i 2 ∂ x (|φ| 2σ )ψ + σ|φ| 2(σ-1) ψIm(φψ) -σψ x -∞ ∂ x (|φ| 2(σ-1) )Im(φψ) dy = σ|φ| 2(σ-1) ψ(Im(φψ) -iRe(φ∂ x φ)) -σψ x -∞ (σ -1)|φ| 2(σ-1) 2Re(φ∂φ)Im(φψ) dy = σ|φ| 2(σ-1) ψ(Im(φψ) -iRe(φψ)) -σ(σ -1)ψ x -∞ |φ| 2(σ-2) 2Re(φψ)Im(φψ)Im(φψ) dy = -iσ|φ| 2(σ-1) ψ 2 φ -σ(σ -1)ψ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy. Thus, if u solves (1.1) then (φ, ψ) solves Lφ = iσ|φ| 2(σ-1) φ 2 ψ -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy, Lψ = -iσ|φ| 2(σ-1) ψ 2 φ -σ(σ -1)ψ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ) dy. (2.3)
For convenience, we dene

P (φ, ψ) = iσ|φ| 2(σ-1) φ 2 ψ -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ), (2.4) Q(φ, ψ) = -iσ|φ| 2(σ-1) ψ 2 φ -σ(σ -1)ψ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ). (2.5)
Let R be the multi-soliton prole satisfying the assumption of Theorem 1.1. Dene h, k by

h(t, x) = exp i 2 x -∞ |R(t, x)| 2σ dy R(t, x), k = ∂ x h - i 2 |h| 2σ h. Since R j solves (1.1) for each 1 ⩽ j ⩽ K, we have LR + i|R| 2σ R x = - j i|R j | 2σ R jx + i|R| 2σ R x .
(2.6) By Lemma 3.1 for t ≫ T 0 large enough we have

- j i|R j | 2σ R jx + i|R| 2σ R x H 2 ⩽ e -λt .
(2.7) Thus, we rewrite (2.6) as follows:

LR + i|R| 2σ R x = e -λt v, (2.8) 
where v = e λt (-

j i|R j | 2σ R jx + i|R| 2σ R x ).
(2.9)

By an elementary calculation, we have

Lh = iσ|h| 2(σ-1) h 2 k -σ(σ -1)h x -∞ |h| 2(σ-2) Im(k 2 h 2 ) dy + e -λt m(t, x), Lk = -iσ|h| 2(σ-1) k 2 h -σ(σ -1)k x -∞ |h| 2(σ-2) Im(k 2 h 2 )
dy + e -λt n(t, x).

(2.10)

where

m = exp i 2 x -∞ |R| 2σ dy v -σh x -∞ |R| 2(σ-1) Im(Rv) dy, (2.11) n = exp i 2 x -∞ |R| 2σ dy e -λt (∂ x v -σ∂ x R x -∞
|R| 2(σ-1) Im(Rv) dy).

(2.12)

Since v is uniformly bounded in time in H 2 (R), we see that m, n are uniformly bounded in time in H 1 (R). Let φ = φ -h and ψ = ψ -k. Then ( φ, ψ) solves:

L φ = P (φ, ψ) -P (h, k) -e -λt m(t, x), L ψ = Q(φ, ψ) -Q(h, k) -e -λt n(t, x).
(2.13)

Set η = ( φ, ψ), W = (h, k) and f (φ, ψ) = (P (φ, ψ), Q(φ, ψ) and H = e -λt (m, n).
We nd a solutions of (2.13) in Duhamel form:

η(t) = i ∞ t [f (W + η) -f (W ) + H](s) ds, (2.14) 
where S(t) denote the Schrödinger group. Moreover, since

ψ = ∂ x φ -i 2 |φ| 2σ φ, we have ψ = ∂ x φ - i 2 (| φ + h| 2σ ( φ + h) -|h| 2σ h). (2.15) 
Step 2. Existence of a solution of the system From Lemma 3.3, there exists T * ≫ 1 such that for T 0 ⩾ T * there exists a unique solution η of (2.13) dened on [T 0 , T * ) such that

∥η∥ X := e λt ∥η∥ S([t,∞))×S([t,∞)) + e λt ∥∂ x η∥ S([t,∞))×S([t,∞)) ⩽ 1 ∀t ⩾ T 0 .
(2.16)

Thus, for all t ⩾ T 0 , we have

∥ φ∥ H 1 + ∥ ψ∥ H 1 ≲ e -λt .
(2.17)

Step 3. Existence of a multi-soliton train

We prove that the solution η = ( φ, ψ) of (2.13) satises the relation (2.15). Set φ = φ + h, ψ = ψ + k and v = ∂ x φ -i 2 |φ| 2 φ and ṽ = v -k. Since ( φ, ψ) solves (2.13) and (h, k) solves (2.10), we have (φ, ψ) solves (2.3). Furthermore,

Lv = ∂ x Lφ - i 2 L(|φ| 2σ φ). (2.18) Moreover, L(|φ| 2σ φ) = (i∂ t + ∂ 2 x )(φ σ+1 φ σ ) = i∂ t (φ σ+1 φ σ ) + ∂ 2 x (φ σ+1 φ σ ) = i(σ + 1)|φ| 2σ ∂ t φ + iσ|φ| 2(σ-1) φ 2 ∂ t φ + ∂ x ((σ + 1)|φ| 2σ ∂ x φ + σ|φ| 2(σ-1) φ 2 ∂ x φ) = i(σ + 1)|φ| 2σ ∂ t φ + iσ|φ| 2(σ-1) φ 2 ∂ t φ + (σ + 1) ∂ 2 x φ|φ| 2σ + ∂ x φ∂ x (|φ| 2σ ) + σ ∂ 2 x φ|φ| 2(σ-1) φ 2 + (σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ + (σ -1)|φ| 2(σ-2) φ 3 (∂ x φ) 2 = (σ + 1)|φ| 2σ (i∂ t φ + ∂ 2 x φ) + σ|φ| 2(σ-1) φ 2 (i∂ t φ + ∂ 2 x φ) + (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ + σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 = (σ + 1)|φ| 2σ Lφ + σ|φ| 2(σ-1) φ 2 (-Lφ + 2∂ 2 x φ) + (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ + σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 .
Combining with (2.18) and using (2.3), we have

Lv = ∂ x Lφ - i 2 L(|φ| 2σ φ) = ∂ x Lφ - i 2 (σ + 1)|φ| 2σ Lφ + σ|φ| 2(σ-1) φ 2 (-Lφ + 2∂ 2 x φ) +(σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ + σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 = ∂ x (P (φ, ψ) -P (φ, v)) + ∂ x P (φ, v) - i 2 (σ + 1)|φ| 2σ (P (φ, ψ) -P (φ, v)) - i 2 (σ + 1)|φ| 2σ P (φ, v) + i 2 σ|φ| 2(σ-1) φ 2 (P (φ, ψ) -P (φ, v)) + i 2 σ|φ| 2(σ-1) φ 2 P (φ, v) -iσ|φ| 2(σ-1) φ 2 ∂ 2 x φ - i 2 (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ +σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 = ∂ x (P (φ, ψ) -P (φ, v)) - i 2 (σ + 1)|φ| 2σ (P (φ, ψ) -P (φ, v)) + i 2 σ|φ| 2(σ-1) φ 2 (P (φ, ψ) -P (φ, v)) + G(φ, v),
where G(φ, v) contains the remaining ingredients and G(φ, v) only depends on φ and v:

G(φ, v) = ∂ x P (φ, v) - i 2 (σ + 1)|φ| 2σ P (φ, v) + i 2 σ|φ| 2(σ-1) φ 2 P (φ, v) -iσ|φ| 2(σ-1) φ 2 ∂ 2 x φ - i 2 (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ +σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 . (2.19)
As the calculations of Lψ in the step 1, noting that the role of v is similar to the role of ψ in the process of calculation, we have G(φ, v) = Q(φ, v) (see Lemma 3.2 for a detailed proof ). Hence,

Lψ -Lv = Q(φ, ψ) -Q(φ, v) -∂ x (P (φ, ψ) -P (φ, v)) + i 2 (σ + 1)|φ| 2σ (P (φ, ψ) -P (φ, v)) - i 2 σ|φ| 2(σ-1) φ 2 (P (φ, ψ) -P (φ, v)).
Thus,

L ψ -Lṽ = Lψ -Lv = Q(φ, ψ + k) -Q(φ, ṽ + k) -∂ x (P (φ, ψ + k) -P (φ, ṽ + k) + i 2 (σ + 1)|φ| 2σ (P (φ, ψ + k) -P (φ, ṽ + k)) - i 2 σ|φ| 2(σ-1) φ 2 (P (φ, ψ + k) -P (φ, ṽ + k)).
(2.20)

Multiplying both side of (2.20) by ψ -ṽ, taking imaginary part and integrating over space with integration by parts we obtain 

1 2 ∂ t ∥ ψ -ṽ∥ 2 L 2 = Im R (Q(φ, ψ + k) -Q(φ, ṽ + k))( ψ -ṽ) dx (2.21) -Im R ∂ x (P (φ, ψ + k) -P (φ, ṽ + k))( ψ -ṽ) dx (2.22) + (σ + 1)Im R i 2 |φ| 2σ (P (φ, ψ + k) -P (φ, ṽ + k))( ψ -ṽ) dx (2.23) -σIm R i 2 |φ| 2(σ-1) φ 2 (P (φ, ψ + k) -P (φ, ṽ + k))( ψ -ṽ) dx. ( 2 
|A| ≲ R (Q(φ, ψ + k) -Q(φ, ṽ + k))( ψ -ṽ) dx ≲ R |φ| 2(σ-1) φ(( ψ + k) 2 -(ṽ + k) 2 )( ψ -ṽ) dx + R ( ψ + k) x -∞ |φ| 2(σ-2) Im(( ψ + k) 2 φ 2 ) dy -(ṽ + k) x -∞ |φ| 2(σ-2) Im((ṽ + k) 2 φ 2 ) dy ( ψ -ṽ) dx ≲ R |φ| 2(σ-1) φ(( ψ + k) 2 -(ṽ + k) 2 )( ψ -ṽ) dx + R ( ψ -ṽ) x -∞ |φ| 2(σ-2) Im(( ψ + k) 2 φ 2 ) dy ( ψ -ṽ) dx + R (ṽ + k) x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy ( ψ -ṽ) dx ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 x -∞ |φ| 2(σ-2) Im(( ψ + k) 2 φ 2 ) dy L ∞ x + ∥ ψ -ṽ∥ L 2 ∥ṽ + k∥ L 2 x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy L ∞ x ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2(σ-1) ( ψ + k) 2 ∥ L 1 x + ∥ ψ -ṽ∥ L 2 ∥ṽ + k∥ L 2 ∥φ 2(σ-1) (( ψ + k) 2 -(ṽ + k) 2 )∥ L 1 ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2(σ-1) ( ψ + k) 2 ∥ L 1 + ∥ ψ -ṽ∥ 2 L 2 ∥ṽ + k∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 ≲ ∥ ψ -ṽ∥ 2 L 2 K 1 , (2.25) 
where,

K 1 := ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥φ 2(σ-1) ( ψ + k) 2 ∥ L 1 + ∥ṽ + k∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 . Furthermore, |B| ≲ R ∂ x (|φ| 2(σ-1) φ 2 ( ψ -ṽ))( ψ -ṽ) dx + R ∂ x φ x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy ( ψ -ṽ) dx ≲ R ∂ x (|φ| 2(σ-1) φ 2 )( ψ -ṽ) 2 dx + |φ| 2(σ-1) φ 2 1 2 ∂ x (( ψ -ṽ) 2 ) dx (2.26) + R ∂ x φ x -∞ |φ| 2(σ-2) Im(φ 2 ( ψ -ṽ)( ψ + ṽ + 2k)) dy( ψ -ṽ) dx + R φ|φ| 2(σ-2) Im(φ 2 ( ψ -ṽ)( ψ + ṽ + 2k))( ψ -ṽ) dx .
By using integration by parts for the second term of (2.26) and using Hölder inequality we have

|B| ≲ ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥ x -∞ |φ| 2(σ-2) Im(φ 2 ( ψ -ṽ)( ψ + ṽ + 2k)) dy∥ L ∞ x ∥ ψ -ṽ∥ L 2 + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ ≲ ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥ ψ -ṽ∥ L 2 ∥φ 2(σ-1) ( ψ -ṽ)( ψ + ṽ + 2k)∥ L 1 x (2.27) + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ ≲ ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥ ψ -ṽ∥ 2 L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ = ∥ ψ -ṽ∥ 2 L 2 K 2 , (2.28) 
where

K 2 := ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 + ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ .
Using (2.4), we have

|C| ≲ R |φ| 2σ |φ| 2(σ-1) φ 2 ( ψ -ṽ) 2 dx + R |φ| 2σ φ x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy( ψ -ṽ) dx ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ L 2 ∥φ 2σ+1 ∥ L 2 ∥ x -∞ |φ| 2(σ-2) Im(φ 2 ( ψ -ṽ)( ψ + ṽ + 2k)) dy∥ L ∞ x ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ L 2 ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ -ṽ)( ψ + ṽ + 2k)∥ L 1 ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 = ∥ ψ -ṽ∥ 2 L 2 K 3 , (2.29) 
where

K 3 := ∥φ 4σ ∥ L ∞ + ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 .
Now, we give an estimate for D. We have

|D| ≲ R |φ| 2(σ-1) φ 2 |φ| 2(σ-1) φ 2 ( ψ -ṽ)( ψ -ṽ) dx + R |φ| 2(σ-1) φ 2 φ x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy( ψ -ṽ) dx ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ L 2 ∥φ 2σ+1 ∥ L 2 ∥ x -∞ |φ| 2(σ-2) Im(φ 2 (( ψ + k) 2 -(ṽ + k) 2 )) dy∥ L ∞ x ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ L 2 ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ -ṽ)( ψ + ṽ + 2k)∥ L 1 ≲ ∥ ψ -ṽ∥ 2 L 2 ∥φ 4σ ∥ L ∞ + ∥ ψ -ṽ∥ 2 L 2 ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 = ∥ ψ -ṽ∥ 2 L 2 K 4 , (2.30) 
where

K 4 := ∥φ 4σ ∥ L ∞ + ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 .
Combining (2.25), (2.28), (2.29) and (2.30), we have

∂ t ∥ ψ -ṽ∥ 2 L 2 ≲ ∥ ψ -ṽ∥ 2 L 2 (K 1 + K 2 + K 3 + K 4 ).
Using the Grönwall inequality, we have

∥ ψ(t) -ṽ(t)∥ 2 L 2 ≲ ∥ ψ(N ) -ṽ(N )∥ 2 L 2 exp N t (K 1 + K 2 + K 3 + K 4 ) ds ⩽ e -2λN exp N t (K 1 + K 2 + K 3 + K 4 ) ds .
(2.31)

Now, we try to estimate K 1 + K 2 + K 3 + K 4 in term of R. When we have this kind of estimate, we will use the assumption (1.10) to obtain that ψ = ṽ. We have

N t (K 1 + K 2 + K 3 + K 4 ) ds = N t ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥φ 2(σ-1) ( ψ + k) 2 ∥ L 1 + ∥ṽ + k∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 ds (2.32) + N t ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 + ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ ds (2.33) + N t ∥φ 4σ ∥ L ∞ + ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 ds (2.34) + N t ∥φ 4σ ∥ L ∞ + ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 ds (2.35)
Using (2.16) and (2.17), we have 

∥φ∥ L ∞ ⩽ ∥ φ∥ L ∞ + ∥h∥ L ∞ ≲ 1 + ∥h∥ L ∞ (2.36) ∥φ∥ L 2 ⩽ ∥ φ∥ L 2 + ∥h∥ L 2 ≲ 1 + ∥h∥ L 2 (2.37) ∥ψ∥ L ∞ ≲ 1 (2.
|Z 1 | ≲ ∥φ∥ 3 L 4 (t,N )L ∞ ∥φ∥ 2(σ-2) L ∞ L ∞ ∥ ψ + ṽ + 2k∥ L 4 (t,N )L ∞ + (N -t)∥φ∥ 2(σ-1) L ∞ L ∞ (∥ ψ∥ L ∞ L 2 + ∥k∥ L ∞ L 2 ) 2 + ∥ṽ + k∥ L 4 3 (t,N )L 2 ∥φ∥ L ∞ L 2 ∥φ∥ 2(σ-1) L ∞ L ∞ (∥ ψ + ṽ∥ L 4 (t,N )L ∞ + ∥k∥ L 4 (t,N )L ∞ ) ≲ (N -t) 3 4 ∥φ∥ 2σ-1 L ∞ L ∞ (1 + ∥k∥ L ∞ L ∞ (N -t) 1 4 
)

+ (N -t)(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥k∥ 2 L ∞ L 2 ) + (N -t) 3 4 (1 + ∥k∥ L ∞ L 2 )(1 + ∥h∥ L ∞ L 2 )(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + (N -t) 1 4 ∥k∥ L ∞ L ∞ ) ≲ (N -t)∥k∥ L ∞ L ∞ (1 + ∥h∥ 2σ-1 L ∞ L ∞ ) + (N -t)(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥k∥ 2 L ∞ L 2 ) + (N -t)∥k∥ L ∞ L ∞ (1 + ∥k∥ L ∞ L 2 )(1 + ∥h∥ L ∞ L 2 )(1 + ∥h∥ 2(σ-1) L ∞ L ∞ ) := (N -t)W 1 (h, k).
Similarly, for N ≫ t, we have

|Z 2 | ≲ ∥∂ x φφ 2σ-1 ∥ L 1 (t,N )L ∞ + (N -t)∥∂ x φ∥ L ∞ (t,N )L 2 ∥φ∥ 2(σ-1) L ∞ L ∞ ∥ ψ + ṽ + k∥ L ∞ (t,N )L 2 + (N -t) 3 4 ∥φ∥ 2σ-1 L ∞ L ∞ (∥ ψ + ṽ∥ L 4 (t,N )L ∞ + ∥k∥ L 4 (t,N )L ∞ ) ≲ (N -t) 3 4 (∥∂ x φ∥ L 4 (t,N )L ∞ + ∥∂ x h∥ L 4 (t,N )L ∞ )∥φ∥ 2σ-1 L ∞ L ∞ + (N -t)(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥k∥ L ∞ L 2 ) + (N -t) 3 4 (1 + ∥h∥ 2σ-1 L ∞ L ∞ )(1 + (N -t) 1 4 ∥k∥ L ∞ L ∞ ) ≲ (N -t)∥∂ x h∥ L ∞ L ∞ (1 + ∥h∥ 2σ-1 L ∞ L ∞ ) + (N -t)(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥k∥ L ∞ L 2 ) + (N -t)∥k∥ L ∞ L ∞ (1 + ∥h∥ 2σ-1 L ∞ L ∞ ) := (N -t)W 2 (h, k),
and

|Z 3 | = |Z 4 | ≲ (N -t)(∥ φ∥ L ∞ L ∞ + ∥h∥ L ∞ L ∞ ) 4σ + (N -t)∥φ∥ L ∞ L 2 ∥φ∥ 2σ L ∞ L ∞ ∥φ∥ 2(σ-1) L ∞ L ∞ (∥ ψ + ṽ∥ L ∞ L 2 + ∥k∥ L ∞ L 2 ) ≲ (N -t)(1 + ∥h∥ 4σ L ∞ L ∞ ) + (N -t)(1 + ∥h∥ L ∞ L 2 )(1 + ∥h∥ 4σ-2 L ∞ L ∞ )(1 + ∥k∥ L ∞ L 2 ) := (N -t)W 3 (h, k).
Hence, from (2.31), we have

∥ ψ (t) -ṽ (t)∥ 2 L 2 ≲ e -2λN exp N t (K 1 + K 2 + K 3 + K 4 ) ds ≲ e -2λN exp((N -t)(W 1 (h, k) + W 2 (h, k) + W 3 (h, k))) (2.39)
The above estimate is not enough explicit. As said above, we would like to estimate the right hand side of (2.39) in terms of R. Noting that |h| = |R| and |k| = |∂ x R|, we have

W 1 (h, k) = ∥∂ x R∥ L ∞ L ∞ (1 + ∥R∥ 2σ-1 L ∞ L ∞ ) + (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥∂ x R∥ 2 L ∞ L 2 ) + ∥∂ x R∥ L ∞ L ∞ (1 + ∥∂ x R∥ L ∞ L 2 )(1 + ∥R∥ L ∞ L 2 )(1 + ∥R∥ 2(σ-1) L ∞ L ∞ ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ ) [∥∂ x R∥ L ∞ L ∞ (1 + ∥R∥ L ∞ L ∞ ) + (1 + ∥∂ x R∥ L ∞ L 2 ) +∥∂ x R∥ L ∞ L ∞ (1 + ∥∂ x R∥ L ∞ L 2 )(1 + ∥R∥ L ∞ L 2 )] ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )× × ∥∂ x R∥ L ∞ L ∞ (1 + ∥R∥ L ∞ H 1 ) + (1 + ∥R∥ 2 L ∞ H 1 ) + ∥∂ x R∥ L ∞ L ∞ (1 + ∥R∥ 2 L ∞ H 1 ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ ).
Similarly, by noting that |∂ x h| ⩽ |k| + |h| 2σ+1 , we have

W 2 (h, k) ≲ (∥k∥ L ∞ L ∞ + ∥h∥ 2σ+1 L ∞ L ∞ )(1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥h∥ L ∞ L ∞ ) + (1 + ∥h∥ 2(σ-1) )(1 + ∥k∥ L ∞ L 2 ) + ∥k∥ L ∞ L ∞ (1 + ∥h∥ 2(σ-1) L ∞ L ∞ )(1 + ∥h∥ L ∞ L ∞ ) ≲ (1 + ∥h∥ 2(σ-1) )× × (∥k∥ L ∞ L ∞ + ∥h∥ 2σ+1 L ∞ L ∞ )(1 + ∥h∥ L ∞ L ∞ ) +(1 + ∥k∥ L ∞ L 2 ) + ∥k∥ L ∞ L ∞ (1 + ∥h∥ L ∞ L ∞ )] ≲ (1 + ∥h∥ 2(σ-1) )× × (1 + ∥h∥ L ∞ L ∞ )(∥k∥ L ∞ L ∞ + ∥h∥ 2σ+1 L ∞ L ∞ ) + (1 + ∥k∥ L ∞ L 2 ) = (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )× × (1 + ∥R∥ L ∞ L ∞ )(∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) + (1 + ∥∂ x R∥ L ∞ L 2 ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ),
and

W 3 (h, k) = (1 + ∥R∥ 4σ L ∞ L ∞ ) + (1 + ∥R∥ L ∞ L 2 )(1 + ∥R∥ 4σ-2 L ∞ L ∞ )(1 + ∥∂ x R∥ L ∞ L 2 ) ≲ (1 + ∥R∥ 4σ-2 L ∞ L ∞ ) (1 + ∥R∥ 2 L ∞ L ∞ ) + (1 + ∥R∥ L ∞ L 2 )(1 + ∥∂ x R∥ L ∞ L 2 ) ≲ (1 + ∥R∥ 4σ-2 L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 ).
Combining the above estimates, we have

W 1 (h, k) + W 2 (h, k) + W 3 (h, k) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) + (1 + ∥R∥ 4σ-2 L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) + (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2σ L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 ) ≲ (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ). Thus, there exists a positive constant C 0 such that W 1 (h, k) + W 2 (h, k) + W 3 (h, k) ⩽ C 0 (1 + ∥R∥ 2(σ-1) L ∞ L ∞ )(1 + ∥R∥ 2 L ∞ H 1 )(1 + ∥∂ x R∥ L ∞ L ∞ + ∥R∥ 2σ+1 L ∞ L ∞ ) .
Let C * = 16C 0 . Using the assumption (1.10), we have

W 1 (h, k) + W 2 (h, k) + W 3 (h, k) ⩽ v * 16 = λ,
for t large enough. Thus, by (2.39), we have Remark 2.1. In the case σ = 1, the integrals in (2.3) disappear. In the case, σ = 2, the integrals

∥ ψ(t) -ṽ(t)∥ 2 L 2 ⩽ e -2λN
(2.3) reduce into x -∞ Im(ψ 2 φ 2
) dy, we do not need to use the inequality (1.11). Thus, by similar arguments as in the proof of Theorem 1.1 we may prove that there exist multi-solitons solutions of (1.1) when σ = 1 or σ = 2.

3. Some technical lemmas 3.1. Properties of solitons. In this section, we give the proof of (2.7). We have the following result.

Lemma 3.1. There exist C > 0 and a constant λ > 0 such that for t > 0 large enough, the estimate (2.7) uniformly holds in time.

Proof. First, we need some estimates on the prole. We have

|R j (t, x)| = |ψ ωj ,cj (t, x)| = |ϕ ωj ,cj (x -c j t)| = |φ ωj ,cj (x -c j t)| ≈   4ω j -c 2 j 2 √ ω j cosh(σh j (x -c j t)) - cj 2 √ ωj   1 2σ ≲   4ω j -c 2 j 2 √ ω j cosh(σh j (x -c j t)) - |cj | 2 √ ωj cosh(σh j (x -c j t))   1 2σ ≲ 4ω j -c 2 j (2 √ ω j -|c j |) cosh(σh j (x -c j t)) 1 2σ ≲ 2 √ ω j + |c j | cosh(σh j (x -c j t)) 1 2σ ≲ ωj ,|cj | e -h j 2 |x-cj t| , Furthermore, ∂ x φ ωj ,cj (y) ≈ h 2 j 2 √ ω j 1 2σ
-sinh(σh j y)

cosh(σh j y) - cj √ ωj 1+ 1 2σ . Thus, |∂ x φ ωj ,cj (y)| ≲ h 2 j 2 √ ω j 1 2σ | sinh(σh j y)| 1 - |cj | √ ωj 1+ 1 2σ cosh(σh j y) 1+ 1 2σ ≲ ωj ,|cj | 1 cosh(σh j y) 1 2σ ≲ ωj ,|cj | e -h j 2 |y| ,
Using the above estimates, we have

|∂ x R j (t, x)| = |∂ x ψ ωj ,cj (t, x)| = |∂ x ϕ ωj ,cj (x -c j t)| = |∂ x φ ωj ,cj (x -c j t) + iφ ωj ,cj (x -c j t)∂ x θ ωj ,cj (x -c j t)| ≲ |∂ x φ ωj ,cj (x -c j t)| + |φ ωj ,cj (x -c j t)||∂ x θ ωj ,cj (x -c j t)| ≲ ωj ,|cj | |∂ x φ ωj ,cj (x -c j t)| + e -h j 2 |x-cj t| ≲ ωj ,|cj | e -h j 2 |x-cj t| .
By similar arguments, we have

|∂ 2 x R j (t, x)| + |∂ 3 x R j (t, x)| ≲ ωj ,|cj | e -h j 2 |x-cj t| ,
For convenience, we set

χ = -i|R| 2σ ∂ x R + iΣ j |R j | 2σ ∂ x R j , f (R, R, ∂ x R) = i|R| 2σ ∂ x R, g(R, R, ∂ x R, ∂ x R, ∂ 2 x R) = i∂ x (|R| 2σ ∂ x R), r(R, ∂ x R, .., ∂ 3 x R, ∂ x R, ∂ 2 x R) = i∂ 2 x (|R| 2σ ∂ x R). Fix t > 0, for each x ∈ R, choose m = m(x) ∈ {1, 2, ..., K} so that |x -c m t| = min j |x -c j t|. For j ̸ = m we have |x -c j t| ⩾ 1 2 (|x -c j t| + |x -c m t|) ⩾ 1 2 |c j t -c m t| = t 2 |c j -c m |.
Thus, we have

|(R -R m )(t, x)| + |∂ x (R -R m )(t, x)| + |∂ 2 x (R -R m )(t, x)| + |∂ 3 x (R -R m )(t, x)| ⩽ j̸ =m (|R j (t, x)| + |∂ x R j (t, x)| + |∂ 2 x R j (t, x)| + |∂ 3 x R j (t, x)|) ≲ ω1,..,ω K ,|c1|,..,|c K | δ m (t, x) := j̸ =m e -h j 2 |x-cj t| . Recall that v * = inf j̸ =k h j |c j -c k |.
We have

|(R -R m )(t, x)| + |∂ x (R -R m )(t, x)| + |∂ 2 x (R -R m )(t, x)| + |∂ 3 x (R -R m )(t, x)| ≲ δ m (t, x) ≲ e -1 4 v * t .
We see that f, g, r are polynomials in R,

∂ x R, ∂ 2 x R, ∂ 3 x R, ∂ x R and ∂ 2 x R. Denote A = sup |u|+|∂xu|+|∂ 2 x u|+|∂ 3 x u|⩽ j ∥Rj ∥ H 4 (|df | + |dg| + |dr|).
We have

|χ| + |∂ x χ| + |∂ 2 x χ| ⩽ |f (R, R, ∂ x R) -f Rm,∂xRm,Rm | + |g(R, R, ∂ x R, ..) -g(R m , R m , ∂ x R m , ..)| + |r(R, ∂ x R, .., ∂ 3 x R, R, ..) -r(R m , ∂ x R m , .., ∂ 3 x R m , R m , ..)| + Σ j̸ =m (f (R j , R j , ∂ x R j ) + g(R j , ∂ x R j , ∂ 2 x R j , R j , ∂ x R j ) + r(R j , ..., ∂ 3 x R j , R j , ..., ∂ 2 x R j )) ≲ A(|R -R m | + |∂ x (R -R m )| + |∂ 2 x (R -R m )| + |∂ 3 x (R -R m )|) + AΣ j̸ =m (|R j | + |∂ x R j | + |∂ 2 x R j | + |∂ 3 x R j |) ≲ 2AΣ j̸ =m (|R j | + |∂ x R j | + |∂ 2 x R j | + |∂ 3 x R j |) ≲ 2Aδ m (t, x). In particular, ∥χ∥ W 2,∞ ≲ e -1 4 v * t . (3.1) 
Moreover,

∥χ∥ W 2,1 ≲ Σ j (∥|R j | 2σ ∂ x R j ∥ L 1 + ∥∂ x (|R j | 2σ ∂ x R j )∥ L 1 + ∥∂ 2 x (|R j | 2σ ∂ x R j )∥ L 1 ) ≲ Σ j (∥R j ∥ ( H 1 2σ + 1) + ∥R j ∥ 2σ+1 H 2 + ∥R j ∥ 2σ+1 H 3 ) < ∞.
Thus, using Hölder inequality we obtain

∥χ∥ H 2 ≲ ω1,..,ω K ,|c1|,..,|c K | e -1 8 v * t . It follows that if t ≫ max{ω 1 , ..., ω K , |c 1 |, ..., |c K |} is large enough then ∥χ∥ H 2 ⩽ e -1 16 v * t .
Setting λ = 1 16 v * , we obtain the desired result. □

3.2. Proof G(φ, v) = Q(φ, v).
Let G(φ, v) be dened as in (2.19) and Q be dened as in (2.5).

Then we have the following result.

Lemma 3.2. Let v = ∂ x φ -i 2 |φ| 2 φ.
Then the following equality holds:

G(φ, v) = Q(φ, v).
Proof. We have

P (φ, v) = iσ|φ| 2(σ-1) φ 2 v -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy, Q(φ, v) = -iσ|φ| 2(σ-1) v 2 φ -σ(σ -1)v x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy G(φ, v) = ∂ x P (φ, v) - i 2 (σ + 1)|φ| 2σ P (φ, v) + i 2 σ|φ| 2(σ-1) φ 2 P (φ, v) -iσ|φ| 2(σ-1) φ 2 ∂ 2 x φ - i 2 (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ +σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 .
The term contains x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy in the expression of G(φ, v) is the following.

-σ(σ -1)

∂ x φ x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy - i 2 (σ + 1)|φ| 2σ (-1)σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy + i 2 σ|φ| 2(σ-1) φ 2 (-1)σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy = -σ(σ -1) x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy ∂ x φ - i 2 (σ + 1)|φ| 2σ φ + i 2 σ|φ| 2σ φ = -σ(σ -1) x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy ∂ x φ - i 2 |φ| 2σ φ = -σ(σ -1)v x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy,
which equals to the term contains x -∞ |φ| 2(σ-2) Im(v 2 φ 2 ) dy in the expression of Q(φ, v). We only need to check the equality of the remaining terms. The remaining terms of G(φ, v) is the following. 

iσ∂ x (|φ| 2(σ-1) φ 2 v) -σ(σ -1)|φ| 2(σ-2) φIm(v 2 φ 2 ) - i 2 (σ + 1)|φ| 2σ (iσ|φ| 2(σ-1) φ 2 v) + i 2 σ|φ| 2(σ-1) φ 2 (-iσ|φ| 2(σ-1) φ 2 v) -iσ|φ| 2(σ-1) φ 2 ∂ 2 x φ (3.2) - i 2 (σ + 1)∂ x φ∂ x (|φ| 2σ ) + σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ +σ(σ -1)(∂ x φ) 2 |φ| 2(σ-2) φ 3 . (3.3) Noting that ∂ x (|φ| 2 ) = 2Re(vφ) and v = ∂ x φ -i 2 |φ| 2σ φ, we have the term (3.2) = iσ∂ x (|φ| 2(σ-1) )φ 2 v + iσ|φ| 2(σ-1) 2φ∂ x φv + iσ|φ| 2(σ-1) φ 2 ∂ x v -σ(σ -1)|φ| 2(σ-2) φ2Re(vφ)Im(vφ) + 1 2 σ|φ| 4σ-2 φ 2 v + σ 2 |φ| 4σ-2 φRe(φv) -iσ|φ| 2(σ-1) φ 2 ∂ 2 x φ = 2iσ(σ -1)|φ| 2(σ-2) Re(vφ)φ 2 v + 2iσ|φ| 2(σ-1) φ∂ x v + iσ|φ| 2(σ-1) φ 2 ∂ x (v -∂ x φ) -2σ(σ -1)|φ| 2(σ-2) φRe(vφ)Im(vφ) + 1 2 σ|φ| 4σ-2 φ 2 v + σ 2 |φ| 4σ-2 φRe(φv) = 2σ(σ -1)|φ| 2(σ-2) Re(vφ)φ(iφv -Im(vφ)) + 2iσ|φ| 2(σ-1) φ∂ x v + iσ|φ| 2(σ-1) φ 2 ∂ x i 2 |φ| 2σ φ + 1 2 σ|φ| 4σ-2 φ 2 v + σ 2 |φ| 4σ-2 φRe(φv) = 2iσ(σ -1)|φ| 2(σ-2) φ(Re(vφ)) 2 + 2iσ|φ| 2(σ-1) φ∂ x φv - 1 2 σ|φ| 2(σ-1) φ 2 (2σ|φ| 2(σ-1) Re(vφ) + |φ| 2σ ∂ x φ) + 1 2 σ|φ| 4σ-2 φ 2 v + σ 2 |φ| 4σ-2 φRe(φv) = 2iσ(σ -1)|φ| 2(σ-2) φ(Re(vφ)) 2 + 2iσ|φ| 2(σ-1) φ∂ x φv - 1 2 σ|φ| 4σ-2 φ 2 ∂ x φ + 1 2 σ|φ| 4σ-2 φ 2 v = 2iσ(σ -1)|φ| 2(σ-2) φ(Re(vφ)) 2 + 2iσ|φ| 2(σ-1) φ∂ x φv + 1 2 σ|φ| 4σ-2 φ 2 (v -∂ x φ) = 2iσ(σ -1)|φ|
= -i 2 σ(σ + 1)|∂ x φ| 2 |φ| 2(σ-1) φ + σ(σ + 1)|φ| 2(σ-1) ∂ x φ(∂ x φφ + ∂ x φφ) +σ(σ -1)(∂φ) 2 |φ| 2(σ-2) φ 3 = -i 2 2σ|∂φ| 2 |φ| 2(σ-1) φ + σ(σ -1)|φ| 2(σ-2) ∂ x φφ 2 (∂ x φφ + ∂ x φφ) +2σ(σ + 1)|φ| 2(σ-1) ∂ x φRe(vφ) = -i 2 2σ|∂φ| 2 |φ| 2(σ-1) φ + 2σ(σ -1)|φ| 2(σ-2) ∂ x φφ 2 Re(vφ) +2σ(σ + 1)|φ| 2(σ-1) ∂ x φRe(vφ) = -i σ|∂φ| 2 |φ| 2(σ-1) φ + σ(σ -1)|φ| 2(σ-2) ∂ x φφ 2 Re(vφ) +σ(σ + 1)|φ| 2(σ-1) ∂ x φRe(vφ) = -i σ|∂φ| 2 |φ| 2(σ-1) φ + σ(σ -1)|φ| 2(σ-2) Re(vφ)φ(∂ x φφ + ∂ x φφ) +2σ|φ| 2(σ-1) ∂ x φRe(vφ) = -i σ|∂φ| 2 |φ| 2(σ-1) φ + 2σ(σ -1)|φ| 2(σ-2) (Re(vφ)) 2 φ = -2iσ(σ -1)|φ| 2(σ-2) φ(Re(vφ)) 2
-iσ|∂ x φ| 2 |φ| 2(σ-1) φ -2iσ|φ| 2(σ-1) ∂ x φRe(vφ).

We have the following lemma.

Lemma 3.3. Let H = H(t, x) : [0, ∞) × R → C 2 , W = W (t, x) : [0, ∞) × R → C 2 be
given vector functions which satisfy for some C 1 > 0, C 2 > 0, λ > 0, T 0 ⩾ 0:

∥W (t)∥ L ∞ ×L ∞ + e λt ∥H(t)∥ L 2 ×L 2 ⩽ C 1 , ∀t ⩾ T 0 , (3.5) 
∥∂W (t)∥ L 2 ×L 2 + ∥∂W (t)∥ L ∞ ×L ∞ + e λt ∥∂H(t)∥ L 2 ×L 2 ⩽ C 2 , ∀t ⩾ T 0 . (3.6) 
Consider equation (3.4). There exists a constant λ * independent of C 2 such that if λ ⩾ λ * then there exists a unique solution η of (3.4) on [T 0 , ∞) × R satisfying

e λt ∥η∥ S([t,∞))×S([t,∞)) + e λt ∥∂η∥ S([t,∞))×S([t,∞)) ⩽ 1, ∀t ⩾ T 0 .
Proof. We rewrite (3.4) by η = Φη. We show that, for λ large enough, Φ is a contraction map in the following ball

B = η : ∥η∥ X := e λt ∥η∥ S([t,∞))×S([t,∞)) + e λt ∥∂ x η∥ S([t,∞))×S([t,∞)) ⩽ 1 .
We will use condition λ ≫ 1 in the proof without specifying it.

Step

1. Proof Φ maps B into B Let t ⩾ T 0 , η = (η 1 , η 2 ) ∈ B, W = (w 1 , w 2 ) and H = (h 1 , h 2 ). By Strichartz estimates, we have ∥Φη∥ S([t,∞))×S([t,∞)) ≲ ∥f (W + η) -f (W )∥ N ([t,∞))×N ([t,∞)) , (3.7) 
+ ∥H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L 2 x ([t,∞)) . (3.8) 
For (3.8), using (3.5), we have

∥H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L 2 x ([t,∞)) = ∥h 1 ∥ L 1 τ L 2 x ([t,∞)) + ∥h 2 ∥ L 1 τ L 2 x ([t,∞)) ≲ ∞ t e -λτ dτ ⩽ 1 λ e -λt < 1 10 e -λt .
(3.9)

For (3.7), we have 2 ) . 

|P (W + η) -P (W )| = |P (w 1 + η 1 , w 2 + η 2 ) -P (w 1 , w 2 )| ≲ |w 1 + η 1 | 2σ-1) (w 1 + η 1 ) 2 w 2 + η 2 -|w 1 | 2(σ-1) w 2 1 w 2 (3.10) 
+ (w 1 + η 1 ) x -∞ |w 1 + η 1 | 2(σ-2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) -w 1 x -∞ |w 1 | 2(σ-2) Im(w 2 2 η 1 
≲ ||w 1 + η 1 | 2(σ-1) -|w 1 | 2(σ-1) ||w 1 + η 1 | 2 |w 2 + η 2 | + |w 1 | 2(σ-1) |(w 1 + η 1 ) 2 -w 2 1 ||w 2 + η 2 | + |w 1 | 2(σ-1) |w 1 | 2 |η 2 | ≲ (|η 1 | 2(σ-1) + |η 1 ||w 1 | 2(σ-1)-1 )(|W | + |η|) 3 + |w 1 | 2(σ-1) (|w 1 ||η 1 | + |η 1 | 2 )|w 2 + η 2 | + |w 1 | 2σ |η 2 | ≲ (|η| 2(σ-1) + |η||W | 2(σ-1)-1 )(|W | 3 + |η| 3 ) + |W | 2(σ-1) (|W ||η| + |η| 2 )(|W | + |η|) + |W | 2σ |η| ≲ |η|(|η| 2σ-3 + |W | 2σ-3 )(|η| 3 + |W | 3 ) + |η||W | 2(σ-1) (|W | 2 + |η| 2 ) + |W | 2σ |η| ≲ |η|(|η| 2σ + |W | 2σ ) + |η||W | 2σ + |η| 3 |W | 2(σ-1) + |W | 2σ |η| ≲ |η| 2σ+1 + |η||W | 2σ .
Moreover, the term (3.11)

≲ |η 1 | x -∞ |w 1 + η 1 | 2(σ-2) |w 2 + η 2 | 2 |w 1 + η 1 | 2 dy + |w 1 | x -∞ (|w 1 + η 1 | 2(σ-2) -|w 1 | 2(σ-2) )|w 2 + η 2 | 2 |w 1 + η 1 | 2 dy + |w 1 | x -∞ |w 1 | 2(σ-2) |Im((w 2 + η 2 ) 2 -w 2 2 )(w 1 + η 1 ) 2 | dy + |w 1 | x -∞ |w 1 | 2(σ-2) |Im(w 2 2 ((w 1 + η 1 ) 2 -η 1 2 ))| dy ≲ |η| x -∞ |W | 2σ + |η| 2σ dy + |W | x -∞ (|η 1 | 2(σ-2) + |η 1 ||w 1 | 2σ-5 )(|W | 4 + |η| 4 ) dy + |W | x -∞ |W | 2(σ-2) (|η 2 | 2 + |w 2 ||η 2 |)(|W | 2 + |η| 2 ) dy + |W | x -∞ |W | 2(σ-2) |w 2 | 2 (|η 1 | 2 + |η 1 ||w 1 |) dy ≲ |η| x -∞ |W | 2σ + |η| 2σ dy + |W | x -∞ |η|(|W | 2σ + |η| 2σ ) dy + |W | x -∞ |W | 2(σ-2) |η|(|W | 3 + |η| 3 ) dy + |W | x -∞ |W | 2(σ-2) |W | 2 |η|(|W | + |η|) dy ≲ |η| x -∞ |W | 2σ + |η| 2σ dy + |W | x -∞ |η||W | 2σ-1 + |η| 2σ dy.
Thus, we obtain

|P (W + η) -P (W )| ≲ |η| 2σ+1 + |η||W | 2σ + |η| x -∞ |W | 2σ + |η| 2σ dy + |W | x -∞ |η||W | 2σ-1 + |η| 2σ dy. Similarly, |Q(W + η) -Q(W )| ≲ |η| 2σ+1 + |η||W | 2σ + |η| x -∞ |W | 2σ + |η| 2σ dy + |W | x -∞ |η||W | 2σ-1 + |η| 2σ dy.
Hence, using σ ⩾ 5 2 , we have:

∥f (W + η) -f (W )∥ N ([t,∞))×N ([t,∞)) ≲ ∥P (W + η) -P (W )∥ L 1 τ L 2 x ([t,∞)) + ∥Q(W + η) -Q(W )∥ L 1 τ L 2 x ([t,∞)) ≲ ∥|η| 2σ+1 ∥ L 1 τ L 2 x ([t,∞)) + ∥|η| x -∞ |W | 2σ + |η| 2σ dy∥ L 1 τ L 2 x ([t,∞)) + ∥|W | x -∞ |η||W | 2σ-1 + |η| 2σ dy∥ L 1 τ L 2 x ([t,∞)) ≲ ∥|η|∥ L ∞ L 2 x ([t,∞)) ∥|η|∥ 4 L 4 τ L ∞ x ([t,∞)) + ∥|η|∥ L 1 τ L 2 x ([t,∞)) x -∞ |W | 2σ + |η| 2σ dy L ∞ τ L ∞ x ([t,∞)) + ∥|W |∥ L ∞ τ L 2 x ([t,∞)) ∥ x -∞ |η||W | 2σ-1 + |η| 2σ dy∥ L 1 τ L ∞ x ([t,∞)) ≲ e -5λt + ∥|η|∥ L 1 τ L 2 x ([t,∞)) ∥|W | 2σ + |η| 2σ ∥ L ∞ τ L 1 x + ∥W ∥ L ∞ t L 2 x ∥η∥ L 1 τ L 2 x ([t,∞)) ∥|W | 2σ-1 + |η| 2σ-1 ∥ L ∞ τ L 2 x ([t,∞))
≲ e -5λt + ∥|η|∥ L 1 For (3.17), using the inequality (1.11), we have ∥ the term (3.17 2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) -|w 1 | 2(σ-2) Im(w 2 2 w 2 1 )) dy Thus, for λ large enough ∥Φη∥ X < 1.

)∥ L 1 τ L 2 x ([t,∞)) ≲ ∥∂η 1 ∥ L 1 τ L 2 x ([t,∞)) ∥ x -∞ |w 1 + η 1 | 2(σ-2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) dy∥ L ∞ t L ∞ x + ∥∂ x w 1 ∥ L ∞ t L 2 x × × x -∞ (|w 1 + η 1 | 2(σ-
L 1τ L ∞ x ≲ ∥∂η 1 ∥ L 1 τ L 2 x ([t,∞)) ∥|w 1 + η 1 | 2(σ-2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 )∥ L ∞ t L 1 x + ∥|w 1 + η 1 | 2(σ-2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) -|w 1 | 2(σ-2) Im(w 2 2 w 2 1 )∥ L 1 τ L 1 x ≲ ∥∂η 1 ∥ L 1 τ L 2 x ([t,∞)) + ∥|η|∥ L 1 τ L 2 x ([t,∞)) ⩽ ∞ t e -
This implies that Φ maps B into B.

Step 2. Φ is a contraction map on B By using (3.5), (3.6) and a similar estimate of (3.22), we can show that, for any η ∈ B and κ ∈ B we have ∥Φη -Φκ∥ X ⩽ 1 2 ∥η -κ∥ X .

for λ large enough. From Banach xed point theorem, there exists a unique solution in B of (3.4) and thus a solution of (2.13). This completes the proof of Lemma 3.3.

□

  c (y) = φ ω,c (y)e iθω,c(y) ,

(3. 11 ) 5 2

 115 Using the assumption σ ⩾ and the inequality (1.11) we have the term(3.10) 

τ L 2 x 2 x

 22 ([t,∞)) = e -5λt + ∞ t e -λτ dτ ≲ e -5λt + 1 λ e -λt < 1 10 e -λt ,Combining with (3.9) and (3.7), (3.8) we obtain∥Φη∥ S([t,∞))×S([t,∞)) Φη∥ S([t,∞))×S([t,∞)) ≲ ∥∂ x (f (W + η) -f (W ))∥ N ([t,∞))×N ([t,∞)) (3.13) + ∥∂ x H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L ([t,∞)) .

(3. 14 )For ( 3 . 2 xFor ( 3 .

 14323 [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], using (3.6) we have∥∂ x H∥ L 1 τ L 2 x ([t,∞))×L 1 τ L 13), we have ∥∂ x (f (W + η) -f (W ))∥ N ([t,∞))×N ([t,∞)) = ∥∂ x (P (W + η) -P (W ))∥ N ([t,∞)) + ∥∂ x (Q(W + η) -Q(W ))∥ N ([t,∞)) .

Furthermore,|w 1 + η 1 | 2 (σ- 2 )-∂ x w 1 x+ (w 1 + 1 τ L 2 x

 11221112 |∂ x (P (W + η) -P (W ))| ≲ |∂ x (|w 1 + η 1 | 2(σ-1) (w 1 + η 1 ) 2 (w 2 + η 2 ) -|w 1 | 2(σ-1) w 2 1 w 2 )| (3.16) + ∂ x (w 1 + η 1 ) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) dy η 1 )|w 1 + η 1 | 2(σ-2) Im((w 2 + η 2 ) 2 (w 1 + η 1 ) 2 ) -w 1 |w 1 | 2(σ-2) Im(w2 2 w 1 ) . (3.18) For (3.16), we have the term (3.16) ≲ (|η| + |η| 2σ + |∂ x η|)(|W | + |W | 2σ + |η| + |η| 2σ + |∂ x η|) Thus, ∥the term (3.16)∥ L ([t,∞)) ≲ ∥|η| + |∂η|∥ L 1

  38)We denote by Z 1 , Z 2 , Z 3 , Z 4 the terms (2.32), (2.33), (2.34) and (2.35) respectively. Using (2.36), (2.37), (2.38), (2.16) and (2.17), for N ≫ t, we have

  +(N -t)λ , for t large enough. Letting N → ∞ in the above estimate, we obtain≲ C(∥φ∥ H 1 , ∥h∥ H 1 )∥φ -h∥ H 1 ≲ ∥ φ∥ H 1 ≲ e -λt ,Thus for t large enough, we have ∥u -R∥ H 1 ⩽ Ce -λt , * and C = C(ω 1 , ..., ω K , c 1 , ..., c K ). This completes the proof of Theorem 1.1.

	then u solves (1.1). Furthermore,					
	∥u -R∥ H 1 = exp -	i 2	|φ| 2σ dy φ -exp	i 2	|h| 2σ dy h	H 1
							(2.41)
	for λ = 1 16 v					
			∥ ψ(t) -ṽ∥ 2 L 2 = 0,
	for all t large enough. This implies that			
			ψ = ∂ x φ -	i 2	|φ| 2 φ -k,	(2.40)
	and then		ψ = ∂ x φ -	i 2	|φ| 2 φ.
				x	
						|φ| 2σ dy φ
				-∞	

Moreover, since ( ψ, φ) solves (2.13) we have (ψ, φ) solves (2.3). Combining with (2.40), if we set u = exp -i 2

  For (3.18), using the inequality (1.11), we have ∥the term (3.18)∥ L 1

						λτ dτ ≲	1 λ	e -λt <	1 10	e -λt ,
					τ L 2 x ([t,∞))	
	≲ ∥|η|∥ L 1 τ L 2 x ([t,∞))				
	⩽	t	∞	e -λτ dτ ≲	1 λ	e -λt <	1 10	e -λt ,
						τ L 2 x ([t,∞)) ⩽	3 10	e -λt ,	(3.19)
	Similarly,							
	∥∂ 3 10	e -λt ,	(3.20)
	Combining the estimates (3.13), (3.14), (3.15), (3.19) and (3.20), we have
	∥∂ x Φη∥ S([t,∞))×S([t,∞)) ⩽	7 10	e -λt .	(3.21)
	Combining (3.12) with (3.21), we obtain				
	∥Φη∥ S([t,∞))×S([t,∞)) + ∥∂ x Φη∥ S([t,∞))×S([t,∞)) ⩽	9 10	e -λt ,	(3.22)

Combining the above estimates, we obtain

∥∂ x (P (W + η) -P (W ))∥ N ([t,∞)) ⩽ ∥∂ x (P (W + η) -P (W ))∥ L 1 x (Q(W + η) -Q(W ))∥ N ([t,∞)) ⩽
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Combining the above expressions we obtain the remaining term of G(φ, v) = 2iσ|φ| 2(σ-1) 

This is exactly the remaining terms of

Existence of a solution of the system. In this section, using similar arguments as in [START_REF] Le Coz | Fast-moving nite and innite trains of solitons for nonlinear Schrödinger equations[END_REF][START_REF] Coz | Innite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF], we prove the existence of a solution of (2.13). For convenience, we recall the equation:

where W = (h, k), H = e -λt (m, n), f (φ, ψ) = (P (φ, ψ), Q(φ, ψ)).