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Introduction

This article is devoted to the study of a problem of calculus of variations motivated by questions of spatial ecology. This problem is related to the ubiquitous question of optimal location of resources. While we further specify what we mean by "optimal" in what follows, let us note that optimisation

Model and statement of the problems

Statement of the problems Let us first lay down the model and the optimisation problems under consideration. The following paragraph is dedicated to explaining which kind of properties we want to obtain for these optimisation problems.

We introduce the model we consider throughout the paper. We place ourselves in the framework of the Fisher-KPP equation which, since the seminal works [START_REF] Fisher | The wave of advances of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], has been used at length: while its apparent simplicity makes it amenable to mathematical analysis, it is complex enough to capture several fundamental aspects of population dynamics [START_REF] Skellam | Random dispersal in theoretical populations[END_REF]. This model reads:

   µ∆θ + θ(m -θ) = 0 in Ω, ∂θ ∂ν = 0 on ∂Ω, θ 0, θ = 0, (E m,µ )
where θ : Ω → IR + is the population density. The population accesses resources which are modelled by a function m ∈ L ∞ (Ω), and µ > 0 is the dispersal rate.

Although we consider here Neumann boundary conditions, Theorems I and II below can be extended to Robin boundary conditions as well, the only difficulty being that one would need to ensure existence and uniqueness for the logistic-diffusive equations under these conditions. We comment on this in the conclusion (Section 4).

Provided that m 0 and m ≡ 0, there exists a unique solution to (E m,µ ) [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF][START_REF] Cantrell | Diffusive logistic equations with indefinite weights: Population models in disrupted environments II[END_REF][START_REF] Cantrell | The effects of spatial heterogeneity in population dynamics[END_REF]. We denote it θ m,µ .

We can hence define the total-population size functional ∀µ > 0, ∀m ∈ M(Ω), F µ (m) := ˆΩ θ m,µ .

(1.1)

We use the following class of constraints on the admissible resource distributions m, which was introduced in [START_REF] Lou | Some challenging mathematical problems in evolution of dispersal and population dynamics[END_REF] and used, for instance, in [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF]:

M(Ω) := m ∈ L ∞ (Ω), 0 m 1, ˆΩ m = m 0 . (1.2)
The parameter m 0 is a positive real number such that m 0 < |Ω|, where |Ω| denotes the volume of Ω, in order to ensure that M(Ω) = ∅. The L 1 constraint accounts for the fact that, in a given domain, only a limited amount of resources is available. The second constraint is a pointwise one, and accounts for natural limitations of the environment, i.e. the fact that, in a single spot, only a maximum amount of resources can be available.

The optimisation problem we consider reads sup m∈M(Ω)

F µ (m) , (P µ )

where F µ (m) is given by (1.1).

Remark 1 (Existence of maximisers). For any µ > 0, the existence of a solution m * µ of (P µ ) is an immediate consequence of the direct method in the calculus of variations.

In the following paragraph, we present the fundamental properties we are interested in.

Optimisation of spatial heterogeneity in mathematical biology: fundamental properties under consideration Starting from spatially homogeneous models [START_REF] Fisher | The wave of advances of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], in which a population is assumed to live in a homogeneous environment, mathematical biology has over the past decades started considering the impact of spatial heterogeneity on population dynamics [START_REF] Cantrell | The effects of spatial heterogeneity in population dynamics[END_REF]. In most works, this spatial heterogeneity is modelled using resource distributions. Mathematically, this amounts to taking into account the heterogeneity in the reaction term of the equation. Given that it is hopeless, for a given resource distribution, to attain an explicit description of the ensuing population dynamics, the focus has, more recently, shifted to an optimisation point of view.

This approach has been initiated in [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF][START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF][START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF] and has since received a considerable amount of attention [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF][START_REF] Ding | Optimal control of growth coefficient on a steady-state population model[END_REF][START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF][START_REF] Mazari | Optimization of a two-phase, weighted eigenvalue with Dirichlet boundary conditions[END_REF][START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF]. The initial question that motivated most of these works was related to the optimal survival ability of a population [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF][START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF]. Namely:

What is the best way to spread resources in a domain to ensure the optimal survival of a population?

This problem is by now very well understood in several simple cases (we provide ampler references in Section 1.3). Among all the issues tackled by the authors of [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF][START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF][START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF], let us single out the following ones, which have been deemed crucial in the study of spatial heterogeneity as they provide simple, qualitative information about the influence of heterogeneity: in a domain Ω, if we consider resource distribution m belonging to M(Ω) defined by (1.2),

1. does the bang-bang property hold at the optimum? In other words, if one looks at maximising a criterion over resource terms in M(Ω), does any optimal resource distribution m * write m * = 1 E , for some measurable subset E of Ω of positive measure? Alternatively, this means that the underlying domain Ω can be decomposed as

Ω = {m * = 1} {m * = 0}. (1.3)
Despite several partial results [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF] which we detail in Remarks 5 and 6 , this property is not known to hold in general for the optimisation of the total population size. In this article we prove that this property indeed holds for the optimal population size whatever the value of µ > 0 (Theorem I).

2. do optimal resources tend to concentrate? In "simple" cases (i.e. in simple geometries and for specific boundary conditions), optimal resource distributions for the survival ability [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF][START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF] are known to be concentrated. For instance, considering an optimal resource distribution for the survival ability, which is known to write m * = 1 E , then the set E is connected and, moreover, enjoys a symmetry property for Neumann boundary conditions in an orthotope [3, Proposition 2.9]. A similar conclusion holds whenever Ω = B(0; r) is a ball and if Dirichlet boundary conditions are imposed rather than Neumann. In that case, the optimal set E is another centered ball E = B(0; r * ), with a radius r * chosen so as to satisfy the volume constraint. For general geometries and Robin boundary conditions, the situation is very involved and we refer to [START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF] for up to date qualitative properties. Such results are a mathematical formalisation of a paradigm first stated in [START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF]: fragmenting the set {m * = 1} leaves less chance for survival. In other words, concentrating resources is favorable to population dynamics.

In the case of the total population size, it was first noticed in [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF] that such results do not in general hold for small diffusivities, where the geometry of the optimal resource distribution tends to become more complicated. Recently, in [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF], a complete treatment of a spatially discretised version of the problem was carried out, and precise fragmentation rules were established. However, these results cannot be extended to the present continuous version, since the optimiser they compute strongly depends on the discretization scale. In [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF], it was shown that, the slower the dispersal rate of the population, the bigger the BV -norm 1 of the optimal resource distribution is.

Remark 2. When m ∈ W 1,1 (Ω), the BV -norm and the W 1,1 norm coincide. When m = 1 E and m is a Cacciopoli set (i.e. a set with finite Cacciopoli perimeter) then m BV (Ω) = |E| + Per(E), where Per(E) is the Cacciopoli perimeter of the set. As a consequence, in our context, an information on the blow-up rate of the BV -norm yields an information on the blow-up rate of the T V -norm and, since Theorem I ensures that any maximiser m * µ writes as 1 E * µ , this implies a blow-up rate on Per(E * µ ) as µ → 0 + . We refer to [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] for more information regarding functions of bounded variations and perimeters of sets.

In [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF], the main result reads:

Theorem [22, Theorem 1 ]. Let Ω = (0; 1) d , µ > 0, and let m * µ denote a solution of Problem (P µ ). Then, m * µ BV (Ω) ----→ µ→0 + +∞.
In this article, we quantify this result by explicitly identifying blow-up rates in terms of the characteristic dispersal rate, and provide a scaling we expect to be optimal (Theorem III). The proof relies on fine energy estimates. 1 Recall that the total variation semi-norm of a function is

|m| T V (Ω) = sup ˆΩ m div(ϕ), ϕ ∈ C 1 c (Ω; IR d ), ϕ L ∞ 1 (1.4)
and that the bounded variation norm of m is in turn defined as

m BV (Ω) = m L 1 (Ω) + |m| T V (Ω) . (1.5)
A more in-depth discussion of the bibliography is included in Section 1.3.

Main results

The bang-bang property

Let us first state that every solution of the optimal population size problem is bang-bang. This property, intrinsically interesting, has a practical interest: it allows us to reformulate the problem as a shape optimisation one, the unknown being the set in which m takes its maximum value. One can then use adapted numerical approaches.

Theorem I. Let Ω ⊂ IR d be a bounded connected domain with a C 2 boundary. Let m * µ be a solution of (P µ ). Then there exists a measurable subset E ⊂ Ω such that

m * µ = 1 E . (1.6)
Remark 3 (Theorem I holds in orthotopes). This theorem, in its current form, is not fully satisfactory for our future needs. Indeed, the fragmentation result, Theorem III, will be shown in the case of an orthotope Ω = (0; As a conclusion, Theorem I holds in an orthotope. We also refer to Remark 15.

Remark 4 (Sketch of the proof). The idea of the proof rests upon the following fact: we can actually show that the second order Gâteaux derivative of the criterion F µ at a point m ∈ M(Ω) in a direction h (such that m + th ∈ M(Ω) for t small enough) writes

Fµ (m)[h, h] = ˆΩ Ψ m (x)|∇ θm,µ | 2 -ˆΩ Φ m (x) θ2 m,µ , (1.7) 
where Ψ m , Φ m ∈ L ∞ (Ω), inf Ω Ψ m > 0 and θm,µ solves a PDE of the kind

L m θm,µ = hθ m,µ in Ω ∂ ν θm,µ = 0 in ∂Ω,
where L m denotes an elliptic operator of second order. We then argue by contradiction, assuming the existence of a maximiser m * µ that is not a bang-bang function, meaning that the set {0 < m * µ <

1} is of positive Lebesgue measure. Using the expression of Fµ (m)[h, h] above, we exhibit a function

h in L ∞ supported in {0 < m * µ < 1}, with ´Ω h = 0, such that ´Ω |∇ θm * µ ,µ | 2 is much larger than ´Ω θ2 m * µ ,µ
. This is done by using the Fourier (spectral) basis of the operator L m * µ , and by choosing h such that m + th remains admissible for t small enough, and such that, hθ m * µ ,µ only has high Fourier modes in this basis.

Remark 5 (Comparison with the results of [START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF]). In [START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF], the following result is proved: if m ∈ M(Ω) is such that {0 < m < 1} has a non-empty interior, then it is not a solution of (P µ ). This in particular implies that, if a maximiser m * µ of the total population size functional is Riemann integrable, then m * µ is continuous almost everywhere in Ω and is thus necessarily of bang-bang type. However, such regularity is usually extremely hard to prove, and it is unclear to us whether it is attainable in this context. We provide an alternative proof of their result in Section 2.2, where we also comment on the comparison between our two proofs. Remark 6. In [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF], the bang-bang property is proved to hold whenever the diffusivity µ is large enough, using a proof that is also based on a second order argument, but whose philosophy is completely different from that of Theorem I. Our present result does not require such an assumption. Remark 7. A minor adaptation of our proof allows us to handle more general admissible sets and criteria:

• let us consider a function j satisfying j ∈ C 2 ([0; 1]; IR), j is increasing in [0; 1] and j > 0 in (0; 1). (H j )
We define, for any µ > 0,

J j,µ : M(Ω) m → ˆΩ j(θ m,µ ) (1.8) 
and the optimisation problem sup m∈M(Ω)

J j,µ (m). (P j,µ )

Then proving a bang-bang property for this problem is amenable to analysis using our technique.

• If one were to change the L ∞ bounds on m to 0 m κ for some positive κ, the only modification would be to replace [0; 1] with the interval [0; κ] in assumption (H j ) above.

We claim that our method of proof extends to the following setting:

Theorem II. Let Ω ⊂ IR d be a C 2 bounded domain and let j satisfying (H j ). Let m * µ,j be a solution of (P j,µ ). Then m * µ,j is a bang-bang function: there exists a measurable subset

E ⊂ Ω such that m * µ,j = 1 E .
(1.9)

A short paragraph explaining how to adapt the proof of Theorem I is provided in Section 2.3.

Quantifying the fragmentation for small diffusivities

Our second main result deals with the aforementioned fragmentation property for low diffusivities.

Here, we will be led to make stronger assumptions on Ω, namely, that Ω is an orthotope: Ω = (0; 1) d . Hence, according to [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF]Lemma 2], one has lim inf

µ→0 + sup m∈M(Ω) F µ (m) > m 0 = inf µ>0,m∈M(Ω)
F µ (m).

(1.10)

The equality on the right-hand side is obtained in [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF]Theorem 1.2].

Remark 8 (Some additional comments about (1.10)). Although we provide more detailed references in Section 1.3, let us give some information about inequality (1.10): it is proved in [16, Theorem 1.2] that, in any smooth domain Ω (or in Ω = (0; 1) d ) we have, for any m ∈ M(Ω),

F µ (m) → m 0 as µ → ∞ or µ → 0 + .
This allows, for a fixed m, to extend the map µ > 0 → F µ (m) by continuity to [0; +∞] by setting F 0 (m) = F +∞ (m) = m 0 . Furthermore, for a fixed m, the monotonicity of µ → F µ (m) is unclear; we refer to [START_REF] Liang | On the dependence of population size upon random dispersal rate[END_REF].

If we now define the map

G : µ > 0 → G(µ) := sup m∈M(Ω) F µ (m),
then one can show [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF] that

G(µ) ----→ µ→∞ m 0 .
This follows from the fact that the limit

∀m ∈ M(Ω) , lim µ→∞ F µ (m) = m 0 is uniform in m.
On the other hand, (1.10) indicates that the limit lim µ→0 + F µ (m) = m 0 , which is true for all m ∈ M(Ω), is not uniform with respect to the resource distribution m. A very interesting question is that of the monotonicity of the map G. At this stage, however, it is unclear how one could tackle it.

Remark 9. The only reason we work in Ω = (0; 1) d is that we know from [22, Lemma 2] that (1.10) holds in this domain. In [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF], (1.10) is proved using an explicit periodisation scheme.

It should be noted that, for any other C 2 domain Ω such that (1.10) is satisfied, the main fragmentation result of this paper, Theorem III, holds in Ω.

We provide hereafter an explicit blow-up rate that we believe to be optimal. Once again, let us emphasise that this rate does not depend on the space dimension d.

Theorem III. Let d 1 and let Ω = (0; 1) d . There exists C 0 > 0 such that the following holds: there exists µ 0 > 0 such that, for any µ ∈ (0; µ 0 ), if m * µ is a solution of (P µ ), then

m * µ BV (Ω) C 0 √ µ . (1.11)
Remark 10 (Comment on the proof of Theorem III). The crux of the proof is the variational formulation of (E m,µ ), which ensures that θ m,µ is the unique minimiser of

E m,µ : u ∈ W 1,2 (Ω), u 0 u → µ 2 ˆΩ |∇u| 2 - 1 2 ˆΩ mu 2 + 1 3 ˆΩ u 3 , (1.12) 
and which needs to be carefully estimated as µ → 0 + . We prove that a "shifted" version of this energy controls the quantity θ m,µ -m L 1 (Ω) (Lemma 21). Therefore, using estimate (1.10), we aim at controlling E m,µ (θ m,µ ) as µ → 0 + . Using Modica-type estimates, one can show that, for a fixed m ∈ M(Ω) that writes m = 1 E , there holds

√ µE m,µ (θ m,µ ) ----→ µ→0 + Per(E).
However, this convergence is non-uniform with respect to m (or, more precisely to E) and, since we are working with a maximisation problem, it is not possible to conclude using the convergence result above. In the one dimensional case, we propose, in the appendix, an adaptation of [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF] that makes this strategy work nonetheless. In higher dimension, we estimate the energy using a regularisation of m as a test function in the energy formulation of the equation.

Bibliographical comments on (P µ )

In this section, we gather a discussion on references connected to the optimisation of the total population size in logistic-diffusive models. For a presentation of the literature devoted to the optimal survival ability, we refer to [START_REF] Mazari | Shape optimization and spatial heterogeneity in reaction-diffusion equations[END_REF]Introduction].

Influence of the diffusivity µ on F µ . Problem (P µ ) was first introduced in [START_REF] Lou | Some challenging mathematical problems in evolution of dispersal and population dynamics[END_REF] and several properties had been derived in [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF], one of which is the following: for every µ > 0, the unique minimiser of

F µ in M(Ω) is m 0 ; in other words ∀µ > 0, ∀m ∈ M(Ω), m(•) = m 0 ⇒ F µ (m) > m 0 . (1.13)
This result means that spatial homogeneity is detrimental to the population size. Furthermore, it is proved in [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF] that, m ∈ M(Ω) being given, then

F µ (m) ----→ µ→0 + m 0 , and F µ (m) ----→ µ→∞ m 0 . (1.14)
Hence, for a given m ∈ M(Ω), the low and high diffusivity limits of the functional correspond to global minima. However, it was proved in [22, Lemma 2] that lim inf

µ→0 + sup m∈M(Ω) F µ (m) > m 0 ,
showing the intrinsic difficulty of passing to the low-diffusivity limit in problem (P µ ). This point of view, where the resource distribution is considered fixed and the diffusivity is taken as a variable, was later deeply analysed in several articles. Notable among these are the following results:

1. In [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF], for a fixed m ∈ L ∞ (Ω) such that m(•) 0 and m(•) = 0, the authors consider the optimisation problem

sup µ>0 E µ (m) := F µ (m) ´Ω m (1.15)
and observe that, in the one-dimensional case Ω = (0; 1), there holds

E µ (m) 3. (1.16)
This bound is sharp (a maximising sequence is explicitly constructed) and is not reached by any function m. This work was later extended to the higher-dimensional case in [START_REF] Inoue | On the unboundedness of the ratio of species and resources for the diffusive logistic equation[END_REF] and the authors prove that, in that case (i.e. in dimension d 2), there holds

sup m∈L ∞ (Ω) m 0, m =0 sup µ>0 E µ (m) = +∞.
(1.17)

2. In [START_REF] Liang | On the dependence of population size upon random dispersal rate[END_REF], a function m such that the map µ → F µ (m) has several local maxima is constructed. It emphasizes the intrinsic complexity of the interplay between the population size functional and the parameter µ > 0.

Finally, let us also note that a related problem, where the underlying model is a system of ODEs with identical migration rates, was considered in [START_REF] Liang | The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration[END_REF].

We also point out to two surveys [START_REF] Lam | Selected topics on reaction-diffusion-advection models from spatial ecology[END_REF][START_REF] Mazari | Handbook of optimal control and numerical analysis, chapter Some challenging optimisation problems for logistic diffusive equations and numerical issues[END_REF] and to the references therein for up-to-date considerations about the influence of spatial heterogeneity for single or multiple species models or for optimisation problems in mathematical biology.

2 Proofs of Theorems I and II

Proof of Theorem I

The proof of this Theorem relies on a new formulation of the second order optimality conditions for the problem (P µ ). Let us first compute the necessary optimality conditions of the first and second orders.

Computation of optimality conditions It is established in [START_REF] Ding | Optimal control of growth coefficient on a steady-state population model[END_REF]Lemma 4.1] that, for any µ > 0 the map M(Ω) m → θ m,µ is differentiable at the first order in the sense of Gâteaux. Adapting their proof yields without difficulty its second order Gâteaux-differentiability. Let us fix m ∈ M(Ω) and an admissible perturbation2 h ∈ L ∞ (Ω). Let us denote by θm,µ (resp. θm,µ ) the first (resp. second) Gâteaux-derivative of θ •,µ at m in the direction h. It is standard (we refer to [6, Lemma 4.1]) to see that θm,µ solves

µ∆ θm,µ + (m -2θ m,µ ) θm,µ = -hθ m,µ in Ω, ∂ θm,µ ∂ν = 0 on ∂Ω. (2.1) 
Remark 11. The fact that θm,µ is uniquely determined by that equation (in other words, that (2.1) has a unique solution can be proved as in [START_REF] Ding | Optimal control of growth coefficient on a steady-state population model[END_REF][START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF]. For the sensitivity analysis and computation of the Gâteaux-derivatives, we also refer to [START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF].

To derive a tractable equation for the Gâteaux derivative Ḟµ (m)[h] of the functional F µ at m in the direction h, let us introduce the adjoint state p m,µ as the solution of

µ∆p m,µ + p m,µ (m -2θ m,µ ) = -1 in Ω, ∂pm,µ ∂ν = 0 on ∂Ω, (2.2) 
so that, multiplying (2.1) by p m,µ and integrating by parts readily gives

ˆΩ p m,µ θ m,µ h = ˆΩ θm,µ = Ḟµ (m)[h]. (2.3)
It is standard in optimal control theory (see e.g. [START_REF] Yong | Necessary conditions of optimal impulse controls for distributed parameter systems[END_REF]) that, if m * µ is a solution of (P µ ) then there exists a constant c such that

{0 < m * µ < 1} ⊂ {θ m * µ p m * µ ,µ = c}. (2.4)
Remark 12. As is done in [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF], the sets {m * µ = 1} and {m * µ = 0} can be described in terms of level sets of the so-called switching function θ m,µ p m,µ but we do not detail it since these are not information we will use in the proof.

Let us turn to the computation of the second order Gâteaux derivative of the functional F µ in the direction h, which will be denoted Fµ (m)[h, h]. To obtain it, we first recall (see [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF]Equation (18)]) that θm,µ solves

µ∆ θm,µ + (m -2θ m,µ ) θm,µ = -2h θm,µ + 2 θ2 m,µ in Ω, ∂ θm,µ ∂ν = 0 on ∂Ω. (2.5) 
Multiplying (2.5) by p m,µ and integrating by parts yields

ˆΩ θm,µ = 2 ˆΩ h θm,µ -θ2 m,µ p m,µ = 2 ˆΩ -µ∆ θm,µ -(m -2θ m,µ ) θm,µ θ m,µ θm,µ -θ2 m,µ p m,µ = 2 ˆΩ -µ∆ θm,µ -(m -θ m,µ ) θm,µ p θm,µ θ m,µ .
Let us introduce u m,µ := pm,µ θm,µ . We thus obtain

ˆΩ θm,µ = 2 ˆΩ µ∇(u m,µ θm,µ )∇ θm,µ -(m -θ m,µ ) θ2 m,µ u m,µ = 2 ˆΩ u m,µ µ|∇ θm,µ | 2 -m -θ m,µ + µ∆u m,µ 2u m,µ θ2 m,µ . (2.6) 
Furthermore, it is straightforward to see that

∀m ∈ M(Ω), inf Ω θ m,µ > 0. (2.7) 
Furthermore, we have the following result:

Lemma 13. For every m ∈ M(Ω), inf Ω p m,µ > 0.

(2.8)

Proof of Lemma 13. We start from the observation that θ m,µ solves (E m,µ ) implies that the principal eigenvalue λ(m -θ m,µ , µ) of the operator -µ∆ -(m -θ) Id is zero [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF]. Since θ m,µ > 0 in Ω, the first eigenvalue λ(m -2θ m,µ , µ) of the operator

L m := -µ∆ -(m -2θ m,µ ) Id satisfies λ(m -2θ m,µ , µ) > 0, (2.9) 
as a consequence of the monotonicity of eigenvalues [START_REF] Dockery | The evolution of slow dispersal rates: a reaction diffusion model[END_REF]. Since p m,µ satisfies L m p m,µ = 1 > 0 with Neumann boundary conditions, the conclusion follows from multiplying the equation on p m,µ by the negative part (p m,µ ) -and integrating by parts: it yields

µ ˆΩ |∇(p m,µ ) -| 2 -ˆΩ(p m,µ ) 2 -(m -2θ m,µ ) = -ˆΩ(p m,µ ) -< 0 if (p m,µ ) -= 0. (2.10)
However, according to the Courant-Fischer principle,

λ(m -2θ m,µ , µ) = inf u∈W 1,2 (Ω) ´Ω u 2 =1 µ ˆΩ |∇u| 2 -ˆΩ u 2 (m -2θ m,µ ) > 0 (2.11)
and therefore, it follows that p m,µ (•) 0 and p m,µ (•) = 0 in Ω. To conclude, it suffices to apply the strong maximum principle.

According to Lemma 13 and (2.7), it follows that u m,µ satisfies inf Ω u m,µ > 0.

(2.12)

Furthermore, standard elliptic estimates entail

∀p ∈ (1; +∞), θ m,µ , p m,µ ∈ W 2,p (Ω), (2.13) 
and from Sobolev embeddings, we get

θ m,µ , p m,µ ∈ C 1,α (Ω) (2.14)
for any α ∈ (0; 1). Using the equations on θ m,µ and p m,µ , this gives, in turn that ∆θ m,µ and ∆p m,µ belong to L ∞ (Ω). It follows, by computing explicitly ∆u m,µ , that ∆u m,µ belongs to L ∞ (Ω).

If we then define

V m,µ := m -θ m,µ + µ∆um,µ 2um,µ
we have, as a consequence, that 

V m,µ ∈ L ∞ (Ω). ( 2 
Fµ (m)[h, h] = ˆΩ θm,µ = 2µ ˆΩ u m,µ |∇ θm,µ | 2 -2 ˆΩ V m,µ θ2 m,µ . (2.16) 
This expression is crucial to proving Theorem I.

Proof of Theorem I. Let us argue by contradiction, assuming the existence of a maximiser m (for the sake of readability, we drop the subscript m * µ ) of F µ in M(Ω) such that the set Ω := {0 < m < 1} is of positive Lebesgue measure.

Our goal is now to construct an admissible perturbation h ∈ L ∞ (Ω) (see Footnote 2) such that

h is supported in Ω, Fµ (m)[h, h] > 0.
(2.17)

Let us first note that from the optimality conditions (2.4), if h is supported in Ω and satisfies ´Ω h = 0, then, for the constant c given in (2.4) we have

Ḟµ (m)[h] = ˆΩ hθ m,µ p m,µ = c ˆΩ h = 0.
Hence, if h satisfies (2.17), then a Taylor expansion yields

F µ (m + εh) -F µ (m) = ε 2 2 Fµ (m)[h, h] + o(ε 2 ). (2.18)
This leads to a contradiction whenever ε > 0 is chosen small enough. It is standard to show that any perturbation h supported in Ω is admissible if, and only if ´Ω h = 0.

Remark 14. To implement the previous construction, it suffices in fact to construct h ∈ L 2 (Ω) so that (2.17) is satisfied and ´Ω h = 0, forgetting that h has to belong to L ∞ (Ω). Indeed, let us assume that such a h ∈ L 2 (Ω) exists. Then, we introduce the sequence h n := h1 |h| n -´Ω h1 |h| n ∈ L ∞ (Ω), which converges weakly in L 2 (Ω) to h as n → ∞. By elliptic regularity, it entails strong W Remark 15 (Regarding the regularity assumption on Ω and the extension of the result to an orthotope). As explained in Remark 3 above, this is the only step where we use the regularity of Ω. More precisely, this regularity is used to derive the fact that V m,µ is a bounded function. This in turn hinges on the W 2,p regularity of θ m,µ and p m,µ (which can be obtained, in the case of the orthotope, via the symmetrisation procedure explained in Remark 3), combined with Sobolev embeddings applied to θ m,µ and p m,µ . Through the same symmetrisation procedure, θ m,µ and p m,µ can be extended to functions on the torus, and the Sobolev embeddings in the flat torus can then be used.

As a consequence, (2.19) holds when Ω is an orthotope, i.e. Ω = (0; 1) d . In this case, the rest of the proof reads exactly the same.

To obtain a contradiction, it hence suffices to construct a perturbation h ∈ L 2 (Ω) with support in Ω satisfying ´Ω h = 0 and such that

ˆΩ |∇ θm,µ | 2 > A 2 A 1 ˆΩ θ2 m,µ . (2.20) 
Let us prove that such a perturbation h exists. To this aim, let us introduce the operator L defined by

L m : H 2 (Ω) ψ → -µ∆ψ -(m -2θ m,µ )ψ ∈ L 2 (Ω). (2.21) 
This operator is self-adjoint and of compact inverse in L 2 (Ω), as a consequence of the spectral estimate (2.9). As a consequence, there exists a sequence of eigenvalues

λ 1 (L m ) < λ 2 (L m ) . . . λ k (L m ) ----→ k→∞ +∞, (2.22) 
each of these eigenvalues being associated with a L 2 -normalised eigenfunction ψ k solving

     L m ψ k = λ k (L m )ψ k in Ω, ∂ψ k ∂ν = 0 on ∂Ω, ´Ω ψ 2 k = 1.
(2.23)

Let us fix K ∈ IN\{0} that will be chosen later and consider the family of linear functionals

{R k } k=0,...,K ⊂ L 2 Ω K+1 defined by ∀f ∈ L 2 ( Ω), R 0 (f ) := ˆΩ 1 Ωf and R k (f ) := ˆΩ 1 Ωθ m,µ ψ k f (2.24)
for every k ∈ 1, K . Let us define E k := ker(R k ) for every k ∈ 0, K . Observe that each space E k is of codimension at most 1. In particular,

E := ∩ K k=0 E k ⊂ L 2 ( Ω) (2.25)
is of codimension at most (K + 1) in L 2 ( Ω) and is non-empty. Let us hence pick F K ∈ E\{0} and assume by homogeneity, that

ˆΩ |F K 1 Ωθ m,µ | 2 = 1. (2.26)
Let us extend F K to Ω by setting

H K = F K 1 Ω.
According to the definition of H K it follows that (i) H K is supported in Ω and belongs to L 2 (Ω).

(ii

) ´Ω H K = ´Ω 1 ΩF K = 0, (iii) ∀k ∈ 0, K , one has ´Ω H K θ m,µ ψ k = ´Ω F K 1 Ωθ m,µ ψ k = 0. Let us define η K := -H K θ m,µ .
In particular, defining, for any ∈ IN * the coefficient α as

α := ˆΩ η K ψ
we have, for any K, α = 0. Thus, in the basis {ψ k } k∈IN , η K expands as

η K = K+1 α ψ . (2.27)
As by construction ´Ω η 2 K = 1, we also have

K+1 α 2 = 1.
(2.28)

Finally, we observe that, for this perturbation h K , θm,µ solves

L m θm,µ = η K , ∂ θm,µ ∂ν = 0, (2.29) whence θm,µ = K+1 α λ (L m ) ψ . (2.30) 
Using the L 2 (Ω)-orthogonality property of the eigenfunctions, we get ˆΩ θ2

m,µ = K+1 α 2 λ (L m ) 2 .
(2.31) and, similarly,

µ ˆΩ |∇ θm,µ | 2 -ˆΩ(m -2θ m,µ ) θ2 m,µ = ∞ =K+1 α 2 λ (L m ) .
We infer the existence of M > 0 such that

µ ˆΩ |∇ θm,µ | 2 ∞ =K+1 α 2 λ (L m ) -M ˆΩ θ2 m,µ ∞ =K+1 α 2 λ (L m ) -M ∞ =K+1 α 2 λ (L m ) 2 = ∞ =K+1 α 2 λ (L m ) 2 (λ (L m ) -M ) (λ K+1 (L m ) -M ) ˆΩ θ2 m,µ .
The conclusion follows by taking K large enough so that λ K+1 (L m ) > M + A2 A1 , which concludes the proof.

Comparison with the results of [25]

This section is dedicated to an explanation of the main difference with the proof of [START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF]. As recalled in Remark 5, the main result of [START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF] reads: if Ω = {0 < m < 1} has an interior point, then it cannot be a solution of Problem (P µ ).

Although they do not use the expression (2.16) but an alternative expression of the second order Gâteaux-derivative Fµ , their idea, to reach a contradiction, is to reason backwards, by finding a function ψ, that "should" act as θm,µ , well chosen to yield a contradiction, and then constructing an admissible perturbation h supported in the interior of {0 < m < 1} such that θm,µ = ψ.

We propose hereafter an alternative proof of their result that uses their idea of first fixing a desirable function ϕ, and then proving the existence of an admissible perturbation h, compactly supported in Ω = {0 < m < 1} such that ϕ = θm,µ , leading to a positive second order derivative.

Let us argue by contradiction, considering a solution m of (P µ ) such that the set

Ω := {0 < m < 1} (2.32)
has a non-empty interior (in particular, it is of positive measure). As a consequence of (2.4) there exists c such that θ m,µ p m,µ = c in Ω.

(2.33)

Let us pick two interior points x 0 , y 0 of Ω and let r > 0 be such that 

B(x 0 ; r), B(y 0 ; r) ⊂ Ω, B(x 0 ; r) ∩ B(y; r) = ∅. ( 2 
ψ k (x) := χ(x -x 0 ) cos(k|x -x 0 |) -χ(x -y 0 ) cos(k|x -y 0 |). ( 2 
ψ k = θm,µ [h k ], (2.36)
where θm,µ [h k ] denotes the unique solution of (2.1) associated to the perturbation choice h = h k .

Proof of Lemma 16. Let us introduce h k , defined by

h k := 1 θ m,µ (-µ∆ψ k -(m -2θ m,µ )ψ k ) .
(2.37) Since, by construction ψ k ∈ W 2,∞ (Ω) and since inf Ω θ m,µ > 0 we get that h k ∈ L ∞ (Ω). Moreover, since χ is compactly supported in Ω, so is h k . Since Ω = {0 < m < 1}, the only condition we have to check to ensure that h k is admissible at m is that

ˆΩ h k = 0. (2.38)
By construction, one has

µ∆ψ k + ψ k (m -2θ m,µ ) = -h k θ m,µ in Ω, (2.39)
so that, by multiplying this equation by p m,µ and integrating twice by parts we obtain

ˆΩ ψ k = -ˆΩ θ m,µ p m,µ h k = -c ˆΩ h k (2.40)
where the last equality comes from (2.33). Since by construction, ´Ω ψ k = 0 the conclusion follows and hence h k is an admissible perturbation. Now, it remains to prove that 

∃k ∈ IN * , Fµ (m)[h k , h k ] = 2µ ˆΩ u m,µ |∇ψ k | 2 -2 ˆΩ V m ψ 2 k > 0. (2.41) Since sup k∈IN ψ k L ∞ χ L ∞ and since V m,µ ∈ L ∞ (Ω)
2 ds = (2π) d-1 ˆr 0 s d-1 k 2 sin 2 (ks)χ(s) ds (I 1,k ) + 2(2π) d-1 k ˆr 0 s d-1 sin(ks) cos(ks)χ(s) ∂χ ∂s (s) ds (I 2,k ) + (2π) d-1 ˆr 0 s d-1 cos 2 (ks) ∂χ ∂s 2 ds. (I 3,k )
Since sin 2 (k•) converges weakly to 1 2 in L 2 (0, r), since χ(0) = 1 and χ C 1 M for some M > 0, it follows that

I 1,k ∼ k→+∞ k 2 C 0 , C 0 > 0 and I 2,k = o k→∞ (I 1,k ).
Finally, (I 3,k ) remains bounded and we get ˆB(x0;r)

|∇ψ k | 2 ∼ k→∞ k 2 C 0
for some constant C 0 > 0, which concludes the proof.

Remark 17. In this approach which, as we underline, works under the strong hypothesis that Ω has a non-empty interior, the core point is to build a sequence of admissible perturbations {h k } k∈IN such that the family H = {h k } k∈IN is uniformly bounded in W -2,2 but not in W -1,2 ; this guarantees the blow-up of the W 1,2 -norm and the boundedness of the L 2 -norm of the associated Gâteauxderivatives θm,µ [h k ]. In the proof of Theorem I, the perturbation h that we construct has a fixed L 2 norm, and hence the sequence of Gâteaux-derivatives is uniformly bounded in W 2,2 (Ω).

Proof of Theorem II

The proof of Theorem II follows the same lines as the one of Theorem I. For this reason, we only indicate hereafter the main steps, and point to the principal differences. Following the same methodology for stating the first order optimality conditions for problem (P µ ), let us introduce the adjoint state p j,m,µ solution of

µ∆p j,m,µ + p j,m,µ (m -2θ m,µ ) = -j (θ m,µ ) in Ω, ∂pj,m,µ ∂ν = 0 on ∂Ω. (2.45) 
Since j > 0, a direct adaptation of Lemma 13 yields

∀m ∈ M(Ω), inf Ω p j,m,µ > 0. (2.46)
It is straightforward to see that the Gâteaux derivative of the functional J j writes

Jj (m)[h] = ˆΩ hθ m,µ p j,m,µ , (2.47) 
for every m ∈ M(Ω) and any admissible perturbation h at m. Let us compute the second order Gâteaux derivative of J j . Keeping track of the fact that θm,µ solves (2.5) and that by direct computation, we obtain

Jj (m)[h, h] = ˆΩ θ2 m,µ j (θ m,µ ) + θm,µ j (θ m,µ ) , (2.48) 
we get an expression analogous to (2.16). Indeed, multiplying (2.45) by θm,µ and integrating by parts yields

1 2 ˆΩ θm,µ j (θ m,µ ) = ˆΩ h θm,µ -θ2 m,µ p j,m,µ = -ˆΩ θ2 m,µ p j,m,µ + ˆΩ -µ∆ θm,µ -θm,µ (m -2θ m,µ ) θ m,µ p j,m,µ .
Let us introduce u j,m,µ := p m,j,µ θ m,µ .

(2.49) Notice that, using the same arguments as in the proof of Theorem I, we obtain inf

Ω u j,m,µ > 0, ∆u j,m,µ ∈ L ∞ (Ω). (2.50) 
Since j belongs to C 2 , there exists M j > 0 such that

j (θ m,µ ) L ∞ M j . (2.51) 
We thus obtain the existence of a potential

V j,m,µ ∈ L ∞ (Ω) such that Jj (m)[h, h] = µ ˆΩ u j,m,µ ∇ θm,µ 2 -ˆΩ V j,m,µ θ2 m,µ . (2.52) 
As a consequence, by (2.50) and by the fact that V j,m,µ ∈ L ∞ (Ω), it suffices to find a perturbation h such that, for a large enough parameter

M 0 > 0, ˆΩ |∇ θm,µ | 2 M 0 ˆΩ θ2 m,µ . (2.53) 
We are now back to proving (2.20), and the proof reads the same way.

For the sake of completeness, this lemma is proved in Appendix A Let us introduce Ẽm,µ :

{u ∈ W 1,2 (Ω), u 0} θ → E m,µ (θ) + 1 6 ˆΩ m 3 . (3.7) 
Remark 20. The definition of Ẽm,µ is justified by the following, formal computation: let us assume that m is a C 1 function. It is known [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF] that θ m,µ → µ→0 + m in L p (Ω), for p ∈ [1; +∞). Since we aim at obtaining a convergence rate for θ m,µ -m L 1 (Ω) as µ → 0 + , it is natural to consider the energy E m,µ (m). Explicit computations show that

E m,µ (m) = µ 2 ˆΩ |∇m| 2 - 1 6 ˆΩ m 3 → µ→0 - 1 6 ˆΩ m 3 ,
which justifies to consider the energy Ẽm,µ .

Estimating θ m,µ -m L 1 (Ω) using Ẽm,µ . The key point is then to prove that θ m,µ -m L 1 (Ω) can be estimated in terms of the rescaled energy, via the following two Lemmas.

Lemma 21. There exists a constant

M 1 > 0 such that ∀m ∈ M(Ω), θ m,µ -m L 1 (Ω) M 1 Ẽm,µ (θ m,µ ) 1 3 = M 1 inf u∈W 1,2 (Ω),u 0 Ẽm,µ (u) 1 3 . (3.8) 
Proof of Lemma 21. We split the proof into two steps.

Step 1. There holds

∀µ > 0, ∀m ∈ M(Ω), ˆΩ θ m,µ 3 + m 6 (θ m,µ -m) 2 Ẽm,µ (θ m,µ ). (3.9) 
This follows from explicit computations. Setting A = ´Ω θm,µ 3 + m 6 (θ m,µ -m) 2 , one has

A = 1 3 ˆΩ θ m,µ θ m,µ 2 -2mθ m,µ + m 2 + 1 6 ˆΩ m θ m,µ 2 -2mθ m,µ + m 2 = 1 3 ˆΩ θ m,µ 3 - 2 3 ˆΩ mθ m,µ 2 + 1 3 ˆΩ θ m,µ m 2 + 1 6 ˆΩ m 3 + 1 6 ˆΩ mθ m,µ 2 - 1 3 ˆΩ θ m,µ m 2 = 1 3 ˆΩ θ m,µ 3 + 1 6 ˆΩ m 3 - 1 2 ˆΩ mθ m,µ 2 = E m,µ (θ m,µ ) - µ 2 ˆΩ |∇θ m,µ | 2 + 1 6 ˆΩ m 3 E m,µ (θ m,µ ) + 1 6 ˆΩ m 3 = Ẽµ (θ m,µ ).
Step 2. There exists M 0 > 0 such that for every µ > 0 and m ∈ M(Ω), one has

θ m,µ -m L 1 (Ω) M 0 ˆΩ θ m,µ 3 + m 6 (θ m,µ -m) 2 1 3 
.

We first apply the Hölder inequality to obtain

θ m,µ -m 3 L 1 (Ω) = ˆΩ |θ m,µ -m| 3 |Ω| 2 ˆΩ |θ m,µ -m| 3 . (3.10) 
As θ m,µ , m 0, we have

|θ m,µ -m| θ m,µ + m so that |θ m,µ -m| 6 θ m,µ 3 + m 6 .
In turn, this implies

|θ m,µ -m| 3 = |θ m,µ -m| • |θ m,µ -m| 2 6 θ m,µ 3 + m 6 (θ m,µ -m) 2 .
As a consequence,

θ m,µ -m 3 L 1 (Ω) |Ω| 2 ˆΩ |θ m,µ -m| 3 6|Ω| 2 ˆΩ θ m,µ 3 + m 6 (θ m,µ -m) 2 .
It suffices to define M 0 as the unique positive root of M 3 0 = 6|Ω| 2 . The lemma follows from a combination of the two steps.

As a consequence, we will aim at proving an estimate of the form

Ẽm,µ (θ m,µ ) m BV (Ω) µ β (3.11) 
which, with Lemma 21, will lead to an estimate of the type (3.2). As explained in the introduction, we provide in Section B an alternative proof of (3.11) in the one-dimensional case following the method of Modica [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF], that cannot unfortunately be straightforwardly extended to higher dimensions.

Let us now concentrate on the multidimensional case, assuming that Ω = (0; 1) d with d 1. We aim at obtaining an estimate of the form (3.2) which, by Lemma 21 amounts to determine a bound on Ẽm,µ (θ m,µ ). Let us first consider m ∈ M(Ω) ∩ W 1,2 (Ω), that we will use as a test function in the energy. We get

Ẽm,µ (θ m,µ ) Ẽm,µ (m) = µ 2 ˆΩ |∇m| 2 .
(3.12)

We now consider a convolution kernel defined with the help of an approximation of unity. Namely, we consider a C ∞ function χ with compact support in B(0; 1) satisfying 0 χ 1 a.e. in B(0; 1),

ˆB(0;1) χ = 1.
For every ε > 0, we define According to [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF]Equation (2.4)], there exists a constant M such that for every m, m ∈ {f ∈ L ∞ (Ω), f 0}, there holds

χ ε (x) := 1 ε d χ x ε . ( 3 
θ m,µ -θ m ,µ L 1 (Ω) M m -m 1 3 L 1 (Ω) . (3.16) 
By the triangle inequality, for any m ∈ M(Ω) and any µ, ε > 0,

ˆΩ θ m,µ -m 0 θ m,µ -θ mε,µ L 1 (Ω) + θ mε,µ -m ε L 1 (Ω) + ˆΩ m ε -m 0 . (3.17) 
Note that one has, for any i ∈ 1, d ,

∂ i m ε 2 L 2 (Ω) = ˆΩ 1 ε d+1 ˆIR d ∂ i χ x -y ε m(y)dy 2 dx M ε 2(d+1) ˆIR d ˆΩ |∇χ| 2 x -y ε |m(y)| dydx by Jensen's inequality M ε 2 ∇χ 2 L 2 (IR d ) .
Hence, there exists M > 0 such that

∇m ε L 2 (Ω) M ε .
As a consequence, by (3.12) and Lemma 21, we have

θ mε,µ -m ε L 1 (Ω) M 1 Ẽmε,µ (θ mε,µ ) 1 3 M 1 µ 1/3 ´Ω |∇m ε | 2 1/3 M 1 µ 1 3 ε 2 3 (3.18)
for some positive constants M 1 , M 1 . It follows from (3.17) that there exists M > 0 such that

ˆΩ θ m,µ -m 0 M m -m ε 1 3 L 1 (Ω) + µ 1 3 ε 2 3 + ˆΩ m ε -m 0 (3.19)
To end the proof, we need the following lemma, whose proof is postponed to the end of this section for the sake of clarity. Lemma 22. There exists a constant d 0 > 0 such that

∀m ∈ M(Ω) ∩ BV (Ω), m -m ε L 1 (Ω) d 0 ε ∇m L 1 (Ω) . (3.20) 
As a consequence, we have m -m ε L 1 (Ω) ε|m| T V (IR d ) . Since the extension operator is bounded, we thus get m -m ε L 1 (Ω)

M ε m BV (Ω) . Starting from (3.19) and plugging all these estimates together and using (3.17), we finally obtain, for some positive constant M , ˆΩ θ m,µ -m 0 M (ε m BV )

1 3 + µ 1 3 ε 2 3 + ε ∇m L 1 (Ω) M (ε m BV ) 1 3 + ε ∇m L 1 (Ω) + µ 1 3 ε 2 3
.

Taking m = m * µ (which, as explained at the beginning of the proof, is assumed to be BV ) and

ε = N 0 µ 1 2 with N 0 > 0, one gets ˆΩ θ m * µ ,µ -m 0 - M N 2/3 0 M ε m * µ 1 3 BV + ε m * µ BV ,
and choosing N 0 large enough yields lim inf

ε→0 ε m * µ BV 1 3 + ε m * µ BV > 0. (3.21)
We infer the existence of C 0 > 0 such that for all solution m * µ of (P µ ), one has

C 0 ε m * µ BV 1 3 + ε m * µ BV (3.22) 
and therefore, there exists c 0 > 0 such that, for every µ > 0 small enough

c 0 ε m * µ BV = N 0 µ 1 2 m * µ BV (Ω) . (3.23) 
The desired conclusion follows.

Proof of Lemma 22. As is customary in convolution, one has

m(x) -χ ε m(x) sup |h|=ε τ h m -m L 1 (IR d )
for a.e. x ∈ Ω, where τ h stands for the translation operator. However, we claim that

sup |h|=ε τ h m -m L 1 (IR d ) h ∞ ∇m L 1 (IR d ) . (3.24) 
It suffices to prove (3.24) for m ∈ C 1 , and the general result follows from the density of C 1 functions in BV (IR d ). For any h ∈ IR d we have

ˆIR d |m(x + h) -m(x)| dx = ˆIR d ˆ1 0 d dξ [m(x+ξh)] dξ dx = ˆIR d ˆ1 0 ∇m(x+ξh), h dx h ∞ ˆ1 0 ˆIR d |∇m(x+ξh)|dξ dx = h ∞ ˆIR d |∇m| = h ∞ ∇m L 1 .
The desired result follows.

Conclusion: possible extensions of the bang-bang property to other state equations

We conclude this article with a discussion on possible generalisations of our method. Indeed, an interesting question is to know whether or not the methods put forth in the proof of Theorem I could be applied to other types of boundary conditions, for instance Dirichlet or Robin, or for other kinds of non-linearities. We justify below that it is the case, and that the main difficulty lies in the well-posedness of the equation acting as a constraint on the optimisation problem (P µ ).

Let us consider a boundary operator B, that may be of Neumann (Bu = ∂u ∂ν ) or of Robin type (Bu = ∂u ∂ν + βu for some β > 0). Let us consider a non-linearity F = F (x, u) of class C 2 , and consider, for a given m ∈ M(Ω), the solution u m of

-∆u m = mu m + F (x, u m ) in Ω, Bu m = 0 on ∂Ω. (4.1) 
The first assumption on F one has to make is:

For any m ∈ M(Ω), (4.1) has a unique positive solution u m . Furthermore, inf

m∈M(Ω) inf Ω u m > 0, sup m∈M(Ω) u m C 1 < ∞. (H)
It is notable that (H) is satisfied whenever F satisfies:

1. F (x, 0) = 0 and the steady state z(•) = 0 is unstable. This is for instance problematic when considering Dirichlet boundary conditions for the logisticdiffusive equation: depending on the range of µ the equation may only have trivial solutions.

We also assume The map m → u m is twice Gâteaux-differentiable. (H ) which is for instance ensured whenever F ∈ W 2,∞ and if the solution u = u m is linearly stable. Consider then the following optimisation problem, where the function j satisfies (H j ) sup m∈M(Ω) J(m), with J(m) = ˆΩ j(u m ). (P)

Our methods enable us to prove that any solution of (P) is a bang-bang function. To do so, we need to write down the first and second order Gâteaux-derivative of u m with respect to m: using the same notations as in the rest of this article, if (H)-(H ) hold, then it can be shown that

-∆ um -m um -um ∂F ∂u (x, u m ) = hu m in Ω, B um = 0 on ∂Ω, (4.2) 
and

-∆ü m -mü m -üm ∂F ∂u (x, u m ) = 2h um + ( um ) 2 ∂ 2 F ∂u 2 (x, u m ) in Ω, Bü m = 0 on ∂Ω, (4.3) 
This allows us to compute the derivative of J. Under (H)-(H ), we have Here, we need to make another assumption on F :

J(m)[h] = ˆΩ um j (u m ) and J(m)[h, h] = ˆΩ ( um ) 2 j (u m ) + ˆΩ üm j (u m ). ( 4 
For any m ∈ M(Ω), inf Ω p m > 0. (H )
Given the assumption on j, (H ) is for instance implied if the first eigenvalue of -∆-m-∂F ∂u (•, u m ) is positive (linear stability condition), that also ensures the Gâteaux differentiability of m → u m . This in turn holds if F (x, u) = -ug(x, u) with g∈ W 2,∞ non-decreasing. Using the adjoint state to compute J(m)[h, h] in a more tractable form, one has

J(m)[h, h] = ˆΩ( um ) 2 j (u m ) + ˆΩ üm j (u m ) = ˆΩ( um ) 2 j (u m ) + ˆΩ p m 2h um + ( um ) 2 ∂ 2 F ∂u 2 (x, u m ) = ˆΩ( um ) 2 j (u m ) + p m ∂ 2 F ∂u 2 (x, u m ) + 2 ˆΩ p m u m um -∆ um -m um -um ∂F ∂u (x, u m ) = ˆΩ( um ) 2 j (u m ) + p m ∂ 2 F ∂u 2 (x, u m ) -2m p m u m -2 p m u m ∂F ∂u (x, u m ) + 2 ˆΩ p m u m (-um ∆ um ). Let us set Ψ m := pm um and V m := j (u m ) + p m ∂ 2 F ∂u 2 (x, u m ) -2mΨ m -2Ψ m ∂F ∂u (x, u m ). Then we obtain J(m)[h, h] = ˆΩ( um ) 2 V m + 2 ˆΩ um ∇Ψ m , ∇ um + 2 ˆΩ Ψ m |∇ um | 2 = ˆΩ ( um ) 2 (V m -∆Ψ m ) + 2 ˆΩ Ψ m |∇ um | 2 . Defining V m = V m -∆Ψ m , we finally get J(m)[h, h] = ˆΩ 2Ψ m |∇ um | 2 + ˆΩ( um ) 2 V m (4.6)
and the assumptions we made on F allow us to conclude that V m belongs to L ∞ and that inf Ω Ψ m > 0. To obtain the bang-bang property, we argue by contradiction and assume that the set Ω := {0 < m * < 1} is of positive measure. To reach a contradiction, it suffices to exhibit a perturbation h that is supported in Ω such that ˆΩ h = 0 and 2 infΩ Ψm yields the expected conclusion.

ˆΩ |∇ um | 2 > V m L ∞ (Ω) 2 inf Ω Ψ m ˆΩ ( um ) 2 . ( 4 
Furthermore, since we know from [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF] that the BV (Ω) norm of maximisers blows-up as µ → 0, we can always assume that the set of finite perimeter A we are working with satisfies Per int (A) 2.

Since m ∈ M M (Ω), we know that m writes m = 1 A where A is a set of bounded perimeter. Let us then consider such a subset A. Since A is of finite perimeter, it writes

A = n i=1 (a i ; b i ) (B.6)
with 0 a i < b i < a i+1 1 for every i ∈ 1, . . . , n .

To obtain the conclusion of the Proposition, it suffices to exhibit a constant C 1 that does not depend on µ, m, and a function u µ ∈ W 1,2 (Ω) such that Ẽm,µ (u µ ) C 1 √ µ Per(A) . (B.7)

Let us introduce h A , the so-called signed-distance function to the set A, defined by

h A : x →      dist(x, ∂A) if x / ∈ A, 0 if x ∈ ∂A, -dist(x, ∂A) if x ∈ A, (B.8)
as well as the auxiliary function

φ ε : IR t →    1 if t < 0, 0 it t η ε , 1 -t ηε otherwise, (B.9)
for some regularization parameter ε 0, where η ε = ε 1 4 . We combine these two functions and introduce u ε = φ ε • h A . Let us use u ε as a test function in the variational formulation (3.5). We will estimate separately the gradient term and the remainder term of the energy functional. The main interest of this decomposition is that on each interval (a i ; b i ) or (b i ; a i+1 ), the function h is symmetric with respect to the midpoint of the interval. As a consequence, two cases may occur when considering the interval (a i ; b i ) (the case (b i ; a i+1 ) being exactly identical): (i) either |b i -a i | 2η ε , in which case, since φ ε L ∞ = 1 ηε it follows that ˆbi ai φ ε (h A (t)) 

Estimate of the gradient term.

  .34) Let χ ∈ D(IR d ) be a C ∞ , radially symmetric, non-negative function with compact support in B(0; r) such that χ(0) = 1. For every k ∈ IN, let us introduce ψ k defined by

. 13 )

 13 Every m ∈ M(Ω) is extended outside of Ω by a compactly supported function of bounded variation, according to[START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] Proposition 3.21]. We definem ε := m χ ε (3.14)for every ε > 0, where stands for the convolution product in L 1 (IR d ). It is standard that ∀p ∈ (1; +∞), m -m ε L p (Ω)

2 .

 2 Uniformly w.r.t. x ∈ Ω, one has lim y→∞ F (x, y)/y = -∞.

. 4 )

 4 Let us introduce the adjoint state p m , solving-∆p m -mp m -p m ∂F ∂u (x, u m ) = j (u m ) in Ω, Bp m = 0 on ∂Ω. (4.5)

. 7 ) 9 )

 79 Following the proof of Theorem I, we introduce the sequence of eigenfunctions and eigenvalues {ϕ k , λ k } k∈IN associated to the operatorL m := -∆ -m + ∂F ∂u (x, u m ) (4.8)with Bϕ k = 0. Adapting hence the proof of Theorem I, we show that for any K ∈ IN, there exists an admissible perturbation h such that hu m = It follows that for such a perturbation,ˆΩ |∇ um | 2 λ K ˆΩ ( um ) 2 . (4.10) Choosing K ∈ IN large enough so that λ K V m L ∞ (Ω)

  Since h A is differentiable a.e. and |h A | = 1, we have (u ε ) 2 = φ ε (h A (•)) 2 a.e. in Ω. Using the decomposition of A, we getˆ1 0 (u ε ) 2 = ˆa1 0 φ ε (h A (t)) 2 dt+ n i=1 ˆbi ai φ ε (h A (t)) 2 dt + ˆai+1 bi φ ε (h A (t)) 2 dt + ˆ1 an+1 φ ε (h A (t)) 2 dt.(B.10) Let us focus on the termn i=1 ˆbi ai φ ε (h A (t)) 2 dt + ˆai+1 bi φ ε (h A (t)) 2 dt .

  1) d . However, let us point out the fact that the only step, during our proof, where we need the C 2 regularity of the boundary of the domain, is when we establish the key estimate(2.19) below. This estimate relies on the W 2,p regularity of the solution θ m,µ and of the adjoint state p m,µ defined during the proof, for any p ∈ [1; +∞), as well as on Sobolev embeddings. These Sobolev embeddings are applied to θ m,µ and to p m,µ , and are used to guarantee that they are both C 1 functions. Such W 2,p regularity is classical when the domain Ω is C 2 , but also holds when the domain Ω is an orthotope. Let us explain how we can reach the W 2,p regularity of θ m,µ when the domain is an orthotope: we can extend the function m by parity to obtain a function m : (x 1 , . . . , x d ) ∈ (-1; 1) d → m(|x 1 ] , . . . , |x d |). We then extend it to IR d by 2-periodicity. We apply the same procedure to θ m,µ to obtain a 2-periodic function θ m,µ . Since θ m,µ satisfies Neumann boundary conditions, θ m,µ satisfies (E m,µ ) with m replaced with m, and the Neumann boundary condition replaced with periodicity conditions. In this context, we can apply the classical W 2,p -elliptic regularity theory in the flat torus. Sobolev embeddings are, similarly, known to hold in the case of the flat torus, and can be applied to θ m,µ to yield the required result: θ m,µ ∈ C 1 . The proof of the regularity of p m,µ would follow exactly the same lines. The rest of the proof of Theorem I reads exactly the same.

  1,2regularity of θm,µ [h n ] to θm,µ as n → ∞ and thus the convergence of second order derivatives. Choosing n large enough yields the required contradiction. In what follows, we will hence look for According to (2.16), by using (2.15) and (2.12), there exist two positive constants A 1 and A 2 such that Fµ (m)[h, h] A 1 ˆΩ |∇ θm,µ | 2 -A 2 ˆΩ θ2 m,µ . (2.19)

a function h ∈ L 2 (Ω) satisfying (2.17) and ´Ω h = 0.

  according to(2.15), it is enough to show that ˆΩ u m,µ |∇ψ k | 2 ----→

				k→∞	+∞.	(2.42)
	Using the fact that inf Ω u m,µ > 0 from Estimate (2.12), (2.42) is implied by
		ˆΩ |∇ψ k | 2 ----→ k→∞	+∞.	(2.43)
	Finally, since B(x 0 ; r) ∩ B(y 0 ; r) = ∅, (2.43) is in turn implied by
		ˆB(x0;r)			
				|∇ψ k | 2 ----→ k→∞	+∞.	(2.44)
	Let us now establish (2.44). By using polar coordinates, one has
	ˆB(x0;r)	|∇ψ k | 2 = (2π) d-1	ˆr 0	s d-1 k sin(ks)χ(s) + cos(ks)	∂χ ∂s	(s)

  2 dt 2η ε φ ε (ii) or |b i -a i | > 2η ε , in which case |{u ε = 0} ∩ (a i ; b i )| 2η ε and so ˆbi ai φ ε (h A (t)) 2 dt 2η ε φ ε If we define ψ ε = 1 3 u 3 ε -1 2 mu 2 ε + 1 6 m 3we have the following decomposition: in the set {m = 1}, we have h A 0, hence u ε = 1 and we infer that ψ ε = 0 in {m = 1}. However, we can do exactly the same distinction as for the analysis of the gradient part of the energy: for any i ∈ 1, n (the end intervals are handled in the same way) we either have|a i+1 -b i | 2η ε , in which case ˆai+1 bi ψ ε (t)dt 2η ε (B.17) or |a i+1 -b i | > 2η ε ,in which case the same conclusion holds since 0 ψ ε 1 a.e. in Ω. As a consequence, we obtain ˆ1 0 ψ ε (t) 2η ε Per(A). (B.18) Combining (B.14) and (B.18) yields the existence of C 1 > 0 such that

											2 L ∞	2 η ε	.	(B.12)
	As such, we have									
	n i=1	ˆbi ai	φ ε (h A (t)) 2 dt +	ˆai+1 bi	φ ε (h A (t)) 2 dt	4n η ε	2	Per(A) η ε	.	(B.13)
	The end terms		ˆa1 0	φ ε (h A (t)) 2 dt +	ˆ1 bn	φ ε (h A (t)) 2 dt
	are handled in the same way, and we finally obtain
						ˆ1 0	(u ε ) 2 (t)dt C	Per(A) η ε	(B.14)
	for some constant C > 0.								
	Estimate of the potential term. It remains to deal with the quantity
			1 3 ˆ1 0	u 3 ε (t)dt -	1 2 ˆ1 0	mu 2 ε (t)dt +	1 6 ˆ1 0	m 3 .	(B.15)
	The integral to estimate boils down to			
			ˆ1 0	ψ ε (t)1 {m=0} dt =	ˆ1 0	1 3	u 3 ε 1 {m=0} .	(B.16)
			Ẽm,µ (u ε ) C 1	µ η ε	+ η ε Per(A).	(B.19)
	Picking η ε = leading to the desired conclusion. √ µ, we obtain			Ẽm,µ (u ε ) 2C 1	2 L ∞ √ µ Per(A),	2 η ε	.	(B.20) (B.11)

The wording "admissible perturbation" means that h belongs to the tangent cone to the set M(Ω) at m. It corresponds to the set of functions h ∈ L ∞ (Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L ∞ (Ω) converging to h as n → +∞, and m + εnhn ∈ M(Ω) for every n ∈ IN.
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Proof of Theorem III

The core of this proof relies on fine energy estimates.

To alleviate the reading, let us start with the presentation of the proof structure.

Main idea

The proof rests upon the use of two ingredients:

(i) the first one reads Lemma 18 ([22, Lemma 2]). There exists δ > 0 such that lim inf

(ii) the second one, on which the emphasis will be put throughout the proof, is an estimate of the following form: there exist a constant M > 0 and an exponent α > 0 such that

If Estimate (3.2) holds, then, assuming that the optimiser m * µ is a BV (Ω)-function (if it is not, then m BV (Ω) = +∞ and the statement of the theorem is trivial), we have

where δ > 0 is given by Lemma 18, yielding

with M = δ M . To obtain convergence rates such as (3.2), we will proceed using energy arguments and prove that a rescaled, shifted version of the natural energy associated with the PDE (E m,µ ) yields this kind of control.

The rescaled energy functional Let us first recall that the equation (E m,µ ) admits a variational formulation: let us introduce

then θ m,µ is characterized as the unique minimiser of E µ over W 1,2 (Ω); in other words

Since we could not locate this formulation in the literature, we give a proof:

Appendix A Proof of Lemma 19

Let us first recall that since θ m,µ is non-negative and does not vanish in Ω, we have

In order to prove this Lemma, let us introduce the energy functional

In particular, if F m,µ has a minimiser u * , then |u * | also minimises F m,µ , and

and so u * is a minimiser of F m,µ .

Let us then prove that θ m,µ is a minimiser of F m,µ . Consider a minimising sequence {y k } k∈IN of F m,µ . Up to replacing y k with |y k | which, thanks to (A.3), would still yield a minimising sequence, we can assume that for every k ∈ IN, y k is non-negative. Let us introduce λ(m) as the first eigenvalue of the operator -∆ -m with Neumann boundary conditions. According to the Courant-Fischer principle, one has

and therefore

As a consequence, {y k } k∈IN is bounded in L 3 (Ω) and then also in L 2 by using the same argument. Finally, by definition of F m,µ , it is also uniformly bounded in W 1,2 (Ω).

Hence, there exists a strong L 2 (Ω), weak L 3 (Ω) and weak

and y ∞ minimises F m,µ over K . Since 0 L 2 (Ω) is not a minimiser, we have y ∞ 0 and y ∞ (•) = 0. The map x → |x| 3 is C 1 and the Euler-Lagrange equation on y ∞ writes

From uniqueness for non-zero, non-negative solutions of the logistic-diffusive PDE, it follows that y ∞ = θ m,µ . As a consequence:

which concludes the proof.

B Proof of (3.11) in the one-dimensional case

We assume in this section that Ω = (0, 1). Let us prove (3.11). The proof relies on ideas by Modica [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]. Given Lemma 18 and (3.3), it is enough to establish a uniform convergence rate of θ m,µ to m in L 1 (Ω) with respect to the BV (Ω) norm of m, as µ → 0 . We proceed in several steps, first considering the case where m is the characteristic function of a set of finite perimeter before encompassing the general case. In what follows, it will be convenient to introduce the set of bang-bang functions 

We can now prove Theorem III. First of all, the maximiser m * µ of (P µ ) is a bang-bang function by Theorem I and belongs therefore to M(Ω). We thus obtain, using Lemma 21,

where δ > 0 is given by Lemma 18. The conclusion follows.

Proof of Proposition 23. In what follows, we will bypass the distinction between the interior perimeter of a subset A ⊂ (0; 1), denoted Per int (A), and its perimeter denoted Per(A) when seen as a subset of IR. Since we have obviously