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Optimisation of the total population size for logistic diffusive

equations: bang-bang property and fragmentation rate

Idriss Mazari∗ Grégoire Nadin† Yannick Privat‡

Abstract

In this article, we give an in-depth analysis of the problem of optimising the total popu-
lation size for a standard logistic-diffusive model. This optimisation problem stems from the
study of spatial ecology and amounts to the following question: assuming a species evolves in a
domain, what is the best way to spread resources in order to ensure a maximal population size
at equilibrium? In recent years, many authors contributed to this topic. We settle here the
proof of two fundamental properties of optimisers: the bang-bang one, which had so far only
been proved under several strong assumptions, and the other one is the fragmentation of max-
imisers. We prove the bang-bang property in all generality using a new spectral method. The
technique introduced to demonstrate the bang-bang character of optimizers can be adapted
and generalized to many optimization problems with other classes of bilinear optimal control
problems where the state equation is semilinear and elliptic. We comment on it in a conclusion
section. Regarding the geometry of maximisers, we exhibit a blow-up rate for the BV -norm of
maximisers as the diffusivity gets smaller: if Ω is an orthotope and if mµ is an optimal control,
then ‖mµ‖BV & 1/

√
µ. The proof of this results relies on a very fine energy argument.

Keywords: diffusive logistic equation, optimal control, bilinear optimal control, calculus of vari-
ations, shape optimization.
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1 Introduction

This article is devoted to the study of a problem of calculus of variations motivated by questions of
spatial ecology. This problem is related to the ubiquitous question of optimal location of resources.
While we further specify what we mean by “optimal” in what follows, let us note that optimisation
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problems related to the location of resources are a possible way to tackle the question of spatial
heterogeneity in reaction-diffusion equations. In this context, spatial heterogeneity is interpreted
as heterogeneity of the resources available to a given population.

In this paper, we thoroughly analyse the issue of optimising the total population size with
respect to the resource distribution. The reaction-diffusion model we deal with is made precise in
Section 1.1 and the precise statement of our main results in Section 1.2. In a nutshell, our results
may be recast as follows:

• First, we give a characterisation of pointwise properties of optimal resource distributions (also
called the bang-bang property) that has been partially tackled in [21, 25]; in these previous
contributions, the contents of which we discuss in Sections 1.1 and 1.3, partial answers are
provided under several technical assumptions. We present here a new method that we believe
to be flexible and versatile enough to be applied to a wide class of bilinear optimal control
problem, and that provides a positive answer to the question of knowing whether optimal
resource distributions are bang-bang.

• Second, we prove a fragmentation phenomenon, with explicit blow-up rates: as has been
noticed [21, 22, 24], for the optimisation of the total population size, the characteristic dis-
persal rate of the population has a drastic influence on the geometry of optimal resource
distributions (in the sense that, the lower the characteristic dispersal rate, the more spread
out the optimal resource distribution). Here, we provide an explicit blow-up rates for the
BV -norm of optimal resource distribution, the BV -norm being a natural way to quantify
the fragmentation or complexity of a resource distribution. We refer to Section 1.1 for further
explanations.

1.1 Model and statement of the problems

Statement of the problems Let us first lay down the model and the optimisation problems
under consideration. The following paragraph is dedicated to explaining which kind of properties
we want to obtain for these optimisation problems.

We introduce the model we consider throughout the paper. We place ourselves in the framework
of the Fisher-KPP equation which, since the seminal works [8, 11], has been used at length: while
its apparent simplicity makes it amenable to mathematical analysis, it is complex enough to capture
several fundamental aspects of population dynamics [27]. This model reads:

µ∆θ + θ(m− θ) = 0 in Ω,
∂θ
∂ν = 0 on ∂Ω,
θ > 0, θ 6= 0,

(Em,µ)

where θ : Ω→ IR+ is the population density. The population accesses resources which are modelled
by a function m ∈ L∞(Ω), and µ > 0 is the dispersal rate.

Although we consider here Neumann boundary conditions, Theorems I and II below can be
extended to Robin boundary conditions as well, the only difficulty being that one would need to
ensure existence and uniqueness for the logistic-diffusive equations under these conditions. We
comment on this in the conclusion (Section 4).

Provided that m > 0 and m 6≡ 0, there exists a unique solution to (Em,µ) [3, 4, 5]. We denote
it θm,µ.

We can hence define the total-population size functional

∀µ > 0,∀m ∈M(Ω), Fµ(m) :=

ˆ
Ω

θm,µ. (1.1)
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We use the following class of constraints on the admissible resource distributions m, which was
introduced in [17] and used, for instance, in [21, 25]:

M(Ω) :=

{
m ∈ L∞(Ω), 0 6 m 6 1,

ˆ
Ω

m = m0

}
. (1.2)

The parameter m0 is a positive real number such that m0 < |Ω|, where |Ω| denotes the volume
of Ω, in order to ensure that M(Ω) 6= ∅. The L1 constraint accounts for the fact that, in a given
domain, only a limited amount of resources is available. The second constraint is a pointwise one,
and accounts for natural limitations of the environment, i.e. the fact that, in a single spot, only a
maximum amount of resources can be available.

The optimisation problem we consider reads

sup
m∈M(Ω)

Fµ(m) , (Pµ)

where Fµ(m) is given by (1.1).

Remark 1 (Existence of maximisers). For any µ > 0, the existence of a solution m∗µ of (Pµ) is
an immediate consequence of the direct method in the calculus of variations.

In the following paragraph, we present the fundamental properties we are interested in.

Optimisation of spatial heterogeneity in mathematical biology: fundamental prop-
erties under consideration Starting from spatially homogeneous models [8, 11], in which a
population is assumed to live in a homogeneous environment, mathematical biology has over the
past decades started considering the impact of spatial heterogeneity on population dynamics [5].
In most works, this spatial heterogeneity is modelled using resource distributions. Mathematically,
this amounts to taking into account the heterogeneity in the reaction term of the equation. Given
that it is hopeless, for a given resource distribution, to attain an explicit description of the ensuing
population dynamics, the focus has, more recently, shifted to an optimisation point of view.

This approach has been initiated in [3, 10, 16] and has since received a considerable amount of
attention [2, 6, 13, 19, 21, 24, 25]. The initial question that motivated most of these works was
related to the optimal survival ability of a population [3, 26]. Namely:

What is the best way to spread resources in a domain to ensure the optimal survival of a
population?

This problem is by now very well understood in several simple cases (we provide ampler references
in Section 1.3). Among all the issues tackled by the authors of [3, 10, 13], let us single out the
following ones, which have been deemed crucial in the study of spatial heterogeneity as they provide
simple, qualitative information about the influence of heterogeneity: in a domain Ω, if we consider
resource distribution m belonging to M(Ω) defined by (1.2),

1. does the bang-bang property hold at the optimum? In other words, if one looks at maximising
a criterion over resource terms in M(Ω), does any optimal resource distribution m∗ write
m∗ = 1E , for some measurable subset E of Ω of positive measure? Alternatively, this means
that the underlying domain Ω can be decomposed as

Ω = {m∗ = 1} t {m∗ = 0}. (1.3)
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Despite several partial results [21, 25] which we detail in Remarks 5 and 6 , this property is
not known to hold in general for the optimisation of the total population size. In this article
we prove that this property indeed holds for the optimal population size whatever the value
of µ > 0 (Theorem I).

2. do optimal resources tend to concentrate? In ”simple” cases (i.e. in simple geometries and for
specific boundary conditions), optimal resource distributions for the survival ability [3, 10]
are known to be concentrated. For instance, considering an optimal resource distribution for
the survival ability, which is known to write m∗ = 1E , then the set E is connected and,
moreover, enjoys a symmetry property for Neumann boundary conditions in an orthotope [3,
Proposition 2.9]. A similar conclusion holds whenever Ω = B(0; r) is a ball and if Dirichlet
boundary conditions are imposed rather than Neumann. In that case, the optimal set E
is another centered ball E = B(0; r∗), with a radius r∗ chosen so as to satisfy the volume
constraint. For general geometries and Robin boundary conditions, the situation is very
involved and we refer to [13] for up to date qualitative properties. Such results are a mathe-
matical formalisation of a paradigm first stated in [26]: fragmenting the set {m∗ = 1} leaves
less chance for survival. In other words, concentrating resources is favorable to population
dynamics.

In the case of the total population size, it was first noticed in [21] that such results do not in
general hold for small diffusivities, where the geometry of the optimal resource distribution
tends to become more complicated. Recently, in [24], a complete treatment of a spatially
discretised version of the problem was carried out, and precise fragmentation rules were
established. However, these results cannot be extended to the present continuous version,
since the optimiser they compute strongly depends on the discretization scale. In [22], it was
shown that, the slower the dispersal rate of the population, the bigger the BV -norm1 of the
optimal resource distribution is.

Remark 2. When m ∈W 1,1(Ω), the BV -norm and the W 1,1 norm coincide. When m = 1E
and m is a Cacciopoli set (i.e. a set with finite Cacciopoli perimeter) then ‖m‖BV (Ω) =
|E|+ Per(E), where Per(E) is the Cacciopoli perimeter of the set. As a consequence, in our
context, an information on the blow-up rate of the BV -norm yields an information on the
blow-up rate of the TV -norm and, since Theorem I ensures that any maximiser m∗µ writes as
1E∗µ , this implies a blow-up rate on Per(E∗µ) as µ→ 0+. We refer to [1] for more information
regarding functions of bounded variations and perimeters of sets.

In [22], the main result reads:

Theorem [22, Theorem 1 ]. Let Ω = (0; 1)d, µ > 0, and let m∗µ denote a solution of
Problem (Pµ). Then,

‖m∗µ‖BV (Ω) −−−−→
µ→0+

+∞.

In this article, we quantify this result by explicitly identifying blow-up rates in terms of the
characteristic dispersal rate, and provide a scaling we expect to be optimal (Theorem III).
The proof relies on fine energy estimates.

1Recall that the total variation semi-norm of a function is

|m|TV (Ω) = sup

{ˆ
Ω
m div(ϕ), ϕ ∈ C1

c (Ω; IRd), ‖ϕ‖L∞ 6 1

}
(1.4)

and that the bounded variation norm of m is in turn defined as

‖m‖BV (Ω) = ‖m‖L1(Ω) + |m|TV (Ω) . (1.5)
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A more in-depth discussion of the bibliography is included in Section 1.3.

1.2 Main results

1.2.1 The bang-bang property

Let us first state that every solution of the optimal population size problem is bang-bang. This
property, intrinsically interesting, has a practical interest: it allows us to reformulate the problem
as a shape optimisation one, the unknown being the set in which m takes its maximum value. One
can then use adapted numerical approaches.

Theorem I. Let Ω ⊂ IRd be a bounded connected domain with a C2 boundary. Let m∗µ be a
solution of (Pµ). Then there exists a measurable subset E ⊂ Ω such that

m∗µ = 1E . (1.6)

Remark 3 (Theorem I holds in orthotopes). This theorem, in its current form, is not fully
satisfactory for our future needs. Indeed, the fragmentation result, Theorem III, will be shown
in the case of an orthotope Ω = (0; 1)d. However, let us point out the fact that the only step,
during our proof, where we need the C2 regularity of the boundary of the domain, is when we
establish the key estimate (2.19) below. This estimate relies on the W 2,p regularity of the solution
θm,µ and of the adjoint state pm,µ defined during the proof, for any p ∈ [1; +∞), as well as on
Sobolev embeddings. These Sobolev embeddings are applied to θm,µ and to pm,µ, and are used to
guarantee that they are both C1 functions. Such W 2,p regularity is classical when the domain Ω
is C2, but also holds when the domain Ω is an orthotope. Let us explain how we can reach the
W 2,p regularity of θm,µ when the domain is an orthotope: we can extend the function m by parity

to obtain a function m̃ : (x1 , . . . , xd) ∈ (−1; 1)d 7→ m(|x1] , . . . , |xd|). We then extend it to IRd

by 2-periodicity. We apply the same procedure to θm,µ to obtain a 2-periodic function θ̃m,µ. Since

θm,µ satisfies Neumann boundary conditions, θ̃m,µ satisfies (Em,µ) with m replaced with m̃, and the
Neumann boundary condition replaced with periodicity conditions. In this context, we can apply
the classical W 2,p-elliptic regularity theory in the flat torus. Sobolev embeddings are, similarly,

known to hold in the case of the flat torus, and can be applied to θ̃m,µ to yield the required result:
θm,µ ∈ C1. The proof of the regularity of pm,µ would follow exactly the same lines. The rest of the
proof of Theorem I reads exactly the same.

As a conclusion, Theorem I holds in an orthotope. We also refer to Remark 15.

Remark 4 (Sketch of the proof). The idea of the proof rests upon the following fact: we can
actually show that the second order Gâteaux derivative of the criterion Fµ at a point m ∈ M(Ω)
in a direction h (such that m+ th ∈M(Ω) for t small enough) writes

F̈µ(m)[h, h] =

ˆ
Ω

Ψm(x)|∇θ̇m,µ|2 −
ˆ

Ω

Φm(x)θ̇2
m,µ, (1.7)

where Ψm,Φm ∈ L∞(Ω), infΩ Ψm > 0 and θ̇m,µ solves a PDE of the kind{
Lmθ̇m,µ = hθm,µ in Ω

∂ν θ̇m,µ = 0 in ∂Ω,

where Lm denotes an elliptic operator of second order. We then argue by contradiction, assuming
the existence of a maximiser m∗µ that is not a bang-bang function, meaning that the set {0 < m∗µ <
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1} is of positive Lebesgue measure. Using the expression of F̈µ(m)[h, h] above, we exhibit a function

h in L∞ supported in {0 < m∗µ < 1}, with
´

Ω
h = 0, such that

´
Ω
|∇θ̇m∗µ,µ|

2 is much larger than´
Ω
θ̇2
m∗µ,µ

. This is done by using the Fourier (spectral) basis of the operator Lm∗µ , and by choosing

h such that m + th remains admissible for t small enough, and such that, hθm∗µ,µ only has high
Fourier modes in this basis.

Remark 5 (Comparison with the results of [25]). In [25], the following result is proved: if m ∈
M(Ω) is such that {0 < m < 1} has a non-empty interior, then it is not a solution of (Pµ). This
in particular implies that, if a maximiser m∗µ of the total population size functional is Riemann
integrable, then m∗µ is continuous almost everywhere in Ω and is thus necessarily of bang-bang type.
However, such regularity is usually extremely hard to prove, and it is unclear to us whether it is
attainable in this context. We provide an alternative proof of their result in Section 2.2, where we
also comment on the comparison between our two proofs.

Remark 6. In [21], the bang-bang property is proved to hold whenever the diffusivity µ is large
enough, using a proof that is also based on a second order argument, but whose philosophy is
completely different from that of Theorem I. Our present result does not require such an assumption.

Remark 7. A minor adaptation of our proof allows us to handle more general admissible sets and
criteria:

• let us consider a function j satisfying

j ∈ C2([0; 1]; IR), j is increasing in [0; 1] and j′ > 0 in (0; 1). (Hj)

We define, for any µ > 0,

Jj,µ :M(Ω) 3 m 7→
ˆ

Ω

j(θm,µ) (1.8)

and the optimisation problem

sup
m∈M(Ω)

Jj,µ(m). (Pj,µ)

Then proving a bang-bang property for this problem is amenable to analysis using our tech-
nique.

• If one were to change the L∞ bounds on m to 0 6 m 6 κ for some positive κ, the only
modification would be to replace [0; 1] with the interval [0;κ] in assumption (Hj) above.

We claim that our method of proof extends to the following setting:

Theorem II. Let Ω ⊂ IRd be a C2 bounded domain and let j satisfying (Hj). Let m∗µ,j be a
solution of (Pj,µ). Then m∗µ,j is a bang-bang function: there exists a measurable subset E ⊂ Ω
such that

m∗µ,j = 1E . (1.9)

A short paragraph explaining how to adapt the proof of Theorem I is provided in Section 2.3.

1.2.2 Quantifying the fragmentation for small diffusivities

Our second main result deals with the aforementioned fragmentation property for low diffusivities.
Here, we will be led to make stronger assumptions on Ω, namely, that Ω is an orthotope: Ω = (0; 1)d.
Hence, according to [22, Lemma 2], one has

lim inf
µ→0+

(
sup

m∈M(Ω)

Fµ(m)

)
> m0 = inf

µ>0,m∈M(Ω)
Fµ(m). (1.10)
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The equality on the right-hand side is obtained in [16, Theorem 1.2].

Remark 8 (Some additional comments about (1.10)). Although we provide more detailed refer-
ences in Section 1.3, let us give some information about inequality (1.10): it is proved in [16,
Theorem 1.2] that, in any smooth domain Ω (or in Ω = (0; 1)d) we have, for any m ∈M(Ω),

Fµ(m)→ m0 as µ→∞ or µ→ 0+.

This allows, for a fixed m, to extend the map µ > 0 7→ Fµ(m) by continuity to [0; +∞] by setting
F0(m) = F+∞(m) = m0. Furthermore, for a fixed m, the monotonicity of µ 7→ Fµ(m) is unclear;
we refer to [14].

If we now define the map

G : µ > 0 7→ G(µ) := sup
m∈M(Ω)

Fµ(m),

then one can show [21] that
G(µ) −−−−→

µ→∞
m0.

This follows from the fact that the limit

∀m ∈M(Ω) , lim
µ→∞

Fµ(m) = m0

is uniform in m. On the other hand, (1.10) indicates that the limit limµ→0+ Fµ(m) = m0, which
is true for all m ∈ M(Ω), is not uniform with respect to the resource distribution m. A very
interesting question is that of the monotonicity of the map G. At this stage, however, it is unclear
how one could tackle it.

Remark 9. The only reason we work in Ω = (0; 1)d is that we know from [22, Lemma 2] that
(1.10) holds in this domain. In [22], (1.10) is proved using an explicit periodisation scheme.

It should be noted that, for any other C2 domain Ω̃ such that (1.10) is satisfied, the main
fragmentation result of this paper, Theorem III, holds in Ω̃.

We provide hereafter an explicit blow-up rate that we believe to be optimal. Once again, let
us emphasise that this rate does not depend on the space dimension d.

Theorem III. Let d > 1 and let Ω = (0; 1)d. There exists C0 > 0 such that the following holds:
there exists µ0 > 0 such that, for any µ ∈ (0;µ0), if m∗µ is a solution of (Pµ), then

‖m∗µ‖BV (Ω) >
C0√
µ
. (1.11)

Remark 10 (Comment on the proof of Theorem III). The crux of the proof is the variational
formulation of (Em,µ), which ensures that θm,µ is the unique minimiser of

Em,µ :
{
u ∈W 1,2(Ω), u > 0

}
3 u 7→ µ

2

ˆ
Ω

|∇u|2 − 1

2

ˆ
Ω

mu2 +
1

3

ˆ
Ω

u3, (1.12)

and which needs to be carefully estimated as µ → 0+. We prove that a ”shifted” version of this
energy controls the quantity ‖θm,µ −m‖L1(Ω) (Lemma 21). Therefore, using estimate (1.10), we
aim at controlling Em,µ(θm,µ) as µ → 0+. Using Modica-type estimates, one can show that, for a
fixed m ∈M(Ω) that writes m = 1E, there holds

√
µEm,µ(θm,µ) −−−−→

µ→0+
Per(E).
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However, this convergence is non-uniform with respect to m (or, more precisely to E) and, since we
are working with a maximisation problem, it is not possible to conclude using the convergence result
above. In the one dimensional case, we propose, in the appendix, an adaptation of [23] that makes
this strategy work nonetheless. In higher dimension, we estimate the energy using a regularisation
of m as a test function in the energy formulation of the equation.

1.3 Bibliographical comments on (Pµ)

In this section, we gather a discussion on references connected to the optimisation of the total
population size in logistic-diffusive models. For a presentation of the literature devoted to the
optimal survival ability, we refer to [18, Introduction].

Influence of the diffusivity µ on Fµ. Problem (Pµ) was first introduced in [17] and several
properties had been derived in [16], one of which is the following: for every µ > 0, the unique
minimiser of Fµ in M(Ω) is m0; in other words

∀µ > 0, ∀m ∈M(Ω), m(·) 6= m0 ⇒ Fµ(m) > m0. (1.13)

This result means that spatial homogeneity is detrimental to the population size. Furthermore, it
is proved in [16] that, m ∈M(Ω) being given, then

Fµ(m) −−−−→
µ→0+

m0, and Fµ(m) −−−−→
µ→∞

m0. (1.14)

Hence, for a given m ∈ M(Ω), the low and high diffusivity limits of the functional correspond to
global minima. However, it was proved in [22, Lemma 2] that

lim inf
µ→0+

(
sup

m∈M(Ω)

Fµ(m)

)
> m0,

showing the intrinsic difficulty of passing to the low-diffusivity limit in problem (Pµ).
This point of view, where the resource distribution is considered fixed and the diffusivity is

taken as a variable, was later deeply analysed in several articles. Notable among these are the
following results:

1. In [2], for a fixed m ∈ L∞(Ω) such that m(·) > 0 and m(·) 6= 0, the authors consider the
optimisation problem

sup
µ>0

(
Eµ(m) :=

Fµ(m)´
Ω
m

)
(1.15)

and observe that, in the one-dimensional case Ω = (0; 1), there holds

Eµ(m) 6 3. (1.16)

This bound is sharp (a maximising sequence is explicitly constructed) and is not reached by
any function m. This work was later extended to the higher-dimensional case in [9] and the
authors prove that, in that case (i.e. in dimension d > 2), there holds

sup
m∈L∞(Ω)
m>0, m 6=0

sup
µ>0

Eµ(m) = +∞. (1.17)

2. In [14], a function m such that the map µ 7→ Fµ(m) has several local maxima is constructed.
It emphasizes the intrinsic complexity of the interplay between the population size functional
and the parameter µ > 0.
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Finally, let us also note that a related problem, where the underlying model is a system of
ODEs with identical migration rates, was considered in [15].

We also point out to two surveys [12, 20] and to the references therein for up-to-date consid-
erations about the influence of spatial heterogeneity for single or multiple species models or for
optimisation problems in mathematical biology.

2 Proofs of Theorems I and II

2.1 Proof of Theorem I

The proof of this Theorem relies on a new formulation of the second order optimality conditions
for the problem (Pµ). Let us first compute the necessary optimality conditions of the first and
second orders.

Computation of optimality conditions It is established in [6, Lemma 4.1] that, for any µ > 0
the map M(Ω) 3 m 7→ θm,µ is differentiable at the first order in the sense of Gâteaux. Adapting
their proof yields without difficulty its second order Gâteaux-differentiability. Let us fix m ∈M(Ω)
and an admissible perturbation2 h ∈ L∞(Ω). Let us denote by θ̇m,µ (resp. θ̈m,µ) the first (resp.
second) Gâteaux-derivative of θ·,µ at m in the direction h. It is standard (we refer to [6, Lemma

4.1]) to see that θ̇m,µ solves{
µ∆θ̇m,µ + (m− 2θm,µ)θ̇m,µ = −hθm,µ in Ω,
∂θ̇m,µ
∂ν = 0 on ∂Ω.

(2.1)

Remark 11. The fact that θ̇m,µ is uniquely determined by that equation (in other words, that (2.1)
has a unique solution can be proved as in [6, 21]. For the sensitivity analysis and computation of
the Gâteaux-derivatives, we also refer to [25].

To derive a tractable equation for the Gâteaux derivative Ḟµ(m)[h] of the functional Fµ at m
in the direction h, let us introduce the adjoint state pm,µ as the solution of{

µ∆pm,µ + pm,µ(m− 2θm,µ) = −1 in Ω,
∂pm,µ
∂ν = 0 on ∂Ω,

(2.2)

so that, multiplying (2.1) by pm,µ and integrating by parts readily gives

ˆ
Ω

pm,µθm,µh =

ˆ
Ω

θ̇m,µ = Ḟµ(m)[h]. (2.3)

It is standard in optimal control theory (see e.g. [28]) that, if m∗µ is a solution of (Pµ) then there
exists a constant c such that

{0 < m∗µ < 1} ⊂ {θm∗µpm∗µ,µ = c}. (2.4)

Remark 12. As is done in [21], the sets {m∗µ = 1} and {m∗µ = 0} can be described in terms of
level sets of the so-called switching function θm,µpm,µ but we do not detail it since these are not
information we will use in the proof.

2The wording “admissible perturbation” means that h belongs to the tangent cone to the set M(Ω) at m. It
corresponds to the set of functions h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to
0, there exists a sequence of functions hn ∈ L∞(Ω) converging to h as n → +∞, and m+ εnhn ∈ M(Ω) for every
n ∈ IN.

9



Let us turn to the computation of the second order Gâteaux derivative of the functional Fµ in

the direction h, which will be denoted F̈µ(m)[h, h]. To obtain it, we first recall (see [21, Equation

(18)]) that θ̈m,µ solves{
µ∆θ̈m,µ + (m− 2θm,µ)θ̈m,µ = −2hθ̇m,µ + 2θ̇2

m,µ in Ω,
∂θ̈m,µ
∂ν = 0 on ∂Ω.

(2.5)

Multiplying (2.5) by pm,µ and integrating by parts yields

ˆ
Ω

θ̈m,µ = 2

ˆ
Ω

(
hθ̇m,µ − θ̇2

m,µ

)
pm,µ = 2

ˆ
Ω

(
−µ∆θ̇m,µ − (m− 2θm,µ)θ̇m,µ

θm,µ
θ̇m,µ − θ̇2

m,µ

)
pm,µ

= 2

ˆ
Ω

(
−µ∆θ̇m,µ − (m− θm,µ)θ̇m,µ

) pθ̇m,µ
θm,µ

.

Let us introduce um,µ :=
pm,µ
θm,µ

. We thus obtain

ˆ
Ω

θ̈m,µ = 2

ˆ
Ω

(
µ∇(um,µθ̇m,µ)∇θ̇m,µ − (m− θm,µ)θ̇2

m,µum,µ

)
= 2

ˆ
Ω

um,µ

(
µ|∇θ̇m,µ|2 −

(
m− θm,µ +

µ∆um,µ
2um,µ

)
θ̇2
m,µ

)
. (2.6)

Furthermore, it is straightforward to see that

∀m ∈M(Ω), inf
Ω
θm,µ > 0. (2.7)

Furthermore, we have the following result:

Lemma 13. For every m ∈M(Ω),
inf
Ω
pm,µ > 0. (2.8)

Proof of Lemma 13. We start from the observation that θm,µ solves (Em,µ) implies that the prin-
cipal eigenvalue λ(m − θm,µ, µ) of the operator −µ∆ − (m − θ) Id is zero [16]. Since θm,µ > 0 in
Ω, the first eigenvalue λ(m− 2θm,µ, µ) of the operator Lm := −µ∆− (m− 2θm,µ) Id satisfies

λ(m− 2θm,µ, µ) > 0, (2.9)

as a consequence of the monotonicity of eigenvalues [7]. Since pm,µ satisfies Lmpm,µ = 1 > 0 with
Neumann boundary conditions, the conclusion follows from multiplying the equation on pm,µ by
the negative part (pm,µ)− and integrating by parts: it yields

µ

ˆ
Ω

|∇(pm,µ)−|2 −
ˆ

Ω

(pm,µ)2
−(m− 2θm,µ) = −

ˆ
Ω

(pm,µ)− < 0 if (pm,µ)− 6= 0. (2.10)

However, according to the Courant-Fischer principle,

λ(m− 2θm,µ, µ) = inf
u∈W 1,2(Ω)´

Ω
u2=1

µ

ˆ
Ω

|∇u|2 −
ˆ

Ω

u2(m− 2θm,µ) > 0 (2.11)

and therefore, it follows that pm,µ(·) > 0 and pm,µ(·) 6= 0 in Ω. To conclude, it suffices to apply
the strong maximum principle.
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According to Lemma 13 and (2.7), it follows that um,µ satisfies

inf
Ω
um,µ > 0. (2.12)

Furthermore, standard elliptic estimates entail

∀p ∈ (1; +∞), θm,µ, pm,µ ∈W 2,p(Ω), (2.13)

and from Sobolev embeddings, we get

θm,µ, pm,µ ∈ C1,α(Ω) (2.14)

for any α ∈ (0; 1). Using the equations on θm,µ and pm,µ, this gives, in turn that ∆θm,µ and ∆pm,µ
belong to L∞(Ω). It follows, by computing explicitly ∆um,µ, that ∆um,µ belongs to L∞(Ω).

If we then define Vm,µ :=
(
m− θm,µ +

µ∆um,µ
2um,µ

)
we have, as a consequence, that

Vm,µ ∈ L∞(Ω). (2.15)

Starting from (2.6), F̈µ(m)[h, h] rewrites in the more tractable form

F̈µ(m)[h, h] =

ˆ
Ω

θ̈m,µ = 2µ

ˆ
Ω

um,µ|∇θ̇m,µ|2 − 2

ˆ
Ω

Vm,µθ̇
2
m,µ. (2.16)

This expression is crucial to proving Theorem I.

Proof of Theorem I. Let us argue by contradiction, assuming the existence of a maximiser m (for
the sake of readability, we drop the subscript m∗µ) of Fµ inM(Ω) such that the set Ω̃ := {0 < m <
1} is of positive Lebesgue measure.

Our goal is now to construct an admissible perturbation h ∈ L∞(Ω) (see Footnote 2) such that

h is supported in Ω̃, F̈µ(m)[h, h] > 0. (2.17)

Let us first note that from the optimality conditions (2.4), if h is supported in Ω̃ and satisfies´
Ω̃
h = 0, then, for the constant c given in (2.4) we have

Ḟµ(m)[h] =

ˆ
Ω

hθm,µpm,µ = c

ˆ
Ω̃

h = 0.

Hence, if h satisfies (2.17), then a Taylor expansion yields

Fµ(m+ εh)− Fµ(m) =
ε2

2
F̈µ(m)[h, h] + o(ε2). (2.18)

This leads to a contradiction whenever ε > 0 is chosen small enough. It is standard to show that
any perturbation h supported in Ω is admissible if, and only if

´
Ω
h = 0.

Remark 14. To implement the previous construction, it suffices in fact to construct h ∈ L2(Ω) so
that (2.17) is satisfied and

´
Ω
h = 0, forgetting that h has to belong to L∞(Ω). Indeed, let us assume

that such a h ∈ L2(Ω) exists. Then, we introduce the sequence hn := h1|h|6n−
´

Ω
h1|h|6n ∈ L∞(Ω),

which converges weakly in L2(Ω) to h as n → ∞. By elliptic regularity, it entails strong W 1,2-
regularity of θ̇m,µ[hn] to θ̇m,µ as n → ∞ and thus the convergence of second order derivatives.
Choosing n large enough yields the required contradiction. In what follows, we will hence look for
a function h ∈ L2(Ω) satisfying (2.17) and

´
Ω
h = 0.
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According to (2.16), by using (2.15) and (2.12), there exist two positive constants A1 and A2

such that

F̈µ(m)[h, h] > A1

ˆ
Ω

|∇θ̇m,µ|2 −A2

ˆ
Ω

θ̇2
m,µ. (2.19)

Remark 15 (Regarding the regularity assumption on Ω and the extension of the result to an
orthotope). As explained in Remark 3 above, this is the only step where we use the regularity of
Ω. More precisely, this regularity is used to derive the fact that Vm,µ is a bounded function. This
in turn hinges on the W 2,p regularity of θm,µ and pm,µ (which can be obtained, in the case of
the orthotope, via the symmetrisation procedure explained in Remark 3), combined with Sobolev
embeddings applied to θm,µ and pm,µ. Through the same symmetrisation procedure, θm,µ and pm,µ
can be extended to functions on the torus, and the Sobolev embeddings in the flat torus can then be
used.

As a consequence, (2.19) holds when Ω is an orthotope, i.e. Ω = (0; 1)d. In this case, the rest
of the proof reads exactly the same.

To obtain a contradiction, it hence suffices to construct a perturbation h ∈ L2(Ω) with support
in Ω̃ satisfying

´
Ω
h = 0 and such that

ˆ
Ω

|∇θ̇m,µ|2 >
A2

A1

ˆ
Ω

θ̇2
m,µ. (2.20)

Let us prove that such a perturbation h exists. To this aim, let us introduce the operator L defined
by

Lm : H2(Ω) 3 ψ 7→ −µ∆ψ − (m− 2θm,µ)ψ ∈ L2(Ω). (2.21)

This operator is self-adjoint and of compact inverse in L2(Ω), as a consequence of the spectral
estimate (2.9). As a consequence, there exists a sequence of eigenvalues

λ1(Lm) < λ2(Lm) 6 . . . 6 λk(Lm) −−−−→
k→∞

+∞, (2.22)

each of these eigenvalues being associated with a L2-normalised eigenfunction ψk solving
Lmψk = λk(Lm)ψk in Ω,
∂ψk
∂ν = 0 on ∂Ω,´
Ω
ψ2
k = 1.

(2.23)

Let us fix K ∈ IN\{0} that will be chosen later and consider the family of linear functionals

{Rk}k=0,...,K ⊂
(
L2
(

Ω̃
)′)K+1

defined by

∀f ∈ L2(Ω̃), R0(f) :=

ˆ
Ω

1Ω̃f and Rk(f) :=

ˆ
Ω

1Ω̃θm,µψkf (2.24)

for every k ∈ J1,KK.
Let us define Ek := ker(Rk) for every k ∈ J0,KK. Observe that each space Ek is of codimension

at most 1. In particular,
E := ∩Kk=0Ek ⊂ L2(Ω̃) (2.25)

is of codimension at most (K + 1) in L2(Ω̃) and is non-empty. Let us hence pick FK ∈ E\{0} and
assume by homogeneity, that ˆ

Ω

|FK1Ω̃θm,µ|
2 = 1. (2.26)

Let us extend FK to Ω by setting HK = FK1Ω̃. According to the definition of HK it follows that
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(i) HK is supported in Ω̃ and belongs to L2(Ω).

(ii)
´

Ω
HK =

´
Ω
1Ω̃FK = 0,

(iii) ∀k ∈ J0,KK, one has
´

Ω
HKθm,µψk =

´
Ω
FK1Ω̃θm,µψk = 0. Let us define ηK := −HKθm,µ.

In particular, defining, for any ` ∈ IN∗ the coefficient α` as

α` :=

ˆ
Ω

ηKψ`

we have, for any ` 6 K, α` = 0. Thus, in the basis {ψk}k∈IN, ηK expands as

ηK =
∑

`>K+1

α`ψ`. (2.27)

As by construction
´

Ω
η2
K = 1, we also have∑

`>K+1

α2
` = 1. (2.28)

Finally, we observe that, for this perturbation hK , θ̇m,µ solves{
Lmθ̇m,µ = ηK ,
∂θ̇m,µ
∂ν = 0,

(2.29)

whence

θ̇m,µ =
∑

`>K+1

α`
λ`(Lm)

ψ`. (2.30)

Using the L2(Ω)-orthogonality property of the eigenfunctions, we get

ˆ
Ω

θ̇2
m,µ =

∑
`>K+1

α2
`

λ`(Lm)2
. (2.31)

and, similarly,

µ

ˆ
Ω

|∇θ̇m,µ|2 −
ˆ

Ω

(m− 2θm,µ)θ̇2
m,µ =

∞∑
`=K+1

α2
`

λ`(Lm)
.

We infer the existence of M > 0 such that

µ

ˆ
Ω

|∇θ̇m,µ|2 >
∞∑

`=K+1

α2
`

λ`(Lm)
−M

ˆ
Ω

θ̇2
m,µ >

∞∑
`=K+1

α2
`

λ`(Lm)
−M

∞∑
`=K+1

α2
`

λ`(Lm)2

=

∞∑
`=K+1

α2
`

λ`(Lm)2
(λ`(Lm)−M)

> (λK+1(Lm)−M)

ˆ
Ω

θ̇2
m,µ.

The conclusion follows by taking K large enough so that λK+1(Lm) > M+ A2

A1
, which concludes

the proof.
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2.2 Comparison with the results of [25]

This section is dedicated to an explanation of the main difference with the proof of [25]. As recalled
in Remark 5, the main result of [25] reads: if Ω̃ = {0 < m < 1} has an interior point, then it
cannot be a solution of Problem (Pµ).

Although they do not use the expression (2.16) but an alternative expression of the second order
Gâteaux-derivative F̈µ, their idea, to reach a contradiction, is to reason backwards, by finding a

function ψ, that ”should” act as θ̇m,µ, well chosen to yield a contradiction, and then constructing

an admissible perturbation h supported in the interior of {0 < m < 1} such that θ̇m,µ = ψ.
We propose hereafter an alternative proof of their result that uses their idea of first fixing a

desirable function ϕ, and then proving the existence of an admissible perturbation h, compactly
supported in Ω̃ = {0 < m < 1} such that ϕ = θ̇m,µ, leading to a positive second order derivative.

Let us argue by contradiction, considering a solution m of (Pµ) such that the set

Ω̃ := {0 < m < 1} (2.32)

has a non-empty interior (in particular, it is of positive measure). As a consequence of (2.4) there
exists c such that

θm,µpm,µ = c in Ω̃. (2.33)

Let us pick two interior points x0, y0 of Ω̃ and let r > 0 be such that

B(x0; r),B(y0; r) ⊂ Ω̃, B(x0; r) ∩ B(y; r) = ∅. (2.34)

Let χ ∈ D(IRd) be a C∞, radially symmetric, non-negative function with compact support in
B(0; r) such that χ(0) = 1. For every k ∈ IN, let us introduce ψk defined by

ψk(x) := χ(x− x0) cos(k|x− x0|)− χ(x− y0) cos(k|x− y0|). (2.35)

Lemma 16. For any k ∈ IN, there exists an admissible perturbation hk supported in Ω̃, such that

ψk = θ̇m,µ[hk], (2.36)

where θ̇m,µ[hk] denotes the unique solution of (2.1) associated to the perturbation choice h = hk.

Proof of Lemma 16. Let us introduce hk, defined by

hk :=
1

θm,µ
(−µ∆ψk − (m− 2θm,µ)ψk) . (2.37)

Since, by construction ψk ∈W 2,∞(Ω) and since infΩ θm,µ > 0 we get that hk ∈ L∞(Ω). Moreover,

since χ is compactly supported in Ω̃, so is hk. Since Ω̃ = {0 < m < 1}, the only condition we have
to check to ensure that hk is admissible at m is thatˆ

Ω

hk = 0. (2.38)

By construction, one has

µ∆ψk + ψk(m− 2θm,µ) = −hkθm,µ in Ω, (2.39)

so that, by multiplying this equation by pm,µ and integrating twice by parts we obtainˆ
Ω

ψk = −
ˆ

Ω

θm,µpm,µhk = −c
ˆ

Ω

hk (2.40)

where the last equality comes from (2.33). Since by construction,
´

Ω
ψk = 0 the conclusion follows

and hence hk is an admissible perturbation.
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Now, it remains to prove that

∃k ∈ IN∗, F̈µ(m)[hk, hk] = 2µ

ˆ
Ω

um,µ|∇ψk|2 − 2

ˆ
Ω

Vmψ
2
k > 0. (2.41)

Since supk∈IN ‖ψk‖L∞ 6 ‖χ‖L∞ and since Vm,µ ∈ L∞(Ω) according to (2.15), it is enough to show
that ˆ

Ω

um,µ|∇ψk|2 −−−−→
k→∞

+∞. (2.42)

Using the fact that infΩ um,µ > 0 from Estimate (2.12), (2.42) is implied by

ˆ
Ω

|∇ψk|2 −−−−→
k→∞

+∞. (2.43)

Finally, since B(x0; r) ∩ B(y0; r) = ∅, (2.43) is in turn implied by

ˆ
B(x0;r)

|∇ψk|2 −−−−→
k→∞

+∞. (2.44)

Let us now establish (2.44). By using polar coordinates, one has

ˆ
B(x0;r)

|∇ψk|2 = (2π)d−1

ˆ r

0

sd−1

(
k sin(ks)χ(s) + cos(ks)

∂χ

∂s
(s)

)2

ds

= (2π)d−1

ˆ r

0

sd−1k2 sin2(ks)χ(s) ds (I1,k)

+ 2(2π)d−1k

ˆ r

0

sd−1 sin(ks) cos(ks)χ(s)
∂χ

∂s
(s) ds (I2,k)

+ (2π)d−1

ˆ r

0

sd−1 cos2(ks)

(
∂χ

∂s

)2

ds. (I3,k)

Since sin2(k·) converges weakly to 1
2 in L2(0, r), since χ(0) = 1 and ‖χ‖C1 6 M for some

M > 0, it follows that

I1,k ∼
k→+∞

k2C0, C0 > 0 and I2,k = o
k→∞

(I1,k).

Finally, (I3,k) remains bounded and we get

ˆ
B(x0;r)

|∇ψk|2 ∼
k→∞

k2C0

for some constant C0 > 0, which concludes the proof.

Remark 17. In this approach which, as we underline, works under the strong hypothesis that Ω̃ has
a non-empty interior, the core point is to build a sequence of admissible perturbations {hk}k∈IN such
that the family H = {hk}k∈IN is uniformly bounded in W−2,2 but not in W−1,2; this guarantees
the blow-up of the W 1,2-norm and the boundedness of the L2-norm of the associated Gâteaux-
derivatives θ̇m,µ[hk]. In the proof of Theorem I, the perturbation h that we construct has a fixed
L2 norm, and hence the sequence of Gâteaux-derivatives is uniformly bounded in W 2,2(Ω).
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2.3 Proof of Theorem II

The proof of Theorem II follows the same lines as the one of Theorem I. For this reason, we only
indicate hereafter the main steps, and point to the principal differences.

Following the same methodology for stating the first order optimality conditions for prob-
lem (Pµ), let us introduce the adjoint state pj,m,µ solution of{

µ∆pj,m,µ + pj,m,µ(m− 2θm,µ) = −j′(θm,µ) in Ω,
∂pj,m,µ
∂ν = 0 on ∂Ω.

(2.45)

Since j′ > 0, a direct adaptation of Lemma 13 yields

∀m ∈M(Ω), inf
Ω
pj,m,µ > 0. (2.46)

It is straightforward to see that the Gâteaux derivative of the functional Jj writes

J̇j(m)[h] =

ˆ
Ω

hθm,µpj,m,µ, (2.47)

for every m ∈M(Ω) and any admissible perturbation h at m.
Let us compute the second order Gâteaux derivative of Jj . Keeping track of the fact that θ̈m,µ

solves (2.5) and that by direct computation, we obtain

J̈j(m)[h, h] =

ˆ
Ω

(
θ̇2
m,µj

′′(θm,µ) + θ̈m,µj
′(θm,µ)

)
, (2.48)

we get an expression analogous to (2.16). Indeed, multiplying (2.45) by θ̈m,µ and integrating by
parts yields

1

2

ˆ
Ω

θ̈m,µj
′(θm,µ) =

ˆ
Ω

(
hθ̇m,µ − θ̇2

m,µ

)
pj,m,µ

= −
ˆ

Ω

θ̇2
m,µpj,m,µ +

ˆ
Ω

(
−µ∆θ̇m,µ − θ̇m,µ(m− 2θm,µ)

θm,µ

)
pj,m,µ.

Let us introduce
uj,m,µ :=

pm,j,µ
θm,µ

. (2.49)

Notice that, using the same arguments as in the proof of Theorem I, we obtain

inf
Ω
uj,m,µ > 0, ∆uj,m,µ ∈ L∞(Ω). (2.50)

Since j belongs to C2, there exists Mj > 0 such that

‖j′′(θm,µ)‖L∞ 6Mj . (2.51)

We thus obtain the existence of a potential Vj,m,µ ∈ L∞(Ω) such that

J̈j(m)[h, h] = µ

ˆ
Ω

uj,m,µ

∣∣∣∇θ̇m,µ∣∣∣2 − ˆ
Ω

Vj,m,µθ̇
2
m,µ. (2.52)

As a consequence, by (2.50) and by the fact that Vj,m,µ ∈ L∞(Ω), it suffices to find a perturbation
h such that, for a large enough parameter M0 > 0,ˆ

Ω

|∇θ̇m,µ|2 >M0

ˆ
Ω

θ̇2
m,µ. (2.53)

We are now back to proving (2.20), and the proof reads the same way.
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3 Proof of Theorem III

The core of this proof relies on fine energy estimates.
To alleviate the reading, let us start with the presentation of the proof structure.

Main idea The proof rests upon the use of two ingredients:

(i) the first one reads

Lemma 18 ([22, Lemma 2]). There exists δ > 0 such that

lim inf
µ→0+

(
sup

m∈M(Ω)

Fµ(m)

)
> m0 + δ > 0. (3.1)

(ii) the second one, on which the emphasis will be put throughout the proof, is an estimate of
the following form: there exist a constant M > 0 and an exponent α > 0 such that

∀m ∈M(Ω) ∩BV (Ω), ‖θm,µ −m‖L1(Ω) 6M‖m‖BV (Ω)µ
α. (3.2)

If Estimate (3.2) holds, then, assuming that the optimiser m∗µ is a BV (Ω)-function (if it is not,
then ‖m‖BV (Ω) = +∞ and the statement of the theorem is trivial), we have

µα‖m∗µ‖BV (Ω) >
1

M
‖θm∗µ,µ −m

∗
µ‖L1(Ω) >

1

M

∣∣∣∣ ˆ
Ω

θm∗µ,µ −m0

∣∣∣∣ > δ

M
, (3.3)

where δ > 0 is given by Lemma 18, yielding

‖m∗µ‖BV (Ω) >
M ′

µα
, (3.4)

with M ′ = δ
M . To obtain convergence rates such as (3.2), we will proceed using energy arguments

and prove that a rescaled, shifted version of the natural energy associated with the PDE (Em,µ)
yields this kind of control.

The rescaled energy functional Let us first recall that the equation (Em,µ) admits a varia-
tional formulation: let us introduce

Em,µ : W 1,2(Ω) 3 θ 7→ µ

2

ˆ
Ω

|∇θ|2 +
1

3

ˆ
Ω

θ3 − 1

2

ˆ
Ω

mθ2,

then θm,µ is characterized as the unique minimiser of Eµ over W 1,2(Ω); in other words

Em,µ(θm,µ) = inf
u∈W 1,2(Ω)

u>0

Em,µ(u). (3.5)

Since we could not locate this formulation in the literature, we give a proof:

Lemma 19. θm,µ is the unique minimiser of

Em,µ : u 7→ µ

2

ˆ
Ω

|∇u|2 − 1

2

ˆ
Ω

mu2 +
1

3

ˆ
Ω

u3 (3.6)

over the set K := {u ∈W 1,2(Ω), u > 0 in Ω}.
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For the sake of completeness, this lemma is proved in Appendix A
Let us introduce

Ẽm,µ : {u ∈W 1,2(Ω), u > 0} 3 θ 7→ Em,µ(θ) +
1

6

ˆ
Ω

m3. (3.7)

Remark 20. The definition of Ẽm,µ is justified by the following, formal computation: let us assume
that m is a C1 function. It is known [16] that θm,µ →

µ→0+
m in Lp(Ω), for p ∈ [1; +∞). Since we

aim at obtaining a convergence rate for ‖θm,µ −m‖L1(Ω) as µ → 0+, it is natural to consider the
energy Em,µ(m). Explicit computations show that

Em,µ(m) =
µ

2

ˆ
Ω

|∇m|2 − 1

6

ˆ
Ω

m3 →
µ→0
−1

6

ˆ
Ω

m3,

which justifies to consider the energy Ẽm,µ.

Estimating ‖θm,µ −m‖L1(Ω) using Ẽm,µ. The key point is then to prove that ‖θm,µ −m‖L1(Ω)

can be estimated in terms of the rescaled energy, via the following two Lemmas.

Lemma 21. There exists a constant M1 > 0 such that

∀m ∈M(Ω), ‖θm,µ −m‖L1(Ω) 6M1Ẽm,µ(θm,µ)
1
3 = M1

(
inf

u∈W 1,2(Ω),u>0
Ẽm,µ(u)

) 1
3

. (3.8)

Proof of Lemma 21. We split the proof into two steps.

Step 1. There holds

∀µ > 0,∀m ∈M(Ω),

ˆ
Ω

(
θm,µ

3
+
m

6

)
(θm,µ −m)2 6 Ẽm,µ(θm,µ). (3.9)

This follows from explicit computations. Setting A =
´

Ω

(
θm,µ

3 + m
6

)
(θm,µ −m)2, one has

A =
1

3

ˆ
Ω

θm,µ
(
θm,µ

2 − 2mθm,µ +m2
)

+
1

6

ˆ
Ω

m
(
θm,µ

2 − 2mθm,µ +m2
)

=
1

3

ˆ
Ω

θm,µ
3 − 2

3

ˆ
Ω

mθm,µ
2 +

1

3

ˆ
Ω

θm,µm
2 +

1

6

ˆ
Ω

m3 +
1

6

ˆ
Ω

mθm,µ
2 − 1

3

ˆ
Ω

θm,µm
2

=
1

3

ˆ
Ω

θm,µ
3 +

1

6

ˆ
Ω

m3 − 1

2

ˆ
Ω

mθm,µ
2 = Em,µ(θm,µ)− µ

2

ˆ
Ω

|∇θm,µ|2 +
1

6

ˆ
Ω

m3

6Em,µ(θm,µ) +
1

6

ˆ
Ω

m3 = Ẽµ(θm,µ).

Step 2. There exists M0 > 0 such that for every µ > 0 and m ∈M(Ω), one has

‖θm,µ −m‖L1(Ω) 6M0

(ˆ
Ω

(
θm,µ

3
+
m

6

)
(θm,µ −m)2

) 1
3

.
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We first apply the Hölder inequality to obtain

‖θm,µ −m‖3L1(Ω) =

(ˆ
Ω

|θm,µ −m|
)3

6 |Ω|2
ˆ

Ω

|θm,µ −m|3. (3.10)

As θm,µ ,m > 0, we have
|θm,µ −m| 6 θm,µ +m

so that

|θm,µ −m| 6 6

(
θm,µ

3
+
m

6

)
.

In turn, this implies

|θm,µ −m|3 = |θm,µ −m| · |θm,µ −m|2 6 6

(
θm,µ

3
+
m

6

)
(θm,µ −m)

2
.

As a consequence,

‖θm,µ −m‖3L1(Ω) 6 |Ω|
2

ˆ
Ω

|θm,µ −m|3 6 6|Ω|2
ˆ

Ω

(
θm,µ

3
+
m

6

)
(θm,µ −m)

2
.

It suffices to define M0 as the unique positive root of M3
0 = 6|Ω|2.

The lemma follows from a combination of the two steps.

As a consequence, we will aim at proving an estimate of the form

Ẽm,µ(θm,µ) 6 ‖m‖BV (Ω)µ
β (3.11)

which, with Lemma 21, will lead to an estimate of the type (3.2). As explained in the introduc-
tion, we provide in Section B an alternative proof of (3.11) in the one-dimensional case following
the method of Modica [23], that cannot unfortunately be straightforwardly extended to higher
dimensions.

Let us now concentrate on the multidimensional case, assuming that Ω = (0; 1)d with d > 1.
We aim at obtaining an estimate of the form (3.2) which, by Lemma 21 amounts to determine
a bound on Ẽm,µ(θm,µ). Let us first consider m ∈ M(Ω) ∩W 1,2(Ω), that we will use as a test
function in the energy. We get

Ẽm,µ(θm,µ) 6 Ẽm,µ(m) =
µ

2

ˆ
Ω

|∇m|2. (3.12)

We now consider a convolution kernel defined with the help of an approximation of unity.
Namely, we consider a C∞ function χ with compact support in B(0; 1) satisfying

0 6 χ 6 1 a.e. in B(0; 1),

ˆ
B(0;1)

χ = 1.

For every ε > 0, we define

χε(x) :=
1

εd
χ
(x
ε

)
. (3.13)

Every m ∈M(Ω) is extended outside of Ω by a compactly supported function of bounded variation,
according to [1, Proposition 3.21]. We define

mε := m ? χε (3.14)
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for every ε > 0, where ? stands for the convolution product in L1(IRd). It is standard that

∀p ∈ (1; +∞), ‖m−mε‖Lp(Ω) →
ε→0

0. (3.15)

According to [16, Equation (2.4)], there exists a constant M such that for every m,m′ ∈ {f ∈
L∞(Ω), f > 0}, there holds

‖θm,µ − θm′,µ‖L1(Ω) 6M‖m−m′‖
1
3

L1(Ω). (3.16)

By the triangle inequality, for any m ∈M(Ω) and any µ, ε > 0,∣∣∣∣ˆ
Ω

θm,µ −m0

∣∣∣∣ 6 ‖θm,µ − θmε,µ‖L1(Ω) + ‖θmε,µ −mε‖L1(Ω) +

∣∣∣∣ˆ
Ω

mε −m0

∣∣∣∣ . (3.17)

Note that one has, for any i ∈ J1, dK,

‖∂imε‖2L2(Ω) =

ˆ
Ω

(
1

εd+1

ˆ
IRd

∂iχ

(
x− y
ε

)
m(y)dy

)2

dx

6
M

ε2(d+1)

ˆ
IRd

ˆ
Ω

|∇χ|2
(
x− y
ε

)
|m(y)| dydx by Jensen’s inequality

6
M

ε2
‖∇χ‖2L2(IRd).

Hence, there exists M > 0 such that

‖∇mε‖L2(Ω) 6
M

ε
.

As a consequence, by (3.12) and Lemma 21, we have

‖θmε,µ −mε‖L1(Ω) 6 M1Ẽmε,µ(θmε,µ)
1
3

6 M ′1µ
1/3
( ´

Ω
|∇mε|2

)1/3
6 M ′′1

µ
1
3

ε
2
3

(3.18)

for some positive constants M ′1,M
′′
1 . It follows from (3.17) that there exists M > 0 such that∣∣∣∣ˆ

Ω

θm,µ −m0

∣∣∣∣ 6M

(
‖m−mε‖

1
3

L1(Ω) +
µ

1
3

ε
2
3

+

∣∣∣∣ˆ
Ω

mε −m0

∣∣∣∣
)

(3.19)

To end the proof, we need the following lemma, whose proof is postponed to the end of this
section for the sake of clarity.

Lemma 22. There exists a constant d0 > 0 such that

∀m ∈M(Ω) ∩BV (Ω), ‖m−mε‖L1(Ω) 6 d0ε‖∇m‖L1(Ω). (3.20)
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As a consequence, we have ‖m − mε‖L1(Ω).ε|m|TV (IRd). Since the extension operator is
bounded, we thus get ‖m − mε‖L1(Ω) 6 Mε‖m‖BV (Ω). Starting from (3.19) and plugging all

these estimates together and using (3.17), we finally obtain, for some positive constant M̃ ,∣∣∣∣ˆ
Ω

θm,µ −m0

∣∣∣∣ 6 M̃

(
(ε‖m‖BV )

1
3 +

µ
1
3

ε
2
3

+ ε‖∇m‖L1(Ω)

)

6 M̃

(
(ε‖m‖BV )

1
3 + ε‖∇m‖L1(Ω) +

µ
1
3

ε
2
3

)
.

Taking m = m∗µ (which, as explained at the beginning of the proof, is assumed to be BV ) and

ε = N0µ
1
2 with N0 > 0, one gets∣∣∣∣ˆ

Ω

θm∗µ,µ −m0

∣∣∣∣− M̃

N
2/3
0

6 M̃
(
ε‖m∗µ‖

1
3

BV + ε‖m∗µ‖BV
)
,

and choosing N0 large enough yields

lim inf
ε→0

(
ε‖m∗µ‖BV

) 1
3 +

(
ε‖m∗µ‖BV

)
> 0. (3.21)

We infer the existence of C0 > 0 such that for all solution m∗µ of (Pµ), one has

C0 6
(
ε‖m∗µ‖BV

) 1
3 +

(
ε‖m∗µ‖BV

)
(3.22)

and therefore, there exists c0 > 0 such that, for every µ > 0 small enough

c0 6 ε‖m∗µ‖BV = N0µ
1
2 ‖m∗µ‖BV (Ω). (3.23)

The desired conclusion follows.

Proof of Lemma 22. As is customary in convolution, one has

m(x)− χε ? m(x) . sup
|h|=ε
‖τhm−m‖L1(IRd)

for a.e. x ∈ Ω, where τh stands for the translation operator. However, we claim that

sup
|h|=ε

‖τhm−m‖L1(IRd) 6 ‖h‖∞‖∇m‖L1(IRd). (3.24)

It suffices to prove (3.24) for m ∈ C1, and the general result follows from the density of C1 functions
in BV (IRd). For any h ∈ IRd we have

ˆ
IRd
|m(x+ h)−m(x)| dx =

ˆ
IRd

∣∣∣∣ˆ 1

0

d

dξ
[m(x+ξh)] dξ

∣∣∣∣ dx =

ˆ
IRd

∣∣∣∣ˆ 1

0

〈∇m(x+ξh), h〉
∣∣∣∣ dx

6 ‖h‖∞
ˆ 1

0

ˆ
IRd
|∇m(x+ξh)|dξ dx

= ‖h‖∞
ˆ

IRd
|∇m| = ‖h‖∞‖∇m‖L1 .

The desired result follows.
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4 Conclusion: possible extensions of the bang-bang prop-
erty to other state equations

We conclude this article with a discussion on possible generalisations of our method. Indeed, an
interesting question is to know whether or not the methods put forth in the proof of Theorem
I could be applied to other types of boundary conditions, for instance Dirichlet or Robin, or for
other kinds of non-linearities. We justify below that it is the case, and that the main difficulty
lies in the well-posedness of the equation acting as a constraint on the optimisation problem (Pµ).

Let us consider a boundary operator B, that may be of Neumann (Bu = ∂u
∂ν ) or of Robin type

(Bu = ∂u
∂ν + βu for some β > 0). Let us consider a non-linearity F = F (x, u) of class C 2, and

consider, for a given m ∈M(Ω), the solution um of{
−∆um = mum + F (x, um) in Ω,
Bum = 0 on ∂Ω.

(4.1)

The first assumption on F one has to make is:

For any m ∈M(Ω), (4.1) has a unique positive solution um.
Furthermore, inf

m∈M(Ω)
inf
Ω
um > 0, sup

m∈M(Ω)

‖um‖C 1 <∞. (H)

It is notable that (H) is satisfied whenever F satisfies:

1. F (x, 0) = 0 and the steady state z(·) = 0 is unstable.

2. Uniformly w.r.t. x ∈ Ω, one has lim
y→∞

F (x, y)/y = −∞.

This is for instance problematic when considering Dirichlet boundary conditions for the logistic-
diffusive equation: depending on the range of µ the equation may only have trivial solutions.

We also assume
The map m 7→ um is twice Gâteaux-differentiable. (H′)

which is for instance ensured whenever F ∈W 2,∞ and if the solution u = um is linearly stable.
Consider then the following optimisation problem, where the function j satisfies (Hj)

sup
m∈M(Ω)

J(m), with J(m) =

ˆ
Ω

j(um). (P)

Our methods enable us to prove that any solution of (P) is a bang-bang function. To do so, we
need to write down the first and second order Gâteaux-derivative of um with respect to m: using
the same notations as in the rest of this article, if (H)-(H′) hold, then it can be shown that{

−∆u̇m −mu̇m − u̇m∂F
∂u (x, um) = hum in Ω,

Bu̇m = 0 on ∂Ω,
(4.2)

and {
−∆üm −müm − üm∂F

∂u (x, um) = 2hu̇m + (u̇m)2 ∂2F
∂u2 (x, um) in Ω,

Büm = 0 on ∂Ω,
(4.3)

This allows us to compute the derivative of J . Under (H)-(H′), we have

J̇(m)[h] =

ˆ
Ω

u̇mj
′(um) and J̈(m)[h, h] =

ˆ
Ω

(u̇m)
2
j′′(um) +

ˆ
Ω

ümj
′(um). (4.4)
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Let us introduce the adjoint state pm, solving{
−∆pm −mpm − pm∂F

∂u (x, um) = j′(um) in Ω,
Bpm = 0 on ∂Ω.

(4.5)

Here, we need to make another assumption on F :

For any m ∈M(Ω), inf
Ω
pm > 0. (H′′)

Given the assumption on j, (H′′) is for instance implied if the first eigenvalue of −∆−m− ∂F
∂u (·, um)

is positive (linear stability condition), that also ensures the Gâteaux differentiability of m 7→ um.
This in turn holds if F (x, u) = −ug(x, u) with g∈W 2,∞ non-decreasing. Using the adjoint state
to compute J̈(m)[h, h] in a more tractable form, one has

J̈(m)[h, h] =

ˆ
Ω

(u̇m)2j′′(um) +

ˆ
Ω

ümj
′(um)

=

ˆ
Ω

(u̇m)2j′′(um) +

ˆ
Ω

pm

(
2hu̇m + (u̇m)2 ∂

2F

∂u2
(x, um)

)
=

ˆ
Ω

(u̇m)2

(
j′′(um) + pm

∂2F

∂u2
(x, um)

)
+ 2

ˆ
Ω

(
pm
um

)
u̇m

(
−∆u̇m −mu̇m − u̇m

∂F

∂u
(x, um)

)
=

ˆ
Ω

(u̇m)2

(
j′′(um) + pm

∂2F

∂u2
(x, um)− 2m

pm
um
− 2

pm
um

∂F

∂u
(x, um)

)
+ 2

ˆ
Ω

pm
um

(−u̇m∆u̇m).

Let us set Ψm := pm
um

and Vm := j′′(um) + pm
∂2F
∂u2 (x, um) − 2mΨm − 2Ψm

∂F
∂u (x, um). Then we

obtain

J̈(m)[h, h] =

ˆ
Ω

(u̇m)2Vm + 2

ˆ
Ω

u̇m〈∇Ψm,∇u̇m〉+ 2

ˆ
Ω

Ψm|∇u̇m|2

=

ˆ
Ω

(u̇m)
2

(Vm −∆Ψm) + 2

ˆ
Ω

Ψm|∇u̇m|2.

Defining V ′m = Vm −∆Ψm, we finally get

J̈(m)[h, h] =

ˆ
Ω

2Ψm|∇u̇m|2 +

ˆ
Ω

(u̇m)2V ′m (4.6)

and the assumptions we made on F allow us to conclude that V ′m belongs to L∞ and that infΩ Ψm >
0. To obtain the bang-bang property, we argue by contradiction and assume that the set Ω̃ :=
{0 < m∗ < 1} is of positive measure. To reach a contradiction, it suffices to exhibit a perturbation
h that is supported in Ω̃ such that

ˆ
Ω

h = 0 and

ˆ
Ω

|∇u̇m|2 >
‖V ′m‖L∞(Ω)

2 infΩ Ψm

ˆ
Ω

(u̇m)
2
. (4.7)

Following the proof of Theorem I, we introduce the sequence of eigenfunctions and eigenvalues
{ϕk, λk}k∈IN associated to the operator

Lm := −∆−
(
m+

∂F

∂u
(x, um)

)
(4.8)
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with Bϕk = 0. Adapting hence the proof of Theorem I, we show that for any K ∈ IN, there exists
an admissible perturbation h such that

hum =
∑
k>K

αkϕk,
∑
k>K

α2
k = 1. (4.9)

It follows that for such a perturbation,

ˆ
Ω

|∇u̇m|2 > λK

ˆ
Ω

(u̇m)
2
. (4.10)

Choosing K ∈ IN large enough so that λK >
‖V ′m‖L∞(Ω)

2 infΩ Ψm
yields the expected conclusion.
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Appendix

A Proof of Lemma 19

Let us first recall that since θm,µ is non-negative and does not vanish in Ω, we have

Em,µ(θm,µ) = −1

6

ˆ
Ω

θm,µ
3 < 0, (A.1)

so that u(·) = 0 is not a minimiser of Em,µ.
In order to prove this Lemma, let us introduce the energy functional

Fm,µ : W 1,2(Ω) 3 u 7→ µ

2

ˆ
Ω

|∇u|2 − 1

2

ˆ
Ω

mu2 +
1

3

ˆ
Ω

|u|3. (A.2)

Observe that
∀u ∈W 1,2(Ω), Fm,µ(u) = Fm,µ(|u|) = Em,µ (|u|) . (A.3)

In particular, if Fm,µ has a minimiser u∗, then |u∗| also minimises Fm,µ, and |u∗| solves

inf
u∈K

Em,µ(u). (A.4)

Conversely, if u∗ > 0 is a minimiser of Em,µ then for any z ∈W 1,2(Ω),

Fm,µ(z) = Fm,µ(|z|) = Em,µ(|z|) > Em,µ(u∗) = Fm,µ(u∗) (A.5)

and so u∗ is a minimiser of Fm,µ.
Let us then prove that θm,µ is a minimiser of Fm,µ. Consider a minimising sequence {yk}k∈IN

of Fm,µ. Up to replacing yk with |yk| which, thanks to (A.3), would still yield a minimising
sequence, we can assume that for every k ∈ IN, yk is non-negative. Let us introduce λ(m) as the
first eigenvalue of the operator −∆ − m with Neumann boundary conditions. According to the
Courant-Fischer principle, one has

λ(m) = inf
u∈W 1,2(Ω)´

Ω
u2=1

(
µ

ˆ
Ω

|∇u|2 −
ˆ

Ω

mu2

)
(A.6)

and therefore

Fm,µ(yk) >
λ(m)

2
‖yk‖2L2(Ω) +

1

3
‖yk‖3L3(Ω). (A.7)

Since the embedding L3(Ω) ↪→ L2(Ω) is continuous, there exists C > 0 such that

sup
k∈IN

(
Cλ(m)‖yk‖2L3(Ω) +

1

3
‖yk‖3L3(Ω)

)
<∞. (A.8)

As a consequence, {yk}k∈IN is bounded in L3(Ω) and then also in L2 by using the same argument.
Finally, by definition of Fm,µ, it is also uniformly bounded in W 1,2(Ω).

Hence, there exists a strong L2(Ω), weak L3(Ω) and weak W 1,2 closure point y∞ ∈ W 1,2(Ω)
of {yk}k∈IN. Since the map IR 3 x 7→ |x|3 is convex, the map L3(Ω) 3 y 7→

´
Ω
|y|3 is lower

semi-continuous. Hence it follows that

lim inf
k→∞

Fm,µ(yk) > Fm,µ(y∞), (A.9)
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and y∞ minimises Fm,µ over K . Since 0L2(Ω) is not a minimiser, we have y∞ > 0 and y∞(·) 6= 0.
The map x 7→ |x|3 is C 1 and the Euler-Lagrange equation on y∞ writes

∆y∞ + y∞(m− y∞) = 0 in Ω,
∂y∞
∂ν = 0 in ∂Ω,
y∞ > 0.

(A.10)

From uniqueness for non-zero, non-negative solutions of the logistic-diffusive PDE, it follows that
y∞ = θm,µ. As a consequence:

Em,µ(θm,µ) = Fm,µ(θm,µ) = min
W 1,2(Ω)

Fm,µ = min
K
Em,µ, (A.11)

which concludes the proof.

B Proof of (3.11) in the one-dimensional case

We assume in this section that Ω = (0, 1). Let us prove (3.11). The proof relies on ideas by Modica
[23]. Given Lemma 18 and (3.3), it is enough to establish a uniform convergence rate of θm,µ to
m in L1(Ω) with respect to the BV (Ω) norm of m, as µ→ 0 .

We proceed in several steps, first considering the case where m is the characteristic function of
a set of finite perimeter before encompassing the general case. In what follows, it will be convenient
to introduce the set of bang-bang functions

M(Ω) := {m ∈M(Ω), ∃E ⊂ Ω | m = 1E}.

Theorem I and Remark 3 ensure that any solution m∗µ of (Pµ) belongs to M(Ω). We also define

MM (Ω) :=
{
m ∈M(Ω), ‖m‖BV (Ω) 6M

}
and MM (Ω) := M(Ω) ∩MM (Ω), (B.1)

for every M > 0. The following Proposition is the key point of the proof.

Proposition 23. There exists C1 > 0 such that

∀M > 0,∀m ∈M(Ω), Ẽm,µ(θm,µ) 6 C1
√
µ‖m‖BV (Ω). (B.2)

We can now prove Theorem III. First of all, the maximiser m∗µ of (Pµ) is a bang-bang function
by Theorem I and belongs therefore to M(Ω). We thus obtain, using Lemma 21,

δ3 6 C3
1

√
µ‖m∗µ‖BV (Ω), (B.3)

where δ > 0 is given by Lemma 18. The conclusion follows.

Proof of Proposition 23. In what follows, we will bypass the distinction between the interior perime-
ter of a subset A ⊂ (0; 1), denoted Perint(A), and its perimeter denoted Per(A) when seen as a
subset of IR. Since we have obviously

Perint(A) 6 Per(A) 6 Perint(A) + 2, (B.4)

it follows that there exists c0 > 0 such that, for any set A of finite perimeter

Perint(A) > 2 ⇒ c0 Per(A) 6 Perint(A) 6 Per(A). (B.5)
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Furthermore, since we know from [22] that the BV (Ω) norm of maximisers blows-up as µ→ 0, we
can always assume that the set of finite perimeter A we are working with satisfies Perint(A) > 2.

Since m ∈MM (Ω), we know that m writes m = 1A where A is a set of bounded perimeter.
Let us then consider such a subset A. Since A is of finite perimeter, it writes

A =

n⊔
i=1

(ai; bi) (B.6)

with 0 6 ai < bi < ai+1 6 1 for every i ∈ J1, . . . , nK.
To obtain the conclusion of the Proposition, it suffices to exhibit a constant C1 that does not

depend on µ,m, and a function uµ ∈W 1,2(Ω) such that

Ẽm,µ(uµ) 6 C1
√
µPer(A) . (B.7)

Let us introduce hA, the so-called signed-distance function to the set A, defined by

hA : x 7→


dist(x, ∂A) if x /∈ A,
0 if x ∈ ∂A,
−dist(x, ∂A) if x ∈ A,

(B.8)

as well as the auxiliary function

φε : IR 3 t 7→


1 if t < 0,
0 it t > ηε,
1− t

ηε
otherwise,

(B.9)

for some regularization parameter ε > 0, where ηε = ε
1
4 . We combine these two functions and

introduce uε = φε ◦ hA. Let us use uε as a test function in the variational formulation (3.5). We
will estimate separately the gradient term and the remainder term of the energy functional.

Estimate of the gradient term. Since hA is differentiable a.e. and |h′A| = 1, we have (u′ε)
2 =

φ′ε(hA(·))2 a.e. in Ω. Using the decomposition of A, we get

ˆ 1

0

(u′ε)
2 =

ˆ a1

0

φ′ε(hA(t))2dt+

n∑
i=1

{ˆ bi

ai

φ′ε(hA(t))2dt+

ˆ ai+1

bi

φ′ε(hA(t))2dt

}
+

ˆ 1

an+1

φ′ε(hA(t))2dt.

(B.10)
Let us focus on the term

n∑
i=1

{ˆ bi

ai

φ′ε(hA(t))2 dt+

ˆ ai+1

bi

φ′ε(hA(t))2 dt

}
.

The main interest of this decomposition is that on each interval (ai; bi) or (bi; ai+1), the function h
is symmetric with respect to the midpoint of the interval. As a consequence, two cases may occur
when considering the interval (ai; bi) (the case (bi; ai+1) being exactly identical):

(i) either |bi − ai| 6 2ηε, in which case, since ‖φ′ε‖L∞ = 1
ηε

it follows that

ˆ bi

ai

φ′ε(hA(t))2dt 6 2ηε‖φ′ε‖2L∞ 6
2

ηε
. (B.11)
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(ii) or |bi − ai| > 2ηε, in which case |{u′ε 6= 0} ∩ (ai; bi)| 6 2ηε and so

ˆ bi

ai

φ′ε(hA(t))2dt 6 2ηε‖φ′ε‖2L∞ 6
2

ηε
. (B.12)

As such, we have

n∑
i=1

{ˆ bi

ai

φ′ε(hA(t))2dt+

ˆ ai+1

bi

φ′ε(hA(t))2dt

}
6

4n

ηε
6 2

Per(A)

ηε
. (B.13)

The end terms ˆ a1

0

φ′ε(hA(t))2dt+

ˆ 1

bn

φ′ε(hA(t))2dt

are handled in the same way, and we finally obtain

ˆ 1

0

(u′ε)
2(t)dt 6 C

Per(A)

ηε
(B.14)

for some constant C > 0.

Estimate of the potential term. It remains to deal with the quantity

1

3

ˆ 1

0

u3
ε(t)dt−

1

2

ˆ 1

0

mu2
ε(t)dt+

1

6

ˆ 1

0

m3. (B.15)

If we define ψε = 1
3u

3
ε − 1

2mu
2
ε + 1

6m
3 we have the following decomposition: in the set {m = 1},

we have hA 6 0, hence uε = 1 and we infer that ψε = 0 in {m = 1}.
The integral to estimate boils down to

ˆ 1

0

ψε(t)1{m=0} dt =

ˆ 1

0

1

3
u3
ε1{m=0}. (B.16)

However, we can do exactly the same distinction as for the analysis of the gradient part of the
energy: for any i ∈ J1, nK (the end intervals are handled in the same way) we either have |ai+1−bi| 6
2ηε, in which case ˆ ai+1

bi

ψε(t)dt 6 2ηε (B.17)

or |ai+1 − bi| > 2ηε, in which case the same conclusion holds since 0 6 ψε 6 1 a.e. in Ω. As a
consequence, we obtain ˆ 1

0

ψε(t) 6 2ηε Per(A). (B.18)

Combining (B.14) and (B.18) yields the existence of C1 > 0 such that

Ẽm,µ(uε) 6 C1

(
µ

ηε
+ ηε

)
Per(A). (B.19)

Picking ηε =
√
µ, we obtain

Ẽm,µ(uε) 6 2C1
√
µPer(A), (B.20)

leading to the desired conclusion.
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