Siméon Valère 
  
Bitseki Penda 
  
Gorgui Gackou 
email: gorgui.gackou@uca.fr
  
S Val Ère 
  
MODERATE DEVIATION PRINCIPLES FOR BIFURCATING MARKOV CHAINS: CASE OF FUNCTIONS DEPENDENT OF ONE VARIABLE

Keywords: Bifurcating Markov chains, moderate deviation principles, deviation inequalities, binary trees Mathematics Subject Classification (2020): 60F10, 60J80

research documents, whether they are published or not. The documents may come  

Introduction

First, we give a general definition of a moderate deviation principles. Let (Z n ) n≥0 be a sequence of random variables with values in S endowed with its Borel σ-field B(S) and let (s n ) n≥0 be a positive sequence that converges to +∞. We assume that Z n /s n converges in probability to 0 and that Z n / √ s n converges in distribution to a centered Gaussian law. Let I : S → R + be a lower semicontinuous function, that is for all c > 0 the sub-level set {x ∈ S, I(x) ≤ c} is a closed set. Such a function I is called rate function and it is called good rate function if all its sub-level sets are compact sets. Let (b n ) n≥0 be a positive sequence such that b n → +∞ and b n / √ s n → 0 as n goes to +∞.

Definition 1.1 (Moderate deviation principle, MDP).

We say that Z n /(b n √ s n ) satisfies a moderate deviation principle in S with speed b 2 n and the rate function I if, for any A ∈ B(S),

-inf x∈A • I(x) ≤ lim inf n→∞ 1 b 2 n log P Z n b n √ s n ∈ A ≤ lim sup n→∞ 1 b 2 n log P Z n b n √ s n ∈ A ≤ -inf x∈ Ā I(x),
where A • and Ā denote respectively the interior and the closure of A.

Bifurcating Markov chains (BMC, for short) are a class of stochastic processes indexed by regular binary tree. They are appropriate for example in the modeling of cell lineage data when each cell in one generation gives birth to two offspring in the next one. Recently, they have received a great deal of attention because of the experiments of biologists on aging of Escherichia Coli (E. Coli , for short). E. Coli is a rod-shaped bacterium which reproduces by dividing in two, thus producing two daughters: one of type 0 which has the old pole of the mother and the other of type 1 which has the new pole of the mother. The genealogy of the cells may be entirely described by a binary tree. To the best of our knowledge, the term bifurcating Markov chains appears for the first time in the works of Basawa and Zhou [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF]. Thereafter, it was Guyon in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] who had introduced and properly studied the theory of BMC. The first example of BMC, named bifurcating autoregressive process (BAR, for short), were introduced by Cowan and Staudte [START_REF] Cowan | The bifurcating autoregression model in cell lineage studies[END_REF] in order to study the mechanisms of cell division in Escherichia Coli. Since this work of Cowan and Staudte, the BAR process has been widely studied in the literature and several extensions have been made. In particular, Guyon, in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], have used an extension of BAR process to get statistical evidence of aging in E.Coli.

In this paper, we are interested in moderate deviation principles( MDP, for short ) for additive functionals of bifurcating Markov chains. The MDP can be seen as an intermediate behavior between the central limit theorem and large deviation. Usually, the MDP exhibits a simpler rate function inherited from the approximated Gaussian process, and holds for a larger class of dependent random variables than the large deviation principle. Unlike the results given in [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF], we treat here the case of functions which depends on one variable only. For this type of additive functionals, the martingale decomposition done in [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF] is no longer valid. Indeed, as explained for e.g. in [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF] Remark 1.7, the error term on the last generation is not negligible. Note that recently, Bitseki and Delmas [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF] have studied central limit theorem for additive functionals of bifurcating Markov chain. They have studied the case where the functions depend only on the trait of a single individual for BMC. Bitseki and Delmas [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF] observes three regimes (sub-critical, critical, supercritical), which correspond to a competition between the reproducing rate (a mother has two daughters) and the ergodicity rate for the evolution of the trait along a lineage taken uniformly at random. This phenomenon already appears in the works of Athreya [START_REF] Athreya | Limit theorems for multitype continuous time Markov branching processes[END_REF]. Here we investigate the moderate deviation principles for MBC depending only on one variable for the two cases: subcritical and critical regimes. The super-critical regime, which require another way of centering will be done in a future work.

The rest of the paper is organized as follows. In Section 2, we present the model of bifurcating Markov chains. In Section 3, we give some notations and the main assumptions for our results. In Section 4, we set our main results: the sub-critical case in Section 4.1 and the critical case in Section 4.2. Section 5 is dedicated to the proof of the main result in sub-critical case and Section 6 is dedicated to the proof of the main result in Critical case. In Section 7, we illustrate numerically our results. Finally, in Section 8, we give some useful results.

The model of bifurcating Markov chain

2.1. The regular binary tree associated to BMC models. We denote by N (resp. N * ) the space of (resp. positive) natural integers. We set

T 0 = G 0 = {∅}, G k = {0, 1} k and T k = 0≤r≤k G r for k ∈ N * , and T = r∈N G r .
The set G k corresponds to the k-th generation, T k to the tree up to the k-th generation, and T the complete binary tree. One can see that the genealogy of the cells is entirely described by T (each vertex of the tree designates an individual). For i ∈ T, we denote by |i| the generation of i (|i| = k if and only if i ∈ G k ) and iA = {ij; j ∈ A} for A ⊂ T, where ij is the concatenation of the two sequences i, j ∈ T, with the convention that ∅i = i∅ = i.

2.2.

The probability kernels associated to BMC models. Let (S, S ) be a measurable space. For any q ∈ N * , we denote by B(S q ) (resp. B b (S q ), resp. C b (S q )) the space of (resp. bounded, resp. bounded continuous ) R-valued measurable functions defined on S q . For all q ∈ N * , we set S ⊗q = S ⊗ . . . ⊗ S . Let P be a probability kernel on (S, S ⊗2 ), that is: P(•, A) is measurable for all A ∈ S ⊗2 , and P(x, •) is a probability measure on (S 2 , S ⊗2 ) for all x ∈ S. For any g ∈ B b (S 3 ) and h ∈ B b (S 2 ), we set for x ∈ S:

(1) (Pg)(x) = S 2
g(x, y, z) P(x, dy, dz) and (Ph)(x) = S 2 h(y, z) P(x, dy, dz).

We define (Pg) (resp. (Ph)), or simply P g for g ∈ B(S 3 )(resp. Ph for h ∈ B(S 2 )), as soon as the corresponding integral (1) is well defined, and we have that Pg and Ph belong to B(S). we denote by P 0 , P 1 and Q respectively the first and the second marginal of P, and the mean of P 0 and P 1 , that is, for all x ∈ S and B ∈ S P 0 (x, B) = P(x, B × S), P 1 (x, B) = P(x, S × B) and Q = (P 0 + P 1 ) 2 .

Now let us give a precise definition of bifurcating Markov chain.

Definition 2.1 (Bifurcating Markov Chains, see [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF][START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF]).

We say a stochastic process indexed by T, X = (X i , i ∈ T), is a bifurcating Markov chain (BMC) on a measurable space (S, S ) with initial probability distribution ν on (S, S ) and probability kernel P on S × S ⊗2 if:

-(Initial distribution.) The random variable X ∅ is distributed as ν.

-(Branching Markov property.) For any sequence (g i , i ∈ T) of functions belonging to B b (S 3 ) and for all k ≥ 0, we have

E i∈G k g i (X i , X i0 , X i1 )|σ(X j ; j ∈ T k ) = i∈G k Pg i (X i ).
Following [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], we introduce an auxiliary Markov chain Y = (Y n , n ∈ N) on (S, S ) with Y 0 = X 1 and transition probability Q. The chain (Y n , n ∈ N) corresponds to a random lineage taken in the population. We shall write E x when X ∅ = x (i.e. the initial distribution ν is the Dirac mass at x ∈ S).

Notations and assumptions

For f ∈ B b (S), we set f ∞ = sup{|f (x)|, x ∈ S}. We will work with the following ergodic property.

Assumption 3.1. There exists a probability measure µ on (S, S ), a positive real number M and α ∈ (0, 1) such that for all f ∈ B b (S):

(2)

|Q n f -µ, f | ≤ M α n f ∞ for all n ∈ N.
We consider the stronger ergodic property based on a second spectral gap.

Assumption 3.2. There exists a probability measure µ on (S, S ), a positive real number M , α ∈ (0, 1), a finite non-empty set J of indices, distinct complex eigenvalues {α j , j ∈ J} of the operator Q with |α j | = α, non-zero complex projectors {R j , j ∈ J} defined on CB b (S), the Cvector space spanned by B b (S), such that R j • R j = R j • R j = 0 for all j = j (so that j∈J R j is also a projector defined on CB b (S)) and a positive sequence (β n , n ∈ N) converging to 0, such that for all f ∈ B b (S), with θ j = α j /α:

(3) Q n (f ) -µ, f -α n j∈J θ n j R j (f ) ≤ M β n α n f ∞ for all n ∈ N.
Without loss of generality, we shall assume that the sequence (β n , n ∈ N) in Assumption 3.2 is non-increasing and bounded from above by 1. This assumption will be used when α = 1/ √ 2. For f ∈ B b (S), f and f will denote the functions defined by:

(4) f = f -f, µ and f = f -α n j∈J θ n j R j (f ).
Let f = (f , ∈ N) be a sequence of elements of B b (S). We will assume in the sequel that

(5) sup ∈N { f ∞ } = c ∞ < +∞,
in such a way that ( 2) and ( 3) are uniformly satisfied by the sequence f. We set for n ∈ N and i ∈ T n :

(6) N n,i (f) = n-|i| =0 N n,i (f ) = |G n | -1/2 n-|i| =0 M iG n-|i|-( f ). We deduce that i∈G k N n,i (f) = |G n | -1/2 n-k =0 M G n-( f ) which gives for k = 0 that N n,∅ (f) = |G n | -1/2 n =0 M G n-( f ).
To study the asymptotics of N n,∅ (f), it is convenient to write for n ≥ k ≥ 1:

(7) N n,∅ (f) = |G n | -1/2 k-1 r=0 M Gr ( fn-r ) + i∈G k N n,i (f).
Asymptotic normality for N n,∅ (f) have been studied in [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF]. Our aim in this paper is to complete this result by studying moderate deviation principles for N n,∅ (f). More precisely, given a sequence (b n , n ∈ N) such that:

lim n→∞ b n = ∞ and lim n→∞ b n |G n | = 0, our aim is to prove that b -1 n N n,∅ ( 
f) satisfies a moderate deviation principle with speed b 2 n and rate function I defined by ( 8)

I(x) = sup λ∈R {λx -1 2 λ 2 Σ(f) -1 } = 1 2 Σ(f) -1 x 2 if Σ(f) = 0 +∞ if Σ(f) = 0,
where

Σ(f) = Σ sub (f) = Σ sub 1 (f) + 2Σ sub 2 (f) if 2α 2 < 1 Σ crit (f) = Σ crit 1 (f) + 2Σ crit 2 (f) if 2α 2 = 1, with Σ sub 1 (f) = ≥0 2 -µ, f 2 + ≥0, k≥0 2 k-µ, P (Q k f )⊗ 2 , (9) Σ sub 2 (f) = 0≤ <k 2 -µ, fk Q k-f + 0≤ <k r≥0 2 r-µ, P Q r fk ⊗ sym Q k-+r f , (10) 
Σ crit 1 (f) = k≥0 2 -k µ, Pf * k,k = k≥0 2 -k j∈J µ, P(R j (f k ) ⊗ sym R j (f k )) , (11) 
Σ crit 2 (f) = 0≤ <k 2 -(k+ )/2 µ, Pf * k, , (12) 
and where for k, ∈ N:

(13) f * k, = j∈J θ -k j R j (f k ) ⊗ sym R j (f ).
More precisely, our aim is to prove that

-inf x∈A • I(x) ≤ lim inf n→∞ 1 b 2 n log P b -1 n N n,∅ (f) ∈ A ≤ lim sup n→∞ 1 b 2 n log P b -1 n N n,∅ (f) ∈ A ≤ -inf x∈ Ā I(x),
where A • and Ā denote respectively the interior and the closure of A. In particular, the latter asymptotic result implies that

lim n→∞ 1 b 2 n log P b -1 n N n,∅ (f) > δ = -I(δ) ∀δ > 0.
We note that 2α 2 < 1 corresponds to the sub-critical regime and 2α 2 = 1 to the critical regime.

The super-critical regime, that is the case where 2α 2 > 1, is not treated in this paper. Indeed, for this case, another way to centered the functions is necessary to get moderate deviation principles. This will be done in a future work.

Remark 3.3. Let f ∈ B b (S). If the sequence f = (f , ∈ N) is defined by: f 0 = f and f = 0 for all ≥ 1, then we have N n,∅ (f) = |G n | -1/2 M Gn ( f ) and Σ(f) = Σ G (f ), where Σ G (f ) = Σ sub G (f ) = µ, f 2 + k≥0 2 k µ, P Q k f ⊗ 2 if 2α 2 < 1 Σ crit G (f ) = j∈J µ, P(R j (f ) ⊗ sym R j (f )) if 2α 2 = 1, If the sequence f = (f , ∈ N) is defined by: f = f for all ∈ N, then we have N n,∅ (f) = |G n | -1/2 M Tn ( f ) = √ 2 -2 -n |T n | -1/2 M Tn ( f ) and Σ(f) = Σ T (f ), where Σ T (f ) = Σ sub T (f ) = Σ sub G (f ) + 2Σ sub T,2 (f ) if 2α 2 < 1 Σ crit T (f ) = Σ crit G (f ) + 2Σ crit T,2 (f ) if 2α 2 = 1, with Σ sub T,2 (f ) = k≥1 µ, f Q k f + k≥1 r≥0 2 r µ, P Q r f ⊗ sym Q r+k f , Σ crit T,2 (f ) = j∈J 1 √ 2 θ j -1 µ, P(R j (f ) ⊗ sym R j (f )) .

The main results

4.1. The sub-critical cases: 2α 2 < 1.

In the sub-critical case, we consider a sequence (b n , n ∈ N) such that:

lim n→∞ b n = ∞ and lim n→∞ b n |G n | = 0.
Then, we have the following result. 

α ∈ (0, 1/ √ 2). Let f ∈ B b (S). Then b -1 n |G n | -1/2 M Gn ( f ) and b -1 n |T n | -1/2
α = 1/ √ 2. Let f ∈ B b (S). Then b -1 n (n|G n |) -1/2 M Gn ( f ) and b -1 n (n|T n |) -1/2 M Tn ( f )
p n < n 2 .
When there is no ambiguity, we write p for p n .

Let i, j ∈ T. We write i j if j ∈ iT. We denote by i ∧ j the most recent common ancestor of i and j, which is defined as the only u ∈ T such that if v ∈ T and v i, v j then v u. We also define the lexicographic order i ≤ j if either i j or v0 i and v1 j for v = i ∧ j. Let X = (X i , i ∈ T) be a BM C with kernel P and initial measure ν. For i ∈ T, we define the σ-field:

F i = {X u ; u ∈ T such that u ≤ i}.
By construction, the σ-fields (F i ; i ∈ T) are nested as F i ⊂ F j for i ≤ j.

We define for n ∈ N, i ∈ G n-pn and f ∈ F N the martingale increments:

(16) ∆ n,i (f) = N n,i (f) -E [N n,i (f)| F i ] and ∆ n (f) = i∈Gn-p n ∆ n,i (f).
Thanks to (6), we have:

i∈Gn-p n N n,i (f) = |G n | -1/2 pn =0 M G n-( f ) = |G n | -1/2 n k=n-pn M G k ( fn-k ).
Using the branching Markov property, and (6), we get for i ∈ G n-pn :

E [N n,i (f)| F i ] = E [N n,i (f)| X i ] = |G n | -1/2 pn =0 E Xi M G pn-( f ) .
We deduce from [START_REF] Cowan | The bifurcating autoregression model in cell lineage studies[END_REF] with k = np n that:

(17) N n,∅ (f) = ∆ n (f) + R 0 (n) + R 1 (n), with R 0 (n) = |G n | -1/2 n-pn-1 k=0 M G k ( fn-k ) and R 1 (n) = i∈Gn-p n E [N n,i (f)| F i ] .
Our goals will be achieved if we prove the following: Note that (18) and (19) mean that R 0 (n) and R 1 (n) are negligible in the sense of moderate deviations in such a way that from (52), N n,∅ (f) and ∆ n (f) satisfy the same moderate deviation principle (see Dembo and Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], chap. 4).

∀δ > 0, lim n→∞ 1 b 2 n log P(|b -1 n R 0 (n)| > δ) = -∞; (18) ∀δ > 0, lim n→∞ 1 b 2 n log P(|b -1 n R 1 (n)| > δ) = -∞; (19) b -1 n ∆ n (f)

Proof of (18).

Using the Chernoff inequality, we have, for all λ > 0, ( 21)

P(b -1 n R 0 (n) > δ) ≤ exp(-λb n |G n | 1/2 ) E exp λ n-p-1 k=0 M G k ( fn-k ) .
For all ∈ {0, . . . , np -1}, we set

I = E exp λ n-p--2 k=0 M G k ( fn-k ) exp λM G n-p--1 r=0 g p,r, ,
where g p,r, = 2 r Q r fp+ +1-r , with the convention that an empty sum is zero. For all ∈ {0, . . . , np -2}, we have the following decomposition:

(22) I = E exp λ n-p--2 k=0 M G k ( fn-k ) exp λM G n-p--2 r=0 2 Q(g p,r, ) J ,
where

J = E   exp   λ i∈G n-p--2 r=0 (g p,r, (X i0 ) + g p,r, (X i1 ) -2Q(g p,r, )(X i ))   H n-p--2   .
Using branching Markov property, we get

J = i∈G n-p--2 E Xi exp λ r=0 (g p,r, (X i0 ) + g p,r, (X i1 ) -2Q(g p,r, )(X i )) .
Using ( 2) and ( 5), we get

r=0 (g p,r, (X i0 ) + g p,r, (X i1 ) -2Q(g p,r, )(X i )) ≤ 2M c ∞ r=0 (2 α) r .
Using Lemma 8.2 and the latter inequality, we get, for all i ∈ G n-p--2 ,

E Xi exp λ r=0 (g p,r, (X i0 ) + g p,r, (X i1 ) -2Q(g p,r, )(X i )) ≤ exp 2λ 2 M 2 c 2 ∞ (1 + α) 2 a 2 ,
with a = r=0 (2α) r . The latter inequality implies that 22) and ( 23), it follows that (24)

(23) J ≤ exp 2λ 2 M 2 c 2 ∞ (1 + α) 2 a 2 |G n-p--2 | . From (
I ≤ exp 2λ 2 M 2 c 2 ∞ (1 + α) 2 a 2 |G n-p--2 | I +1 .
Using the recurrence (24) for all ∈ {0, . . . , np -2} for the first inequality, (3) and ( 5) for the second inequality, we are led to

E exp λ n-p-1 k=0 M G k ( fn-k ) = I 0 ≤ exp 2λ 2 M 2 c 2 ∞ (1 + α) 2 n-p-2 =0 a 2 |G n-p--2 | I n-p-1 ≤ exp 2λ 2 M 2 c 2 ∞ (1 + α) 2 n-p-2 =0 a 2 |G n-p--2 | + λ c ∞ M n-p-1 r=0 (2α) r+1 .
We have 21) that for all λ > 0, there exists a positive constant c α such that (25)

n-p-2 =0 a 2 |G n-p--2 | ≤            6 |G n-p-1 | if 2α ≤ 1 2α 2 (2α-1) 2 (1-2α 2 ) |G n-p-1 | if 1 < 2α < √ 2 1 (2α-1) 2 (n -p -1)|G n-p-1 | if 2α 2 = 1 1 (2α-1) 2 (2α 2 -1) (2α) 2(n-p-1) if 2α 2 > 1 It follows from (
P(b -1 n R 0 (n) > δ) ≤ exp -λb n |G n | 1/2 + c α λ 2 |G n-p | + c α λ(1 + (2α) n-p ) . Taking λ = 2 -1 c -1 α δ b n |G p | |G n | -1/2 in (25)
, we get, for some positive constant c α,δ ,

P b -1 n R 0 (n) > δ ≤ exp - c α,δ b 2 n |G p | δ 2 4c α .
Doing the same thing for the sequence -f instead of f, we conclude that

P b -1 n R 0 (n) > δ ≤ 2 exp - c α,δ b 2 n |G p | δ 2 4c α .
In the latter inequality, taking the log, dividing by b 2 n and letting n goes to infinity, we get the result.

Remark 5.1. Let f ∈ B b (S). Since we will use frequently this type of inequality, we give here a general procedure to upper-bound the probability P(||G n-p | -1 M Gn-p ( f )| > δ). From Chernoff inequality, we have, for all λ > 0, (26)

P |G n-p | -1 M Gn-p ( f ) > δ ≤ exp (-λδ|G n-p |) E exp λM Gn-p ( f ) .
For all m ∈ {0, . . . , n -p}, we set

I m = E exp 2 m λM Gn-p-m (Q m f ) .
Using the branching Markov property, we have

I m = E exp 2 m+1 λM Gn-p-m-1 (Q m+1 f ) J m ,
where

J m = i∈Gn-p-m-1 E Xi exp 2 m λ Q m f (X i0 ) + Q m f (X i1 ) -2Q m+1 f (X i ) .
Using (2) and Lemma 8.2, we have the following upper-bound:

J m ≤ exp λ 2 f 2 ∞ M 2 (1 + α) 2 (2α 2 ) m |G n-p | .
This implies that (27)

I m ≤ exp λ 2 f 2 ∞ M 2 (1 + α) 2 (2α 2 ) m |G n-p | I m+1 .
Using the recurrence relation ( 27) and ( 2) (to upper-bound I n-p ), we are led to (28) 26) and using (28), we are led to

I 0 ≤ exp λ 2 f 2 ∞ M 2 (1 + α) 2 a α,n |G n-p | + λ f ∞ M (2α) n-p , where a α,n = n-p-1 m=0 (2α 2 ) m . We set a α = lim n→∞ a α,n , which is finite since 2α 2 < 1. Taking λ = δ/(2 f 2 ∞ M 2 (1 + α) 2 a α ) in (
P |G n-p | -1 M Gn-p ( f ) > δ ≤ exp - δ 2 |G n-p | 4 f 2 ∞ M 2 (1 + α) 2 a α 1 - 2 f ∞ M α n-p δ .
Finally, since we can do the same thing for -f instead of f , we conclude that

(29) P |G n-p | -1 M Gn-p ( f ) > δ ≤ 2 exp - δ 2 |G n-p | 4 f 2 ∞ M 2 (1 + α) 2 a α 1 - 2 f ∞ M α n-p δ .

proof of (19).

We set g p = p =0 2 p-Q p-f in such a way that using the definition of R 1 (n), we have 2) and ( 5), we have

P b -1 n |R 1 (n)| > δ = P |G n-p | -1 M Gn-p (g p ) > δb n |G n | -1/2 |G p | . Using (
g p ∞ ≤ c ∞ M (p + 1) if 2α ≤ 1 c α c ∞ M if 1 < 2α < √ 2.
Applying (29) to g p and δb n |G n | -1/2 |G p |, we get, for n going to infinity and for some positive constant C α,δ ,

P b -1 n |R 1 (n)| > δ ≤ 2 exp -C α,δ δ 2 b 2 n |G p |p -2 if 2α ≤ 1 2 exp -C α,δ δ 2 b 2 n (2α 2 ) -p if 1 < 2α < √ 2.
Finally, (19) follows by taking the log, dividing by b 2 n and letting n goes to infinity in the latter inequality.

Proof of (20): Moderate deviations principle for b -1

n ∆ n (f). First we study the bracket of ∆ n (f):

V (n) = i∈Gn-p n E ∆ n,i (f) 2 |F i .
Using ( 6) and ( 16), we write:

(30) V (n) = |G n | -1 i∈Gn-p n E Xi   pn =0 M G pn -( f ) 2   -R 2 (n) = V 1 (n) + 2V 2 (n) -R 2 (n), with: V 1 (n) = |G n | -1 i∈Gn-p n pn =0 E Xi M G pn-( f ) 2 , V 2 (n) = |G n | -1 i∈Gn-p n 0≤ <k≤pn E Xi M G pn -( f )M G pn -k ( fk ) , R 2 (n) = i∈Gn-p n E [N n,i (f)|X i ] 2 .
Lemma 5.2. Under the Assumptions of Theorem 4.1, we have

(31) lim sup n→∞ 1 b 2 n log P (R 2 (n) > δ) = -∞.
Proof. Using the branching Markov property, we have

(32) R 2 (n) = |G n | -1 i∈Gn-p g p (X i ), with g p = p =0 2 p-Q p-f 2 .
Using ( 2) and ( 5), we get

g p ∞ ≤ c 2 ∞ M 2 p =0 (2α) p- 2 ≤ c 2 ∞ M 2 (p + 1) 2 if 2α ≤ 1 c 2 ∞ M 2 c α (2α) 2p if 1 < 2α < √ 2.
This implies that R 2 (n) is upper-bounded by a deterministic sequence which converge to 0. As a consequence, we conclude that (31) holds. 

n log P V 1 (n) -Σ sub 1 (f) > δ = -∞,
where

Σ sub 1 (f) = ≥0 2 -µ, f 2 + ≥0, k≥0 2 k-µ, P (Q k f )⊗ 2 := H 3 (f) + H 4 (f)
Proof. Using (65), we get:

(33) V 1 (n) = V 3 (n) + V 4 (n), with V 3 (n) = |G n | -1 i∈Gn-p p =0 2 p-Q p-( f 2 )(X i ), V 4 (n) = |G n | -1 i∈Gn-p p-1 =0 p--1 k=0 2 p-+k Q p-1-( +k) P Q k f ⊗ 2 (X i ).
The proof is divided into two parts.

Part I. First we prove that (34) lim sup

n→∞ 1 b 2 n log P (|V 3 (n) -H 3 (f)| > δ) = -∞. Since H 3 (f) = p =0 2 -µ, f 2 + >p 2 -µ, f 2 and lim n→∞ >p 2 -µ, f 2 = 0,
then to get (34), it suffices to prove that lim sup

n→∞ 1 b 2 n log P |V 3 (n) -H [n] 3 (f)| > δ = -∞, where H [n] 3 (f) = p =0 2 -µ, f 2 .
We set

g p = p =0 2 -Q p-f 2 -µ, f 2 and then V 3 (n) -H [n] 3 (f) = |G n-p | -1 M Gn-p (g p ).
Using ( 2) and ( 5), we have, for some positive constant c α ,

g p ∞ ≤ 4c 2 ∞ c α M 2 -p if 2α < 1 4c 2 ∞ M (p + 1)α p if 2α > 1.
Using (29), we get, for n going to infinity and for some positive constant C α,δ :

P V 3 (n) -H [n] 3 (f) > δ ≤ 2 exp -δ 2 C α,δ |G n+p | if 2α ≤ 1 2 exp -δ 2 C α,δ p -2 |G n |(2α 2 ) -p if 1 < 2α < √ 2.
Finally, (34) follows from the latter inequality by taking the log and dividing by b 2 n .

Part II. Next, we prove that

(35) lim sup n→∞ 1 b 2 n log P (|V 4 (n) -H 4 (f)| > 2δ) = -∞. Note that V 4 (n) -H 4 (f) = |G n-p | -1 M Gn-p (H 4,n (f) -H 4 (f)), where (36) 
H 4,n (f) = ≥0,k≥0 h (n) ,k 1 { +k<p} and H 4 (f) = ≥0,k≥0 h ,k , with h (n) ,k = 2 k-Q p-1-( +k) P Q k f ⊗ 2 and h ,k = µ, P (Q k f )⊗ 2 .
Using ( 2) and ( 5), we have

(37) |h ,k | + |h (n) ,k | ≤ 2C 2 ∞ M 2 (2α 2 ) k 2 -. Let r 0 large enough such that (38) 2c 2 ∞ M 2 ∨k>r0 (2α 2 ) k 2 -≤ δ.
For n going to infinity, we have

|M Gn-p (H 4,n (f) -H 4 (f))| ≤ |M Gn- p ( ∨k≤r0 (h (n) 
,k -h ,k ))| + M Gn-p ( ∨k>r0 (|h ,k | + |h (n) ,k |)) ≤ |M Gn- p ( ∨k≤r0 (h (n) 
,k -h ,k ))| + 2 c 2 ∞ M 2 |G n-p | ∨k>r0 (2α 2 ) k 2 -, (39) 
where we used (37) for the second inequality. From (39), we get

(40) |V 4 (n) -H 4 (f)| ≤ |G n-p | -1 |M Gn-p (g p )| + 2 c 2 ∞ M 2 ∨k>r0 (2α 2 ) k 2 -,
where

g p = ∨k≤r0 (h (n) 
,kh ,k ). From (38) and (40), to get (35), it suffices to prove that

(41) lim sup n→∞ 1 b 2 n log P |G n-p | -1 M Gn-p (g p ) > δ .
Using (2) and ( 5) twice, we have, for some positive constant c α ,

g p ∞ ≤ c 3 ∞ M 3 c α γ(r 0 )α p-1 where γ(r 0 ) = r 0 (2α) r0 if 2α ≤ 1 (2α) r0 if 1 < 2α < √ 2.
Using (29) with g p instead of f , we get, for some positive constant C α,δ ,

P |G n-p | -1 M Gn-p (g p ) > δ ≤ exp -δ 2 C α,δ |G n-p |α -2p .
Taking the log, dividing by b 2 n and letting n goes to infinity in the latter inequality, we get (41) and then (35). 

n log P V 2 (n) -Σ sub 2 (f) > δ = -∞,
where

Σ sub 2 (f) = 0≤ <k 2 -µ, fk Q k-f + 0≤ <k r≥0 2 r-µ, P Q r fk ⊗ sym Q k-+r f := H 5 (f) + H 6 (f)
Proof. Using (66), we get:

(42) V 2 (n) = V 5 (n) + V 6 (n), with V 5 (n) = |G n | -1 i∈Gn-p 0≤ <k≤p 2 p-Q p-k fk Q k-f (X i ), V 6 (n) = |G n | -1 i∈Gn-p 0≤ <k<p p-k-1 r=0 2 p-+r Q p-1-(r+k) P Q r fk ⊗ sym Q k-+r f (X i ).
Part I. First, we prove that

(43) lim sup n→∞ 1 b 2 n log P (|V 6 (n) -H 6 (f)| > 2δ) = -∞.
We have

V 6 (n) -H 6 (f) = |G n-p | -1 M Gn-p (H 6,n (f) -H 6 (f))
, where

H 6,n (f) = 0≤ <k r≥0 h (n) k, ,r 1 {r+k<p} and H 6 (f) = 0≤ <k r≥0 h k, , r , with h (n) 
k, ,r = 2 r-Q p-1-(r+k) P Q r fk ⊗ sym Q k-+r f and h k, ,r = 2 r-µ, P Q r fk ⊗ sym Q k-+r f .
Using (2) and ( 5), we have

(44) |h ,k,r | + |h (n) ,k,r | ≤ 2 c 2 ∞ M 2 2 r-α k-+2r . Let r 0 large enough such that (45) 2 c 2 ∞ M 2 0≤ <k r≥0 k∨r>r0 2 r-α k-+2r < δ.
We set g p = 0≤ <k, r≥0, k∨r≤r0 (h

(n) k, ,r -h k, ,r
). Using (44), we have, for n going to infinity in such a way that p > r 0 , (46)

|V 6 (n) -H 6 (f)| ≤ |G n-p | M Gn-p (g p ) + 2 c 2 ∞ M 2 0≤ <k r≥0 k∨r>r0 2 r-α k-+2r .
From (45) and (46), to get (43), it suffices to prove that (47) lim sup

n→∞ 1 b 2 n log P |G n-p | -1 M Gn-p (g p ) > δ = -∞.
Using (2) and ( 5) twice, we have, for some positive constant c α ,

g p ∞ ≤ 2 c α c 3 ∞ M 3 γ(r 0 ) α p , where γ(r 0 ) = (2α) -r0 if 2α < 1 r 2 0 if 2α ≥ 1.
Using (29) with g p instead of f , we get, for some positive constant C α,δ ,

P |G n-p | -1 M Gn-p (g p ) > δ ≤ exp -δ 2 C α,δ |G n-p |α -2p .
Taking the log, dividing by b 2 n and letting n goes to infinity in the latter inequality, we get (47) and then (43).

Part II. Next, with the finite constant H 5 (f) defined by:

H 5 (f) = 0≤ <k 2 -µ, fk Q k-f , we prove that (48) lim sup n→∞ 1 b 2 n log P (|V 5 (n) -H 5 (f)| > 2δ) = -∞.
We set

H 5,n (f) = 0≤ <k h (n) k, 1 {k≤p} , and 
H [n] 5 (f) = 0≤ <k h k, 1 {k≤p} , with h (n) k, = 2 -Q p-k fk Q k-f 1 {k≤p} and h ,k = µ, fk Q k-f .
We have the following decomposition:

V 5 (n) -H 5 (f) = |G n-p | -1 M Gn-p H 5,n (f) -H [n] 5 (f) + H [n] 5 (f) -H 5 (f) .
Using (2) and ( 5), we have

|h (n) k, | + |h k, | ≤ 2c 2 ∞ M α k-2 -,
which implies that lim n→∞ |H 5 (f) -H 

log P |G n-p | -1 M Gn-p H 5,n (f) -H [n] 5 (f) > δ = -∞.
Setting g p = H 5,n (f) -H

[n] 5 (f), we have, using (2) and (5):

g p ∞ ≤ c α 2 -p if 2α < 1 c α pα p if 1 ≤ 2α < √ 2,
for some positive constant c α . Finally, (49), and then (48), follows by applying (29) to g p instead of f and by taking the log, dividing by b 2 n and by letting n goes to infinity.

As a direct consequence of (30) and Lemmas 5.2, 5.3 and 5.4, we have the following result. Proof. Since p < n/2, we have for all i ∈ G n-p ,

|∆ n,i (f)| ≤ 2c ∞ 2 -n 2 +p ≤ C,
where C is a positive constant. This implies that ∆ n (f) is a martingale with bounded differences. Using the result of Dembo [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF] (see also Djellout [11] and Puhalski [START_REF] Puhalskii | Large deviations of semimartingales: a maxingale problem approach i. limits as solutions to a maxingale problem[END_REF]), we get the result from Lemma 5.5. (51)

|Q n ( f )| ≤ M α n c ∞ and |Q n ( f )| ≤ M β n α n c ∞
It follows from (51) that there exists a finite constant c J depending only on {α j , j ∈ J} such that for all ∈ N, n ∈ N,

j 0 ∈ J |f | ≤ M c ∞ , | f | ≤ M c ∞ , | µ, f | ≤ M c ∞ , | j∈J θ n j R j (f )| ≤ 2M c ∞ and |R j0 (f )| ≤ c J M c ∞ .
We recall that:

(52) N n,∅ (f) = ∆ n (f) + R 0 (n) + R 1 (n), with R 0 (n) = |G n | -1/2 n-pn-1 k=0 M G k ( fn-k ) and R 1 (n) = i∈Gn-p n E [N n,i (f)| F i ] .
Let (b n ) n∈N be a sequence elements of N such that :

b n → ∞ and b n n|G n | -→ n→∞ 0 
Our goals will be achieved if we prove the following: 

∀δ > 0, lim n→∞ 1 b 2 n log P(|b -1 n n -1/2 R 0 (n)| > δ) = -∞; (53) ∀δ > 0, lim n→∞ 1 b 2 n log P(|b -1 n n -1/2 R 1 (n)| > δ) = -∞; (54) b -1 n n -1/2 ∆ n (f)
log P |n -1 V 3 (n)| > δ = -∞. Indeed we have n -1 V 3 (n) = |G n-p | -1 n -1 M Gn-p (g p ), where g p = p =0 2 -Q p-( f 2 ). Since the sequence f = (f , ∈ N) satisfies (5), we have g p ∞ ≤ 4c 2 ∞ . This implies that |n -1 V 3 (n)| ≤ 4c 2 ∞ n -1 . So n -1 V 3 (n)
is upper-bounded by a deterministic sequence which goes to 0. Then applying the remark 8.1 to n -1 V 3 (n), we get the result.

Part II. Next, we prove that lim sup

n→∞ 1 b 2 n log P |n -1 V 4 (n) -Σ crit 1 (f)| > δ = -∞.
Recall H 4,n (f) and f k, defined respectively in (36) and ( 13). For k, , r ∈ N, we consider the following C-valued functions defined on S 2 :

(57)

f k, ,r = j∈J θ r j R j (f k ) ⊗ sym j∈J θ r+k- j R j (f ) .
Recall that 2α 2 = 1. We set H4,n =

≥0, k≥0 h(n) ,k 1 { +k<p} with h(n) ,k = 2 k-α 2k Q p-1-( +k) (Pf , ,k ) = 2 -Q p-1-( +k) (Pf , ,k ) .
For f ∈ B b (S), recall f defined in (4). Then we have h

(n) ,k - h(n) k, = h n,1 ,k + h n,2 ,k + h n,3 ,k , where h n,1 ,k = 2 k-Q p-1-( +k) P(Q k fk ⊗ sym Q k fk ), h n,2 ,k = 2 k-Q p-1-( +k) P(Q k fk ⊗ sym Q k ( j∈J R j (f k ))), h n,3 ,k = 2 k-Q p-1-( +k) P(Q k ( j∈J R j (f k )) ⊗ sym Q k ( j∈J R j (f k ))).
This implies that

n -1 |G n-p | -1 M Gn-p (H 4,n (f) -H4,n (f)) = n -1 |G n-p | -1 u∈Gn-p 3 i=1 ≥0;k≥0 h n,i ,k (X u )1 { +k<p} .
Using Assumption 3. We set H where we have used the definition of ∆ n,i (f), the inequality ( r k=0 a k ) 4 ≤ (r + 1) 3 r k=0 a 4 k and the branching Markov property. Using (2) and ( 5), we can apply Theorem 2.1 given in [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF] From ( 14) and (50), we have

(63) lim n→∞ n 3 2 -n+p ((n|G n |) -1 b 2 n ) = 0.
Finally, the result of the Lemma follows using (62), (63) and Remark 8.1.

For Chen-Ledoux type condition, we have the following result. From the latter equality and using the convention log(0) = -∞, we get the result of the Lemma.

We can now state the following result.

Lemma 6.8. Under the assumptions of Theorem 4.3, we have that n -1/2 b -1 n ∆ n (f) satisfies a moderate deviation principle with speed b 2 n and rate function I defined in [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF]. Proof. Applying Theorem 1 in [START_REF] Djellout | Moderate deviations for martingale differences and applications to o-mixing sequences[END_REF] (a simplified version is given in Proposition 8.4) to the martingale differences n -1/2 ∆ n,i (f), the proof follows from Lemmas 6.5, 6.6 and 6.7. 6.5. Completion of the proof of Theorem 4.3. Finally, using (52), (53), (54) and Lemma 6.8, we deduce Theorem 4.3.

Numerical studies

For our numerical illustrations, we consider a BMC (X u , u ∈ T) living in [0, 1], with transition with B(α, β) the normalizing constant of a standard Beta distribution with shape parameters α and β. For simplicity, we choose X ∅ such that L(X ∅ ) = Beta(2, 2), where Beta(2, 2) is the standard Beta distribution with shape parameters (2, 2). Now, one can prove that this process is stationary, it has an explicit invariant density: the standard Beta distribution with shape parameters (2, 2). One can also prove that E [X u0 |X u ] = E [X u1 |X u ] = X u /5 + 2/5, (for more details, we refer e.g. to [START_REF] Pitt | Constructing first order stationary autoregressive models via latent processes[END_REF]). Now, it is not hard to verify that this process satisfies our required assumptions. In particular, using for example Theorem 2.1 in [START_REF] Hairer | Yet another look at harris' ergodic theorem for markov chains[END_REF], one can prove that Assumption 3.1 is satisfied with α = 1/5. We are thus in the sub-critical case. First, we will illustrate Theorem 4.1 (and more

P = Q ⊗ Q given by Q(x,

Theorem 4 . 1 .

 41 Let X be a BMC with kernel P and initial distribution ν such that Assumption 3.1 is in force with α ∈ (0, 1/ √ 2). Let f = (f , ∈ N) be a sequence of elements of B b (S) satisfying (5) and Assumption 3.1 uniformly. Then b -1 n N n,∅ (f) satisfies a moderate deviation principle with speed b 2 n and rate function I defined in (8). As a direct consequence of Remark 3.3 and Theorem 4.1, we have the following result.

Corollary 4 . 2 .

 42 Let X be a BMC with kernel P and initial distribution ν such that Assumption 3.1 is in force with

4. 2 . 2 .

 22 The critical cases: 2α 2 = 1. In this critical case, we consider a sequence (b n , n ∈ N) such that:[START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] limn→∞ b n = ∞ and lim n→∞ b n n|G n | = 0.Then, we have the following result. Theorem 4.3. Let X be a BMC with kernel P and initial distribution ν such that Assumption 3.2 is in force with α = 1/ √ Let f = (f , ∈ N) be a sequence of elements of B b (S) satisfying (5) and Assumption 3.2 uniformly. Then b -1 n n -1 2 N n,∅ (f) satisfies a moderate deviation principle with speed b 2 n and rate function I defined in (8). As a direct consequence of Remark 3.3 and Theorem 4.3, we have the following result. Corollary 4.4. Let X be a BMC with kernel P and initial distribution ν such that Assumption 3.2 is in force with

5 .

 5 satisfy a moderate deviation principle with speed b 2 n and rate function I defined in[START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF], with Σ(f) replaced respectively by Σ G (f ) and Σ T (f ). Proof of Theorem 4.15.1. A quick overview of our strategy.Let (p n , n ∈ N) be a non-decreasing sequence of elements of N * such that:[START_REF] Pitt | Constructing first order stationary autoregressive models via latent processes[END_REF] 

  satisfies a MDP on S with speed b 2 n and rate function I. (20)

Lemma 5 . 3 .

 53 Under the Assumptions of Theorem 4.1, we have

Lemma 5 . 4 .

 54 Under the Assumptions of Theorem 4.1, we have

  )| = 0. As a result, to get (48), it suffices to prove that

Lemma 5 . 5 .sup n→∞ 1 b 2 n

 552 Under the Assumptions of Theorem 4.1, we havelim log P |V (n) -Σ sub (f)| > δ = -∞We can now state the following result. Lemma 5.6. Under Assumptions of Theorem 4.1, we have that b -1 n ∆ n (f) satisfies a moderate deviation principle with speed b 2 n and rate function I defined in (8).

5. 5 . 6 .

 56 Completion of the proof of Theorem 4.1. Finally, using the decomposition (52) and the results of sections 5.2, 5.3 and 5.4, we deduce Theorem 4.1. Proof of Theorem 4.3 6.1. A quick overview of our strategy. Let (p n , n ∈ N) be a non-decreasing sequence of elements of N * such that, for all λ > 0: (50) p n < n, lim n→∞ p n /n = 1 and lim n→∞ np nλ log(n) = +∞. When there is no ambiguity, we write p for p n . Let us consider the sequence f = (f , ∈ N) of elements of B b (S) which satisfies the Assumption (3.2) (and then Assumption 3.1) uniformly, namely:

  satisfies a MDP on S with speed b 2 n and rate function I. (55)Proof. Recall the decomposition of V 1 (n) given in (33) and the definition of Σ crit 1 (f) given in 11. The proof is divided into two parts.

2 , ( 5 )

 25 and the fact that the sequence (β k , k ∈ N) is decreasing, we can upper bound each function |h n,i ,k |, i ∈ {1, 2, 3}, by C2 -β k . This implies that (58) n -1 |G n-p | -1 M Gn-p (H 4,n (f) -H4,n (f)) ≤ Cn -1

h

  ,k 1 {k+ <p} with h ,k = 2 -µ, P(f , ,k ) .

with 2α 2 2 n

 22 = 1 to get E Xi [M G p-( f ) 4 ] ≤ Cp 2 2 2(p-) . The latter inequality and (61) imply that(62) b n|G n | i∈Gn-p n -2 E ∆ n,i (f) 4 |F i ≤ Cn 3 2 -n+p ((n|G n |) -1 b 2 n ).

Lemma 6 . 7 .b 2 n

 672 Under the assumptions of Theorem 4.3, we have lim sup n→∞ 1 log P |G n | sup i∈Gn-pP Fi |∆ n,i (f)| > b n n|G n | = -∞.Proof.Using (5), we have, for n large enough and for all i∈ G n-p , |∆ n,i (f)| ≤ C2 -n 2 +p < b n n|G n |. This implies that P Fi |∆ n,i (f)| > b n n|G n | = 0 ∀i ∈ G n-p .

proof of (53).

We follow the same lines of the proof of (18) with 2α 2 = 1. First, using Chernoff inequality, we have

Next, taking λ = bnδ(n|Gn|) 1/2 2cα(n-p)|Gn-p| and doing the same thing for -f instead of f, we get

Finally, taking the log, dividing by b 2 n and letting n goes to infinity, we get the result.

Remark 6.1. We have the following version of Remark 5.1 when 2α 2 = 1:

(56)

6.3. proof of (54). With g p = p =0 2 p-Q p-f , and using the definition of R 1 (n), we have for all δ > 0

So according to (51) , we have:

By applying (56) to g p and b n δn 1/2 |G p ||G n | -1/2 and using the fact that 2α 2 = 1, we have:

.

So taking the log and dividing by b 2 n , and letting n goes to infinity, we get the result.

6.4. Proof of (55): Moderate deviations principle for b -1 n n -1/2 ∆ n (f). First we study the bracket of n -1 2 ∆ n (f) given by n -1 V (n), where V (n) is defined in (30). We have the following result: Lemma 6.2. Under the assumptions of Theorem 4.3, we have

Proof. Recall the definition of R 2 (n) and g p given in (32). So according to (51) and using 2α 2 = 1, we have

Therefore, R 2 (n) is upper-bounded by a deterministic sequence which goes to 0. According to Remark 8.1, we get the result. 

Using Assumption 3.2 and (5), we get

Finally, from [START_REF] Bitseki Penda | Central limit theorem for bifurcating markov chains[END_REF], we have

From (58), ( 59) and ( 60), we conclude that |n -1 V 4 (n)-Σ crit 1 (f)| is upper-bounded by a deterministic sequence which goes to 0. Therefore applying the remark 8.1 to n -1 V 4 (n) -Σ crit 1 (f), we get the result. Lemma 6.4. Under the assumptions of Theorem 4.3, we have

Proof. Recall the decomposition given in (42). Then following the lines of the proof of Lemma 6.3, we prove that lim sup

and the result follows.

As a direct consequence of (30) and Lemmas 6.2, 6.3 and 6.4, we have the following result.

Lemma 6.5. Under the assumptions of Theorem 4.3, we have

Next, contrary to the sub-critical case, we need to check the exponential Lindeberg condition and Chen-Ledoux type condition, that is conditions (C2) and (C3) given in Proposition 8.4. Indeed, in the critical case, the martingale n -1 2 ∆ n (f) does not have bounded differences in such a way that Lemma 6.5 is not longer sufficient to get the moderate deviations principle of n -1 2 ∆ n (f). In order to check exponential Lindeberg condition, we have the following exponential Lyapunov condition which implies the exponential Lindeberg condition. Lemma 6.6. Under the assumptions of Theorem 4.3, we have

Proof. For all i ∈ G n-p , we have

precisely Corollary 4.4) with the sequence f = (f, 0, 0, . . .) and the function f (x) = x. In this case, we have the following exact results:

Next, we will illustrate that the range of speed considered in the critical case does not work in this example. For that purpose, we simulate B = 50000 samples (X (s) = (X

u , u ∈ G 12 ), s ∈ {1, . . . , B}) of the bifurcating Markov chain at the n-th generation, with n = 12. For each sample

). This allows us to get empirical values of the rate function. Next in the same graph, we plot the true rate function and the empirical rate function. As we can see in Figure 1, the empirical rate function fit well exact rate function, except in the last figure where the empirical rate function is near to 0 since the speed considered is not valid for the subcritical case, but only for the critical. We also stress that the differences observed between empirical and exact rate functions can be explained from the fact that the sample size is not large enough.

Appendix

The following Remark is used in the proofs of Lemmas 6.3, 6.4 and 6.2.

Remark 8.1. We assume that (S, d) is a metric space. Let (Z n ) n∈N be a sequence of random variables valued in S, Z a random variable valued in S and v n a rate. So if d(Z n , Z) is upper-bounded by a deterministic sequence which converges to 0, then, for all sequence (v n , n ∈ N) converging to ∞, Z n converges v n -superexponentially fast in probability to Z, that is for all δ > 0, lim sup

The following result is known as Azuma-Bennett-Hoeffding inequality [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF][START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF][START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF].

Lemma 8.2. Let X be a real-valued and centered random variable such that a ≤ X ≤ b a.s., with a < b. Then for all λ > 0, we have

We have the following many-to-one formulas. Ideas of the proofs can be found in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] and [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF].

Assuming that all the quantities below are well defined, we have: 

). In the first three figures, one can see that empirical rate function fit well the exact rate function. The differences can be explained from the fact that the sample size is not large enough to generate enough large deviation events. In the last figure, one can see that the empirical rate function is reduced to 0. This is due to the fact that the speed considered here is valid only in the critical case, not in the subcritical case.

We recall here a simplified version of Theorem 1 in [START_REF] Djellout | Moderate deviations for martingale differences and applications to o-mixing sequences[END_REF]. We consider the real martingale (M n , n ∈ N) with respect to the filtration (H n , n ∈ N) and we denote ( M n , n ∈ N) its bracket. Remark 8.5. For all n ≥ 1, we set m n = M n -M n-1 . Note that, in Proposition 8.4, if the sequence (m n ) n≥1 is uniformly bounded, we recover a simplified version of the result of Dembo [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF] and if the sequence (m n ) n≥1 is bounded by a deterministic sequence, we recover a simplified version of the result of Puhalskii [START_REF] Puhalskii | Large deviations of semimartingales: a maxingale problem approach i. limits as solutions to a maxingale problem[END_REF].