
HAL Id: hal-03230853
https://hal.science/hal-03230853v1

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A SAT-Based Approach for Index Calculus on Binary
Elliptic Curves

Monika Trimoska, Sorina Ionica, Gilles Dequen

To cite this version:
Monika Trimoska, Sorina Ionica, Gilles Dequen. A SAT-Based Approach for Index Calculus on Binary
Elliptic Curves. Progress in Cryptology - AFRICACRYPT 2020, Jul 2020, Cairo, Egypt. pp.214-235,
�10.1007/978-3-030-51938-4�. �hal-03230853�

https://hal.science/hal-03230853v1
https://hal.archives-ouvertes.fr


A SAT-Based Approach for Index Calculus on

Binary Elliptic Curves ⋆

Monika Trimoska and Sorina Ionica and Gilles Dequen

Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France ⋆⋆

{monika.trimoska,sorina.ionica,gilles.dequen}@u-picardie.fr

Abstract. Logical cryptanalysis, first introduced by Massacci in 2000,
is a viable alternative to common algebraic cryptanalysis techniques over
boolean fields. With xor operations being at the core of many crypto-
graphic problems, recent research in this area has focused on handling
xor clauses efficiently. In this paper, we investigate solving the point
decomposition step of the index calculus method for prime-degree ex-
tension fields F2n , using sat solving methods. We experimented with
different sat solvers and decided on using WDSat, a solver dedicated to
this specific problem. We extend this solver by adding a novel symme-
try breaking technique and optimizing the time complexity of the point
decomposition step by a factor of m! for the (m+1)th summation poly-
nomial. While asymptotically solving the point decomposition problem
with this method has exponential worst time complexity in the dimension
l of the vector space defining the factor base, experimental running times
show that the presented sat solving technique is significantly faster than
current algebraic methods based on Gröbner basis computation. For the
values l and n considered in the experiments, the WDSat solver cou-
pled with our symmetry breaking technique is up to 300 times faster
than Magma’s F4 implementation, and this factor grows with l and n.

Keywords: Discrete logarithm · Index calculus · Elliptic curves · Point
decomposition · Symmetry · Satisfiability · dpll algorithm.

1 Introduction

The index calculus algorithm originally denoted a technique to compute discrete
logarithms modulo a prime number, but it now refers to a whole family of al-
gorithms adapted to other finite fields and some algebraic curves. It includes
the Number Field Sieve (NFS) [23], dedicated to logarithms in Zq and the algo-
rithms of Gaudry [15] and Diem [8] for algebraic curves defined over Fqn , where
q = pk. Index calculus algorithms proceed in two main steps. The sieving (or
point decomposition) step concentrates most of the number theory and algebraic

⋆ The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-51938-4 11

⋆⋆ This work is co-financed by the European Union under the 2014/2020 European
Regional Development Fund (FEDER).

https://doi.org/10.1007/978-3-030-51938-4_11


2 M. Trimoska et al.

geometry needed overall. By splitting random elements over a well-chosen factor
base, it produces a large sparse matrix, the rows of which are “relations”. In a
second phase, the matrix step produces ”good” combinations of the relations by
finding a non-trivial vector in the kernel of this matrix. This, in turn, enables the
efficient computation of any discrete logarithm on the input domain. A crucial
step of the index calculus on elliptic curves is to solve the point decomposition

problem (pdp), by generating sufficiently many relations among suitable points
on the curve. Using the so-called summation polynomials attached to the curve,
this boils down to solving a system of polynomial equations whose solutions are
the coordinates of points. The resulting algorithm has complexity O(q2−2/n), but
this hides an exponential factor in n which comes from the hardness of solving
the point decomposition problem.

Consequently, when q is large, n ≥ 3 is small and log q > cm for some constant
c, the Gaudry-Diem algorithm has a better asymptotic complexity than generic
methods for solving the discrete logarithm problem and Gröbner basis algorithms
have become a well-established technique [18] to solve these systems. Since a large
number of instances of pdp needs to be solved, most of the research in the area
has focused on improving the complexity of this step. Several simplifications such
as symmetries and polynomials with lower degree obtained from the algebraic
structure of the curve have been proposed [10].

When we consider elliptic curves defined over F2n with n prime, solving the
pdp system via Gröbner bases quickly becomes a bottleneck, and index calculus
algorithms are slower than generic attacks, from a theoretical and a practical
point of view. Moreover, it is not known how to define the factor base in order
to exploit all the symmetries coming from the algebraic structure of the curve,
without increasing the number of variables when solving pdp [36]. Finally, note
that for random systems, pure Gröbner basis algorithms are both theoretically
and practically slower than simpler methods, typically exhaustive search [6,24],
hybrid methods [2] and sat solvers. It is thus natural that we turn our attention
towards combinatorics tools to solve the pdp in characteristic 2.

Until recent years, sat solvers have been proven to be a powerful tool in the
cryptanalysis of symmetric schemes. They were successfully used for attacking
secret key cryptosystems such as Bivium, Trivium, Grain, AES [16,22,17,31,30].
However, their use in public key cryptosystems has rarely been considered. A
prominent example is the work of Galbraith and Gebregiyorgis [14], where they
explore the possibility of replacing available Gröbner basis implementations with
generic sat solvers (such as MiniSat), as a tool for solving the polynomial
system for the pdp over binary curves. They observe experimentally that the
use of sat solvers may potentially enable larger factor bases to be considered.

In this paper, we take important steps towards fully replacing Gröbner basis
techniques for solving pdp with constraint programming ones. First, we model
the point decomposition problem as a logical formula, with a reduced number
of clauses, when compared to the model used in [14]. We compare different
sat solvers and decide that the recently introduced WDSat solver [35] is most
adapted to this problem and yields the fastest running times. Secondly, we pro-



A SAT-Based Approach for Index Calculus 3

pose a symmetry breaking technique and we implement it as an extension of
this solver. We show that by using the extended solver, the proven worst-case

complexity of solving a PDP is O(2
ml

m! ), where m is the number of points in the
decomposition and l is the dimension of the vector space defining the factor base.
This is to be compared against the Gröbner basis algorithm proposed in [11],
whose runtime O(2ωn/2) (with n ∼ ml and ω the linear algebra constant) is
proven under heuristic assumptions.

We experimented with the index calculus attack on the discrete logarithm
for elliptic curves over prime-degree binary extension fields. We obtain an im-
portant speedup in comparison with the best currently available implementation
of Gröbner bases (F4 [11] in Magma [4]) and generic solvers [32,1,31]). Conse-
quently, we were able to display results for a range of parameters l and n that
were not feasible with previous approaches. In addition, our experiments show
that Gröbner bases cannot compete with sat solvers techniques in terms of
memory requirements. To illustrate, a system solved with the extended WDSat

solver using only 17MB of memory requires more than 200GB when using the
Gröbner basis method.

However, our experiments suggest that this improved pdp resolution does
not render the index calculus attack faster than generic methods for solving the
ECDLP in the case of prime-degree extension fields F2n .

This paper is organized as follows. Section 2 gives an overview of the index
calculus algorithm on elliptic curves, introduces the pdp problem and briefly
recalls algebraic and combinatorial techniques used in the literature to solve this
problem. Section 3 details the logical models used in our experiments. Section 4
explains the symmetry breaking technique that we implemented in a sat solver.
In Section 5 we give worst time complexity estimates for solving a pdp instance
and derive the complexity of our sat-based index calculus algorithm. Finally,
Section 6 presents benchmarks obtained with our implementation. We compare
this against results obtained using Magma’s F4 implementation and several
available best generic sat-solvers, such as MiniSat [32] and CryptoMiniSat

[31].

2 An Overview of Index Calculus

In 2008 and 2009, Gaudry [15] and Diem [8] independently proposed a technique
to perform the point decomposition step of the index calculus attack for elliptic
curves over extension fields, using Semaev’s summation polynomials [27]. Since
this paper focuses on binary elliptic curves, we introduce Semaev’s summation
polynomials here directly for these curves.

Let F2n be a finite field and E be an elliptic curve with j-invariant different
from 0, defined by an equation

E : y2 + xy = x3 + ax2 + b, (1)

with a, b ∈ F2n . Using standard notation, we take F̄2n to be the algebraic closure
of F2n and E(F2n) (resp. E(F̄2n)) to be the set of points on the elliptic curve



4 M. Trimoska et al.

defined over F2n (resp. F̄2n). Let O be the point at infinity on the elliptic curve.
For m ∈ N, the mth-summation polynomial is a multivariate polynomial in
F2n [X1, . . . , Xm] with the property that, given points P1, . . . , Pm ∈ E(F̄2n),
then P1 ± . . .± Pm = O if and only if Sm(xP1

, . . . ,xPm
) = 0. We have that

S2(X1, X2) = X1 +X2, (2)

S3(X1, X2, X3) = X2
1X

2
2 +X2

1X
2
3 +X1X2X3 +X2

2X
2
3 + b,

and for m ≥ 4 we have the following recursive formula:

Sm(X1, . . . , Xm) = (3)

ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xm, X)).

The polynomial Sm is symmetric and has degree 2m−2 in each of the variables.
Let V be a vector subspace of F2n/F2, whose dimension l will be defined later.
We define the factor basis B to be :

B = {(x,y) ∈ E(F2n)|x ∈ V }.

Heuristically, we can easily see that the factor base has approximatively 2l ele-
ments. Given a point R ∈ E(F2n), the point decomposition problem is to find m
points P1, . . . , Pm ∈ B such that R = P1±. . .±Pm. Using Semaev’s polynomials,
this problem is reduced to the one of solving a multivariate polynomial system.

Definition 1. Given s ≥ 1 and an l-dimensional vector subspace V of F2n/F2

and f ∈ F2n [X1, . . . , Xm] any multivariate polynomial of degree bounded by s,
find (x1, . . . , xm) ∈ V m such that f(x1, . . . , xm) = 0.

Using the fact that F2n is an n-dimensional vector space over F2, the equation
f(x1, . . . ,xm) = 0 can be rewritten as a system of n equations over F2, with
ml variables. In the literature, this is called a Weil restriction [15] or Weil

descent [26]. The probability of having a solution to this system depends on the
ratio between n and l. Roughly, when n/l ∼ m the system has a reasonable
chance to have a solution.

Recent work on solving the decomposition problem has focused on using
advanced methods for Gröbner basis computation such as Faugère’s F4 and F5

algorithms [11,12]. This is a natural approach, given that similar techniques
for small degree extension fields in characteristic > 2 yielded index calculus
algorithms which are faster than the generic attacks on the DLP.

A common technique when working with Semaev’s polynomials is to use
a symmetrization process to further reduce the degree of the polynomials ap-
pearing in the pdp system. In short, since Sm is symmetric, we can rewrite it
in terms of the elementary symmetric polynomials e1 =

∑

1≤i1≤mXi1 , e2 =
∑

1≤i1,i2≤m Xi1Xi2 , . . ., em =
∏

1≤i≤m Xi. We denote by S′
m+1 the polyno-

mial obtained after symmetrizing Sm+1 in the first m variables, i.e. we have
S′
m+1 ∈ F2n [e1, . . . , em, Xm+1].
In [36], the authors report on experiments carried on systems obtained using

a careful choice of the vector space V and application of the symmetrization



A SAT-Based Approach for Index Calculus 5

process. Using Magma’s F4 available implementation, we experimented with
both the symmetric and the non-symmetric version for pdp systems and found,
as in [36], that the symmetric version yields better results. Therefore, in order
to set the notation, we detail this approach here.

Let t be a root of a defining polynomial of F2n over F2. Following [36],
we choose the vector space V to be the dimension-l subspace generated by
1, t, t2, . . . , tl−1. Assuming that m(l − 1) ≤ n we can write:

e1 = d1,0 + . . .+ d1,l−1t
l−1

e2 = d2,0 + . . .+ d2,2l−2t
2l−2 (4)

. . .

em = dm,0 + . . .+ dm,m(l−1)t
m(l−1),

where the di,j with 1 ≤ i ≤ m, 0 ≤ j ≤ i(l − 1) are binary variables. After
choosing xm+1 ∈ F2n and substituting e1, . . . , em as in Equation (4), we get:

S′
m+1(e1, . . . , em,xm+1) = f0 + . . .+ fn−1t

n−1,

where fi, 0 ≤ i ≤ n− 1 are polynomials in the binary variables di,j , 1 ≤ i ≤ m,
0 ≤ j ≤ i(l − 1) . After a Weil descent, we obtain the following polynomial
system

f0 = f1 = . . . = fn−1 = 0. (5)

One can see that with this approach, the number of variables is increased by
a factor m, but the degrees of the polynomials in the system are significantly
reduced. Further simplification of this system can be obtained if the elliptic curve
has a rational point of order 2 or 4 [14]. Since this is a restriction, we did not
implement this approach and used the system in Equation (5) as the starting
point for our sat model of the point decomposition problem.

2.1 Solving the Decomposition Problem Using SAT Solvers

Before presenting our approach for finding solutions to the pdp using sat solvers,
we give preliminaries on the Satisfiability problem, its terminology and solving
techniques. A sat solver is a special-purpose program to solve the sat problem.
Using sat solvers as a cryptanalytic tool requires expressing the cryptographic
problem as a Boolean formula in conjunctive normal form (cnf). The basic
building block of a cnf formula is a literal, which is either a propositional variable
or its negation. An or-clause is a non-exclusive disjunction (∨) of literals x1 ∨
x2 ∨ . . . ∨ xk. A cnf formula is a unique or-clause or a conjunction (∧) of at
least two or-clauses. An interpretation of a given propositional formula consists
in assigning a truth value (true /false) to each of its variables. A cnf formula
is said to be satisfiable if there exists at least one interpretation under which the
formula is true, and it is said to be unsatisfiable otherwise. The propositional



6 M. Trimoska et al.

satisfiability problem (sat) is the problem of determining whether a (usually
cnf) formula is satisfiable.

In the remainder of this paper, we will refer to an or-clause simply by a
clause, since cnf is the standard form used in sat solvers. A clause where the
operation between literals is an exclusive or, will be referred to as a xor-clause.
The use of the logical xor operator (⊕) is common in cryptography. When
working on cryptographic problems the cnf form can be extended to a cnf-
xor form, which is a conjunction of both or-clauses and xor-clauses.

A straightforward method for solving the sat problem is to complete the
truth table associated with the formula in question. This is equivalent to an
exhaustive search method and thus impractical. Luckily, in some cases, a partial

assignment on the set of variables can determine whether a clause is satisfiable.
Assigning l, a literal from the partial assignment, to true will lead to :

1. Every clause containing l is removed (since the clause is satisfied).
2. In every clause that contains ¬l this literal is deleted (since it can not con-

tribute to the clause being satisfied).

The second rule above can lead to obtaining a clause composed of a single literal,
called a unit clause. Since this is the only literal left that can satisfy the clause,
it must be set to true and therefore propagated. The described method is called
unit propagation. The reader can refer to [3] for more details.

A conflict occurs when it exists at least one clause with all literals assigned
to false in the formula. If this case is a consequence of a direct assignment, or
eventually of Unit Propagation, this has to be undone. This is commonly known
as backtracking.

Example 1. For instance, these two atomic operations can be illustrated with
the following example built of a set of 5 clauses numbered C1 to C5:

C1 : ¬x1 ∨ x2 ∨ ¬x4

C2 : x1 ∨ x3 ∨ x4

C3 : x1 ∨ ¬x3

C4 : x1 ∨ x3

C5 : x2 ∨ x4

Assigning the variable x1 to false leads the clause C1 to be satisfied by the
literal x1. Another consequence is that the clauses C2, C3 and C4 cannot be
satisfied by the literal x1. Hence, x1 can be deleted from these clauses. Then,
C3 is a unit clause composed of the literal ¬x3 and as a consequence, x3 has to
be assigned to false. We say that the truth value of x3 is inferred through unit
propagation.

When we set x3 to its inferred value false, we apply the second rule to
clauses C2 and C4. As a consequence, clause C4 can not be satisfied by any of its
literals. This constitutes a conflict and it invokes a backtracking procedure. The
backtracking procedure consists in going back to the state that the formula was



A SAT-Based Approach for Index Calculus 7

in before the last assumption was made. In our example, the last assumption
was that x1 is false and thus, we go back to the initial state.

The basic backtracking search with unit propagation that we described com-
poses the Davis-Putnam-Logemann-Loveland (dpll) algorithm [7], which is a
state-of-the-art complete sat solving technique. dpll works by trying to assign
a truth value to each variable in the cnf formula, recursively building a binary
search tree of height equivalent (at worst) to the number of variables. After each
variable assignment, the formula is simplified by unit propagation. If a conflict

is met, a backtracking procedure is launched and the opposite truth value is
assigned to the last assigned literal. If the opposite truth value results in conflict
as well, we backtrack to an earlier assumption or conclude that the formula is
unsatisfiable - when there are no earlier assumptions left. The number of con-
flicts is a good measure for the time complexity of a sat problem solved using a
dpll-based solver. If the complete search tree is built, the worst-case complexity
is O(2v), where v is the number of variables in the formula. Figure 1 illustrates
the binary search tree resulting from the resolution of Example 1.

x1

X x2

X x3

x4

OK

F T

F T

F

F

Fig. 1. Binary search tree constructed with the dpll algorithm.

A common variation of the dpll is the conflict-driven clause learning (cdcl)
algorithm [29]. In this variation, each encountered conflict is described as a new
clause which is learnt (added to the formula). State-of-the-art cdcl solvers, such
as MiniSat [32] and Glucose [1], have been shown to be a powerful tool for
solving cnf formulas. However, they are not equipped to handle xor-clauses
and thus parity constraints have to be translated into cnf. Since handling cnf-
clauses derived from xor constraints is not necessarily efficient, recent works
have concentrated on coupling cdcl solvers with a xor-reasoning module. Fur-
thermore, these techniques can be enhanced by Gaussian elimination, as in the
works of Soos et al. (resulting in the CryptoMiniSat solver) [31,30], Han and
Jiang [17], Laitinen et al.[22,21].



8 M. Trimoska et al.

3 Model Description

This section gives in full detail the three models we used in our experiments: the
algebraic one used by Yun-Ju et al [36], the cnf model used by Galbraith and
Gebregiyorgis [14] and the model we propose.

3.1 The Algebraic Model

Since the logical models are constructed starting from the algebraic one, we
present first the model used when solving the pdp problem using Gröbner basis.
The elementary symmetric polynomials ei are written in terms of the di,j bi-
nary variables, as in Equation (4). Similarly, since we look for a set of solutions
(x1, . . . ,xm) ∈ V m, the Xi variables are written formally as follows:

X1 = c1,0+ . . . +c1,l−1t
l−1

X2 = c2,0+ . . . +c2,l−1t
l−1

. . .

Xm = cm,0+ . . . +cm,l−1t
l−1,

where ci,j , with 1 ≤ i ≤ m, 0 ≤ j ≤ l − 1, are binary variables. Using Equa-
tion (4), we derive the following equations:

d1,0 = c1,0+ . . . +cm,0

d1,1 = c1,1+ . . . +cm,1 (6)

. . .

dm,m(l−1) = c1,l· . . . ·cm,l.

The remaining equations correspond to polynomials fi, 0 ≤ i ≤ n− 1, obtained
via the Weil descent on S′

m+1. Recall that these are polynomials in the binary
variables di,j . We now describe how we derive logical formulas from this system.

3.2 The CNF-XOR Model

When creating constraints from a boolean polynomial system, the multiplication
of variables becomes a conjunction of literals and the sum of multiple terms be-
comes a xor-clause. From the two sets of equations in the algebraic model, we
obtain two sets of xor-clauses, where the terms are single literals or conjunc-
tions. To illustrate, the logical formula derived from Equation (6) is as follows:

¬d1,0 ⊕ c1,0 ⊕ . . .⊕ cm,0

¬d1,1 ⊕ c1,1 ⊕ . . .⊕ cm,1 (7)

. . .

¬dm,m(l−1) ⊕ (c1,l ∧ . . . ∧ cm,l).



A SAT-Based Approach for Index Calculus 9

sat solvers adapted for xor reasoning in the literature perform on xor

clauses obtained by xoring single literals, and not conjunctions of several ones.
To follow this paradigm, we have to transform the system above further. We
substitute all conjunctions in a xor clause by a newly added variable. For ex-
ample, let c′ be the variable substituting a conjunction (ci1,j1 ∧ci2,j2 ∧ ...∧cik ,jk).
We have c′ ⇔ (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk), which rewrites as

(c′ ∨ ¬ci1,j1 ∨ ¬ci2,j2 ∨ ... ∨ ¬cik,jk) ∧

(¬c′ ∨ ci1,j1) ∧

(¬c′ ∨ ci2,j2) ∧ (8)

· · ·

(¬c′ ∨ cik,jk)

For clarity, variables introduced by substitution of monomials containing ex-
clusively the variables ci,j will be denoted c′ and clauses derived from these
substitutions are said to be in the X-substitutions set of clauses. Similarly, sub-
stitutions of the monomials containing only the di,j variables are denoted by d′

and the resulting set is referred to as the E-substitutions set of clauses.
After substituting conjunctions, we will refer to the set of clauses obtained

from Equation (7) as the E-X-relation set of clauses. Finally, the equations
corresponding to polynomials fi, 0 ≤ i ≤ n− 1, are derived in the same manner
and the resulting clauses will be referred to as the F set of clauses.

That concludes the four sets of clauses in our sat model. This model does
not represent a cnf formula, since the E-X-relation set and the F set are made
up of xor-clauses. Hence, it will be referred to as the cnf-xor model.

Proposition 1. Assigning all ci,j variables, for 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1,
leads to the assignment of all variables in the cnf-xor model through unit prop-

agation.

Proof. Let us examine the unit propagation process for each set of clauses sep-
arately.

1. Clauses in the X-substitutions set are obtained by transforming c′ ⇔ (ci1,j1∧
ci2,j2 ∧ ... ∧ cik,jk). We note that on the right of these equivalences there
are only ci,j variables and on the left, there is one single c′ variable. The
assignment of all of the ci,j variables will yield the assignment of all variables
on the left of the equivalences, i.e. all c′ variables.

2. Clauses in the E-X-relations set are obtained by transforming the algebraic
system in (6). We observe that on the right of the equations there are only
ci,j and c′ variables and on the left there is one single di,j variable. When all
ci,j and all c′ variables are assigned, all di,j variables will have their truth
value assigned through unit propagation on the E-X-relation set.

3. Clauses in the E-substitutions set are obtained by transforming d′ ⇔ (di1,j1∧
di2,j2 ∧ ... ∧ dik,jk). Similarly as with the X-substitutions set, we have only
di,j variables on the right of these equivalences and one single d′ variable



10 M. Trimoska et al.

on the left. The assignment of all of the di,j variables will thus yield the
assignment of all d′ variables.

4. At this point, all variables in the parity constraints in the set F were as-
signed and we simply check whether the obtained interpretation satisfies the
formula.

We conclude that variables in all four types of clauses of our CNF-XOR model
were assigned through unit propation. ⊓⊔

3.3 The CNF Model

Since most modern sat solvers read and process cnf formulas, we explain the
classical technique for transforming a cnf-xor model to a cnf model. In fact,
this is also the technique used in Magma’s available implementation for deriving
a cnf model from a boolean polynomial system.

A xor-clause is said to be satisfied when it evaluates to true, i.e. when an
odd number of literals in the clause are set to true and the rest are set to false.
The cnf-encoding of a ternary xor-clause (x1 ⊕ x2 ⊕ x3) is

(x1 ∨ ¬x2 ∨ ¬x3) ∧

(¬x1 ∨ x2 ∨ ¬x3) ∧ (9)

(¬x1 ∨ ¬x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3)

Similarly, a xor-clause of size k can be transformed into a conjunction of 2k−1

or-clauses of size k. Since the number of introduced clauses grows exponentially
with the size of the xor-clause, it is a good practice to cut up the xor-clause
into manageable size clauses before proceeding with the transformation. To cut
a xor-clause (x1⊕ . . .⊕xk) of size k in two, we introduce a new variable x′ and
we obtain the following two xor-clauses:

(x1 ⊕ . . .⊕ xi ⊕ x
′) ∧

(xi+1 ⊕ . . .⊕ xk ⊕¬x
′).

In our experiments with MiniSat in Section 6, we used a cnf model obtained
after cutting into ternary xor-clauses, since any xorsat problem reduces in
polynomial time to a 3-xorsat problem [3]. To the best of our knowledge,
Magma’s implementation adopts a size 5 for xor clauses. The optimal size
at which to cut the xor-clauses depends on the nature of the model and can
be determined by running experiments using different values. Running these
experiments was out of the scope of our work, as the WDSat solver does not
use the cnf model.

We implemented all three models described in this section and we present
Table 1 to serve as a comparison on the number of variables, equations and
clauses. Values for the algebraic and cnf-xor model are exact, whereas those



A SAT-Based Approach for Index Calculus 11

Table 1. The number of variables and equations/clauses for the three models.

Gröbner model cnf model cnf-xor model

l n #Vars #Equations #Vars #cnf-clauses #Vars #cnf-clauses #xor-clauses

6 19 51 52 5019 19577 767 2364 52

7 23 60 62 8223 32201 1101 3466 62

8 23 69 68 11036 43210 1510 4835 68

9 37 78 88 20969 82721 2000 6495 88

10 47 87 104 32866 130040 2577 8470 104

11 59 96 122 49538 196434 3247 10784 122

for the cnf model are averages obtained from experiments presented in Section 6.
The value of m is always 3.

In 2014, Galbraith and Gebregiyorgis [14] used Magma’s implementation to
compute the equivalent cnf logical formulas of the polynomial system resulting
from the Weil descent of a pdp system and ran experiments using the general-
purpose MiniSat solver to get solutions for these formulas. One can infer from
Table 1 that the model they used has a significantly larger number of clauses
and variables when compared to the cnf-xor model. This motivated our choice
of the cnf-xor model for this work.

4 Breaking Symmetry

Since Semaev’s summation polynomials are symmetric, if {x1, . . . ,xm} is a so-
lution, then all permutations of this set are solutions as well. These solutions
are equivalent and finding more than one is of no use for the pdp. When a
dpll-based sat solver is used (see Section 2.1), we observe redundancy in the
binary search tree. Indeed, for m = 3 when a potential solution {x1,x2,x3} has
been eliminated, {x2,x1,x3} does not need to be tried out. To avoid this redun-
dancy, we establish the following constraint x1 ≤ x2 ≤ . . . ≤ xm, where ≤ is the
lexicographic order on {false,true}l with false < true.

It would be tedious to add this constraint to the model itself, since this would
imply adding new clauses and complexifying the sat model. Instead, we decided
to add this constraint in the dpll algorithm using a tree-pruning-like technique.
In a classical dpll implementation we try out both false and true for the truth
value of a chosen variable. In our symmetry breaking variation of dpll, in some
cases, the truth value of false will not be tried out as all potential solutions
after this assignment would not satisfy the constraint x1 ≤ x2 ≤ . . . ≤ xm.
Our variation of dpll is detailed in Algorithm 1 and the line numbers that
distinguish it from a classical dpll algorithm are in bold. Note that one crucial
difference between the two algorithms is the choice of a variable on line 4. While
this choice is arbitrary in a classical dpll algorithm, in Algorithm 1 variables
need to be chosen in the order from the leading bit of x1 to the trailing bit of
xm. If this is not respected, our algorithm does not yield a correct answer.



12 M. Trimoska et al.

Algorithm 1 Function dpll br sym(F , compare) : Recursive function imple-
menting the dpll algorithm coupled with our symmetry breaking technique.

Input: Propositional formula F and a flag compare

Output: true if formula is satisfiable, false otherwise.

1: if all clauses and all xor-clauses are satisfied then
2: return true.
3: end if
4: choose next ci,j .
5: if j = 0 then
6: compare← true.
7: end if
8: if (i = 1) or (compare is false) or (ci−1,j is set to false) then
9: (contradiction, F ′) ← assign(F , ¬ci,j).
10: if contradiction then
11: backtrack().
12: compare← false.
13: else
14: if dpll br sym(F ′, compare) returns false then
15: backtrack().
16: compare← false.
17: else
18: return true.
19: end if
20: end if
21: end if
22: (contradiction, F ′) ← assign(F , ci,j).
23: if contradiction then
24: backtrack().
25: return false.
26: end if
27: return dpll br sym(F ′, compare).

Using the notation in Section 3, ci,j corresponds to the jth bit of the ith

x-vector, where 1 ≤ i ≤ m and 0 ≤ j ≤ l − 1. We recall from Proposition 1
that assigning all ci,j variables in the cnf-xor model leads to the assignment
of all variables through unit propagation. In Algorithm 1, we decide whether to
try out the truth value of false for ci,j or not by comparing two x-vectors bit
for bit, in the same way that we would compare binary numbers. When we are
deciding on the truth value of ci,j we have the following reasoning:

• If ci−1,j is false, we try to set ci,j both to false and true (if false fails).
When ci,j is set to false, all of the potential xi solutions are greater than
or equal to xi−1, thus we continue with the same bit comparison on the next
level. However, when ci,j is set to true, all of the potential xi solutions are
strictly greater than xi−1 and we no longer do bit comparison on further
levels.



A SAT-Based Approach for Index Calculus 13

• If ci−1,j is true, we only try out the truth value of true for ci,j and we
continue to do bit comparison since the potential xi solutions are still greater
than or equal to xi−1 at this point.

Lastly, we give further information which explains in full detail Algorithm 1.
We use a flag denoted compare to instruct whether to do bit comparison at the
current search tree level or not. On line 6 we reset the compare flag to true

since ci,j , when j = 0, corresponds to a leading bit of the next x-vector. Lastly,
if-conditions on line 8 have to be checked in the specified order.

The assign procedure assigns the specified literal to true in a formula F ,
simplifies F and infers truth values for other literals. The backtrack procedure
is used to undo all changes made to F after the last truth-value assignment. For
more details on how these procedures are handled in the WDSat implementa-
tion, see [35].

5 Time Complexity Analysis

As we explained in Section 2, the time complexity of a sat problem in a dpll

context is measured by the number of conflicts. This essentially corresponds to
the number of leaves created in the binary search tree. The worst-case complexity
of the algorithm is thus 2h, where h is the height of the tree.

As per Proposition 1, we only reason on ci,j variables from the cnf-xor
model. Therefore, h = ml and the worst-case complexity for the pdp is 2ml.
Furthermore, using the symmetry breaking technique explained in Section 4, we
optimize this complexity by a factor of m!. Indeed, out of the m! permutations of
the solution set {x1, . . . ,xm}, only one satisfies x1 ≤ x2 ≤ . . . ≤ xm (neglecting
the equality). This concludes that the worst-case number of conflicts reached for
one pdp computation is

2ml

m!
. (10)

Going further in the time complexity analysis, we observe that to find one
conflict we go through (in the worst case) all clauses in the model during unit
propagation. Hence, the running time per conflict grows linearly with the number
of clauses. First, let us count the number of clauses in the X-substitutions set.
For every 2 ≤ d ≤ m there exist

(

m
d

)

· ld monomials of degree d given by products
of variables ci,j , and they each yield d + 1 clauses (see Equation (8)). In total,
the number of clauses in the X-substitutions set is

(
m
∑

d=2

(

m

d

)

· ld)(d+ 1).

Recall that degree one monomials are not substituted and thus do not produce
new clauses. We can adapt this reasoning for the E-substitutions set as well.

The number of xor-clauses in the cnf-xor model is equivalent to the num-

ber of equations in the algebraic model. We have m(m+1)
2 (l − 1) + m in the

E-X-relation set and n in the F set.



14 M. Trimoska et al.

Remark 1. Using this analysis, we approximate the number of clauses, denoted
by C, for m = 3, as all experiments presented in this paper are performed using
the fourth summation polynomial.

C ≈

(

3

2

)

· 3l2 +

(

3

3

)

· 4l3 +

((

3

2

))

· 3(3l− 2)2 + (6l− 3) + n ≈ (11)

≈ 4l3 + 171l2 − 210l+ n+ 69.

In practice, many monomials have no occurrence in the system after the Weil
descent. In fact, the value in Equation (11) is a huge overestimate and exact
values for l ∈ {6, . . . , 11} are shown in Table 1.

Assuming that we take m small, we conclude that the number of clauses in
our model is polynomial in l.

Let T be a constant representing the time to process one clause. The running
time of the pdp is bounded by

C · T · 2ml/m!.

This allows us to establish the following result on the complexity of our
SAT-based index calculus algorithm.

Theorem 1. The complexity of the index calculus algorithm for solving ECDLP

on a curve defined over F2n, using a factor base given by a vector space of

dimension l, is Õ(2n+l), where the Õ hides a polynomial factor in l.

Proof. In order to perform a whole ECDLP computation, one has to find 2l

linearly independent relations. Following [9], the probability that a random point
can be written as a sum of m factor basis elements is heuristically approximated

by 2ml

m!2n . The time complexity for the full decomposition phase, using a DPLL-
based solver coupled with the breaking symmetry technique is CT 2n+l. ⊓⊔

This worst-case complexity is to be compared to the O(2ω
n

2
+l) complexity of

Faugère et al [13]. Both approaches rely on the heuristic approximation of the
probability that a random point can be decomposed in the factor base. However,
we underline here that Faugère et al ’s proof of this result is based on an heuristic
assumption on the Gröbner basis computation for pdp, while our analysis for
the sat-based approach simply relies on the rigorously proved worst case for the
dpll search tree (see Equation (10)).

6 Experimental Results

We conducted experiments using S′
4 on binary Koblitz elliptic curves [20] defined

over F2n . We experimented with Gröbner bases and sat approaches. In [35],
WDSat is reported to outperform the Gröbner basis methods, as well as all
generic SAT solvers for this particular problem. First, we confirm this by experi-
menting with higher parameters and results are reported in Table 2. Secondly, we



A SAT-Based Approach for Index Calculus 15

extend the WDSat solver with our symmetry breaking algorithm described in
Section 4. Our symmetry breaking algorithm yields faster running times and we
were able to perform experiments using greater parameters. Results are shown
in Table 3. All tests were performed on a 2.40GHz Intel Xeon E5-2640 pro-
cessor. Our Weil descent implementation used to generate benchmarks is open
source [34].

The Gröbner basis approach takes as input an algebraic model. We used the
grevlex ordering, as this is considered to be optimal in the literature. The Min-

iSat solver processes a cnf model input, whereas CryptoMiniSat (CMS) and
WDSat use the cnf-xor model. WDSat can also process directly an algebraic
model in ANF form. Using the cnf-xor model is a huge advantage, as it has
far fewer clauses and variables than the cnf model. Gaussian elimination can be
beneficial for sat instances derived from cryptographic problems. However, it
has been reported to yield slower running times for some instances, as perform-
ing the operation is very costly. For this reason, CryptoMiniSat and WDSat

do not include Gaussian elimination by default, but the feature can be turned
on explicitly. We experimented with both variants for both xor-able solvers.

With WDSat we set a custom order of branching variables, which allowed
us to make use of unit propagation as explained in Proposition 1 and branch
only on the ci,j variables. CryptoMiniSat does not have this feature in the
current version as the authors report that custom order of branching variables
leads to slower running times in most cases. We added this feature to the source
code of CryptoMiniSat and we ran tests both with a custom order as per
Proposition 1 and with the order chosen by the solver.

Table 2 compares different approaches, showing results for optimal variants
of each solving tool. Running times of all variants of CryptoMiniSat and
WDSat are given in Appendix 7. We experimented with different values of n
for each l and we performed tests on 20 instances for each parameter size. Half
of the instances have a solution and the other half do not. We show running time
and memory averages on satisfiable and unsatisfiable instances separately since
these values differ between the two cases. sat solvers stop as soon as they find
a solution and if this is not the case they need to respond with certainty that
a solution does not exist. Hence, running times of sat solvers are significantly
slower when there is no solution. On the other hand, [36] indicates that the
computational complexity of Gröbner bases is lower when a solution does not
exist.

We set a timeout of 10 hours and a memory limit of 200GB for each run.
UsingMiniSat, we were not able to solve the highest parameter instances (l = 8)
within this time frame. On the other hand, Gröbner basis computations for these
instances halted before timeout because of the memory limit. This data is in line
with previous works. Indeed, [36] and [28] show experiments using the fourth
summation polynomial with l = 6, whereas the highest parameter size achieved
in [14] is l = 8.

Table 2 shows the average runtime in seconds, the average number of con-
flicts and the average memory use in MB. The WDSat solver allocates memory



16 M. Trimoska et al.

statically, according to predefined constant memory requirements. This explains
why memory averages do not vary much between the different size parameters,
or between satisfiable and unsatisfiable instances.

Table 2. Comparing different approaches for solving the pdp.

satisfiable unsatisfiable

Algorithm l n Runtime #Conflicts Memory Runtime #Conflicts Memory

Gröbner

6
17 207.220 NA 3601 142.119 NA 3291
19 215.187 NA 3940 155.765 NA 4091

7
19 3854.708 NA 38763 2650.696 NA 38408
23 3128.844 NA 35203 2286.136 NA 35162

8
23 >200GB >200GB
261 >200GB >200GB

MiniSat

6
17 62.702 408189 12.7 270.261 1463309 24.2
19 229.055 1778377 23.6 388.719 2439933 29.8

7
19 406.918 1919565 33.6 6777.431 25180492 105
23 12945.613 61610582 152 13260.586 59289671 163

8
23 8027.974 63384411 256 >10 hours
26 >10 hours >10 hours

CMS with
Prop.1

6
17 15.673 61812 34.5 62.396 260843 39.3
19 14.128 53767 33.2 64.563 259688 42.1

7
19 176.463 484098 41.5 843.367 2077747 72.3
23 300.021 638152 48.9 1012.412 2070190 73.6

8
23 1700.949 2420937 76.7 11959.938 16756106 82.4
26 3000.831 4179236 79.4 14412.193 16783213 81.8

WDSat with
Prop.1

6
17 .601 49117 1.4 3.851 254686 1.4
19 .470 38137 1.4 3.913 255491 1.4

7
19 9.643 534867 16.7 44.107 2073089 16.7
23 9.303 477632 16.7 47.347 2067168 16.7

8
23 68.929 2646071 16.8 525.057 16666331 16.8
26 185.480 6261107 16.9 533.607 16684378 16.9

Our experimental results show that performing Gaussian elimination on the
system comes with a significant computational cost and yields a small decrease in
the number of conflicts (see the Appendix). As this was the case for all instances
derived from the Weil descent on S′

4, we concluded that Gaussian elimination is
not beneficial for this model. Choosing the WDSat variant without Gaussian
elimination as optimal, we continued experiments for bigger size parameters
using this variant coupled with the symmetry breaking technique. Table 3 shows
results for l ∈ {6, 7, 8, 9, 10, 11} and n sizes up to 89. All values are an average
of 100 runs, as running times for satisfiable instances can vary remarkably. If we
compare the number of conflicts for the first three values for l in this Table to

1 The non-prime-degree case of n = 26 is not handled differently. The factor base is an
l-dimensional vector space and the Weil descent does not include specific reductions
which can be applied to non-prime degrees.



A SAT-Based Approach for Index Calculus 17

that of the basic WDSat solver without the breaking symmetry extension in
Table 2, we observe a speedup factor that rapidly approaches 6.2 This confirms
our claims in Section 5 that the symmetry breaking technique proposed in this
paper yields a speedup by a factor of m!.

Comparing results for l = 6 and l = 7 in Table 3 with the equivalent results
for the Gröbner basis method in Table 2, we observe that WDSat is up to 300
times faster than Gröbner bases for the cases where there is no solution and up
to 1700 times faster for instances allowing a solution. This is a rough comparison,
as the factor grows with parameters l and n.

Table 3. Experimental results using the complete WDSat solver. Running times are
in seconds and memory use is in MB.

satisfiable unsatisfiable

l n Runtime #Conflicts Memory Runtime #Conflicts Memory

6
17 .220 17792 1.4 .605 43875 1.4
19 .243 19166 1.4 .639 44034 1.4

7
19 2.205 130062 1.4 6.859 351353 1.4
23 3.555 189940 1.4 7.478 350257 1.4

8
23 29.584 1145966 17.0 81.767 2800335 17.0
26 39.214 1426216 17.0 85.822 2803580 17.0

9

37 447 10557129 17.1 1048 22396994 17.1
47 609 12675174 17.2 1167 22381494 17.2
59 611 11297325 17.3 1327 22390211 17.3
67 677 11608420 17.4 1430 22388053 17.4

10

47 5847 95131900 17.3 11963 179019409 17.3
59 6849 97254458 17.4 13649 179067171 17.4
67 6530 88292215 17.4 14555 179052277 17.4
79 7221 86174432 17.5 16294 179043408 17.5

11

59 64162 727241718 19.2 135801 1432191354 19.2
67 70075 741222864 19.3 145357 1432183842 19.3
79 61370 599263451 19.4 161388 1432120827 19.4
89 85834 736610196 19.5 175718 1432099666 19.5

Lastly, we experimented with the collision search [25] generic method, using
the open source code at [33]. This implementation solves the discrete log problem
in the case of prime field curves. We did not adapt the code for extension fields
and the computation time for scalar multiplication on the curve might vary
between the two cases. Even so, this allows for a rough comparison between
the running times of generic methods and the work presented in this paper. In
a uni-thread environment, a whole collision search computation for parameter
n = 59 has an average runtime of 0.8 hours on our platform. Computing 2l

successful decompositions for parameters n = 59 and l = 9 would take more than
86 hours according to results in Table 3. The estimated running time becomes

2 We compare the cases where there is no solution, as these have more stable averages.



18 M. Trimoska et al.

considerably higher when we take into account unsuccessful decompositions as
well. We conclude that for the case of prime-degree extension fields, even with
the significant speedup that we achieved for the pdp, index calculus attacks are
still not practical compared to the PCS generic method.

7 Conclusions and Future Work

Gröbner basis methods have been shown powerful in solving the pdp in the index
calculus attack for elliptic curves defined over small degree extension fields in
characteristic> 2. In this paper, we argue that for finite fields in characteristic 2 a
sat-based approach yields better results. We started by explaining that general-
purpose sat solvers cannot yield considerably faster running times because the
number of variables in a sat model is significantly larger than the number of
variables in the algebraic model.

Our first contribution is to propose a pdp cnf-xor model with only ml core
variables, whose assignment propagates all remaining variables in the model. To
solve this model we use a sat solver dedicated to solving systems derived from
a Weil descent. As our second contribution, we optimized the time complexity
of this solver by a factor of m! using a symmetry breaking technique.

We presented experiments for the pdp on prime-degree extension fields in
characteristic 2, using parameter sizes of up to l = 11 and n = 89. This presents
a significant improvement over the current state-of-the-art, as experiments using
l > 8 have never been shown before for this case. Moreover, memory is no longer
a constraint for the pdp when the Gröbner basis computation is replaced with
sat solving.

For technical reasons and lack of space, we were not able to provide here a
complete comparison to other existing exhaustive search-based implementations,
such as the libFes library [5] based on Bouillaguet et al ’s algorithm [6] and the
Joux-Vitse hybrid algorithm [19]. For a more complete set of benchmarks, in-
cluding experiments with Semaev’s polynomials for m > 3, the interested reader
is referred to the first author’s upcoming PhD thesis. It would also be interest-
ing to test the performance of sat solvers on the simplified system obtained by
considering the action of 2-torsion and 4-torsion points on the factor base, as
in [14].

Acknowledgements. We thank the anonymous reviewers of the Africacrypt
conference for their comments. The experimental results presented here were
obtained using the MatriCS platform of the Université de Picardie Jules Verne.



A SAT-Based Approach for Index Calculus 19

Appendix

Table 4. Comparing different variations of CryptoMiniSat and WDSat for solving
the pdp.

satisfiable unsatisfiable
Approach l n Runtime #Conflicts Memory Runtime #Conflicts Memory

CMS

6
17 133.983 775948 48.4 363.513 1709971 59.5
19 560.080 3396192 64.1 1172.740 5726372 70.1

7
19 1210.612 5713259 85.3 10258.351 26079224 117
23 3637.032 12159752 80.4 19857.454 47086152 130

8
23 9846.554 18509058 123 >10 hours
26 6905.477 13269631 115 >10 hours

CMSGE

6
17 119.866 677336 54.5 436.811 1877699 64.2
19 224.484 1219840 58.7 615.952 2763754 76.5

7
19 893.425 3722805 86.5 3587.929 8642108 107
23 580.007 1753040 82.4 3253.786 8183887 132

8
23 11265.010 19604250 155 >10 hours
26 3933.637 7920920 157 >10 hours

CMS with

Prop.1

6
17 15.673 61812 34.5 62.396 260843 39.3
19 14.128 53767 33.2 64.563 259688 42.1

7
19 176.463 484098 41.5 843.367 2077747 72.3
23 300.021 638152 48.9 1012.412 2070190 73.6

8
23 1700.949 2420937 76.7 11959.938 16756106 82.4
26 3000.831 4179236 79.4 14412.193 16783213 81.8

CMSGE

with

Prop.1

6
17 17.698 62161 39.1 86.049 294428 63.2
19 16.301 52730 39.8 88.738 293859 62.7

7
19 220.037 479197 51.2 2551.277 2418051 72.5
23 367.105 653673 59.4 1329.494 2380614 93.1

8
23 2493.328 2419268 112 19058.671 19359334 164
26 4956.952 4171674 126 19907.670 19534832 167

WDSat

with Prop.1

6
17 .601 49117 1.4 3.851 254686 1.4
19 .470 38137 1.4 3.913 255491 1.4

7
19 9.643 534867 16.7 44.107 2073089 16.7
23 9.303 477632 16.7 47.347 2067168 16.7

8
23 68.929 2646071 16.8 525.057 16666331 16.8
26 185.480 6261107 16.9 533.607 16684378 16.9

WDSatGE

with Prop.1

6
17 9.193 48178 1.4 56.718 253123 1.4
19 7.041 36835 1.4 58.876 252799 1.4

7
19 169.629 528383 16.7 736.863 2062232 16.7
23 159.101 473223 16.7 779.432 2060501 16.7

8
23 1290.702 2630567 16.8 9124.361 16639322 16.8
26 3404.765 6231289 16.9 9623.677 16636122 16.9



20 M. Trimoska et al.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009. pp. 399–404 (2009)

2. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Mathematical Cryptology 3(3), 177–197 (2009).
https://doi.org/10.1515/JMC.2009.009

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system.
I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997).
https://doi.org/10.1006/jsco.1996.0125

5. Bouillaguet, C.: LibFES-lite. https://github.com/cbouilla/libfes-lite (2016)

6. Bouillaguet, C., Cheng, C., Chou, T., Niederhagen, R., Yang, B.: Fast exhaustive
search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.E., Lisonek,
P. (eds.) Selected Areas in Cryptography - SAC 2013 - 20th International Confer-
ence, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8282, pp. 205–222. Springer (2013)

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

8. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica 147(1), 75–104 (2011). https://doi.org/10.1112/S0010437X10005075

9. Diem, C.: On the discrete logarithm problem in elliptic curves II. Algebra & Num-
ber Theory 7(6), 1281–1323 (2013)

10. Faugère, J.C., Huot, L., Joux, A., Renault, G., Vitse, V.: Symmetrized summation
polynomials: using small order torsion points to speed up elliptic curve index calcu-
lus. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Lecture Notes in Computer Science, vol. 8441, pp. 40–
57. Springer (2014)

11. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation. pp. 75–83. ISSAC ’02, ACM, New York,
NY, USA (2002), http://doi.acm.org/10.1145/780506.780516

13. Faugère, J., Perret, L., Petit, C., Renault, G.: Improving the Complexity of In-
dex Calculus Algorithms in Elliptic Curves over Binary Fields. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology - Eurocrypt 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 27–44 (2012)

14. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic
curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) Progress in
Cryptology - INDOCRYPT 2014 - 15th International Conference on Cryptology in
India. Lecture Notes in Computer Science, vol. 8885, pp. 409–427. Springer (2014)

15. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009).
https://doi.org/10.1016/j.jsc.2008.08.005

https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1006/jsco.1996.0125
https://github.com/cbouilla/libfes-lite
https://doi.org/10.1112/S0010437X10005075
http://doi.acm.org/10.1145/780506.780516
https://doi.org/10.1016/j.jsc.2008.08.005


A SAT-Based Approach for Index Calculus 21

16. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018). https://doi.org/10.1016/j.ipl.2018.07.001

17. Han, C.S., Jiang, J.H.R.: When Boolean Satisfiability Meets Gaussian Elimina-
tion in a Simplex Way. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided
Verification. pp. 410–426. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

18. Joux, A., Vitse, V.: Cover and Decomposition Index Calculus on Elliptic Curves
made practical. Application to a seemingly secure curve over Fp6 . In: Pointcheval,
D., Johansson, T. (eds.) Advances in Cryptology - Eurocrypt 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. vol. 7237, pp. 9–26. Springer (2012)

19. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
In: Kaczorowski, J., Pieprzyk, J., Pomykala, J. (eds.) Number-Theoretic Methods
in Cryptology - First International Conference, NuTMiC 2017, Warsaw, Poland,
September 11-13, 2017, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 10737, pp. 3–21. Springer (2017)

20. Koblitz, N.: CM-Curves with Good Cryptographic Properties. In: Feigenbaum,
J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 279–287. Springer Berlin
Heidelberg, Berlin, Heidelberg (1992)

21. Laitinen, T., Junttila, T., Niemela, I.: Equivalence Class Based Par-
ity Reasoning with DPLL(XOR). In: 2011 IEEE 23rd International Con-
ference on Tools with Artificial Intelligence. pp. 649–658 (Nov 2011).
https://doi.org/10.1109/ICTAI.2011.103

22. Laitinen, T., Junttila, T.A., Niemelä, I.: Conflict-Driven XOR-Clause Learning (ex-
tended version). CoRR abs/1407.6571 (2014), http://arxiv.org/abs/1407.6571

23. Lenstra, A.K., Manasse, M.S., , Pollard, J.M.: The Number Field Sieve, pp. 11–42.
Springer Berlin Heidelberg (1993)

24. Lokshtanov, D., Mikhailin, I., Paturi, R., Pudlák, P.: Beating Brute Force for
(Quantified) Satisfiability of Circuits of Bounded Treewidth. In: Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. pp. 247–261 (2018)

25. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. J. Cryptology 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

26. Petit, C., Quisquater, J.: On Polynomial Systems Arising from a Weil Descent.
In: Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security. Lecture
Notes in Computer Science, vol. 7658, pp. 451–466. Springer (2012)

27. Semaev, I.A.: Summation polynomials and the discrete logarithm problem
on elliptic curves. IACR Cryptology ePrint Archive 2004, 31 (2004),
http://eprint.iacr.org/2004/031

28. Shantz, M., Teske, E.: Solving the Elliptic Curve Discrete Logarithm Problem
Using Semaev Polynomials, Weil Descent and Gröbner basis methods - an experi-
mental study. In: Number Theory and Cryptography - Papers in Honor of Johannes
Buchmann on the Occasion of His 60th Birthday. pp. 94–107 (2013)

29. Silva, J.P.M., Sakallah, K.A.: Conflict Analysis in Search Algorithms for Satisfia-
bility. In: ICTAI. pp. 467–469. IEEE Computer Society (1996)

30. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: In Prag-
matics of SAT (2010)

31. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: SAT. Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009)

https://doi.org/10.1016/j.ipl.2018.07.001
https://doi.org/10.1109/ICTAI.2011.103
http://arxiv.org/abs/1407.6571
https://doi.org/10.1007/PL00003816
http://eprint.iacr.org/2004/031


22 M. Trimoska et al.

32. Sörensson, N., Eén, N.: A SAT Solver with Conflict-Clause Minimization. Proc.
Theory and Applications of Satisfiability Testing (2005)

33. Trimoska, M., Ionica, S., Dequen, G.: Parallel Collision Search Implementation.
https://github.com/mtrimoska/PCS (2019)

34. Trimoska, M., Ionica, S., Dequen, G.: EC Index Calculus Benchmarks.
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks (2020)

35. Trimoska, M., Ionica, S., Dequen, G.: Parity (XOR) reasoning for the index calculus
attack. CoRR abs/2001.11229 (2020), https://arxiv.org/abs/2001.11229

36. Yun-Ju, H., Petit, C., Shinohara, N., Takagi, T.: Improvement to Faugère et al.’s
method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) Advances in Infor-
mation and Computer Security - 8th International Workshop on Security, IWSEC
2013. Lecture Notes in Computer Science, vol. 8231, pp. 115–132. Springer (2013)

https://github.com/mtrimoska/PCS
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://arxiv.org/abs/2001.11229

	A SAT-Based Approach for Index Calculus on Binary Elliptic Curves 

