
HAL Id: hal-03230825
https://hal.science/hal-03230825

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parity (XOR) Reasoning for the Index Calculus Attack
Monika Trimoska, Sorina Ionica, Gilles Dequen

To cite this version:
Monika Trimoska, Sorina Ionica, Gilles Dequen. Parity (XOR) Reasoning for the Index Calculus At-
tack. Principles and Practice of Constraint Programming 2020, Sep 2020, Louvain-la-Neuve, Belgium.
pp.774-790, �10.1007/978-3-030-58475-7_45�. �hal-03230825�

https://hal.science/hal-03230825
https://hal.archives-ouvertes.fr


Parity (XOR) Reasoning for the Index Calculus
Attack ???

Monika Trimoska and Sorina Ionica and Gilles Dequen

Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
{monika.trimoska,gilles.dequen, sorina.ionica}@u-picardie.fr

Abstract. Cryptographic problems can often be reduced to solving boo-
lean polynomial systems, whose equivalent logical formulas can be treated
using SAT solvers. Given the algebraic nature of the problem, the use of
the logical XOR operator is common in SAT-based cryptanalysis. Recent
works have focused on advanced techniques for handling parity (XOR)
constraints, such as the Gaussian Elimination technique. First, we pro-
pose an original XOR-reasoning SAT solver, named WDSat,1 dedicated
to a specific cryptographic problem. Secondly, we show that in some
cases Gaussian Elimination on SAT instances does not work as well as
Gaussian Elimination on algebraic systems. We demonstrate how this
oversight is fixed in our solver, which is adapted to read instances in
algebraic normal form (ANF). Finally, we propose a novel preprocess-
ing technique based on the Minimal Vertex Cover Problem in graph
theory. This preprocessing technique is, within the framework of multi-
variate Boolean polynomial systems, used as a DLL branching selection
rule that leads to quick linearization of the underlying algebraic system.
Our benchmarks use a model obtained from cryptographic instances for
which a significant speedup is achieved using the findings in this paper.
We further explain how our preprocessing technique can be used as an
assessment of the security of a cryptographic system.

1 Introduction

Cryptanalysis is the study of methods to decrypt a ciphertext without any knowl-
edge of the secret key. Academic research in cryptanalysis is focused on deciding
whether a cryptosystem is secure enough to be used in the real world. In addi-
tion, a good understanding of the complexity of a cryptographic attack allows
us to determine the secret key length, making sure that no cryptanalytic effort
can find the key in a feasible amount of time. Recommendations for minimum
key length requirements given by various academic and governmental organiza-
tions [4] are based on the complexity of known attacks.

? The final authenticated version is available online at https://doi.org/10.1007/978-3-
030-58475-7 45

?? This work is co-financed by the European Union under the 2014/2020 European
Regional Development Fund (FEDER).

1 Weil Descent SAT solving

https://doi.org/10.1007/978-3-030-58475-7_45
https://doi.org/10.1007/978-3-030-58475-7_45


2 M. Trimoska et al.

In recent years, constraint programming (CP) techniques have been used in
the cryptanalysis of both public and secret key cryptosystems. A first exam-
ple in the field of differential cryptanalysis is given by the work of Gerault et
al. [18,16,17] who showed how to use CP for solving the optimal related-key
differential characteristic problem. Using the CP model presented in their work,
all optimal related-key differential characteristics for AES-128, AES-192 and
AES-256 can be computed in a few hours [17]. We also note the work of Lui et
al. [20,21], in which a CP model is used to aid the Tolerant Algebraic Side-
Channel Analysis, which is a combination of algebraic and side-channel analysis.

In a second line of research, Boolean satisfiability (SAT) solvers have found
use in algebraic cryptanalysis. Algebraic cryptanalysis denotes any technique
which reduces a cryptographic attack to the problem of solving a multivariate
Boolean polynomial system. A common approach for solving these systems is to
use Gröbner basis algorithms [12], exhaustive search [6] or hybrid methods [2].
These methods have been compared against SAT solving techniques for attacks
on various symmetric cryptosystems such as Bivium, Trivium, Grain. Recent
work has also focused on combining algebraic and SAT solving techniques [7]. In
public-key cryptography, SAT solvers have been considered for attacking binary
elliptic curve cryptosystems using the index calculus attack [14]. In this paper,
we tackle this last-mentioned application.

In this paper, we propose a built-from-scratch SAT solver dedicated to solv-
ing an important step of the index calculus attack. The solver, named WDSat,
is adapted for XOR-reasoning and reads formulas in ANF form. In addition, we
show certain limitations of the Gaussian Elimination (GE) technique in XOR-
enabled SAT solvers by pointing out a canceling property that is present in alge-
braic resolution methods but is overseen in current SAT-based GE implementa-
tions. We refer to this canceling property as the XG-ext method and we show how
it is implemented in our solver. In implementations, the XG-ext method comes at
a high computational cost and is thus useful only for benchmarks where it reduces
significantly the number of conflicts. Finally, we introduce a graph theory-based
preprocessing technique, specifically designed for multivariate Boolean polyno-
mial systems, that allows us to further accelerate the resolution of our bench-
marks. This preprocessing technique is designed to allow a rapid linearization
of the underlying algebraic system and should be used coupled with the XG-ext
method. In fact, when the XG-ext method is not applied, the positive outcome
of the preprocessing technique cannot be guaranteed. To confirm, we perform
experiments using CryptoMiniSat [27] coupled with our preprocessing technique
and show that this combination yields slower running times than CryptoMiniSat
alone. Experimental results in Section 6 show that the solver presented in this
paper outperforms all existing solving approaches for the introduced problem.
These approaches include Gröbner basis techniques [12] and state-of-the-art SAT
solvers: MiniSat [11], Glucose [1], MapleLCMDistChronoBT [23], CaDiCaL [3]
and CryptoMiniSat [27].



Parity (XOR) Reasoning for Index Calculus 3

2 Background

Index Calculus In cryptanalysis, the index calculus algorithm is a well-known
method for attacking factoring and elliptic curve discrete logarithms, two compu-
tational problems which are at the heart of most used public-key cryptosystems.
When performing this attack for elliptic curve discrete logarithms, a crucial step
is the point decomposition phase. As proposed by Gaudry [15] and Diem [10]
independently, a point on the elliptic curve can be decomposed into m other
points by solving Semaev’s (m + 1)-th summation polynomial [25], that we de-
note by Sm+1. For elliptic curves defined over binary fields, the second and the
third summation polynomials are defined as follows:

S2(X1, X2) = X1 + X2, (1)

S3(X1, X2, X3) = X2
1X

2
2 + X2

1X
2
3 + X1X2X3 + X2

2X
2
3 + 1.

For m > 3, the m-th summation polynomial is computed by using the following
recursive formula:

Sm(X1, . . . , Xm) = (2)

ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xm, X)),

where ResX denotes the resultant of two polynomials with respect to the X vari-
able and 1 ≤ k ≤ m−3. The zeros of this polynomial will give the x-coordinates
of points on the elliptic curve as elements in F2n . From an implementation point
of view, these will be represented as n-bit vectors. In index calculus attacks,
the common approach is to decompose a random point given by an n-bit vec-
tor x-coordinate into m points whose x-coordinates write as l-bit vectors, with
l ∼ n

m (see for instance [13,24]). With this choice of parameters, the problem
of decomposing a random point by finding the zeros of Sm+1 can be reduced to
solving a system of n Boolean polynomials with ml variables.

We recall that a multivariate Boolean polynomial system is a system of poly-
nomials in several variables and whose coefficients are in F2 (see for instance [19]).
The following example shows a Boolean polynomial system of three equations
in the variables {x1,x2,x3}:

x1 + x2 · x3 = 0

x1 · x2 + x2 + x3 = 0

x1 + x1 · x2 · x3 + x2 · x3 = 0.

In the literature, the modelisation process allowing to obtain a Boolean poly-
nomial system from a polynomial with coefficients in F2n (here the summation
polynomial) is called a Weil Restriction [15] or Weil Descent [24]. The polyno-
mial systems obtained in this way serve as our starting point for deriving SAT
instances.2

2 Our C code for generating these instances is publicly available [28].



4 M. Trimoska et al.

XOR-Enabled SAT Solvers A Boolean polynomial system can be rewritten
as a conjunction of logical formulas in algebraic normal form (ANF) as follows:
multiplication in F2 (·) becomes the logical AND operation (∧) and addition in
F2 (+) becomes the logical XOR (⊕). The elements 0 and 1 in F2 correspond to
⊥ and >, respectively. Consequently, solving a multivariate Boolean polynomial
system is equivalent to solving a conjunction of logical formulas in ANF form.
To date, few SAT solvers are adapted to tackle formulas in ANF. A common
approach is to transform the ANF form in a CNF-XOR form, which is a conjunc-
tion of CNF and XOR clauses. In order to do this, every conjunction of two or
more literals x1∧x2∧ . . .∧xk has to be replaced by an additional and equivalent
variable x′ such that x′ ⇔ x1 ∧ x2 ∧ . . . ∧ xk. This equivalence can be rewritten
in CNF using a three-step transformation. First, the equivalence is decomposed
into two implications:

(x′ ⇒ x1 ∧ x2 ∧ . . . ∧ xk) ∧
(x1 ∧ x2 ∧ . . . ∧ xk ⇒ x′).

Then, the material implication rule is applied:

(¬x′ ∨ (x1 ∧ x2 ∧ . . . ∧ xk)) ∧
(¬(x1 ∧ x2 ∧ . . . ∧ xk) ∨ x′).

Finally, using distribution on the first, and De Morgan’s law on the second
constraint, we obtain the following CNF formula:

(¬x′ ∨ x1) ∧
(¬x′ ∨ x2) ∧ (3)

. . .

(¬x′ ∨ xk) ∧
(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xk ∨ x′).

When we substitute all occurrences of conjunctions in an XOR clause by an
additional variable, we obtain a formula in CNF-XOR form. This is the form
used in the CryptoMiniSat solver [27], which is an extension of the MiniSat
solver [11] specifically designed to work on cryptographic problems.

Example 1. Let us consider the Boolean polynomial system:

x1 + x2 · x3 + x5 + x6 + 1 = 0 (4)

x3 + x5 + x6 = 0.

One additional variable x′ needs to be introduced to substitute the monomial x2 ·
x3. The corresponding CNF-XOR form for this Boolean system is a conjunction



Parity (XOR) Reasoning for Index Calculus 5

of the following clauses:

x′ ∨ ¬x2 ∨ ¬x3

¬x′ ∨ x2

¬x′ ∨ x3 (5)

x1 ⊕ x′ ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕>.

Finally, one could, of course, consider generic solvers (i.e. MiniSat [11], Glu-
cose [1]) for solving cryptographic problems, but this approach needs to further
transform the CNF-XOR model to a CNF one. Transforming an XOR-clause
with k literals in CNF representation is a well-known process that gives 2k−1

OR-clauses of k literals.

Notation. For simplicity, in the remainder of this paper we will omit the multi-
plication operator · whenever its use in monomials is implicit. Moreover, due to
equivalence between the Boolean polynomial systems and the ANF form, these
will be used interchangeably.

3 The WDSat solver

Our WDSat solver is based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [8], which is a state-of-the-art complete SAT solving technique. The
solver is designed to treat ANF formulae derived from the Weil Descent mod-
elisation of cryptographic attacks, hence its name: WDSat. The code for the
WDSat solver is written in C and is publicly available [29].

WDSat implements three reasoning modules. These include the module for
reasoning on the CNF part of the formula and the so-called XORSET and XOR-
GAUSS (XG) modules designed for reasoning on XOR constraints. The CNF
module is designed to perform classic unit propagation on OR-clauses. The
XORSET module performs the operation equivalent to unit propagation, but
adapted for XOR-clauses. Practically, this consists in checking the parity of the
current interpretation and propagating the unassigned literal. Finally, the XG
module is designed to perform GE on the XOR constraints dynamically. We also
implement an XG extension, described in Section 4. The following is a detailed
explanation of this module.

XOR clauses are normalized and represented as equivalence classes. Recall
that an XOR-clause is said to be in normal form if it contains only positive
literals and does not contain more than one occurrence of each literal. Since
we consider that all variables in a clause belong to the same equivalence class
(EC), we choose one literal from the EC to be the representative. An XOR-clause
(x1 ⊕ x2 ⊕ ...⊕ xn) ⇔ > rewrites as

x1 ⇔ (x2 ⊕ x3 ⊕ ...⊕ xn ⊕>). (6)



6 M. Trimoska et al.

Finally, we replace all occurrences of a representative of an XOR clause with the
right side of the equivalence. Applying this transformation, we obtain a simplified
system having the following property: a representative of an EC will never be
present in another EC.

Let R be the set of representatives and C be the set of clauses. R and C hold
the right-hand side and the left-hand side of all equations of type (6) respectively.
We denote by Cx the clause in C that is equivalent to x. In other words, Cx is
the right-hand side of the EC that has x as representative. Finally, we denote by
var(Cx) the set of literals (plus a >/⊥ constant) in the clause Cx and C[x1/x2]
denotes the following substitution of clauses: for all Ci ∈ C containing x1, Ci ←
Ci ⊕ x1 ⊕ x2, i.e. x1 is replaced by x2 in Ci. When we replace a literal x1 by a
clause Cx2 , we adopt a similar notation: C[x1/Cx2 ].

Thus, assigning a literal x1 to > leads to using one of the rules in Table 1,
depending on whether x1 belongs to R or not. In both cases, propagation occurs
when : ∃ xi 6= x1 s.t. var(Cxi

) = >/⊥. Conflict occurs when one constraint leads
to the propagation of xi to > and another constraint leads to the propagation
of xi to ⊥.

Table 1 presents inference rules for performing GE in the XG module of
WDSat. Applying these rules allows us to maintain the property of the system
which states that a representative of an EC will never be present in another EC.
For clarity of the notation, the first column of this table contains the premises,
the second one contains the conclusion and the third one is an update on the set
R which has to be performed when the inference rule is used.

Table 1. Gaussian elimination inference rules.

Premises Conclusions on C Updates on R

x1, C
C[x1/>] N/A

x1�∈R

x1, C
Cx2 ← Cx1 ⊕ x2 ⊕>

R← R \ {x1}
x1 ∈ R R← R ∪ {x2}
x2 ∈ var(Cx1) C[x2/Cx2 ]

We denote by k the number of variables in a XOR-CNF formula. At the
implementation level, XOR-clauses are represented as (k + 1)-bit vectors: a bit
for every variable and one for a >, ⊥ constant. Clauses are stored in an array
indexed by the representatives. This representation allows us to perform GE
only by XOR-ing bit-vectors and flipping the clause constant. For a compact
representation of the (k+1)-bit vector we used an array of d(k+1)/64e integers.

Example 2. Let k = 7 and let us consider x2 ⇔ >⊕x1⊕x3⊕x5. Then we have
that var(Cx2

) = {>, x1, x3, x5} and the bit-vector representing this clause is
11010100, where the >, ⊥ constant takes the zero position. Assigning x1 to > is
equivalent to introducing the constraint x1 ⊕>. We apply the first rule, simply



Parity (XOR) Reasoning for Index Calculus 7

by XOR-ing this bit-vector with a mask of the form 11000000. The resulting
vector is 00010100, which corresponds to var(Cx2

) = {⊥, x3, x5}.

Our DPLL-based solver assigns a truth value to each variable in a formula
F , recursively building a binary search tree. After each assignment, either the
formula is simplified and other truth values are inferred or a conflict occurs. In
the case of a conflict, the last assignment has to be undone for each module
via a backtracking procedure. In Algorithm 1, we detail the assign function of
WDSat, which is at the core of the DPLL algorithm. This function synchronises
all three modules in the following manner. First, the truth value is assigned in
the CNF module and truth values of other variables are propagated. Next, the
truth value of the initial variable, as well as the propagated ones are assigned in
the XORSET module. If the XOR-adapted unit propagation discovers new truth
values, they are assigned in the CNF module, going back to step one. We go back
and forth with this process until the two modules are synchronized and there are
no more propagations left. Finally, the list of all inferred literals is transferred
to the XG module. If the XG module finds new XOR-implied literals, the list
is sent to the CNF module and the process is restarted. If a conflict occurs
in any of the reasoning modules, the assign function fails and a backtracking
procedure is launched. We briefly detail the other functions used in the pseudo-
code. There is a set in function for each module which takes as input a list of
literals and a propositional formula F and sets all literals in this list to > in the
corresponding modules. Through this assignment, the function also infers truth
values of other literals, according to the specific rules in different modules. For
instance, the set in function for the XG module (set in XG) implements the
rules in Table 1, performing a GE on the system. Finally, the last assigned
function in each module returns the list of literals that were assigned during the
last call to the respective set in function.

4 The XG-ext Method

In this section, we show how we extend our XG module. First, we present the
motivation for this work by giving an example of a case where GE in SAT
solvers has certain limitations compared to Algebraic GE. Secondly, we propose
a solution to overcome these limitations and we implement it in our solver to
develop the XORGAUSS-ext method (XG-ext in short). To introduce new rules
for this method, we use the same notation as in Section 3.

Gaussian elimination on a Boolean polynomial system consists in performing
elementary operations on equations with the goal of reducing the number of
equations as well as the number of terms in each equation. We cancel out terms
by adding (XOR-ing) one equation to another. GE can be performed on instances
in CNF-XOR form in the same way that it is performed on Boolean polynomial
systems presented in algebraic writing. However, we detected a case where a
possible cancellation of terms is overseen due to the CNF-XOR form.



8 M. Trimoska et al.

Algorithm 1 Function assign(F , x) : Assigning a truth value to a literal x in
a formula F , simplifying F and inferring truth values for other literals.

Input: The propositional formula F , a literal x
Output: ⊥ if a conflict is reached, > and a simplified F other-
wise

1: to set← {x}.
2: to set in XG← {x}.
3: while to set 6= ∅ do
4: while to set 6= ∅ do
5: if set in CNF(to set, F ) → ⊥ then
6: return (⊥, – ).
7: end if
8: to set← last assigned in CNF().
9: to set in XG← to set.

10: if set in XORSET(to set, F )→ ⊥ then
11: return (⊥, – ).
12: end if
13: to set← last assigned in XORSET().
14: to set in XG← to set ∪ to set in XG.
15: end while
16: if set in XG(to set in XG, F )→ ⊥ then
17: return (⊥, – ).
18: end if
19: to set← last assigned XG().
20: end while
21: return (>, F ).

Example 3. We will reuse the Boolean polynomial system in Example 1 to
demonstrate a case where a cancellation of a term is missed by a XOR-enabled
SAT solver. Let us consider that in Equation (4), we try to assign the value of
1 to x2. As the monomial x2x3 will be equal to 1 only if both terms x2 and x3

are equal to 1, we get the following result:

x1 + x3 + x5 + x6 + 1 = 0

x3 + x5 + x6 = 0.

After XORing the two equations, we infer that x1 = 1.
However, when we assign x2 to > in the corresponding CNF-XOR clause in
Equation (5), as per unit propagation rules, we get the following result:

x′ ∨ ¬x3

¬x′ ∨ x3

x1 ⊕ x′ ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕>.

When we XOR the second clause to the first one we can not infer that x1 is >
at this point.



Parity (XOR) Reasoning for Index Calculus 9

Note that (x′∨¬x3)∧(¬x′∨x3) rewrites as x′ ⇔ x3, but if the solver does not
syntactically search for this type of occurrences regularly, x′ will not be replaced
by x3. Moreover, this type of search adds an additional computational cost to
the resolution.

Omissions as the one detailed in Example 3 can occur every time a variable
is set to >. As a result, we define the following rule with the goal to improve the
performance of XOR-enabled SAT solvers:

x′ x1 ⇔ (x′ ∧ x2)
x1 ⇔ x2 . (7)

This rule can be generalised for the resolution of higher-degree Boolean polyno-
mial systems:

x′ x1 ⇔ (x′ ∧ x2 ∧ . . . ∧ xd)

x1 ⇔ (x2 ∧ . . . ∧ xd) . (8)

Even though these rules are standard in Boolean logic, they are presently not
implemented in XOR-enabled SAT solvers. Note that when a solver takes as
input an instance in CNF-XOR form, the second premise is lost or has to be
inferred by syntactic search. To have knowledge of the second premise, the solver
needs to read the instance in ANF. To this purpose, we defined a new ANF input
format for SAT solvers.

This extension of the XG module is implemented as part of the set in XG
function used in the assign algorithm. The following is a detailed explanation
of how the rule in Equation (7) is applied in our implementation. Recall that the
XG module has the following property: a representative of an EC will never be
present in another EC. This property will be maintained in the XG-ext method
as well. Using the conclusion in Equation (7), we derive in Table 2 six inference
rules that allow us to perform the substitution of a variable x1 by a variable
x2 while maintaining the unicity-of-representatives property. Applying one of
the inference rules in Table 2 can result in conflict or it can propagate a newly
discovered truth value. Note that var(Cx1

⊕ Cx2
) is given by the symmetric

difference (var(Cx1
) ∪ var(Cx2

)) \ (var(Cx2
) ∩ var(Cx1

)).

5 Our Preprocessing Technique

Let us reconsider the DPLL-based algorithm. It is well known that the number of
conflicts needed to prove the inconsistency is correlated to the order in which the
variables are assigned. Among the state-of-the-art branching rules you can find
two categories according to the type of heuristics. The first are based on Maxi-
mum number of Occurrences in the Minimum clauses Size (MOMs) whereas the
second adopt the Variable State Independent Decaying Sum (VSIDS) branching
heuristic.

In this work, we were interested in developing a criterion for defining the order
of variables on CNF-XOR instances derived from Boolean polynomial systems.



10 M. Trimoska et al.

Table 2. Inference rules for the substitution of x1 by x2.

Premises Conclusions on C Updates on R

C, x1 ⇔ x2

C[x1/x2] N/Ax1�∈R
x2�∈R

C, x1 ⇔ x2 Cx2 ← Cx1 R← R \ {x1}x1 ∈ R
x2�∈R

C[x2/Cx2 ] R← R ∪ {x2}x2�∈ var(Cx1)

C, x1 ⇔ x2

Cx3 ← Cx1 ⊕ x2 ⊕ x3
R← R \ {x1}x1 ∈ R

x2�∈R
x2 ∈ var(Cx1)

C[x3/Cx3 ] R← R ∪ {x3}x3 ∈ var(Cx1)

C, x1 ⇔ x2

C[x1/Cx2 ] N/A
x1�∈R
x2 ∈ R
x1�∈ var(Cx2)

C, x1 ⇔ x2

Cx3 ← Cx2 ⊕ x1 ⊕ x3 R← R \ {x2}x1�∈R
x2 ∈ R
x1 ∈ var(Cx2)

C[x1/x2, x3/Cx3 ] R← R ∪ {x3}x3 ∈ var(Cx2)

C, x1 ⇔ x2

Cx3 ← Cx1 ⊕ Cx2 ⊕ x3 R← R \ {x1, x2}x1 ∈ R
x2 ∈ R
x3 ∈ var(Cx1 ⊕ Cx2) C[x3/Cx3 ] R← R ∪ {x3}

We set the goal to choose branching variables that will lead as fast as possible to
a linear polynomial system, which can be solved using GE in polynomial time.
In terms of SAT solving, choosing this order for branching will cancel out all
clauses in the CNF part of the formula as a result of unit propagation. When
only the XOR part of the CNF-XOR formula is left, the solver performs GE on
the remaining XOR constraints in polynomial time.

After setting this goal, choosing which variable to assign next according to the
number of their occurrences in the system is no longer an optimal technique. We
explain this idea on an example. For simplicity, we only use the Boolean algebra
terminology in this section. However, the methods described are applicable to
both SAT solving and algebraic techniques based on the process of recursively
making assumptions on the truth values of variables in the system (as with the
DPLL algorithm).



Parity (XOR) Reasoning for Index Calculus 11

Example 4. Consider the following Boolean polynomial system:

x1 + x2x3 + x4 + x4x5 = 0 (9)

x1 + x2x3 = 0

x1 + x3x5 + x6 = 0

x1 + x2x5x6 + x6 = 0

In this example, the variable with the highest number of occurrences is x1.
However, x1 does not occur in any monomial of degree > 1. Thus, assigning first
x1 does not contribute to the linearization of the system and we need to find a
more suitable criterion.

The solution we propose is inspired by graph theory. Particularly, we identi-
fied a parallel between the problem of defining the order in which the variables
are assigned and the Minimal Vertex Cover Problem (MVC).

In graph theory, a vertex cover is a subset of vertices such that for every edge
(vi, vj) of the graph, either vi or vj is in the vertex cover. Given an undirected
graph, the Minimum Vertex Cover Problem is a classic optimization problem of
finding a vertex cover of minimal size.

An undirected graph is derived from a Boolean polynomial system as follows.

• Each variable xi from the system becomes a vertex vi in the graph G.
• An edge (vi, vj) is in G if and only if (in the corresponding Boolean system)

there exists a monomial of degree n ≥ 2 which contains both xi and xj .

When we use this representation of a Boolean polynomial system as a graph,
a vertex cover defines a subset of variables whose assignment will result in a
linear Boolean polynomial system in the remaining non-assigned variables. Con-
sequently, finding the MVC of the graph is equivalent to finding the minimal
subset of variables one has to assign to obtain a linear system.

Fig. 1. Graph derived from Example 4

Figure 1 shows the graph derived from Example 4. The MVC of this graph is
{v2, v5}. As a result, when all variables in the subset {x2,x5} are assigned, the



12 M. Trimoska et al.

remaining polynomial system is linear. We give here the system derived after
the assignment x2 = 1 and x5 = 1.

x1 + x3 = 0

x1 + x3 + x6 = 0

x1 = 0.

For all other possible assignments of x2 and x5, we obtain similar linear systems.

Defining the order of branching variables will serve as a preprocessing tech-
nique that consists in (i) deriving a graph from a Boolean polynomial system
and (ii) finding the MVC of the resulting graph. During the solving process,
variables corresponding to vertices in the MVC are assigned first. Even though
the MVC problem is NP-complete, its execution for graphs derived from cryp-
tographic models always finishes in negligible running time due to the small
number of variables. Our solver does not use any other MOMs or VSIDS-based
heuristic during the solving process, as the order of the branching variables is
predetermined by the MVC preprocessing technique.

When variables are assigned in the order defined by this preprocessing tech-
nique, the worst-case time complexity of a DPLL-based algorithm drops from
O(2k) to O(2k

′
), where k′ is the number of vertices in the MVC set. Note that

the MVC of a complete graph is equal to the number of its vertices. Conse-
quently, when the corresponding graph of a Boolean polynomial system is a
complete graph, solving the system using this preprocessing technique is as hard
as solving the system without it.

Finding the MVC corresponding to a Boolean polynomial system can also be
used as an assessment of the security of the underlying cryptosystem. Indeed,
an exhaustive search on a subset of variables, which are the variables in the
MVC, results in linear systems that can be solved in polynomial time. This
straightforward approach yields an upper bound on the complexity of solving
the system at hand. In short, to assess the security of a cryptographic system,
assuming that this is based on solving the Boolean polynomial system first, one
computes the MVC of this system and deduces that O(2k

′
) is a bound on the

complexity of the attack.

6 Experimental Results

To support our claims, we experimented with benchmarks derived from two vari-
ants of the index calculus attack on the discrete logarithm problem over binary
elliptic curves. As explained in Section 2, a SAT solver can be used for solv-
ing Semaev’s summation polynomials in the point decomposition phase. Our
model is derived from the Boolean multivariate polynomial system given by the
m + 1-th summation polynomial, with m ≥ 2. This model has previously been
examined in [14]. We compare the WDSat solver presented in this paper to the
following approaches: the best currently available implementation of Gröbner



Parity (XOR) Reasoning for Index Calculus 13

basis (F4 [12] in MAGMA [5]), the solvers MiniSat, [11], Glucose [1], MapleL-
CMDistChronoBT [23], CaDiCaL [3] and CryptoMiniSat [27] with enabled GE.3

Note that MapleLCMDistChronoBT and CaDiCaL are the winners in the main
track of the latest SAT competition [22] in 2018. All tests were performed on a
2.40GHz Intel Xeon E5-2640 processor and are an average of 100 runs.

For SAT models derived from cryptographic problems, the preprocessing
technique is executed only once, since all instances presenting a specific crypto-
graphic problem are equivalent except for the constant in the XOR constraints.
Even though the MVC problem is NP-complete, its execution for graphs derived
from our models always finished in negligible running time, due to the small
number of nodes.

We conducted experiments using both the third and the fourth polynomi-
als. Results on solving the third summation polynomial (m = 2) are shown
in Table 4. The parameters used to obtain these benchmarks are n = 41 and
l = 20. As a result, we obtained a Boolean polynomial system of 41 equations in
40 variables (see Section 2). We show running-time averages on satisfiable and
unsatisfiable instances separately, as these values differ between the two cases.

As different variants of our solver can yield better results for different bench-
marks, we compared all variants to decide on the optimal one. We also tested
the solver with and without our preprocessing technique (denoted by mvc in the
tables). The results in Table 3 show that WDSat yields optimal results for these
benchmarks when the XG-ext method is used coupled with the preprocessing
technique. This outcome is not surprising when we examine the MVC obtained
by the preprocessing technique. The number of variables in the system is k = 40,
but the number of vertices in the MVC is 20. This means that by using the op-
timization techniques described in this paper, the worst-case time complexity of
the examined models drops from 2k to 2

k
2 . This is the case for every instance

derived from the third summation polynomial.

Table 3. Comparing different versions of WDSat for solving the third summation
polynomial.

WDSat+
SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

XG 6028.4 200957178 11743.2 354094821

XG+mvc 639.6 21865963 2973.0 94489361

XG-ext 375.9 4911099 870.1 10789518

XG-ext+mvc 4.2 27684 13.5 86152

By analyzing the average running time and the average number of conflicts in
Table 4, we see that the chosen variant of the WDSat solver outperforms all other
approaches for solving instances derived from the third summation polynomial.

3 Enabling GE in CryptoMiniSat yielded better performance for these benchmarks.



14 M. Trimoska et al.

Current versions of CryptoMiniSat do not allow choosing the order of the
branching variables as its authors claim that this technique almost always re-
sults in slower running times. To verify this claim, we modified the source code
of CryptoMiniSat in order to test our preprocessing technique coupled with this
solver (see line CryptoMiniSat+mvc in Table 4). We set a timeout of 10 minutes
and only 9 out of 100 unsatisfiable and 54 out of 100 satisfiable instances were
solved. This confirms that the MVC preprocessing technique is strongly linked
to our XG-ext method. Indeed, when the XG-ext method is not used, one can
not guarantee that when all variables from the MVC are assigned the system be-
comes linear. This is confirmed also by looking at the number of conflicts for the
CryptoMiniSat+mvc approach, which is greater than 2

k
2 even for benchmarks

that were solved before the timeout. Recall that k
2 is the size of the MVC. On

the other hand CryptoMiniSat without the preprocessing technique succeeds in
solving these instances after less than 2

k
2 conflicts. We conclude that the search-

ing technique in CryptoMiniSat used to decide on the next branching variable
is optimal for this solver.

The solvers which are not XOR-enabled did not solve any of the 200 sat-
isfiable and unsatisfiable instances before the 10-minute timeout. This is not
surprising as instances derived from the third summation polynomial are solved
a lot faster when a GE technique is used.

Table 4. Comparing different approaches for solving the third summation polynomial.

Solving approach
SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

Gröbner 16.8 N/A 18.7 N/A

MiniSat > 600 > 600

Glucose > 600 > 600

MapleLCMDistChronoBT > 600 > 600

CaDiCaL > 600 > 600

CryptoMiniSat 29.0 226668 84.3 627539

CryptoMiniSat+mvc 237.4 1263601 > 600

WDSat+XG-ext+mvc 4.2 27684 13.5 86152

Experimental results in Table 5 are performed using benchmarks derived from
the fourth summation polynomial. We obtain our model using a symmetrization
technique proposed by Gaudry [15]. According to our parameter choice, the
initial polynomial system contains 52 equations in 51 variables. However, only
18 out of the 51 variables are ’crucial’. The other 33 variables are introduced
as a result of Gaudry’s symmetrization technique. Our experiments show that
performing GE on these instances does not result in faster running times. On
the contrary, running times are significantly slower when the XG module of the
WDSat solver is enabled. Running times become even slower with the XG-ext
method. We attribute this fallout to the particularly small improvement in the



Parity (XOR) Reasoning for Index Calculus 15

number of conflicts, compared to the significant computational cost of performing
the GE technique. Indeed, the graph corresponding to the model for the fourth
summation polynomial is complete and thus the size of the MVC is equivalent
to the number of variables in the formula. This leads us to believe there is no
optimal choice for the order of branching variables and the system generally
does not become linear until the second-to-last branching. We conclude that
for solving these instances WDSat without GE is the optimal variant, since it
outperforms both the Gröbner basis method and current state-of-the-art solvers.

To sum up, when WDSat is used for the index calculus attack, our recom-
mendation is to enable the XG-ext option for instances obtained from the third
summation polynomial and to completely disable the XG module for instances
from the fourth polynomial. For ANF instances arising from other cryptographic
problems, it would be best to solve smaller instances of the problem and analyse
the number of conflicts. If the number of conflicts is only slightly better when
the XG module is enabled, then disabling the XG module is likely to yield faster
running times for higher scale instances of that problem.

Table 5. Comparing different approaches for solving the fourth summation polynomial.

Solving approach
SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

Gröbner 229.3 N/A 229.4 N/A

MiniSat 239.7 1840190 517.0 3433304

Glucose 189.2 1527158 274.8 2056575

MapleLCMDistChronoBT 655.1 4035131 918.7 5378945

CaDiCaL 43.6 254194 141.3 629869

CryptoMiniSat 331.8 1791188 707.9 3416526

WDSat 0.6 48438 3.8 255698

WDSat+XG 19.0 85282 49.8 252949

Our solver is dedicated to problems arising from a Weil descent. However,
we tested it on Trivium [9] instances as they are extensively used in the SAT
literature. We created instances using a modelization similar to the one in Grain
of Salt [26], a tool for deriving instances for keystream generators comprised of
Nonlinear-Feedback Shift Registers (NLFSR). Our experience is that Crypto-
MiniSat yields faster running times than all of the WDSat variants for Trivium
instances. WDSat does not implement any of the optimizations for Trivium such
as dependent variable removal, sub-problem detection, etc. as there are no such
occurrences in systems arising from a Weil descent.

7 Conclusion

In this paper, we revisited XOR-enabled SAT solvers and their use in crypt-
analysis. We proposed a novel SAT solver, named WDSat, dedicated to solv-



16 M. Trimoska et al.

ing instances derived from the index calculus attack on binary elliptic curves.
We conducted experiments comparing WDSat to the algebraic Gröbner basis
resolution method, as well as to five state-of-the-art SAT solvers. Our solver
outperforms all existing resolution approaches for this specific problem.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009. pp. 399–404 (2009),
http://ijcai.org/Proceedings/09/Papers/074.pdf

2. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Mathematical Cryptology 3(3), 177–197 (2009).
https://doi.org/10.1515/JMC.2009.009

3. Biere, A.: CaDiCaL Simplified Satisfiability Solver. http://fmv.jku.at/cadical/, ac-
cessed: 2020-05-27

4. BlueKrypt: Cryptographic key length recommendation. https://www.keylength.
com (2018), accessed: 2020-05-27

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The
user language. Journal of Symbolic Computation 24(3-4), 235–265 (1997).
https://doi.org/10.1006/jsco.1996.0125

6. Bouillaguet, C., Chen, H.C., Cheng, C.M., Chou, T., Niederhagen, R., Shamir,
A., Yang, B.Y.: Fast Exhaustive Search for Polynomial Systems in F2. In: Pro-
ceedings of the 12th International Conference on Cryptographic Hardware and Em-
bedded Systems. p. 203–218. CHES’10, Springer-Verlag, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9 14

7. Choo, D., Soos, M., Chai, K.M.A., Meel, K.S.: Bosphorus: Bridging ANF and
CNF solvers. In: Design, Automation & Test in Europe Conference & Exhi-
bition, DATE 2019, Florence, Italy, March 25-29, 2019. pp. 468–473 (2019).
https://doi.org/10.23919/DATE.2019.8715061

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (Jul 1962). https://doi.org/10.1145/368273.368557

9. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) Information Security. pp. 171–186. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

10. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica 147(1), 75–104 (2011). https://doi.org/10.1112/S0010437X10005075

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of
Satisfiability Testing. pp. 502–518. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24605-3 37

12. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner ba-
sis (F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999).
https://doi.org/10.1145/780506.780516

13. Faugère, J., Perret, L., Petit, C., Renault, G.: Improving the Complexity of Index
Calculus Algorithms in Elliptic Curves over Binary Fields. In: Advances in Cryp-
tology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings. pp. 27–44 (2012). https://doi.org/10.1007/978-3-642-29011-4 4

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1515/JMC.2009.009
http://fmv.jku.at/cadical/
https://www.keylength.com
https://www.keylength.com
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/978-3-642-15031-9_14
https://doi.org/10.23919/DATE.2019.8715061
https://doi.org/10.1145/368273.368557
https://doi.org/10.1112/S0010437X10005075
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/978-3-642-29011-4_4


Parity (XOR) Reasoning for Index Calculus 17

14. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic
curves in characteristic two. In: Progress in Cryptology - INDOCRYPT 2014 -
15th International Conference on Cryptology in India. Lecture Notes in Computer
Science, vol. 8885, pp. 409–427. Springer (2014). https://doi.org/10.1007/978-3-
319-13039-2 24

15. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009).
https://doi.org/10.1016/j.jsc.2008.08.005

16. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018). https://doi.org/10.1016/j.ipl.2018.07.001

17. Gerault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278 (2020).
https://doi.org/10.1016/j.artint.2019.103183

18. Gerault, D., Minier, M., Solnon, C.: Using constraint programming to solve
a cryptanalytic problem. In: Sierra, C. (ed.) Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017. pp. 4844–4848. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/679

19. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, USA (1986)

20. Liu, F., Cruz, W., Ma, C., Johnson, G., Michel, L.: A tolerant algebraic side-channel
attack on aes using cp. In: Beck, J.C. (ed.) Principles and Practice of Constraint
Programming. pp. 189–205. Springer International Publishing, Cham (2017)

21. Liu, F., Cruz, W., Michel, L.: A complete tolerant algebraic side-channel attack for
aes with cp. In: Hooker, J. (ed.) Principles and Practice of Constraint Program-
ming. pp. 259–275. Springer International Publishing, Cham (2018)

22. van Maaren, H., Franco, J.: The International SAT Competition Web Page. http:
//www.satcompetition.org/, accessed: 2020-05-27

23. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Win-
tersteiger, C.M. (eds.) Theory and Applications of Satisfiability Testing - SAT
2018 - 21st International Conference, SAT 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10929, pp. 111–121. Springer (2018).
https://doi.org/10.1007/978-3-319-94144-8 7

24. Petit, C., Quisquater, J.: On Polynomial Systems Arising from a Weil Descent.
In: Advances in Cryptology - ASIACRYPT 2012 - 18th International Confer-
ence on the Theory and Application of Cryptology and Information Security.
Lecture Notes in Computer Science, vol. 7658, pp. 451–466. Springer (2012).
https://doi.org/10.1007/978-3-642-34961-4 28

25. Semaev, I.A.: Summation polynomials and the discrete logarithm problem on el-
liptic curves. IACR Cryptology ePrint Archive 2004, 31 (2004), http://eprint.
iacr.org/2004/031

26. Soos, M.: Grain of Salt — an Automated Way to Test Stream Ciphers through
SAT Solvers. In: Tools’10: the Workshop on Tools for Cryptanalysis 2010. pp.
131–144. London, United Kingdom (Jun 2010), https://hal.archives-ouvertes.fr/
hal-01288922

27. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: SAT. Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009). https://doi.org/10.1007/978-3-642-02777-2 24

https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1007/978-3-319-13039-2_24
https://doi.org/10.1016/j.jsc.2008.08.005
https://doi.org/10.1016/j.ipl.2018.07.001
https://doi.org/10.1016/j.artint.2019.103183
https://doi.org/10.24963/ijcai.2017/679
http://www.satcompetition.org/
http://www.satcompetition.org/
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-642-34961-4_28
http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2004/031
https://hal.archives-ouvertes.fr/hal-01288922
https://hal.archives-ouvertes.fr/hal-01288922
https://doi.org/10.1007/978-3-642-02777-2_24


18 M. Trimoska et al.

28. Trimoska, M., Ionica, S., Dequen, G.: EC Index Calculus Benchmarks. https://
github.com/mtrimoska/EC-Index-Calculus-Benchmarks (2020)

29. Trimoska, M., Ionica, S., Dequen, G.: WDSat Solver. https://https://github.com/
mtrimoska/WDSat (2020)

https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks
https://https://github.com/mtrimoska/WDSat
https://https://github.com/mtrimoska/WDSat

	Parity (XOR) Reasoning for the Index Calculus Attack 

