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Abstract

The aim of this work is to take full advantage of Spectral Element (SE) and Finite

Element (FE) codes by setting up a SEM/FEM co-simulation strategy for soil structure

interaction problems, involving a SE code to generate and propagate elastic waves in

the soil, while a FE code enables the detailed representation of the studied structure.

The spatial coupling is managed by the standard coupling mortar approach, whereas

the time integration is dealt with an hybrid (explicit/implicit) asynchronous (different

time steps) time integrator. The SEM/FEM co-simulation strategy is set up for linear or

nonlinear transient dynamics. A seismic analysis of a concrete dam is considered in order

to demonstrate the versatility of the co-simulation approach, assuming a linear rheology

or a nonlinear damaging behaviour of the concrete.

Keywords: Elastic wave, Domain Decomposition, SEM/FEM co-simulation, Nonlinear

transient analysis, Hybrid Asynchronous Time Integrator, Soil Structure Interaction

1. Introduction

The simulation of the seismic response of gravity dams is complex because of the

dam-soil-reservoir interactions. To tackle these interactions, hybrid methods are often em-

ployed in order to deal with each subsystem with the most appropriate approach. On the

one hand, the hybrid Boundary Element Method - Finite Element Method (BEM/FEM)
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is extensively used [1, 2, 3, 4, 5] because the FEM takes care of the discretization of

the near-field including the geometrical and rheological complexities of the dam, while

the BEM is employed to model the radiation of the seismic waves in the semi-infinite

far-field. Two-dimensional (2D) problems are often solved by the BEM/FEM method,

but the full 3D problems is still challenging. On the other hand, the Spectral Element

Method (SEM) was first proposed in the field of computational fluid dynamics [6] and

was then applied in the late nineties to wave propagation in 3D earth media [7, 8]. It

has been increasingly used in engineering seismology as an alternative to the BEM.

Although the SEM is very attractive for propagating (visco)elastic waves within the

earth with large size elements without loss of accuracy, its use for modeling detailed struc-

tures’ geometry such as beams, floors and walls is questionable because of the conditional

stability of the explicit time-marching commonly used in SEM. In addition, nonlinear rhe-

ology could also be a drawback in SEM. Although elasto-viscoplastic constitutive model

have been successfully implement in SEM [9], a greater variety of nonlinear constitutive

laws are available in FEM codes. These points explain why the FEM is usually preferred

for structure modeling and, like Hybrid BEM/FEM methods, it is of great interest to

set up Hybrid SEM/FEM coupling approaches. For instance, mortar method was imple-

mented by Casadei et al. [10] in the explicit code Europlexus to couple non-conforming

FE and SE meshes, assuming the same time integration scheme and the same time step.

Zuchowski et al. [11] recently proposed an approach based on Hybrid (explicit/implicit)

Asynchronous (different time steps) Time Integrator (HATI) [12, 13] in order to extend

the internal coupling in a given explicit code [10] to an external coupling, adopting the

most appropriate simulation codes for the far-field and near-field domains composing the

soil structure interaction (SSI) problem. The coupling is based on a domain decompo-

sition method with non-overlapping subdomains, using a dual Schur approach involving

Lagrange multipliers at the interface. In [11], the SEM/FEM coupling approach was

validated for simple 3D examples without civil-engineering structure and assuming only

a linear elastic rheology for the materials.

In this paper, the SEM/FEM co-simulation strategy proposed in [11], based on the

combined use of mortar coupling approach and HATI methods, is extended to nonlin-

ear dynamics and is validated for a SSI problem including a 3D dam subjected to an

2



earthquake excitation. The coupling is set up between the same SE code as in [11],

EFISPEC3D [14], and the FE code Akantu [15]. The dam is made of concrete modeled

by a non-linear constitutive law. To consider the non-linear behavior in the FEM, we

have extended the coupling method in [11] to co-solve implicit non-linear FE problem

together with explicit linear SE problem, whereas the coupling in [11] was only designed

for implicit linear FE with explicit linear SE. For this purpose, Newton-Raphson itera-

tions required to achieve the equilibrium in the implicit partition are integrated in the

SEM/FEM coupling strategy. Besides, compared to Casadei et al. [10], we propose a

Hybrid SEM/FEM coupling approach to deal with (i) different codes to take advantage

of their specifications in a unique co-simulation and (ii) different integration schemes and

different time steps for the SE and FE co-simulations using the HATI method.

Concerning the soil-structure interaction for concrete gravity dams subjected to an

earthquake, different approaches have been proposed in the literature. For instance, the

dam and the canyon in which the dam is built, can be modeled using the BEM [16, 17],

SEM [18] and FEM [19, 20, 21, 22, 23], with an analysis which can be carried out in

2D or in 3D, in the time domain or in the frequency domain. Here, we propose a 3D

co-simulation strategy in the time domain, coupling FEM and SEM approaches, for the

near-field and far-field domains, respectively, so as to take full advantage of both methods

(i.e., the SE code is dedicated to model the seismic source and the wave propagation while

the FE code is dedicated to the non-linear response of the dam). The mesh of the dam

and the narrow canyon is inspired from recent works on the seismic assessment of concrete

gravity dams [20, 21]. The dam-foundation interaction as well as the spatial variability of

the earthquake ground motion are naturally taken into account by the proposed coupling

approach, which deals, in a coupled way, with the seismic source, the wave propagation

in the earth medium and the details of the small-scale site including the structure. It

paves the way to a more integrated approach in seismology and earthquake engineering,

by taking into account the complexity of the seismic excitation thanks to the seismology

code, while considering detailed mesh of the building and surrounding soil.

The paper is organized as follows: Section 2 presents the strong and weak forms of the

domain decomposition problem by imposing the velocity continuity at the interface; Then

the standard mortar approach is introduced to treat interface coupling terms coming from
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the spatial discretization of the weak form; Section 3 summarizes the hybrid asynchronous

time integration adopted for the EFISPEC3D/Akantu co-simulation when linear FEM

and SEM partitions are considered, followed by the extension of SEM/FEM coupling

strategy to nonlinear dynamics dealt in the implicit FEM partition using Newton-Raph-

son iterations. In Section 4, a simple P-wave propagation problem is simulated using

FEM and SEM, in order to highlight the efficiency of the SEM in comparison to the

FEM with linear elements. Then the extension of the SEM/FEM coupling to the case

of nonlinear dynamics is validated by comparing, for a 3D clamped-free concrete beam,

results from our coupling approach to the reference results provided by a full-explicit

FEM computation. In Section 5, the dam, its surrounding soil, and the far-field rock

medium, have been modeled by employing hexahedral elements in both SEM and FEM

partitions in order to demonstrate the relevance of the proposed approach in comparison

to the reference full-SEM computation for the linear case. Finally, the nonlinear response

of the dam under earthquake excitation is calculated.

2. Problem statement

2.1. Strong from of the SEM/FEM coupling

FEM/SEM coupling approach is set up in order to deal efficiently with soil structure

interaction problems. Let Ω a bounded domain belonging to Rd with a regular boundary,

d being the number of space dimensions assumed to be equal to 3 in the following. [0, T ]

is the time interval of interest. As shown in Figure 1, we assume that the domain Ω

is divided into two parts Ω1 and Ω2, such as: Ω1 ∩ Ω2 = ∅ and ∂Ω1 ∩ ∂Ω2 = ΓI , ΓI

representing the interface between the two subdomains. For both subdomains, we assume

the classical partition of the boundary between the Dirichlet and Neumann boundaries,

denoted by ΓD, ΓN . The interface boundary is denoted by ΓI in Figure 1.
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Figure 1: Ω1 and Ω2 3D subdomains with a flat interface ΓI

Both Ω1 and Ω2 are assumed to be homogeneous elastic domains. Wave motion in

both subdomains is governed by the classical equations of motion, strain-displacement

relations and constitutive linear elastic relationships, as given in textbooks [24, 25, 26].

The coupling conditions enforcing continuity of velocity and traction forces through

the FEM-SEM interface ΓI can therefore be written as: u̇1 = u̇2 in ΓI × [0, T ]

σ
1
· n1 + σ

2
· n2 = 0 in ΓI × [0, T ]

(1)

where σ
i

is the second-order stress tensor related to the subdomain Ωi. The above

equation states the continuity of velocities and the equilibrium of traction forces at the

interface. It has to be noted that kinematic continuity is prescribed here in terms of

velocities rather than in terms of displacements as usual. At this point, e.g . in the

continuous setting, there is no difference in prescribing the continuity of displacements,

velocities or accelerations, but it will be not the case in the discrete setting. Indeed,

enforcing the continuity in terms of velocities at the interface between subdomains is

a key point to ensure the stability of asynchronous time integrator as demonstrated in

[27, 28, 12].
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2.2. Weak form of the coupling problem

Classically, in a weak formulation, the solution spaces and the test function spaces

have to be defined. The solution ui(t) in subdomains Ωi is sought in the appropriate

space Vi. The test space functions vi belong to the spaces V 0
i , satisfying the zero value at

the Dirichlet conditions. As the spatial discretisation related to the FEM and SEM sub-

domains are non-conforming (different meshes and spatial approximations), the standard

mortar approach has been adopted [29]. It consists in the introduction of Lagrange multi-

pliers λ and its related test functions, belonging to the appropriate space, corresponding

to the adapted dual trace space denoted by M .

The discrete subdomains are noted as Ωh
1 and Ωh

2 , where the superscript h denotes the

spatial discretisation for the two subdomains. We distinguish the two interfaces Γ
(1),h
I

and Γ
(2),h
I , belonging to the FEM and SEM partitions, respectively. As done in mortar

methods for FEM/SEM coupling [29], [10], the interface Γ
(1),h
I , is adopted as the slave

side, whereas the interface Γ
(2),h
I is taken as the master side. In addition, the Lagrange

multipliers λh are assigned to the slave side Γ
(1),h
I . The spatial discretisation of the

weak form is carried out by restricting the previous function spaces to finite-dimensional

subspaces, such as: V h
i ⊂ Vi, V

0,h
i ⊂ V 0

i for i = 1, 2 and Mh ⊂ M . Now, the hybrid

FEM/SEM problem can be expressed as: Find the solution uh1 (t) ∈ V h
1 , uh2 (t) ∈ V h

2 and

λh(t) ∈ Mh, for which the following weak form is satisfied ∀vh1 ∈ V
0,h
1 , ∀vh2 ∈ V

0,h
2 and

∀µh ∈Mh:

Pkin,h + Pint,h = Pext,h +
∫

Γ
(1),h
I

(vh1 − vh2 ).λhdΓ +
∫

Γ
(1),h
I

µh.(u̇h1 − u̇h2 )dΓ (2)

where Pkin,h
i , Pint,h

i and Pext,h
i are the virtual powers of the inertia, internal and external

forces in domain Ωi, respectively, whose expressions are given in textbooks [24, 25, 26].

In the following, we briefly describe the spatial discretisation for both subomains. Then

we will focus on the interface terms on Γ
(1),h
I in Eq. (2), following the standard mortar

approach.

2.3. FEM and SEM discretizations

In the FEM partition, the displacement is approximated with classical low-order

shape functions:

uh1 =
∑
k

N
(1)
k U

(1)
k (3)
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which is a sum over the nodes in subdomain Ωh
1 , each node k being associated with its

shape function N
(1)
k and its unknown displacement vector U

(1)
k (of size d). The super-

script is related to the subdomain under consideration. The total number of degrees of

freedom is denoted by n(1). The FE domain is discretized using linear 8-node hexahedral

finite elements. The integral terms of the weak form Pkin,h, Pint,h and Pext,h in Eq.

(2), are calculated via a classical Gauss quadrature. Classically, it leads to the consistent

mass matrix and the stiffness matrix. Then the FEM partition will be integrated using

implicit time integration with large time steps in the framework of Hybrid Asynchronous

Time Integrator summarized in the next section.

Within the SEM partition, the hexahedral elements have high-order Lagrange poly-

nomials as their shape functions (typically higher than 4th order). As opposed to the

FEM approach in which the nodes and the quadrature points are distinct, the usage of

Gauss-Lobatto-Legendre points (GLL) as spectral element nodes and quadrature points

allows to store both displacements and strains as nodal quantities [7], [8].

The displacement is approximated with high-order Lagrange shape functions, provid-

ing an improved accuracy in comparison to the FEM formulation:

uh2 =
∑
k

ψ
(2)
k U

(2)
k (4)

where each GLL point k is associated with its shape function ψ
(2)
k and its unknown

displacement vector U
(2)
k (of size d). The total number of degrees of freedom is denoted

by n(2). The integral terms Pkin,h, Pint,h and Pext,h in Eq. (2) related to the SEM

partition are calculated by adopting a quadrature formula based on the GLL points in

every spectral element. In SEM, since the mass matrix is diagonal by construction, an

explicit Newmark time integration is preferred.

2.4. Interface coupling

It remains to express the coupling terms in Eq. (2), involving the Lagrange multipli-

ers. The standard mortar approach allows for an efficient gluing between non-matching

meshes [30]. The shape functions of the Lagrange multipliers are the same as the ones

related to the FE side. Thus, the approximation of the Lagrange multipliers is given on

the slave side as:
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λh =
∑
k

N
(1)
k λk (5)

where λk are the discrete nodal Lagrange multipliers (of size d) for the node k and N
(1)
k

is the associated shape function, matching the FE shape function. According to the

standard Galerkin approach, the same approximation is used for Lagrange multiplier

test functions µh.

Thus the weak form of the velocity continuity at the interface is derived from the

weak formulation in Eq. (2): We have to prescribe, ∀µh ∈M :∫
Γ
(1),h
I

µh.(u̇h1 − u̇h2 )dΓ = 0 (6)

After introducing the spatial approximation of the Lagrange multiplier test functions (5)

as well as the ones for the velocities for the two sides of the interface in Eqs. (3) and (4),

the constraint equation can be expressed as:∫
Γ
(1),h
I

(∑
i

N
(1)
i µi

)
.

(∑
r
N

(1)
r U̇

(1)

r −
∑
l

ψ
(2)
l U̇

(2)

l

)
dΓ = 0 (7)

where µi are the virtual nodal Lagrange multipliers on the slave side, U̇
(1)

r (resp. U̇
(2)

l )

are the nodal velocities on the FEM-slave side (resp. SEM-master side). Expanding Eq.

(7) with the fact that it must be valid for any arbitrary Lagrange multipliers µi, the

following interface conditions can be obtained:∑
r

(∫
Γ
(1),h
I

N
(1)
i N

(1)
r dΓ

)
IdU̇

(1)

r −
∑
l

(∫
Γ
(1),h
I

N
(1)
i ψ

(2)
l dΓ

)
IdU̇

(2)

l = 0 (8)

with Id being the d×d identity matrix. We finally obtain a discrete relationship between

the nodal velocities on the FEM-slave side and the GLL velocities on the SEM-master

side:

L1U̇
(1)

+ L2U̇
(2)

= 0 (9)

in which the matrices L1 and L2 are defined per blocks, each of size (d× d):

L1,ir =
(∫

Γ
(1),h
I

N
(1)
i N

(1)
r dΓ

)
Id

L2,il = −
(∫

Γ
(1),h
I

N
(1)
i ψ

(2)
l dΓ

)
Id

(10)

Thus, L1 matrix is a (nS × nS) square matrix, where nS is the number of degrees of

freedom on the slave-FEM side, which is equal to the number of Lagrange multipliers in
8



accordance with the mortar approach. Similarly, L2 matrix is a rectangular matrix of

size nS × nM , with nM the number of degrees of freedom of the SEM-master side.

Finally, the contribution of the interface powers in the weak form of the equilibrium

equation in Eq. (2) is integrated. The virtual power of the interface forces can be written

as:

∫
Γ
(1),h
I

(vh1 − vh2 ).λhdΓ =
∫

Γ
(1),h
I

(∑
i

N
(1)
i λi

)
.

(∑
r
N

(1)
r V(1)

r −
∑
l

ψ
(2)
l V

(2)
l

)
dΓ (11)

where V(1)
r (resp. V

(2)
l ) are the virtual nodal velocities on the FEM-slave side (resp.

SEM-master side). After using L1 and L2 defined in Eq. (10), it leads to the discrete

form:

∫
Γ
(1),h
I

(vh1 − vh2 ).λhdΓ = VT
1 L

T
1 λ + VT

2 L
T
2 λ (12)

where the discrete Lagrange multiplier vector λ is of dimension nS .

3. SEM/FEM coupling method

In this section, the SEM partition is integrated using Newmark explicit time integra-

tion with a fine time step whereas the FEM partition uses Newmark time integration

with a large time step, m defining the time step ratio between the two time scales. The

purpose is to set up a co-simulation strategy coupling mature seismology SE software

with FE code, both adopting energy conservative time integration schemes. More mod-

ern time integrators such as α-generalized method [31, 32, 33], Krenk’s schemes [34, 35],

Tamma and co-author’s methods [36] and composite Bathe methods [37, 38], provide

desirable numerical damping to filter out the spurious frequencies coming from the space

discretization for wave propagation problems. It has to be noted that engineering seis-

mology software based on the SEM, devoted to wave propagation prediction, does not

employ such type of numerical damping. Indeed, this is explained by the following points:

Only smooth excitations are considered, quality factors representing the viscoelastic be-

haviour of the soil medium are adopted [39, 40], and post-processing procedure allows

to filter out the spurious frequencies outside the frequency content of the seismic source.

We first summarize the multi time step strategy, called the GC method [27], assuming

only linear elastic behavior. Second, we present a new strategy to couple SEM partition
9



related to nonlinear FEM. The extension of the coupling strategy to the nonlinear case

is carried out with the same time step in both partitions.

3.1. Time integration for linear SEM and FEM partitions

After integrating FEM, SEM and FEM/SEM coupling terms composing the weak

form in Eq. (2), the semi-discrete equations of motion in both subdomains and the

semi-discrete constraint equation can be derived ∀t ∈ [0, T ] as:
M1Ü1(t) + K1U1(t) = Fext,1(t) + LT

1 λ(t)

M2Ü2(t) + Fint,2(t) = Fext,2(t) + LT
2 λ(t)

L1U̇1(t) + L2U̇2(t) = 0

(13)

where U1(t) and U2(t) are global displacement vectors related to the subdomains Ω1 and

Ω2, of sizes n(1) and n(2), respectively. In the above system, L1 and L2 are constraint

matrices of dimensions nS ×n(1) and nS ×n(2) in which all components not correspond-

ing to the degrees of freedom on the interface (slave or master), are equal to 0. As a

consequence, L1 and L2 are the extended versions of the constraint matrices defined in

Eq. (10). The matrices L1 and L2 in Eq. (13) can be viewed as restriction operators,

from each subdomain to the FEM and SEM degrees of freedom involved in the interface

problem. Inversely, the matrices LT
1 and LT

2 , in the two discrete equations of motion of

the two subdomains, correspond to prolongation operators, from the degrees of freedom

at the interface to the global vectors in each subdomain. Thus, the right hand side terms

LT
1 λ(t) and LT

2 λ(t) give the interface forces for the two subdomains derived from the

velocity continuity. The FEM consistent mass matrix is denoted by M1 and the FEM

stiffness matrix by K1, both of dimensions n(1) × n(1). The SEM mass matrix is noted

as M2 of dimensions n(2) × n(2), with 0 everywhere, except in diagonal. Internal forces,

denoted by Fint,2(t) in the SEM part, are computed via quadrature procedure on the

basis of the GLL points. Noting that the notation Fint,2(t) is preferred in the SEM

part because, in order to save computation time, the stiffness matrix is not computed,

contrary to the FEM part in which we have: Fint,1(t) = K1U1(t). The external forces

are denoted by Fext,1(t) and Fext,2(t).

The subdomain Ω1 is integrated in time with an implicit time integration scheme

(Constant Average Acceleration scheme), characterized by the classical Newmark param-
10



eters [26] γ1 = 0.5 and β1 = 0.25, whereas the subdomain Ω2 is handled by an explicit

time integration scheme (Newmark explicit scheme), with the parameters γ2 = 0.5 and

β2 = 0. We define the coarse time scale ∆t1 for the implicit subdomain and the fine time

scale ∆t2 for the explicit subdomain with ∆t1 = m∆t2, m denoting the integer ratio

between the time scales. The discrete in space and time equation of motion is written

for the subdomain Ω1 at the large time scale tm with ∆t1 = [t0, tm], while the discrete in

space and time equation of motion of the subdomain Ω2 is written at the fine time scale

tj (j = 1, 2, ...m) with ∆t2 = [tj−1, tj ] as follows:

� Subdomain 1 on the coarse time step ∆t1 = [t0, tm]:

M1Ü
m

1 + K1U
m
1 = Fext,m

1 + LT
1 λ

m (14)

� Subdomain 2 on the fine time step ∆t2 = [tj−1, tj ]:

M2Ü
j

2 + Fint,j
2 = Fext,j

2 + LT
2 λ

j (15)

� At the interface, the continuity of velocities is imposed at times tj (at the fine time

scale) for j = 1, 2, ...m as:

L1U̇
j

1 + L2U̇
j

2 = 0 (16)

Details of the GC method can be found in [27, 28]. Briefly, the above Eq. (16) allows

to set up a reduced-size interface problem, written at the fine time scale, whose Lagrange

multipliers λj are the unknowns:

Hλj = bj (17)

The interface operator H and the right-hand side vector bj are defined by: H = γ1∆t1L1M̃
−1

1 LT
1 + γ2∆t2L2M

−1
2 LT

2

bj = −L1U̇
free,j

1 − L2U̇
free,j

2

(18)

with the definition of the effective mass matrix in the implicit FEM part: M̃1 = M1 +

β1∆t21K1. The dimension of the interface operator H is nS ×nS , that is a square matrix

depending on the number of degrees of freedom on the FE slave side at the interface,

due to the choice to assign Lagrange multipliers to the FE side.
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3.2. Time integration for linear SEM partition and nonlinear FEM partition

We consider now that the implicit subdomain Ω1 (FEM part) involves nonlinear

behaviours, such as for instance a damage constitutive law. The equation of motion

in the FEM part is integrated over the time step ∆t1 = [t0; tm], by using a modified

Newton-Raphson procedure in order to achieve the equilibrium at the end of the time

tm. During the iterative procedure, the residual forces at the i− th iteration have to be

calculated as:

R
m,(i)
1 = M1Ü

m,(i)

1 + F
int,m,(i)
1 − Fext,m

1 − LT
1 λ

m,(i) (19)

where Ü
m,(i)

1 and U
m,(i)
1 denote the accelerations and the displacements at the i − th

Newton-Raphson iteration ; F
int,m,(i)
1 are the nonlinear internal forces, depending on

the constitutive law and λm,(i) is the Lagrange multiplier obtained from the interface

problem at the i− th iteration.

To start the procedure, we compute the predictor quantities for displacements and ve-

locities:  Ump

1 = U0
1 + ∆t1U̇

0

1 + ( 1
2 − β1)∆t21Ü

0

1

U̇
mp

1 = U̇
0

1 + (1− γ1)∆t1Ü
0

1

(20)

From these initial values of displacements and velocities, the first internal forces are

computed, denoted by F
int,m,(0)
1 , by considering the nonlinear constitutive law of the

material. The discrete equilibrium at the end of the time tm is split into two equations,

the first one being related to the free quantities and the second one to the linked quan-

tities. Free accelerations are obtained without considering the interface forces as follows

:

M̃1Ü
free,m,(1)

1 = Fext,m
1 − F

int,m,(0)
1 (21)

Knowing the predictors and the free accelerations, free displacements and velocities are

deduced:  U
free,m,(1)
1 = Ump

1 + β1∆t21Ü
free,m,(1)

1

U̇
free,m,(1)

1 = U̇
mp

1 + γ1∆t1Ü
free,m,(1)

1

(22)

From this point, we start the Newton-Raphson loop, by noting i−th the Newton iteration

under consideration. We have to compute the residual forces given in Eq. (19). Thus we
12



solve the interface problem, written at the end of the time step:

Hλm,(i) = −L1U̇
free,m,(i)

1 − L2U̇
free,m

2 (23)

where H is the interface operator given in Eq. (18), by taking into account in the SEM

partition the same time step as in the FEM partition: ∆t1 = ∆t2. Once obtained the

Lagrange multiplier for the i− th iteration, the linked accelerations are obtained as:

M̃1Ü
link,m,(i)

1 = LT
1 λ

m,(i) (24)

as well as the linked displacements and velocities as: U
link,m,(i)
1 = β1∆t21Ü

link,m,(i)

1

U̇
link,m,(i)

1 = γ1∆t1Ü
link,m,(i)

1

(25)

To complete the i− th iteration, it remains to compute the total quantities by summing

free and linked contributions as:
U

m,(i)
1 = U

free,m,(i)
1 + U

link,m,(i)
1

U̇
m,(i)

1 = U̇
free,m,(i)

1 + U̇
link,m,(i)

1

Ü
m,(i)

1 = Ü
free,m,(i)

1 + Ü
link,m,(i)

1

(26)

The internal forces, denoted by F
int,m,(i)
1 , are computed from these new values of dis-

placements and velocities, as well as the residual forces R
m,(i)
1 .

Then we have to check the equilibrium by considering a convergence criterion given by:∥∥∥Rm,(i)
1

∥∥∥
max(

∥∥Fext,m
1

∥∥ ,∥∥∥Fint,m,(i)
1

∥∥∥)
< ε (27)

where
∥∥∥Rm,(i)

1

∥∥∥ denotes the norm of the residual forces and ε is the chosen accuracy

for the satisfaction of the convergence requirement. If the convergence criterion is not

satisfied, the free accelerations are corrected by solving:

M̃1∆Ü
m,(i)

1 = −Rm,(i)
1 (28)

Finally, the (i+ 1)− th Newton-Raphson iteration can be performed, by considering the

corrected free quantities given below:
U

m,free,(i+1)
1 = U

free,m,(i)
1 + β1∆t21∆Ü

m,(i)

1

U̇
m,free,(i+1)

1 = U̇
free,m,(i)

1 + γ1∆t1∆Ü
m,(i)

1

Ü
m,free,(i+1)

1 = Ü
free,m,(i)

1 + ∆Ü
m,(i)

1

(29)
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The corrected free velocities are taken into account in the right hand side of the interface

equation in Eq. (23), which gives a new Lagrange multiplier for the (i+ 1)− th Newton-

Raphson iteration. For every Newton-Raphson iteration, Eqs. from (23) to (29) need to

be solved up to convergence.

3.3. Co-simulation: brief presentation of SE, FE and coupling softwares

In this paper, the FE code Akantu is coupled with the SE code EFISPEC3D. Akantu

is an open source Finite Element code, developed according to the C++ object-oriented

paradigm within the LSMS (Computed Solid Mechanics Laboratory), EPFL, Lausanne,

Switzerland [15, 41, 42]. Nonlinear constitutive laws are available to introduce damage

behaviour of material. EFISPEC3D, developed by BRGM (French Geological Survey),

is a spectral element code dedicated to 3D ground motion simulations from the source

(e.g., seismic fault, volcanic explosion, etc.) to the sites of interest in large crustal earth

media [14, 43, 44, 45]. EFISPEC3D is an open source MPI parallel code developed in

FORTRAN. To handle the interface problem given in Eq. (17), an external coupling

software has been developed in C. Indeed, in order to minimize the modifications of

the sources of the different codes, an external coupling software has been set up rather

than solving the interface problem in the SE or FE codes. Besides solving the interface

problem, the coupling software also manages data exchange with the FE and SE codes.

The data exchange is realized by using pipes in C, also called FIFO (First In First Out).

It is important to note that no data are directly exchanged between the FE and SE codes,

the coupling software completely ensures the interface between the different codes.

3.4. Discussion about GC method for SEM/FEM coupling with nonlinear mechanics

It is important to note that, over one time step in the FEM partition, several Newton-

Raphson iterations are needed to reach equilibrium. For each Newton-Raphson iteration,

the FE code has to communicate to the coupling software before solving the interface

problem at the beginning of the Newton-Raphson iteration (see Eq. (23)). As a conse-

quence, if convergence is difficult to reach, such as for instance when damage constitutive

laws are employed, a lot of data exchange are needed, which can be detrimental for the

efficiency to the proposed SEM/FEM coupling strategy. Another drawback of the pro-

posed coupling method in the case of nonlinear dynamics, is that we adopt the same
14



time step in both partitions. As detailed in [27], the multi time step GC method can

be applied for co-simulation, even if nonlinear constitutive laws are considered in the

implicit FEM partition. Nonetheless, in this case, the GC coupling becomes much more

cumbersome and looses its efficiency. More precisely, when adopting multi time step

approach, each Newton-Raphson iteration over the large time step in the FEM partition

requires to loop over all the m fine time steps in the SEM partition, which is not efficient

with the view of SEM/FEM coupling. In addition, when nonlinear damage laws are

employed, it is recommended to choose a small time step, such as for instance a time

step of the order of one millisecond. In the following dam application, the coarse mesh

of the SEM partition imposes a time step of 0.25ms to ensure the stability of the explicit

time integration. As a result, the constraint to adopt the same time step in the nonlinear

implicit FEM partition as in the SEM partition is not so restrictive in our case.

4. Linear and nonlinear dynamic analyses for simple elongated domains

In this section, two simple test cases are considered. The first test is a P-wave prop-

agation test in an elongated medium modeled with hexahedral elements, enabling us to

compare the accuracy of the FEM and SEM. Two different time integration schemes

are adopted for the FEM simulations: the classical explicit Newmark time integration

scheme with a critical time step given by the CFL condition and the Noh-Bathe explicit

composite time integration scheme with a time step higher than the CFL condition in

order to filter out spurious frequencies thanks to the introduction of numerical damping.

The second test is a clamped-free beam problem with a transverse force. SEM/FEM

co-simulation strategy is validated first in the case of linear dynamics, and second for

nonlinear dynamics by considering a damage law in the subdomain concerned by the

clamped condition.

4.1. P-wave propagation in an elongated domain

The 3D medium is a simple homogeneous bar of 700m in length with a section of

10m× 10m [11]. The medium is subjected to a Ricker P-wave imposed at the right

end, given by: f(t, tp, ts) = A (2 π2 (t−ts)2

t2p
− 1) exp(−π2 (t−ts)2

t2p
). The Ricker wavelet
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parameters are: tp = 0.03s, ts = 0.05s, and A = 1MN , corresponding to the fundamen-

tal period, the time shift and the amplitude. The left end side is free. The mechanical

characteristics of the linear elastic material are: Young’s modulus E = 30GPa, Poisson’s

ratio ν = 0.2, and density ρ = 2500kg m−3. The passage of the P-wave is recorded at a

point located at a distance equal to 100m from the right end of the medium. The FEM

mesh is composed of linear hexahedral elements with a size equal to 2m whereas the

SEM mesh is composed of hexahedral elements with a size equal to 10m with polyno-

mial order N = 4, which means 5 GLL points in one direction and 125 GLL points in

one SE hexahedron. For a Ricker wavelet, the maximum frequency can be assessed by

fmax = 2.5fp = 2.5
tp

. The minimum P wavelength is obtained by: λmin =
vp

fmax
, with vp

the pressure-wave velocity. Here, the pressure-wave velocity is vp = 3651m s−1, leading

to the minimum wavelength equal to 43.8m. As a consequence, the minimum wavelength

is described by more than 20 FE elements, which can be considered as largely sufficient

to obtain a good accuracy to predict the wave propagation [46]. FEM simulation is

performed using the classical Newmark explicit time integration scheme, without any

damping, by considering a time step size equal to 0.5ms, that is approximately 90 %

of the CFL condition given by the ratio between the FE size and the P-wave velocity.

SEM simulation also uses the same explicit Newmark time integration scheme with the

critical time step given by ∆t = 0.59∆xmin

vp
, where the coefficient 0.59 corresponds to the

Courant number and ∆xmin the minimum length between two GLL points in one SE.

Thus, the time step adopted for the SEM is 0.25ms, that is the time step adopted for the

FEM divided by two. Finally, the critical time step of the explicit composite Noh-Bathe

scheme is equal to almost twice the CFL condition: Here, we adopt a time step equal to

1 ms, that is 180 % of the CFL condition, which enables us to introduce some numerical

damping to filter out the high frequencies [38].

In Figure 2, the displacement, velocity and acceleration at the recording point are

plotted versus time: As the force is applied at the right end, the first recorded wave cor-

responds to 100m of wave propagation into the medium, the next peak corresponds to

the return of the wave after being reflected at the left free end (1200m of propagation),

and the close in time following wave is the return of the wave after reflecting at the right

end (200m of propagation), and so on. Figure 2 compares the displacement for the three
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simulations. It can be seen, at the end of the simulation, that the last passage of the wave

is less altered in the case of the SEM simulation in comparison to the two FEM simu-

lations, thanks to the ability of the SEM to reduce the numerical wave dispersion. For

the FEM simulations, the Noh-Bathe scheme performs better than the Newmark explicit

scheme. In terms of computation time, the SEM computation takes 1.6s, thanks to the

low number of spectral elements involved in the mesh, to be compared to 12.9s for the

FEM Noh-Bathe case and 20.7s for the FEM Newmark explicit case. This simple P-wave

propagation test verifies the SEM efficiency, even for a reduced time step in comparison

to both FEM simulations, justifying the growing interest in this method for seismology

purpose.
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Figure 2: P-wave recorded at 100m from the right side of the elongated domain: FEM simulations using

Newmark explicit and Noh-Bathe explicit time integration schemes compared to SEM simulation using

Newmark explicit time integration scheme

4.2. Linear and nonlinear SEM/FEM co-simulation for a clamped-free beam

First we consider a 3D concrete beam, with a length equal to 2.5m and a 0.25m×0.25m

cross section, with the concrete material following. Both elastic and nonlinear laws for

the concrete material are adopted. The nonlinear law is the classical damage law as

proposed by Mazars [47]. The left end of the beam is clamped and the right end is free.

We apply a transverse force at the end of the beam, with a fast increase from zero to a

plateau value equal to 2700N , generating an extensive damage area close to the clamp-
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ing.

The mesh of the beam is regular and composed of hexaedral elements with the smallest

size in the transverse direction, equal to 1.25cm, as illustrated in Figure 3, axis Y indi-

cating the transverse direction. The reference results are provided by a FEM full-explicit

computation using Akantu with a time step ∆tFEM = 2.5 10−6s, satisfying the CFL

condition equal to 3.64 10−6s. As displayed in Figure 3, the SEM/FEM co-simulation is

set up by decomposing the mesh in two equal parts: The first part with the clamping con-

dition is modeled with Finite Elements of the same size as in the reference computation

and is dealt using Akantu, whereas the right part, with the free end condition, is modeled

with Spectral Elements, with the size 0.25m, using EFISPEC3D. Concrete material fol-

lows either an elastic or a damage law in the FEM partition while it is assumed linear in

the SEM partition. Due to the larger size of the Spectral Element in comparison to the

Finite Element, the time step adopted in the SEM partition is equal to ∆t = 5.10−6s,

that is twice the time step in the FEM partition for the reference computation. As a

consequence, we employ an implicit time integration in the FEM partition with a time

step equal to ∆t = 5.10−6s, matching the time step in the SEM partition.

(a) FEM(explicit) (b) SEM(explicit)/FEM(implicit)

Figure 3: Meshes of the 3D beam for FEM full-explicit computation and the SEM/FEM co-simulation

The elastic parameters for the concrete are: Ec = 20GPa, ν = 0.2 and ρc =

2500kg m−3. When considering nonlinear concrete behaviour, a modified Newton-
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Raphson strategy, using only the elastic stiffness matrix, is set up to reach the conver-

gence in the FEM implicit partition, as detailed previously, with a convergence criterion

given by ε = 10−4. For the damage law, the parameters are: The damage threshold

κ0 = 1.25 10−4, defining the loading surface, two damage parameters At = 1.15 and

Bt = 10000 for the evolution of the damage indicator in traction Dt, two other damage

parameters Ac = 0.8 and Bc = 1391.3 for the evolution of the damage indicator in com-

pression Dc ; the two damage indicators (in traction and compression) are then combined

to provide the damage variable D. It is noted that the damage threshold κ0 is chosen

as equal to the ratio between the concrete cracking strength ft, equal to 2.5MPa, and

Young’s modulus Ec = 20GPa. Time-histories of the displacement at the right-end of

the beam is plotted in Figure 4 versus time, for the following computations:

� The elastic case with only one domain (full-FEM explicit) with ∆tFEM = 2.5 10−6s

(reference results for linear dynamics)

� The elastic case (SEM/FEM) with different time steps ∆tFEM = 20∆tSEM =

10−4s

� The nonlinear case with only one domain (full-FEM explicit) with ∆tFEM =

2.5 10−6s (reference results for nonlinear dynamics)

� The nonlinear case (SEM/FEM) with the same time steps ∆tFEM = ∆tSEM =

5 10−6s

It can be seen that elastic SEM/FEM multi time step computation matches the reference

computation, which validates the multi time step approach in linear dynamics. Moreover,

as expected, the introduction of the damage law leads to larger displacements in com-

parison to the elastic case. It is highlighted that results from the nonlinear SEM/FEM

co-simulation match the FEM reference results. Finally, the proposed approach is fur-

ther validated in Figure 5, by comparing the final damage isovalues for both nonlinear

computations.
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Figure 4: Time history of the beam displacement, at its free end, for elastic behaviour and nonlinear

damage behaviour ; comparison between linear FEM (explicit) computation and linear SEM (explicit)

/ FEM (implicit) co-simulation and comparison between nonlinear FEM (explicit) computation and

nonlinear SEM (explicit) / FEM (implicit) co-simulation

(a) FEM(explicit) (b) SEM(explicit)/FEM(implicit)

Figure 5: Isovalues of damage in the beam for the reference FEM computation and the SEM/FEM

co-simulation (visualization of the FEM partition)

5. Linear and nonlinear dynamic analysis for dams using a hybrid asyn-

chronous SEM/FEM co-simulation

The SEM/FEM multi time step co-simulation is now investigated in order to analyse

a 3D concrete gravity dam subjected to an earthquake. We present first the 3D meshes
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adopted for the dam and its surrounding rock medium, considered as the near-field

domain, and second, the soil rock medium with the seismic source, corresponding to

the far-field domain. The choices done for the modeling of the dam, its foundation

and the soil medium, are discussed. Different 3D meshes for the dam and canyon as

well as different time steps are considered, keeping unchanged the modeling parameters

adopted in the SEM partition (mesh and time step), in order to assess the relevance of

the explicit/implicit multi time step co-simulation with respect to the reference results

provided by an explicit full-SEM simulation with a given time step. As in previous

clamped-free 3D beam, the Mazars damage law [47], available in Akantu, is adopted for

the concrete of the dam. Linear and nonlinear SEM/FEM co-simulations are carried out

for the dam by considering three different meshes. It has to be noted that we do not

perform a detailed analysis of the dam. For instance, the water reservoir is not modeled.

The purpose is to show how specialized softwares can be coupled for a complex situa-

tion involving the seismic source, propagation medium and dam, in linear and nonlinear

dynamics.

5.1. Finite Element model for the dam-foundation interaction

For the case of a concrete gravity dam, recent studies [19, 20] have shown that 3D

modeling approaches are more suitable than 2D analyses, when the dam is built in a

narrow canyon. The modeling parameters for the concrete gravity dam and its canyon

considered in this study is inspired from the 3D dam model proposed by Bybordiani

and Arici [21]. According to SEM/FEM coupling approach, the FE mesh is linked to

the SE mesh, in which the seismic source and the wave propagation medium are handled.

Different views of the 3D dam and canyon meshes are shown in Figure 6: 3D view,

in the stream plane and in the cross-stream plane. As displayed in Figure 6(b), the dam

has an height H, a thickness of H/8 at top, an upstream face which is assumed to be

vertical and a sloped downstream face with a base dimension equal to H. Two recording

points are considered for the response of the dam, the crest point and the base point, as

shown in Figure 6(b). In the cross-stream plane, displayed in Figure 6(c), the width of

the canyon at the base, is equal to H, so the dimension of the narrow canyon is equal to

3H at top, considering the canyon slope of 1. In the following, H is taken equal to 80m.
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Meshing has been performed using the free 3D finite element mesh generator Gmsh [48].

All meshes (dam, canyon, neighboring rock soil) are included in a 3D large box of size

300m×200m×100m of size (according to X, Y and Z directions, respectively), connected

to the SE mesh in SEM/FEM co-simulations.

FE mesh refinement, illustrated in Figure 7, is considered so as to evaluate the capa-

bility of the method to deal with mesh details in the FEM partition, without changing

the modeling parameters of the SEM partition, in particular the SE size and time step.

All the three meshes are only composed of linear hexahedral elements, with 8 nodes,

integrated with 8 Gauss points. The number of 3D elements at the top of the dam, in

the stream direction, is noted as nb, equal to 2, 4 and 6, defining the mesh refinement.

The total numbers of hexaedral elements in the FEM partition are 128, 1024 and 3456,

for the refinement parameter nb equal to 2, 4 and 6, respectively.

(a) Mesh 1, nb = 2 (b) Mesh 2, nb = 4

(c) Mesh 3, nb = 6

Figure 7: FE 3D meshes of the canyon and dam, with the refinement mesh parameter nb = 2, 4, 6

We consider the following material parameters assigned to the different parts of the

mesh. The mass concrete composing the gravity dam has Young’s modulus Ec equal
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(a) Dam and canyon mesh (b) Dam cross-section in the stream plane and the two

recording points

(c) Canyon mesh in the cross-stream plane

Figure 6: 3D mesh of the dam and canyon
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to 20 GPa, density ρc of 2500 kg m−3 and Poisson’s ratio νc of 0.2. The material

parameters for the rock medium are: ERock = 5873.2 MPa, νRock = 0.2768 and ρRock =

2300 kg m−3, corresponding to P-wave and S-wave velocities equal to 1800 m/s and

1000 m/s, respectively.

It has to be noted that the proposed 3D model for the dam introduces the flexibility

and mass of the foundation, contrary to simplified approaches assuming rigid foundation

or massless foundation with different flexibility. As observed in [22], these aspects should

be taken into account in an integrative seismic analysis. Another important factor which

can affect the dynamic behavior of the dam is the spatial variability of the ground motion

at the dam-foundation rock interface, also called non-uniform ground motion, due to the

large dimension of the dam. It is important to note that the proposed co-simulation

allows to deal with all these dam-foundation interaction aspects. Indeed, the seismic

source, the wave propagation in the rock medium and the dynamic behaviour of the

dam built in the canyon, are taken into account in a complete coupled way: the time

lags, the different frequency contents of waves arriving to various points of the dam base,

characterizing the variability of the seismic excitation, are naturally predicted by the

SEM/FEM coupling method.

Nonetheless, the model investigated in this paper needs to be sufficiently simple to

assess the relevance of our coupling approach with respect to the full SEM approach

which will provide the reference results in linear dynamics. Thus, several simplifications

have been adopted. Among them, the water reservoir is not modeled, neglecting the fluid-

structure interaction effect. In addition, some nonlinear phenomena occurring during an

earthquake event, such as the cracking of the rocks, the opening of joints in the dam, the

contact and sliding at the joints, are not considered. Here, only the cracking phenomena

in the concrete are taken into account through a classical approach by introducing a

Mazars damage law.

5.2. Spectral Element model for the source and the wave propagation medium

The SE mesh is presented in Figure 8, representing a rock medium of 1km× 1km×

1km. The mesh is built using the 3D meshing software CUBIT [49]. At the top-middle

of the mesh, an empty box can be seen, corresponding to the FEM partition, which
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(a) Subdomain B (SEM) (b) Interface SEM

Figure 8: 3D SE mesh of the rock medium without the FE mesh of the dam and the SE mesh of its

coupling interface

includes the dam and its surrounding rock (foundation and canyon). The SEM interface

is displayed in Figure 8.

The mesh size, denoted by LSE , has been chosen on the basis of the shear wave

velocity and the maximum frequency targeted for the seismic wave simulation (i.e., 10

Hz). Material characteristics for the rock medium are characterized in terms of S and

P wave velocities: vs = 1000m/s and vp = 1800m/s. The minimum wavelength can be

assessed as a function of the maximum frequency fmax, using the expression: LSE =

vs
fmax

. It gives a value of 100m, taking into account a maximum frequency of 10Hz. In

other words, in order to ensure a good accuracy in the SEM partition, at least 5 GLL

points are required to sample the minimal wavelength; it corresponds to a SE size equal

or inferior to the wavelength in the case of a Lagrange polynomial order of 4 which is

selected here for the SEM. The number of SE elements is 1354 with a number of GLL

points equal to 92953. The time step has to be selected on the basis of the classical

CFL condition. The CFL condition is given by: ∆t2 = 0.30∆xmin/vp, the coefficient

0.30 corresponding to the adopted Courant number in presence of absorbing boundaries,

leading to a time step size ∆t2 equal to 0.25ms.

The seismic source is a standard double-couple point source, located in the middle

of the SE mesh, with a strike along the north direction (corresponding to the stream

direction), a dip of 0◦ (i.e.; fault normal pointing upward) and a slip along the strike

(i.e.; rake angle of 0◦). This seismic source ensures vertically propagating shear waves
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below the dam polarized in the stream direction. To deal with infinite media, absorbing

boundary conditions have to be introduced at the mesh boundaries, ensuring the wave ra-

diation. The classical paraxial approximation proposed by Stacey [50] has been adopted.

More recent absorbing conditions were proposed in the literature such as absorbing lay-

ers with increasing damping ratios [51, 52, 53, 54] and Perfectly Matched Layers (PML)

[55, 56, 57, 58, 59]. They are currently not implemented in EFISPEC3D.

5.3. Full-SEM simulation

The reference simulation is carried out using EFISPEC3D. The mesh, built using the

meshing software CUBIT [49], is displayed in Figure 9. As can be seen, relatively small

SE hexaedral elements have been generated for modeling the dam, with the finest mesh

size at the top of the dam equal to H/8, that is 3.125m. It leads to a reduction of the

critical time step of the explicit time integration in comparison to the SE partition previ-

ously presented: the time step adopted in the full-SEM partition is equal to 0.15ms, to be

compared to 0.25ms in SEM/FEM co-simulation. The relevance of the proposed multi

time step SEM/FEM co-simulation, against full-SEM results, is assessed in the following.

27



(a) SE mesh (b) SE mesh: Zoom on the dam

Figure 9: 3D SE mesh of the dam and the soil medium

5.4. Effect of the FE mesh refinement

The effect of the refinement in the FEM partition is investigated in this section. First,

we consider the same time step size for both partitions, with a time step ∆tFEM =

∆tSEM = 0.25ms. Because of the implicit time integration in the FEM partition, the

refinement of the dam does not affect the critical time step. The time duration of the

simulation is 5s. In a seismic dam analysis, the top displacement at the crest point of the

dam is considered as an engineering demand parameter [20]. As a consequence, in order

to validate our coupling strategy, the time history of the crest displacement is plotted in

Figure 10, according to the stream (Y-axis) direction.
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Figure 10: Time history of the crest displacement in Y (stream) direction depending on the FE mesh

refinement (meshes 1, 2 and 3 for nb equal to 2 , 4 and 6, respectively)

It can be seen that accurate results are obtained by the SEM/FEM approach, with

the finest mesh, when compared to the reference results provided by the full-SEM com-

putation. The small discrepancies can be explained by the different meshes employed in

the full-SEM computation and the ones adopted in the SEM/FEM computations.

The amplitude of the transfer function between the bottom and the top of the dam

is also compared in Figure 11 for the three meshes. The peak of the transfer function,

depending on the meshes, gives the fundamental frequency of the dam, accounting for

the soil-structure interaction effect. As expected, the coarsest mesh provides the higher

fundamental frequency while the finest one provides the lower fundamental frequency

with higher spectral ratio.
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Figure 11: Transfer function between the crest and the base of the dam for the three FE meshes

5.5. Effect of the time step size in the FEM partition

The interest of the coupling approach lies first in its hybrid feature, that is to couple

an implicit FE code with an explicit SE code, and second, in the the asynchronous

capabilities, considering different time step sizes depending on the partitions. Indeed,

it can be thought that the dynamic behaviour of the structure and its foundation rock

can be accurately predicted using an implicit time integration with a relatively large

time step due to the predominance of the first vibration modes of this type of problem.

Here, the time step used for the SEM partition is kept unchanged (equal to 0.25ms)

and we consider increasing time step size in the FEM partition, with time step equal to

2.5ms and 5ms, corresponding to a time step ratio m equal to 10 and 20, respectively.

It has to be noted that the choice of the time step size in the implicit partition is not

dictated by a stability criterion but is governed by accuracy considerations. Here, the

maximum frequency of 10Hz has been chosen, thus it is suitable to not consider too

large time steps. The comparison between the results from multi time step SEM/FEM

co-simulations is provided in Figure 12 for the second mesh (FE refinement parameter

nb = 4 in Figure 7(b)). It can be observed that multi time step co-simulation results

match the ones obtained with the same time step in both partitions.
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Figure 12: Time history of the crest displacement in Y (stream) direction depending on the time step

ratio m = ∆tFEM
∆tSEM

equal to 1, 10 and 20, for the Mesh 2

5.6. SEM/FEM co-simulation for nonlinear dynamics

In this last application, we again consider the dam simulation, adopting the Mazars

damage law for the concrete. Same elastic and nonlinear parameters as before are taken

into account. Note that only the dam has a nonlinear rheology, the surrounding rock

in the FE simulation is linear. SEM/FEM co-simulations are performed for the three

different meshes using the time step ∆t = 0.25ms for both SE and FE codes. For the

convergence criterion in the FE code, given in Eq. (27), we consider the following value:

ε = 10−4.

Time-histories of drift, defined by the difference between the displacement recorded at

the top of the dam and the displacement recorded at the base of the dam, are compared

in Figure 13, according to the Y directions. It can be seen that the response of the dam
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for the two finest meshes are in good agreement, whereas the response of the coarsest

mesh is smaller in terms of amplitude. The shift of the resonant frequency of the dam

due to the nonlinear behaviour of the concrete is well observed in Figure 14. Note that

the amplitude of the peak is higher for the nonlinear rheology because the Mazars law is

a damage law without hysteresis. The observed mesh-dependency for local damage laws

is also well known. It can be alleviated by regularization techniques as discussed in [42].

This mesh-dependency is also noticeable in terms of damage distribution, as displayed

in Figure 15 on the upstream face of the dam: The damage tends to be more localized

for the finest mesh, with higher values of damage variables.
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Figure 13: Time history of the crest displacement in Y (stream) directions depending on the FE mesh

refinement (meshes 1, 2 and 3 for nb equal to 2 , 4 and 6, respectively), assuming damage constitutive

law for the concrete of the dam

32



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1  2  3  4  5  6  7  8  9  10

S
p
e
c
tr

a
l 
ra

ti
o

Frequency (Hz)

mesh 3, linear rheology
mesh 3, nonlinear rheology

Figure 14: Transfer function between the crest and the base of the dam for linear and nonlinear rheology

of the concrete

(a) Mesh 1, nb = 2 (b) Mesh 2, nb = 4

(c) Mesh 3, nb = 6

Figure 15: Isovalues of damage in the dam for the three meshes, with the refinement mesh parameter

nb = 2, 4, 6

6. Conclusion

In order to deal with 3D soil structure interaction problems, we combined existing

methods and showed the potential of such coupling by applying it on the dynamic re-
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sponse of a dam subjected to earthquake loading. The SEM and the FEM are coupled

with the mortar method in space and with the HATI method in time. The multi time step

SEM/FEM co-simulation has been performed using a SE code, EFISPEC3D, devoted to

model the seismic source and the wave propagation, with a FE code, Akantu, suitable

for modeling mesh details (the dam and its surrounding canyon) as well as taking into

account non linear constitutive behaviour.

The weak form of the governing equations in the SEM and FEM partitions has been

expressed according to the mortar approach, allowing to handle, at the interface between

partitions, geometric non-conformity (incompatible FE and SE meshes), as well as alge-

braic non-conformity (different polynomial degrees for the shape functions). SEM/FEM

co-simulation has been set up using hybrid asynchronous time integrator, enabling to re-

fine the FE mesh and choose the appropriate time step for the implicit time integration,

without changing the mesh and time step in the SEM explicit partition. With respect to

previous works about co-simulation strategies, the SEM/FEM coupling is more complex

because the material non linearities are considered in the implicit partition step, instead

of being considered in the explicit partition. Thus the SEM/FEM co-simulation strategy

is extended to nonlinear dynamics using Newton-Raphson iterations, when adopted a

damage material behavior in the implicit FEM partition.

The hybrid SEM/FEM co-simulation approach is validated by comparing the dynamic

response of a 3D clamped-free beam subjected to a quickly applied transverse force, to

the reference results provided by a FEM full-explicit computation. Finally, the nonlin-

ear response of the dam, built in a narrow canyon and subjected to an earthquake, is

calculated for three different meshes. We observe the shift of the resonant frequency of

the dam due to the nonlinear behavior of the concrete. Further investigation would be

necessary to better understand the SSI effects in this problem, but is out of scope of this

paper.

The proposed method turns out to be very flexible because the coupling approach

is non-intrusive, allowing to couple mature softwares in seismology and earthquake en-

gineering. The proposed method is versatile and can be useful for taking into account

in an integrative way the coupled phenomena occurring in dam-foundation interaction

problems. Further works would consider more complex SE mesh for the far-field domain,
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multi time step coupling in the nonlinear case or the use of time integration schemes

endowed with high frequency filtering capabilities for the near-field domain.
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36



of Civil Engineering (IIC-ENAC), EPFL, Switzerland,Akantu,URL: http://lsms.epfl.ch/akantu,

Rev1.02012.

[16] L. Zhang and A.K. Chopra. Computation of spatially varying ground motion and foundation-rock-

impedance matrices of concrete dams. Technical report, Earthquake Engineering Research Center.

Report No. EERC 91/06, Univeristy of California, Berkeley, 1991.

[17] J. Wang and A.K. Chopra. EACD-3D-2008: a computer program for the three dimensional earth-

quake analysis of concrete dams considering spatially-varying ground motion. Technical report,

Earthquake Engineering Research Center No. EERC-2008/04, University of California, Berkeley,

2008.

[18] E. Koufoudi, E. Chaljub, F. Dufour, P.Y. Bard, N. Humbert, and E. Robbe. Spatial variability

of earthquake ground motions at the dam-foundation rock interface of Saint Guérin: experimental
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