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Abstract We investigate the fractal nature of critical fluctuations in sulfur hexafluoride14

(SF6) under microgravity conditions. For this purpose, we use the Bidimensional Empiric15

Mode Decomposition (BEMD) approach to separate the spatial scales of fluctuations in16

orthogonal Independent Mode Functions (IMFs). Statistical analysis of three morphology17

measures (area, eccentricity, and orientation of convex objects in recorded images) across18

different IMFs shows that critical fluctuations obey power-laws across multiple spatial scales.19

We also perform a spatiotemporal analysis of fluctuations by extracting one line of pixels20

from each image and creating a temporal stack from successive images, or “waterfalls.”21

The spatiotemporal section analysis along the spatial direction reveals multiple spatial scales22

present in the original fluctuating image. The analysis of the “waterfalls” along the temporal23

direction identifies a common power-law temporal behavior across all spatial scales. Our24

results show that critical fluctuations very near critical temperature (Tc) have a fractal structure25

captured by power-laws with multiple critical exponents. The morphology analysis shows26

that very near Tc, the fluctuating domains are mostly spherical with some anisotropy.27

1 Introduction28

Many experiments on the critical behavior of gas-liquid and binary fluids systems have been29

performed, and they go back to over a hundred years [5,7,9,25,26]. Many of them are light30

scattering-based experiments [6,35,53,79] that determine thermophysical parameters close31

to the critical point by relying almost exclusively on Fourier analysis [14,32,58,59]. Fourier32

transform is a convenient method of switching back and forth between the real physical space33

(x, y) of the light scattering in the recorded image and the corresponding conjugated space of34

wavenumbers (kx = 2π/x, ky = 2π/y). Compared to the Fourier method, there are only a35

few studies on direct observation of the scattered light intensity fluctuations in physical space36
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(x, y) of the recorded images [10,23,35,38,39]. Asher and Pankow [2] performed a somewhat37

similar direct observation of light intensity fluctuations, although they used a laser-induced38

fluorescence method to measure the timescales of surface concentration fluctuations.39

In real space recorded images, light intensity fluctuations appear as domains whose inten-40

sity is different from the image’s mean intensity. In equilibrium conditions, these fluctuations41

have large enough sizes to become detectable with optical cameras only when the system42

is close to criticality. On the other side, non-equilibrium fluctuations become giant thanks43

to the coupling of spontaneous fluctuations with the existing gradient [77]. This is increas-44

ingly true if one removes gravity [75]. The direct imaging of critical fluctuations may answer45

fundamental questions regarding the correlation between thermal fluctuations and critical46

percolation points [18,70]. This connection rests on a precise criterion to define clusters that47

emerge from fluctuations during phase separation, and this up to now is still lacking.48

The fluctuations of light intensity δi(x, y) detected by light scattering experiments are49

determined by the corresponding order parameter fluctuations. In pure fluids near their critical50

point, the order parameter is the reduced critical density, M = ρ/ρc − 1, where ρ(ρc) is the51

(critical) density of the system.52

The signature of self-similarity of the fluctuating domains is the existence of a power-law53

dependence between the number of the convex areas and their “mass,” i.e., the number of54

pixels in the image belonging to a convex domain [24]. Mathematically, the existence of a55

scaling equation for an observable A(r), which is a function of a variable r , establishes the56

quantitative connection between the power-laws and fractals:57

A(λr) = λn A(r), (1)58

where λ is a constant factor and n is a scaling exponent, independent of r [48]. Indeed, a59

power-law such as y(r) = αrn is among the functions that obey the above scaling law since60

y(λr) = α(λr)n = λn y(r). The above scaling equation is identical to the recursion formula61

of the renormalization group theory when recursively integrating the short distance degrees62

of freedom of the system to generate a sequence of effective Hamiltonians corresponding to63

increasing scale [47,74,80,81]. The physical quantity A(r) may not be extensive at the critical64

point due to the long-range correlation of critical fluctuations. As the system approaches a65

critical point, the asymptotic behavior of the physical quantity A(r) as the length scale66

changes L → L ′ = L/r usually gives a power-law [29,30,73]:67

A(L ′) = A(L/r) ∝ r−φ A(L). (2)68

Near the critical points of phase transition, a new order driven by strong and long-range69

correlations between dynamic events emerges at all the system’s spatial scales. Such a70

(re)organization of the system occurs at all spatial scales and can be best captured math-71

ematically by power-laws and fractal dimensions [69]. A fluid near its critical point is in72

constant contact with a thermostat with which it exchanges energy that leads to a coher-73

ent macroscopic behavior [17]. Such a process mediated by long-range correlations among74

fluctuating domains reflects the unity of the physical laws spanning multiple spatiotemporal75

scales and is captured by scale-free power-law distributions of observables.76

The first study that identified an experimental power-law was done by Vilfredo Pareto and77

modeled the distribution of individuals’ incomes, which is called nowadays Pareto law [63].78

He found that the relative number of individuals with an annual income larger than a specific79

value x was proportional to the power of x . Since then, fractal structures characterized by80

power-law distributions were discovered in the turbulent flow [71], earthquake dynamics81
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occurrence of an infinite cluster can be associated with the divergence of the fluctuations near83

the critical point [36].84

Our main result is that critical fluctuations very near critical temperature (Tc) have a fractal85

structure captured by power-laws with multiple critical exponents. Our current approach’s86

advantages are that (1) data analysis is performed in the spatial domain without using Fourier87

transforms, (2) the image analysis is data-driven, i.e., all measures related to spatiotemporal88

behavior of the fluctuations are directly related to observed intensity fluctuations, and (3) the89

BEMD-based analysis is valid even for nonlinear and non-stationary processes.90

2 Experimental setup91

Images of large thermal fluctuations near the critical point (Tc = 318.733 K, Pc = 37.586 bar,92

ρc = 5.0581 mol l−1) of sulfur hexafluoride (SF6) in microgravity conditions were recorded93

using ALICE 2 instruments onboard of 1999 MIR space station [15,28,49,51,55]. In this94

microgravity experiment, SF6 above its critical temperature Tc was quenched by quickly95

decreasing its temperature with steps of 300 µK. Several sets of thermal quenches (see Fig.96

1 in [56]) were performed from the one-phase region above critical temperature into the97

two-phase region below Tc that resulted in phase separation [55,56]. The temperature was98

monitored with three thermistors placed inside the SCU. For image analysis, we cropped the99

most extensive possible rectangular area without including data markers. In this paper, we100

only discuss image processing results based on the last 300 µK thermal quench that stepped101

through the critical temperature [39,56,60]. The system was prepared at the critical density102

with the order parameter M = (ρ −ρc)/ρ = 0.0 ± 0.02%. The 300 µK temperature quench103

through Tc started the phase separation of the fluid (see [39,56,60] for a detailed description104

of the experimental procedure). Since the phase separation has begun during the last 300 µK105

thermal quench, we concluded that Tc was somewhere between the upper (UP, i.e., T > Tc)106

and lower (DOWN, i.e., T < Tc) plateaus. The exact location of Tc measured from the107

DOWN plateau was determined with the histogram method to be 46.74 ± 0.03µK [55] and108

in the range of 15 µK to 42 µK using Dynamic Differential Microscopy (DDM) [56].109

The density fluctuations were visualized through light transmission normal to the sapphire110

windows using a He-Ne laser with 632.8 nm wavelength and about 100 µW maximum power111

(see also [60] for a detailed description). Laser stability after 1 h was estimated to be better112

than 0.3 %. An optical microscope of 3.1 µm resolution was also used to record a small SCU113

region. We used 166 images (6.64 s) recorded for UP (T > Tc) plateau. While the first 71114

images of the 166 UP series were recorded with the microscope focused on the sapphire115

window, the rest were recorded with the focal plane at the cell’s center. For the DOWN116

(T < Tc) plateau, we used 479 images (19.16 s). All images for the DOWN region were117

recorded with the focal plane at the center of the cell. The full description of the experiment118

is presented elsewhere [55,56,60].119

3 Methods120

3.1 Bidimensional Empiric Mode Decomposition (BEMD)121

We use a new data-driven method for multi-scale analysis of critical fluctuations. The method122

naturally separates the spatial scales based on the image content. The BEMD method breaks123

the original image into different orthogonal spatial scales called Intrinsic Mode Function124
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(IMF) and one residual quantity [60]. We probe the fractal nature of critical fluctuations by125

separating spatial scales with the BEMD method followed by (1) morphological analysis and126

(2) spatiotemporal cross sections (“waterfalls”) of all IMFs. For this purpose, the BEMD127

first separates the fluctuations in orthogonal spatial scales that contrast the morphology and128

spatial properties more intuitively. We hypothesize that if critical fluctuations have a fractal129

structure, then morphology measures and spatiotemporal structures should observe similar130

evolutions across all spatial scales represented by individual IMFs.131

In the past, the Empirical Mode Decomposition (EMD) has been applied to earthquake132

analysis [41,64], structural diagnosis [31,52], characterization of non-stationary biological133

processes [44], mechanical fault diagnosis [84,85], and ocean waves analysis [72]. One134

advantage of EMD over traditional spectral analysis methods is that it can be applied even to135

nonlinear and non-stationary signals and produces linear and stationary IMFs [43]. Intuitively,136

the EMD is a data-driven adaptive method that allows recursive removal of oscillations (IMFs)137

by repeated subtraction of an appropriately defined baseline [34,40–44]. For two-dimensional138

data sets (images), we used a BEMD algorithm [65] that requires no pre-determined filter or139

wavelet function [68]. The BEMD has been applied to texture extraction and image filtering140

[45], finding the gold mineral deposition [40], the discovery of tin-copper polymetallic ore141

field [16] by gravity anomalies captured by satellite images, image denoising [4,50], content-142

based image retrieval [1], and fusion of multispectral and remote sensing [27,34,37]. We143

recently expanded the application of the BEMD method and combined it with the Dynamic144

Differential Microscopy (DDM) to the analyses of critical fluctuations [60]. All the details145

of decomposing fluctuation images based on BEMD are described in [60]. BEMD is a fully146

adaptive multi-scale decomposition because it operates on the local extremum sequence. The147

decomposition is carried out by direct extraction of the local energy associated with the signal148

itself’s intrinsic time-scales. This approach is different from the wavelet-based multi-scale149

analysis that characterizes the scale of a signal event using pre-specified basis functions [82].150

For this study, we only considered three IMFs, plus the residual image [60]. Representative151

examples of the original images, their first three IMFs, and the residual are shown in Fig. 1.152

The BEMD decomposition contains the fluctuations from finest to coarsest spatial scale.153

Since the sifting process extracts from the original image (Fig. 1A1 and A2) first the highest154

spatial frequency (Fig. 1B1 and B2), the first IMF mode corresponds to the short-range155

fluctuations, which we expect to dominate very close to the critical point. Conversely, the156

image tendency and the long-range correlations of fluctuations are contained in the next two157

modes (Fig. 1C1-C2 and D1-D2). The residue (Fig. 1E1 and E2) represents the largest spatial158

scale of fluctuations obtained from the data. The residual is usually used as a background159

image to correct for nonuniform illumination.160

3.2 Spatiotemporal cross sections161

The spatiotemporal correlations of fluctuations could be captured with the stacked one-162

dimensional sections through individual images, i.e., “waterfalls” [39]. For this purpose, a163

horizontal line of pixels was extracted from successive images at the same location, which164

gave the spatial dimension of the image, called “space” in Fig. 2A1. The rows of pixels (one165

row from each recorded image) were stacked according to the image index (time) along the166

vertical direction, which gave the temporal dimension called “time” in (see Fig. 2)A1.167

To obtain the original spatiotemporal (“waterfall)” images, we first applied the BEMD168

decomposition to the original images, as shown in Fig. 1. Subsequently, we created for each169

IMF order the corresponding spatiotemporal (“waterfall”) image as described above and170

shown in Fig. 2A1-A4. An optimum gray-level threshold was selected for each line of pixels,171
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A1 B1 D1C1

A2 B2 C2 D2

E1

E2

Fig. 1 The original images (A1 above Tc (UP with cell centered focus) and A2 below Tc (DOWN with cell
centered focus)), the first three IMFs (B1-D1 for UP and B2-D2 for DOWN), and the residual image (E1 for UP
and E2 for DOWN) for the image index 100 of UP and the image index 200 of DOWN region. Above critical
temperature (panels A1-E1), the finest spatial scale (B1) shows small size fluctuations, which correspond to
the fluctuations’ finest spatial scale. For the DOWN region (B2), the first IMF’s characteristic spatial distance
seems to be comparable to UP, which is consistent with the early stage phase separation processes. The coarse
spatial scales (C and D) show long-range correlation patterns of fluctuations. The residue (E) has a structure
that suggests a long-range correlation of fluctuations

and the “waterfalls” were converted to black and white images (see Fig. 2B1-B4). We chose172

one threshold per line instead of a single threshold for the entire “waterfall” image because173

each line belongs to a different fluctuation image. This way, each line of pixels is thresholded174

based on the correct context it belongs to, i.e., its original image. To binarize the original175

grayscale images, we computed for each image a threshold based on Otsu’s method [62].176

Otsu’s method chooses a threshold that minimizes the intraclass variance of the thresholded177

black and white pixels. Although we only show in Fig. 2 the stack of rows through the middle178

of each image, we repeated the same procedure at 25 % and 75 % of image height and found179

no statistical difference with the results presented here for the central line of pixels. A similar180

approach was used for the DOWN region. The black and white thresholded grayscale images181

were used for edge detection of convex objects during morphology analysis.182

4 Results183

4.1 Morphological analysis of critical fluctuations184

We used an in-house Matlab code to compute a set of properties specified by the 8-connected185

component (object) in the binarized fluctuation images (see Fig. 3B). In a two-dimensional186

image on a rectangular lattice, any given pixel is connected with eight adjacent pixels if their187

edges or corners touch, as shown in Fig. 3A. Two adjoining pixels are part of the same object188

if they are both on and are connected along the horizontal, vertical, or diagonal direction189

(see Fig. 3A for an 8-connected central pixel). Out of the 25 different properties computed,190
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A1 A2 A5

B1 B2

A3 A4

B3 B4 B5

Fig. 2 Stacks of one-dimensional sections through the center of each fluctuation image of the UP region.
The original (A1) grayscale images were separated into three IMFs plus a residual image using the BEMD
algorithm (A2-A5). The shortest spatial scale is contained in A2 and the longest in A5. The corresponding
thresholded black and white images (B1-B5) allow a clear identification of the boundaries of convex domains
(black pixels)

Fig. 3 (A) In two-dimensional images, an 8-connected central pixel has similar pixels along edges or corners.
Two adjoining pixels are part of the same object if they are both on and are connected along the horizontal,
vertical, or diagonal direction. (B) The eccentricity of a morphological object is the ratio of the distance
between the foci of the ellipse and its major axis length. The value is between 0 (circle) and 1 (line segment).
(C) The orientation of an elliptical object is given by the angle between the x-axis and the major axis of the
ellipse. The value is in degrees, ranging from −90◦ to 90◦. The two dots on the major axis represent the foci
of the ellipse

we only present the statistics of the three most relevant measures for the morphology of191

fluctuations, i.e., area, eccentricity (see Fig. 3B), and orientation (see Fig. 3C).192

At least 40 % of the compact, i.e., convex, objects with clear boundaries have an area193

of one arbitrary unit (see Fig. 4A1-B1 for the original image, A2-B2 for IMF1, and A3-194

B3 for IMF2). As expected, large objects are scarce, reflected by a power-law decay of195

the percentage of compact objects’ area versus their size (see Fig. 4A1-B1 for the original196

images). The statistics of only three representative images are shown in Fig. 4A1-A3 and197

B1-B3, respectively. The slope of the log-log plots shown in Fig. 4 represents the power-198

law exponents. The UP region has the first 71 images recorded with the focal plane of the199

microscope on the sapphire window of the SCU and the rest with the focal plane at the center200

of the SCU. The statistical analysis was performed separately for the two subsets of images201

recorded above Tc. Our statistical analysis of the morphology of fluctuation using convex202

area measure revealed no statistically significant difference between the 71 images and the203

rest for the UP region (see Fig. 4). As a result, the subsequent statistical analysis for other204

morphological measures (eccentricity and orientation) lumped together the two subsets of205

the UP dataset. From the UP region images recorded with the focal plane at the center of the206

SCU (Fig. 4A1-A3) and from the DOWN region (Fig. 4B1-B3), we only show the log-log207

plots for a set of three images selected at the beginning of the set, in the middle, and at the208

end of the respective dataset.209

We fitted all area distributions for every image with power-laws given by %objects ∝210

arean , where the exponent values n are shown in Fig. 5A1-A2 for all images and their IMFs.211
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A1 A2 A3

B1 B2 B3

Fig. 4 The distribution of the area of the convex objects identified in fluctuations images. The top panels are
for the original images (A1) and the first two IMFs (A2 and A3) of the UP region (T > Tc) with the focal
plane in the center of the SCU. The bottom panels (B1-B3) correspond to the DOWN region (T < Tc) with
the focal plane in the center of the SCU. The panels A1-B1 represent the original images, the panels A2-B2
represent the first IMF, and A3-B3 correspond to the second IMF. For each region UP/DOWN, we selected
only three images

The area distributions of the third and fourth IMF are not shown, but a numerical summary212

is presented in Table 1. A summary of the UP plateau’s power-law exponents is shown in213

Fig. 5A1, where the window- and center-focused data are separated by a vertical dashed line.214

Although we monitored multiple measures of the goodness of fit, e.g., the sum of squared215

error, the root mean square error, we only show in Fig. 5B1-B2 the adjusted R2 coefficient216

as a measure of the goodness of fit. Adjusted R2 ∈ [−1, +1] determines the extent of the217

dependent variable’s variance, which the independent variable can explain. The higher the218

adjusted R2, the better the regression equation captures the dependent variable’s variance by219

the chosen independent variable(s). The average adjusted R2 coefficient was over 92 % for220

the original images and the first IMF and over 87 % for IMF2. From Fig. 5A1, we notice a221

significant variance of the power-law exponent for the first 71 images of the UP plateau than222

the rest of the recording. Since the mean values across all original and IMFs are consistent223

and statistically identical both for the first 71 images recorded with the window focus and the224

rest of the images of the UP plateau recorded with the focus plane at the center of the SCU,225

the observed larger variance for the first subset is not due to the location of the focal plane.226

A possible explanation for the observed variability is that the first 71 images are recorded227

closer to when the thermal quench was applied and related to transient phenomena during228

thermal equilibration. An alternative explanation could reside in the fact that the proximity229

to the cell border alters the critical fluctuations due to the presence of preferential adsorption230

on lengthscale ξ (see [8,83] and references therein).231

The vertical dashed line in Fig. 5A1 separates the first 71 images of the UP dataset recorded232

with the focal plane on the sapphire window from the images recorded with the focal plane233

at SCU center.234
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A1

A2

B1

B2

Fig. 5 Power-law exponents and the goodness of fit. Panel A1 (A2) shows the power-law exponents that
best fitted the area distributions in the original image (empty red circles), IMF1 (solid green circles), IMF2
(blue “x” marks) for the UP (DOWN) region. The panels B1 and B2 represent the respective goodness of fit
measured by the adjusted R2 value. The mean values (and the standard deviations) of the power-law exponents
(panels A1 and A2) decrease in absolute value from the original images to IMF1 and IMF2. The mean value
of the adjusted R2 also decreases from 95 % for the original images to 92 %-93 % for IMF1 and 88 %-90 %
for IMF2. All mean values are given with the corresponding standard deviations

Table 1 Power-law exponents extracted from the log-log plot of the area distributions shown in Fig. 4

original IMF1 IMF2 IMF3 IMF4

UP window −2.03 ± 0.19 −1.63 ± 0.23 −1.44 ± 0.27 −1.51 ± 0.29 −1.49 ± 0.29

UP center −2.01 ± 0.15 −1.51 ± 0.10 −1.31 ± 0.10 −1.36 ± 0.05 −1.35 ± 0.05

DOWN −1.66 ± 0.15 −1.36 ± 0.09 −1.23 ± 0.08 −1.26 ± 0.07 −1.25 ± 0.07

Despite large variabilities and some obvious outliers in the power-low fitting exponents235

shown in Fig. 4A4-B4, the trends are quite stable. We notice first that the mean values and236

standard deviations for the first 71 images of the UP region recorded with the focal plane on237

the sapphire window are within the standard deviation of the next set of images recorded with238

the focal plane at the center of the SCU (see Table 1). This result has two consequences: 1)239

supports the ergodic hypothesis that fluctuations have the same structure regardless the focal240

plane of recordings, and 2) allows us to lump together the first 71 images recorded with the241

focal plane on the sapphire window with the rest of the UP images recorded with the focal242

plane at the center of the SCU.243
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Fig. 6 Mean and standard deviation plots of the power-law exponents for array distributions shown in Fig. 4.
The original images gave the largest (in absolute value) exponents with a steady decrease (in absolute value)
for IMF1 and IMF2. The exponents for IMF3 and IMF4 are statistically similar, although the actual images
are significantly different (see Fig. 1D for IMF3 and Fig. 1E for IMF4). For the UP region, the exponents
obtained with the microscope focused on the sapphire window (solid black squares) are statistically identical
to those for the microscope focused at the center of the cell (solid red circles). For the DOWN region, the
exponents are significantly smaller (in absolute value) compared to UP region (see solid blue triangles

The average exponents that summarize Fig. 4 are given in Table 1 and the corresponding244

Fig. 6. As expected, the distribution of areas in the original images (Fig. 4A1-B1) has the245

smoothest decay and the largest (absolute value) exponent in Table 1 because they contain246

all IMFs.247

The fact that the exponents for the original images and the first two IMFS are statisti-248

cally different suggests that the smoothness of quantitative measures associated with original249

images could be misleading because it lumps together processes on different spatial and tem-250

poral scales. The similar values of the exponents for IMF3 and IMF4 suggest that, although the251

actual images look different, the area measure is not sensitive enough to distinguish between252

these two IMFs. This is because both IMF3 and IMF4 contain the largest spatial scales of the253

original images, and they do not contain significantly different small-scale convex objects to254

tilt the array distribution toward one of the two IMFs.255

Since the original images include convex objects across all spatial scales, they will be256

separated and smoothened by the BEMD image processing when computing IMF1. As a257

result, the power-law exponents for IMF1 will reflect the smoothing effect of the BEMD258

algorithm leading to a smaller (in absolute value) exponent compared to the original image.259

This is because BEMD smoothing of fast spatial oscillations in the original images will260

spread the spatial scale over a wider range of sizes. A similar explanation is valid for IMF2.261

The saturation and plateau observed for the exponents across IMF2, IMF3, and IMF4 (see262

Fig. 6) suggests that we may not have more than two spatial and temporal scales present263

in our original image. As a result, adding higher-order IMFs does not add significant new264

information to our analysis. Therefore, in the subsequent statistical analysis, we will drop265

the last IMF4 as it does not add significantly more information than IMF3.266

The eccentricity of convex objects in analyzed images indicates possible anisotropy267

induced by nucleation [66,67], coalescence-induced coalescence [11,46,54], dimple coa-268

lescence [11,57], and other processes that lead to phase separation. The eccentricity of the269



un
co

rr
ec

te
d 

pr
oo

f

A1

A2

B1

B2

Fig. 7 The eccentricities and orientations of convex areas in fluctuation images. In both UP (left panels A1)
and DOWN (right panels B1) regions, the zero-eccentricity (circular cross section) dominates the identified
convex objects with larger eccentricities not exceeding 1 % of the total objects identified. The orientations
of the elliptical areas are dominated by zero degrees (circles plus some ellipses), and the contribution of
other orientations is also less than 1 % (A2 for UP and B2 for DOWN, respectively). All plots are on the
semilogarithmic axis to emphasize that nonzero contribution for eccentricity and orientation is tiny

convex objects identified in fluctuation images is measured as the ratio of the distance between270

the foci of the ellipse and its major axis length (see Fig. 3B). The value of eccentricity is271

between 0 (circle) and 1 (a line segment). We show the eccentricity on the semilogarithmic272

axis (see Fig. 7A1 for UP and Fig. 7B1 for DOWN) to emphasize that although objects with273

nonzero eccentricity were identified in images, their fraction is very small. Indeed, in all274

original images and the first three IMFs, the largest percentage of objects are circular (no275

eccentricity), whereas the largest nonzero eccentricity fraction is around 1 %. We summa-276

rized in Table 2 the percentage of circular objects identified in the original images and their277

IMFs. The fact that about 70 % of objects have a circular shape in the UP region aligns with278

our hypothesis that above the critical point, we only expect short-range correlations that lead279

to spherical (circular cross section) objects in the absence of any gradients. The fact that280

over 60 % of objects have a circular shape in the DOWN region indicates that, although the281

fluctuations are more anisotropic below Tc, the fluid is still very close to Tc in the early stage282

of phase separation. This suggests that a few tens of µK around Tc, the local field is still283

pretty uniform, and there is no significant hydrodynamic anisotropy, such as those induced284

by coalescence-induced coalescence or dimple coalescence [39,56].285

Another measure of the system’s anisotropy is the orientation of the convex objects in the286

fluctuation images (see Fig. 3C). We measured the angle between the x-axis and the major axis287
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Table 2 The percentage of
objects with zero eccentricity in
Fig. 7A1-B1

original IMF1 IMF2 IMF3

UP 71 ± 11 64 ± 13 43 ± 16 48 ± 18

DOWN 60 ± 6 52 ± 6 39 ± 11 45 ± 14

of the elliptical areas identified in fluctuation images, ranging from −90◦ to 90◦. For spherical288

objects, the algorithm selects the major axis along the x-direction, i.e., 0◦ orientation. We289

found that the 0◦ orientation of convex areas dominates the distribution of orientations. In290

other words, all zero eccentricity objects (circular cross-section) plus some ellipses that may291

have 0◦ orientation (see Fig. 7A2-B2) dominate critical fluctuations very near Tc. We used292

the semilogarithmic axis again to emphasize that the contribution of orientations other than293

0◦ is below 1 %. The very low eccentricity combined with the high ratio of 0◦ orientation294

suggests that the fluctuation patterns are relatively homogeneous and mostly spherical very295

near above and below Tc.296

4.2 Spatiotemporal cross sections297

The phase separation dynamics that take place near Tc could be captured by the spatiotem-298

poral “waterfalls,” i.e., temporal stacks of single-pixel lines. The morphological properties299

identified in the previous section only capture a few features of critical fluctuations very near300

above and below the critical temperature.301

We determined the distribution of contiguous black pixels along the horizontal (spatial)302

direction of “waterfalls” shown in Fig. 2. Such a distribution gives information about the303

spatial size of fluctuations and is shown in Fig. 8A1-A2. For all microscopic images, the 1304

pixel = 3.1 µm. The “waterfall”’s spatial dimension statistics contain different information305

than the distribution of the areas of convex objects identified through morphology analysis. In306

the spatiotemporal images (see Fig. 2), we analyze the evolution of contiguous linear domains307

at the same location across all original images and their IMFs. While it is possible for a cross308

section of an image to contain the same information about the statistics of fluctuations as309

the whole image, such an ergodic assumption is only valid in the limit of a very large cross310

section. Due to the finite size of the cross section, i.e., a one-pixel line from each image, we311

expect slightly different power-law exponents for the spatiotemporal cross sections compared312

to the morphology analysis.313

All spatial distributions for all original images and their IMFs have the same general314

structure: they monotonically increase to a peak and then decay as a power-law (shown as315

straight-line patterns in a log-log plot of Fig. 8A1-A2). We fitted the spatial distribution data316

with a power-law over an adjustable range of distances that gave us the best goodness of fit317

with the maximum possible coefficient of determination. For example, for the original image318

in Fig. 8A1, the best range was 3 to 24 pixels; for IMF1, the range was 4 to 20 pixels; for319

IMF2 was 6 to 29 pixels, and for IMF3, it was 14 to 52 pixels.320

There are similarities between the spatiotemporal statistics (Table 3) and convex area321

statistics from morphology analysis (Table 1). In both cases, the power-law exponents increase322

from the original images as the IMF order increases. Such consistent behavior supports the323

ergodic hypothesis, i.e., the dynamics of fluctuations is the same whether we analyze the324

whole image using morphology measures or only a cross section as in the case of “waterfalls.”325

The second conclusion from the power-law exponents’ consistent trend is that the fractal326

hypothesis is supported by the existence of power-laws holds across all IMFs. We noticed327
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A1

A2

B1

B2

Fig. 8 Distributions of spatial (A1-A2) and temporal (B1-B2) fluctuation sizes. The spatial size of fluctuations
has a peak that depends on the IMF’s spatial scale (A1 for UP and A2 for DOWN). Spatial unit is 1 pixel
= 3.1 µm. After the peak, all distributions decay as power laws with quite close exponents (see Table 4).
The distribution of temporal correlations for all IMFs follows identical patterns with two different exponents:
a relatively small exponent for durations shorter than 0.4 s and a much more negative exponent for longer
correlation times (B1 for UP and B2 for DOWN). There were 25 frames per second

Table 3 The power law exponent of spatial distribution of objects in Fig. 8A1-A2. The distances are measured
in pixels with 1 pixel = 3.1 µm

original IMF1 IMF2 IMF3

UP −1.75 ± 0.04 −2.19 ± 0.08 −2.30 ± 0.07 −2.4 ± 0.1

DOWN −0.93 ± 0.05 −0.94 ± 0.10 −2.50 ± 0.05 −2.45 ± 0.06

in both the morphology analysis (Table 1) and the spatiotemporal cross sections (Table 3)328

that the exponents of the original images and IMF1 are very close, which suggests that the329

critical fluctuations are captured for the most part by the finest spatial scale of IMF1.330

There are also differences between UP and DOWN plateaus revealed by spatial statistics.331

For example, the power-law exponents of spatiotemporal cross sections for both the original332

and IMF1 in the UP region are about twice as large as the exponents for the DOWN region333

(Table 3). This shows that, although the fractal nature of fluctuations revealed by the power-334

laws is preserved, the DOWN region has a much smoother distribution of linear sizes. Another335

significant difference is that the power-law exponent increases from the original image to336

IMF1 only for the UP region (Table 1 and (Table 3), whereas for DOWN, the exponents are337

almost constant. This means that below Tc, both the original and IMF1 have similar spatial338

dynamics.339

The distribution of temporal correlations measured along the temporal axis (vertical)340

direction has completely different dynamics than the spatial correlation, as shown in Fig. 8B1-341
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Table 4 The power-law exponent of temporal distribution from Fig. 8B1-B2

original IMF1 IMF2 IMF3

UP (t < 0.4 s) −1.44 ± 0.04 −1.48 ± 0.02 −1.32 ± 0.03 −1.41 ± 0.08

UP (t > 0.4 s) −1.6 ± 0.1 −2.5 ± 0.3 −3.2 ± 0.4 −2.4 ± 0.3

DOWN (t < 0.4 s) −1.42 ± 0.03 −1.39 ± 0.03 −1.33 ± 0.04 −1.39 ± 0.06

DOWN (t > 0.4 s) −1.7 ± 0.12 −2.26 ± 0.10 −3.5 ± 0.2 −3.0 ± 0.4

B2. All IMFs have almost the same power-law distribution up to 0.4 s (the equivalent of 10342

video frames), and then the power-low exponent drops significantly (see Fig. 8B1-B2 and343

Table 4). The fact that there are two different exponents for the temporal correlation suggests344

that indeed the correlation time of fluctuations is best described by a double exponential345

[39,55,56]. The difference in the two exponents is clear when comparing the fitting for short346

durations t < 0.4 s against longer durations with t > 0.4 s for all IMFs (see Fig. 8B1-B2347

and Table 4). The temporal correlation exponent (Table 4) for short durations (below 0.4 s) is348

statistically identical both for the UP and the DOWN regions. Moreover, the exponents are349

almost constant across the original images and their IMFs. This suggests that fluctuations in350

the temporal statistics are not sensitive to spatial scale separation performed with the BEMD.351

The characteristic times of fluctuations decrease as t−1.4 for the original images.352

For longer correlation times (above 0.4 s), the distribution scales as t−1.7 and is no longer353

invariant to BEMD spatial decomposition. The increase in the power-law exponents with the354

IMF order indicates that larger fluctuations lose temporal correlation much faster than smaller355

clusters. As expected, the original image’s power-law exponents do not show such a large356

discontinuity because it lumps together multiple spatial and temporal scales (see Table 4).357

For this reason, in the DDM analysis of fluctuation images the correlation time of fluctuations358

is represented by a single power-law exponent [3,19–21,33,61,75,76].359

5 Conclusions360

The recent extension of the classical theory of fluctuations to non-equilibrium processes361

[76] showed that the temporal correlation of fluctuations could be directly obtained from362

fluctuation images. It can lead to experimental advances in measuring diffusion and viscos-363

ity coefficients. The information regarding the evolution and the scaling of the fluctuation364

correlation time is contained in the Intermediate Scattering Function (ISF). For pure fluid365

in thermal equilibrium, the ISF is a Gaussian with width proportional to the diffusion time.366

There are cases when ISF contains multiple time scales, and one approach for mitigating367

this issue has been the fitting of ISF with multiple exponentials to capture each characteristic368

time separately [3,61]. This approach allowed, for example, the separation of the thermal369

diffusivity coefficient from the mass diffusivity [3].370

Instead of investigating the fluctuations in Fourier space through their ISFs, we here carried371

out a direct space analysis of fluctuations. For this purpose, we used the BEMD, data-driven372

technique to decompose the spatial frequency components into an orthogonal set of Intrinsic373

Mode Function (IMFs). This method is suitable for analyzing nonlinear and non-stationary374

data, such as the thermal quench data that stepped through the critical temperature Tc in our375

microgravity experiment.376
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Different physical processes act over different spatial and temporal ranges. Very near the377

critical point of a phase transition, dynamical fluctuations reach macroscopic magnitude and378

overrule molecular size, shape, and interactions in dictating bulk behavior [22,78]. These379

fluctuations are generated by the nonlinear dynamics of classical critical fluids. Recent large-380

scale numerical simulations showed that when approaching the liquid-vapor critical point381

from the supercritical regime, T > Tc, the Lyapunov exponents associated with the phase382

space dynamics of molecules decrease monotonically [22]. This is due to the fact that crit-383

ical fluctuations imply structural organization as opposed to molecular chaos and dynamic384

instability. The Lyapunov exponents measure how quickly infinitesimally closed phase space385

points separate over time. Large Lyapunov exponents indicate more unstable phases space386

dynamics. As the system approaches Tc from above, the divergence of trajectories “slows387

down” and allows the formation of spatial regions in the system that will separate into coex-388

isting vapor and liquid phases below Tc.389

We found consistent power-laws across all spatial scales, which supports our hypothesis390

of critical fluctuations’ fractal nature. The morphology analysis showed that very near Tc, the391

fluctuating domains are mostly spherical with some anisotropy. Spatiotemporal cross sections392

showed that the distribution of contiguous domains also obeys free-scale power-laws near393

Tc that support the fractal hypothesis of critical fluctuations. The temporal correlation of394

fluctuations also follows a power-law with the same exponent across all spatial scales (for395

correlation times shorter than 0.4 s (10 video frames). This surprising result supports the396

hypothesis of a “slowing down” in the divergence of molecular trajectories [22] across all397

spatial scales to allow phase separation.398
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