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Composite adhesive bonded joints are widely used in various industrial and technological applications, including 
aerospace, electronics, biomedical, automotive, ship building and construction. In this paper, the attention is 
focused on layered structures consisting of two adherent beams bonded together by an adhesive layer. For such 
structures, a modeling approach based on the classical Timoshenko beam theory in conjunction with an adhesive 
model of imperfect interface is introduced. This imperfect interface approach, recently proposed by the authors 
in the contest of linear elastic adhesive and adherents materials, small strains and small displacements theory, 
models the asymptotic behavior of a thin interphase at higher orders for both the cases of hard and soft interface 
materials in a unified approach (Rizzoni et al., 2014). Accounting for higher order terms of the asymptotic ex-
pansions in the adhesive, the proposed approach generalizes simpler models based on the classical spring-type 
interface law or on the case of perfect contact between the adherent layers. 

The proposed methodology is used to evaluate stresses in two adhesive bonded joint configurations subjected 
to bending moment and transverse shear loading. Numerical simulations are produced and the results show good 
agreements with those obtained through finite element analysis.   

1. Introduction

Structural bonding has become an essential technological solution in
mechanical engineering. Whether in aeronautics or civil engineering 
(Balakrishnan and Seidlitz, 2018; Birman and Kardomateas, 2018; 
Shang et al., 2019), this solution is becoming the preferred choice 
because of the desire to lighten structures in order to save energy and 
simplify handling. This increased use requires a better understanding of 
the mechanical behavior of adhesives. 

Two aspects will be distinguished, the cohesive aspect of bonding 
related to the behavior of the adhesive per se and the adhesive aspect 
related to the behavior of the interface between the adhesive and the 
substrate. In this paper, we will focus on the cohesive behavior of ad-
hesives. The objective of this paper is to study and model the behavior of 
bonding in a mechanical system composed of beams glued in their axial 
direction. Different failure criteria are available to predict the joint 
strength, based on the stress analysis obtainable by a finite element 
analysis or a closed-form model. Finite element analysis are preferable 
for complex geometry and material properties. However, in many 
practical cases closed-form models for adhesive bonded composite joints 

are very desirable, because they provided fast and accurate analysis. The 
main problem in the numerical resolution of gluing problems comes 
from the thinness, and sometimes the low stiffness of the glue. A com-
plete finite element calculation requires extremely refined mesh sizes. 
One of the ways to reduce the computational cost of the analysis was 
already proposed in particular by the authors in previous works and 
consists of using simplified models to simulate the behavior of the glue 
(Lebon and Rizzoni, 2010, 2011; Rizzoni et al., 2014). There are many 
simplified models in the literature. The perfect interface model is 
obviously the simplest. Spring-type models are also widely used (Ben-
veniste and Miloh, 2001; Geymonat et al., 1999; Goland and Reissner, 
1944; Hashin, 2002; Klarbring, 1991). There is a wide literature 
exploiting beam theories in the analysis of adhesive joints (Ascione and 
Mancusi, 2012; Bennati et al., 2009; Cheng et al., 1991; Goland and 
Reissner, 1944; Jiang et al., 2017; Kanninen, 1974; Kondo, 1995; Luo 
and Tong, 2004; Olsson, 1992; Qiao and Wang, 2004; Su and Gao, 2014; 
Whitney, 1989; Williams, 1989; Wu and Jenson, 2011; Wu and Zhao, 
2013; Zou et al., 2013), just to cite a few. Other studies focus on 
obtaining composite beam theories via a rigorous asymptotic analysis, 
see e.g. (Serpilli and Lenci, 2008, 2012; Serpilli, 2014). 
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In this paper, a model of imperfect interface developed in the three- 
dimensional setting by the authors in a previous paper is applied (Riz-
zoni et al., 2014). Practically, the glue (a volume) is replaced by an 
elastic interface (a surface) that keeps in memory the main mechanical 
characteristics of the glue. A classical theory for obtaining this material 
interface is the method of matched asymptotic expansions. The standard 
result is that, if the material of the adhesive is soft, at the order zero of 
the asymptotic expansion the adhesive turns out to modeled by an 
elastic surface, across which the stress components are continuous and 
are related via a linear relationship to the jumps of the displacement 
vector field. In the literature, these transmission conditions are said to 
provide a spring-type interface model. If the material of the adhesive is 
hard, then the order zero of the asymptotic expansion returns the clas-
sical model of perfect interface, where both the traction and displace-
ment vector fields are continuous across the interface. 

For the interface model considered in this paper, the asymptotic 
expansion is performed up to the first order (the second term in the 
asymptotic expansion). This introduces a jump on both the displacement 
vector and the stress vector fields across the interface, corresponding to 
a model of imperfect interface (Lebon and Rizzoni, 2010, 2011; Rizzoni 
et al., 2014). The related transmission conditions turn out to be more 
complex than those of the perfect interface model or of the spring-type 
interface model, because they incorporate higher order terms in ε.

However, they are more general, including the two classical contact 
models as special cases. In addition, they avoid the need of a priori 
specification of soft or hard material for the adhesive. The presence of 
higher order terms in ε introduces, via the appearance of first and second 
derivatives of the displacements, a non-local character of the higher 
order interface model. This is expected to provide a better approxima-
tion of the behavior of a thin adhesive interphase when its thickness ε is 
still small but it tends to become more and more comparable with the 
thicknesses of the adherent beams, h±. A numerical evidence of this fact 
can be found in the example of a symmetric double cantilever beam 
given in Section 3.2. Fig. 11 shows that, as the ratio ε/ h± increases, the 
tangential stress predicted by the higher order interface model also in-
creases. On the contrary, for a symmetric double cantilever beam, the 
spring-type interface model always estimates the shear stress to vanish 
throughout the glue line, an indication that, for a more refined stress 
analysis, the higher order interface model considered in this paper 
provides better results. 

Another original result of the paper is the introduction of higher 
order terms in the Neumann boundary conditions. These extra terms, 
emerging at the first order in (Rizzoni et al., 2014), represent forces 
distributed at the adhesive-adherent interface boundary and arise from 
the presence of a boundary layer, cf. (Klarbring, 1991). In the present 
paper, these forces are make explicit and accounted for. For the example 
of the double cantilever beam given in Section 3.2, we numerically show 
that these higher order terms have to be taken into account when 
applying the higher order interface model. Indeed, when these 

additional terms are neglected, the axial forces in the adherent beams 
fail to satisfy Saint-Venant’s principle, cf. Fig. 12. 

The paper is organized as follows. Section 2 is devoted to the 
formulation of the problem. In particular, the main equations of the 
problem are presented, based on the Timoshenko beam model for the 
adherents and on the higher order interface model for the adhesive. For 
simplicity, the higher order interface model is specialized to the case of 
an isotropic adhesive, but other material symmetries could be investi-
gated. The equations governing the equilibrium of the composite and 
incorporating the higher order interface model can be easily numerically 
implemented in commercial programming platforms like MATLAB® or 
Mathematica. Nevertheless, in Section 2.4 we provide a strategy to 
obtain an analytical solution, allowing to obtain closed-form solutions 
for the interfacial (peel and shear) stresses. Closed-form solutions are 
very important and worthwhile being developed, because they can be 
useful as benchmark solutions for numerical analysis. 

In the third Section, two applications are analyzed. The first appli-
cation is the shear of two adherent beams made of different linear elastic 
materials and joined by a thin isotropic adhesive layer. Using the higher 
order interface model, we develop closed-form solutions for the stresses 
and the displacement fields and we compare them with the exact three- 
dimensional closed-form solution, available for this configuration. As a 
second application, a double cantilever beam, both in the balanced and 
unbalanced configurations, is considered. The interfacial stresses and 
displacements distributions are calculated numerically and validated 
with those obtained by a finite element analysis. For both applications, 
the role of the extra terms arising from the boundary layer is discussed. 
Finally, in Section 4, some conclusions and perspectives are given. 

2. Formulation of the problem and strategy solution

Consider two elastic beams of different materials, unequal thickness,
h+ and h−, same lateral width b and same length L (Fig. 1). The beams 
are joined by means of a elastic adhesive layer with thickness ε much 
smaller than the other dimensions. A three dimensional coordinate 
system is introduced with origin at the middle height of the adhesive and 
axis 2 aligned with the direction of the axes of the two beams. The 
composite structure may be subjected to distributed loads along its 
length, and constrained at the two extremities or, in alternative, sub-
jected to concentrated loads at the extremities. With reference to Fig. 1 
for notation, the kinematics of the adherent beams is described by the 
vectors u± = {u±1 , u±2 , u±3 }

T with 
u±

1 = 0

u±
2 = u± −

(
x3 ∓

h±

2

)
φ±

u±
3 = v±

(1)  

where u±, v± are the axial and transversal displacements of the beams 
centerlines, respectively, and φ± are the cross-sectional rotations; u±, v±
and φ± are function of the axial coordinate x2 ∈ [0, L]. In the above 
equations and throughout the derivations, the thickness of the adhesive 
layers is assumed to be much smaller than the thickness of the adherents, 
i.e. ε/h± << 1, thus, the distance of the centerlines of the beam with 
respect to the reference system has been approximated to h±/2. With 
this notation, the shear and peel deformation of the adhesive layer, [u]
and [v], are defined as the jumps of the displacement along the x2 and x3 
directions at the adherents-adhesive interfaces respectively, 

[u] = u+ +
h+

2
φ+ − u− +

h−

2
φ−, [v] = v+ − v−. (2) 

The strain tensor takes the form 

e
± = e±(i2 ⊗ i2) +

1

2
γ±(i2 ⊗ i3 + i3 ⊗ i2) (3) 

Fig. 1. Geometry of the assemblage with applied loads.  
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where i2, i3 are the unit vectors of the x2 and x3 axes, respectively. The 
non vanishing strain components are: 
e± = ũ

±
,2 − x3 φ±

,2

γ± = v±,2 − φ±
(4)  

where the subscript “,2” is taken to denote the spatial derivative with 
respect to x2, and 

ũ
± = u± ±

h±

2
φ± (5)  

is the displacement in the x2 direction of the points of the two beams at 
the interface. 

2.1. Governing equations for the adherents 

The adherent beams are assumed to be subjected to external hori-
zontal and vertical distributed loads q±2 and q±3 , respectively, acting on 
the top and on the bottom of the composite beams. The adherents are 
subjected to external actions concentrated at the end at x2 = 0, denoted 
F±2,0, F±3,0 and C±0 , and to external actions concentrated at the end at x2 =

L, denoted F±2,L, F±3,L and C±L , see Fig. 1. 
In (Klarbring, 1991; Rizzoni et al., 2014) it is shown that at the order 

zero of the asymptotic expansion the adhesive is modeled by a 
spring-type interface, i.e. an elastic layer across which the stress com-
ponents are continuous. When higher order terms of the asymptotic 
expansions are taken into account, the stress components are no longer 
continuous, cf. (Lebon and Rizzoni, 2010, 2011; Rizzoni et al., 2014). 
The corresponding situation is represented in Fig. 2, where τ+, σ+ (τ−,
σ−) are taken to denote the shear and the normal stresses acting on the 
bottom (top) of the adherent + (− ), respectively. Based on the free body 
diagrams shown on the right side of Fig. 2, where infinitesimal elements 
at x2 with length dx2 each are represented, the force and moment bal-
ances result in the following equilibrium equation: 
N±

,2 + q±
2 ∓ τ±b = 0,

T±
,2 + q±

3 ∓ σ±b = 0,

M±
,2 + T± ∓

h±

2

(
q±

2 ± τ±b
)
= 0,

(6)  

where N±,T± and M± are the axial force, the shear force and the bending 

moment in each beam, respectively, b is the specimen width. The axial 
force, the shear force and the bending moment are related to the kine-
matic parameters by the classical constitutive equations: 
N± = A±u±

,2,

T± = C±
(

v±,2 − φ±
)
,

M± = D±φ±
,2.

(7) 

Here, A±,C± and D± are the extensional, shear and bending stiff-
nesses of the adherents, respectively (no bending-extension coupling is 
present here, as each beam is homogeneous and the kinematics is 
described from the centerline of the two beams) (Jones, 1999). 

2.2. Interface laws for thin elastic adhesives 

In (Lebon and Rizzoni, 2010, 2011; Rizzoni et al., 2014) the equi-
librium problem of two bodies joined by a “soft” or a “hard” linear 
elastic thin adhesive interphase is studied; a soft adhesive is defined by 
the condition that its elasticity coefficients rescale like the adhesive 
thickness, ε, while for a hard adhesive the elasticity coefficients are in-
dependent of ε. In the limit of a vanishing thickness, ε→0, a spring-type 
interface law is classically obtained for a soft material, while perfect 
contact, i.e. the continuity of the displacement and traction vectors, is 
found for a hard material (cf. also (Benveniste and Miloh, 2001; Gey-
monat et al., 1999; Goland and Reissner, 1944; Hashin, 2002; Klarbring, 
1991)). When the thickness of the adhesive, ε, is not so small, higher 
order terms in the asymptotic expansions with respect to ε have to be 
considered in the derivation of the interface law. In (Lebon and Rizzoni, 
2010, 2011; Rizzoni et al., 2014), different higher order interface 
models for soft and hard materials are calculated using two methods: the 
matched asymptotic expansion technique based on the strong formula-
tion of classical continuum mechanics equations (compatibility, 
constitutive and equilibrium equations) and an energy method based on 
the minimization of the potential energy. In the end, it can be shown that 
it is possible to obtain a condensed form of transmission conditions 
summarizing both the orders zero and one of the two cases of soft and 
hard interface materials in only one couple of equations. The result is an 
implicit formulation of transmission conditions for the adhesive inter-
face, prescribing both the jumps of the traction and displacement vector 
fields at the interface, cf. Eqns. (128, 129) in (Rizzoni et al., 2014). In the 
present context, where all fields are independent of x1, the implicit 
formulation can be simplified as follows: 

Fig. 2. Free body diagrams of the two adherent beams (left), and of two infinitesimal elements of the beams (right).  
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[σi3] = − ε
(

K
32
(
K

33
)−1

〈σ,2i3〉+
(

K
22 −K

32
(
K

33
)−1

K
23
)

〈u,22〉
)
, (8)  

[u] = ε
(
K

33
)−1(

〈σi3〉−K
23 < u,2 >

)
, (9)  

where 
[f (x) ] := (f (x, 0+) − f (x, 0−) ),

< f (x) >:= 1
2
(f (x, 0+) + f (x, 0−) )

(10)  

are taken to denote the jump and the average of the quantity f(x) across 
the interface, respectively. 

Notably, the above interfacial relations (8), (9) do not present the 
additional terms arising from the matching conditions (Dumout et al., 
2018, Eqns. 12–23]. In fact, it has been shown in (Dumont et al., 2018) 
that the matching terms should not be considered when dealing with 
thin beams, as in the present model. 

Denoted with bijkl, i, j, k, l = 1, 2,3, the elasticity coefficients of the 
adhesive material, the matrices Kjl in (8), (9) are defined as: 
(
Kjl

)
ki
: = bijkl. (11) 

In view of the symmetry properties of the elasticity tensor b, the 
matrices Klj have the property that Kjl = (Klj)T, with j, l = 1,2, 3.

In (Lebon and Rizzoni, 2011; Rizzoni et al., 2014), it has been shown 
that, for an isotropic and homogeneous adhesive material with Lamé 
coefficients λ,μ, the matrices Kjl are given by 
K jj =(2μ+ λ) ij ⊗ ij + μ (il ⊗ il + ik ⊗ ik), j∕= l ∕= k (12)  

K jl = μ
(
ij ⊗ il

)
+ λ

(
il ⊗ ij

)
, j ∕= l, (13)  

which yield in particular 

K
22 =

⎛
⎝

μ 0 0

0 2μ + λ 0

0 0 μ

⎞
⎠,K33 =

⎛
⎝

μ 0 0

0 μ 0

0 0 2μ + λ

⎞
⎠,

K
23 =

⎛
⎝

0 0 0

0 0 μ

0 λ 0

⎞
⎠,K

32 =

⎛
⎝

0 0 0

0 0 λ

0 μ 0

⎞
⎠.

(14) 

In the present context of adherent beams, where only the normal and 
tangential stresses are taken into account, cf. Fig. 2, jumps and averages 
of the traction and displacement fields in (8,9) reduce to 

[σi3] =

⎧
⎨
⎩

0

[τ]
[σ]

⎫
⎬
⎭, < σi3 >=

⎧
⎨
⎩

0

< τ >
〈σ〉

⎫
⎬
⎭,

[u] =

⎧
⎨
⎩

0

[u]
[v]

⎫
⎬
⎭, < u >=

⎧
⎨
⎩

0

< u >
〈v〉

⎫
⎬
⎭,

where [τ], [σ], 〈τ〉, < σ > and 〈v〉 are defined according to (10), [u] and [v]
are given by (2) and < u > is defined as the average of the axial 
displacement across the adhesive interface as follows: 

〈u〉 : =
1

2
(u+ + u−)+

h+

4
φ+ −

h−

4
φ−. (16) 

Substituting (14) and (15) into (8),(9), one obtains the following 
interfacial relations: 

[τ] = − ε
λ

(λ + 2μ)
< σ,2 > − 4εμ

(λ + μ)

(λ + 2μ)
< u,22 > (17)  

[σ] = − ε < τ,2 > (18)  

[u] =
ε

μ
< τ > −ε < v,2 > (19)  

[v] =
ε

(λ + 2μ)
< σ > − ε

λ

(λ + 2μ)
〈u,2〉, (20)  

where we recall that the subscript “, 2” is taken to denote the spatial 
derivative with respect to x2. To illustrate the interfacial relations (17)– 

(20), it is convenient to solve for τ± and σ±, in order to rewrite them into 
the following form: 

τ± =
μ

ε
[u] + μ〈v,2〉∓

λ

2

[
v,2

]
∓

ε

2
(λ+ 2μ)< u,22 > , (21)  

σ± =
(λ + 2μ)

ε
[v] + λ< u,2 > ∓

μ

2

[
u,2

]
∓ ε

μ

2
〈v,22〉. (22) 

These relations imply that, due to zero and first order terms in ε, the 
interfacial stresses are not continuous, i.e. τ+ ∕= τ− and σ+ ∕= σ−. Note 
also that the terms in ε−1 are the standard ones appearing in the spring- 
type interfacial model. Indeed, if the adhesive material parameters of 
the adhesive, λ and μ, are taken to rescale like ε, as classically assumed 
for a soft adhesive, λ = λ̂ε and μ = μ̂ε, then the interfacial relations (21), 
(22) reduce to the spring-type interface equations, up to neglecting first 
and second order terms in ε :

τ± = μ̂[u], (23)  

σ± =(λ̂ + 2μ̂)[v]. (24) 
On the other hand, a hard adhesive is characterized by λ and μ in-

dependent of ε. Substituting into (21) and (22) and taking the limit ε→0,
the relations of a perfect interface are recovered: 
[u] = 0, (25)  

[v] = 0. (26) 
The above discussion indicated that the interfacial relations (21), 

(22) include the classical contact models of spring-type interface and 
perfect interface as special cases. In fact, they are more general, in the 
sense that, avoiding the need of a priori specification of soft or hard 
material, they describe the behavior of an elastic surface incorporating 
higher order terms in ε. Indeed, in (21) and (22), the zero and first order 
terms in ε introduce, via the presence of first and second derivatives of 
the displacements, a non-local character of the interfacial relations. This 
is expected to introduce a better approximation of the behavior of a thin 
interphase when its thickness ε is still small but it tends to become more 
and more comparable with the thicknesses of the adherent beams, h±. A 
numerical evidence of this fact will be given in the example of a sym-
metric double cantilever beam given in Section 3.2. In particular, Fig. 11 
shows that, as the ratio ε/h± increases, the tangential stress predicted by 
(21) and (22) increases. On the contrary, for a symmetric double 
cantilever beam, the spring-type interface always estimates the shear 
stress to vanish throughout the glue line, an indication that, for a more 
refined stress analysis, the higher order interface model provided by 
(21) and (22) gives better results. 

2.3. Emerging forces at the adhesive-adherent interface boundary 

The zero order solution, classically stated as spring-type or perfect 
contact transmission conditions, fails to describe the occurrence of a 
boundary layer, which is instead correctly predicted by an asymptotic 
analysis taking into account higher order terms, cf. (Klarbring, 1991; 
Rizzoni et al., 2014). The analysis developed in (Rizzoni et al., 2014) 
reveals the emergence of non-equilibrated stress resultants, scaling like 
ε, at the lateral boundary of the adhesive (cf. (Qiao and Wang, 2004, 
Eqn. (119)]): 

F
*
: = ± ε

(
K

32
(
K

33
)−1

〈σi3〉+
(

K
22 −K

32
(
K

33
)−1

K
23
)
< u,2 >

)
. (27) 

In (27), the plus sign applies at x2 = L, and the minus sign at x2 = 0.
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Note that, when ε goes to zero, the forces (27) vanish, indicating that 
these terms are lost at zero order. Substituting (14) and (15) into (27), 
one obtains 

F
* = ±

⎧
⎪⎪⎨
⎪⎪⎩

0

εb
λ

(λ + 2μ)
< σ > + 4εbμ

(λ + μ)

(λ + 2μ)
< u,2 >

εb〈τ〉

⎫
⎪⎪⎬
⎪⎪⎭
. (28) 

Using the relations (21) and (22), the forces F* can be rewritten as 
F

* = − F
+,* − F

−,* at x2 = 0, (29)  

F
* = + F

+,* + F
−,* at x2 = L, (30)  

with 

F
±,* =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0

±εbλv± +
εb

4
(λ + 2μ)

(
2u±

,2 ± h±φ±
,2

)

bμ

(
± u± +

h±

2
φ± +

ε

2
v±,2

)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (31) 

As shown in (Klarbring, 1991), in order to take into account the 
presence of the forces (31) on the lateral boundary of the adhesive, 
complementary terms should be added to the classical asymptotic ex-
pansions of the stress and displacement fields. For the model proposed in 
this paper, we assume that the extra forces (31) arising from the 
boundary layer are applied at the two extremities of the adhesive layer. 
This leads to modify the Neumann boundary conditions at the boundary 
of the adherent beams in order to equilibrate the forces (31). In partic-
ular, the Neumann boundary conditions are modified as follows: 
N±(0) = −F±

2,0 − F
±,*
2 (0), N±(L) = +F±

2,L − F
±,*
2 (L),

T±(0) = −F±
3,0 − F

±,*
3 (0), T±(L) = +F±

3,L − F
±,*
3 (L),

M±(0) = −C±
0 − C±,*(0), M±(L) = +C±

L − C±,*(L),

(32)  

where the additional terms 

F
±,*
2 (0)= ± εbλv±(0) +

εb

4
(λ+ 2μ)

(
2u±

,2(0)± h±φ±
,2(0)

)
, (33)  

F
±,*
3 (0)= bμ

(
± u±(0)+

h±

2
φ±(0)+

ε

2
v±,2(0)

)
, (34)  

C±,*(0)= ± F
±,*
2 (0)

(
h±

2
+

ε

2

)
(35)  

F
±,*
2 (L)= ± εbλv±(L) +

εb

4
(λ+ 2μ)

(
2u±

,2(L)± h±φ±
,2(L)

)
, (36)  

F
±,*
3 (L)= bμ

(
± u±(L)+

h±

2
φ±(L)+

ε

2
v±,2(L)

)
, (37)  

C±,*(L)= ± F
±,*
2 (L)

(
h±

2
+

ε

2

)
, (38)  

are directly given by (31) for the components along the x2 and x3 di-
rections and by their moments about the beams axes for the torques 
C±,*(0) and C±,*(l).

Dirichlet boundary conditions are unaffected by the presence of the 
boundary layer. In other words, the displacement boundary conditions 
on axial and cross-sectional displacements, and rotations are the clas-
sical ones for the beam theory, and we do not expect them to include any 
terms arising from (27). The extra forces (27) arising from the boundary 
layer have to be taken into account when considering the higher order 
interfacial relations (21) and (22). This will be made clear in the 
example of the double cantilever beam given in Section 3.2. As shown by 

Fig. 12, if the additional terms (33)–(38) are neglected, then the axial 
forces N± fail to satisfy Saint-Venant’s principle. As a final remark, we 
note that in a three-dimensional setting conditions (29) and (30) have 
been found to be useful to write a weak formulation taking into account 
the imperfect interface equations (8) and (9), cf. (Dumont et al., 2014, 
2018; Serpilli et al., 2019). 

2.4. Solution strategy 

The equilibrium equation (6) together with the constitutive equation 
(7), the transmission conditions (21) and (22), the Neumann boundary 
conditions (32) and Dirichlet boundary conditions can be easily 
numerically implemented in commercial programming platforms like 
MATLAB® or Mathematica. Nevertheless, in this Section we provide a 
strategy to obtain a closed-form solutions for the interfacial (peel and 
shear) stresses. Closed-form solutions are very important and worth-
while being developed, because they are useful as benchmark solutions 
for numerical analysis. The first step of the strategy is to reduce the 
number of unknowns and get a smaller set of equations. In particular, 
following (Bennati et al., 2009), we aim at reducing to a set of equations 
whose unknowns are the four interfacial stresses σ± and τ±. To do so, we 
substitute equation (7) into (6) to obtain u±

,22, φ±
,222 and v±,2222 in terms of 

the interfacial stresses and their derivatives. The resulting equations are 
then substituted into (17)–(20). After some transformations, omitted 
here for the sake of brevity, the following system of four coupled 4th-or-
der ODEs is obtained: 
η+σ+

,22 + η−σ−
,22 + ζ+σ+ + ζ−σ− + m = 0, (39)  

θ
(

σ−
,2222 + σ+

,2222

)
+ κ+σ+

,22 + κ−σ−
,22 + ρ+σ+ + ρ−σ− + n= 0, (40)  

τ−,2 =α−σ− + β−σ+ − γ
(

σ−
,22 + σ+

,22

)
− f , (41)  

τ+,2 = β+σ− + α+σ+ + γ
(

σ−
,22 + σ+

,22

)
+ f . (42) 

In the above equations, the coefficients f ,m and n are related to the 
distributed loads, as reported in the Appendix. 

The other coefficients, α±, β±, γ, ζ±, η±, θ, κ± and ρ±, take into ac-
count the geometry and stiffness of the beams (h±, A±, B±, C± ), and the 
geometry and elasticity of the adhesive layer (ε, λ, μ), see the Appendix. 

We look for a solution of equations (39) and (40) in the form of the 
sum of the solution to the associated homogeneous system and a 
particular solution σ±

* . In case of spatially homogeneous material con-
stants, the solution to the associated homogeneous system is written as 

σ±(x2)=
∑6

i=1

F±
i exp(λix2), (43)  

where λ1, λ2,…λ6 are constants. Substituting (43) into the homogeneous 
system associated to (39), (40), an eigenvalue problem is obtained and, 
consequently, the eigenvalues λi, i = 1,…,6, must satisfy the charac-
teristic equation 
θ(η−−η+)λ6+(θ(ζ−−ζ+)+κ+η−−κ−η+)λ4+(κ+ζ−−κ−ζ++ρ+η−−ρ−η+)λ2

+(ρ+ζ−−ρ−ζ+)=0,

(44)  

and the constants F±1 , F±2 ,…F±6 are found to satisfying the six following 
(eigenvectors) condition: 
(
η+λ2

i + ζ+
)
F+

i +
(
η−λ2

i + ζ−
)
F−

i = 0, i= 1,…6. (45)
By substituting equation (43) into (41),(42) and integrating, we 

obtain the solution for the tangential stress, 
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τ±(x2)=
∑6

i=1

G±
i exp(λix2)+G±

7 + τ±* (x2) (46)  

where τ±* is a particular solution incorporating σ±
* and the primitive of f ,

G±
i , i = 1,…7, are integration constants. In particular, the constants G±

i ,
i = 1,…6, satisfy the conditions: 
λiG

+
i −

(
β+F−

i +α−F+
i

)
− γλ2

i

(
F−

i +F+
i

)
= 0, i= 1,…6, (47)  

λiG
−
i −

(
α−F−

i + β−F+
i

)
+ γλ2

i

(
F−

i +F+
i

)
= 0, i= 1,…6. (48) 

Because λi, i = 1,…,6, can be calculated using the characteristic 
equation (2.4) and the integration constants F−

i ,G±
i , i = 1,…,6, are 

known if the constants F+
i , i = 1,…,6, the stresses σ± and τ± are 

completely determined up to the calculation of the integration constants 
F+

i , i = 1,…,6. To calculate the latter ones, it is necessary to further 
integrate the equilibrium equation (6), and to use the constitutive 
equation (7), the interfacial equations (17)–(20) and the boundary 
conditions (32) in a not straightforward way. The procedure is described 
in the following. 

First, the internal forces are calculated. They can be obtained by 
substituting the expressions for the interfacial stresses (43) and (46) into 
the equilibrium equations of the two beams (6) and then by integrating 
them with respect to x2. This integration gives the analytical expressions 
for the internal forces, where six new integration constants, G±8 ,G±9 ,G±10 
appear. Next, substituting the expressions for the internal forces into the 
constitutive equation (7) and integrating with respect x2, the analytical 
expressions for the displacements can be deduced. This process gener-
ates six more integration constants, G±11,G±12,G±13.

To summarize, up to now there are 38 integration constants to be 
determined (F±

i , i = 1,…6, and G±
j , j = 1,…13), but the 18 conditions 

(45), (47), (48) together with the twelve the boundary conditions (the 
natural boundary conditions (32) or analogous essential boundary 
conditions prescribing the displacements or mixed boundary conditions) 
appear insufficient because they consist of only 30 equations. In fact, by 
introducing the expressions for the interfacial stresses and displace-
ments, obtained by integration, into the interfacial relations (17)–(20), 
additional relations between the constants can be found, only 8 of which 
are linearly independent. These 8 relations, together with the 30 con-
ditions cited above, allow to finally calculate the 38 integration con-
stants and thus to completely solve the problem. 

In the next Section, we illustrate the solution strategy by means of the 
simple example of the shear of a composite block. For this example, the 
analytical solution calculated with the proposed composite beam model 
is compared with the exact analytical solution obtained in the frame-
work of linear elasticity. 

3. Model validation and numerical examples

In this Section, two examples are presented to validate the model
proposed in this paper. 

The first example is the shear of a composite block, for which the
closed form solution of the full three-dimensional problem is available 
and thus directly comparable with the approximated solution obtained 
by using the composite beam model. In (Lebon and Rizzoni, 2010; 
Rizzoni et al., 2014) the closed form solution of the full 
three-dimensional equilibrium problem of a composite block under 
shear had already been compared with the approximated solution ob-
tained by solving the three-dimensional equilibrium problem of two 
adherents in contact through soft and hard interface models for the 
adhesive. In Subsection 3.1, an original solution for a composite beam 
under shear is presented. The solution is given by simple shears of the 
two beams superimposed to a relative horizontal translation mimicking 
the shear of the adhesive layer. In the adherents, this solution correctly 
reproduces the corresponding analytical solution of the 
three-dimensional equilibrium problem of the composite block. 

As a second example, the model is applied to the numerical analysis 
of a double cantilever beam, both in balanced and unbalanced config-
urations. As verification, interface stresses and displacements are ob-
tained by three different methods: the present composite beam model 
based on the higher order interface equations (21) and (22); a composite 
beam model based on the classical spring-type interface equations, (23) 
and (24); a finite element analysis (FEA). 

3.1. Shear of a composite block 

The geometric and load configuration of a composite beam under 
shear is illustrated in Fig. 3. The upper and lower beams are loaded by 
uniform load of intensity q distributed along the horizontal direction. To 
prevent rigid body motions, the lower beam is constrained by two 
supports. Concentrated vertical forces of intensity qh+ are applied at the 
two ends of the upper beams. In the boundary conditions (32), the 
additional terms arising from the boundary layer are initially neglected. 
Their effect on the equilibrium solution of the composite will be dis-
cussed at the end of this Section. 

The load configuration depicted in Fig. 3 models the load distribu-
tion of a composite block under shear, whose exact analytical solution is 
available in the framework of linear elasticity and it is described in 
(Lebon and Rizzoni, 2010; Rizzoni et al., 2014). For the configuration of 
Fig. 3, we have q±2 = ±q and q±3 = 0. Thus, f ,m, n = 0 and system (39)– 

(42) becomes homogenous. Given the simple nature of the shear prob-
lem, we rely on the physical intuition in prescribing the natural choices 

τ± =
q

b
, σ± = 0, (49)  

N± = 0, (50) 

Fig. 3. Composite beam under shear load.  
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T± = qh± (51)  

M± = 0, (52)  

which identically verify system (39)–(42) and the equilibrium equation 
(6). In terms of the solution strategy described in the previous Section, 
one can identify the following integration constants 
F±

i = 0 = G±
i , i = 1,…6, (53)  

G±
7 =

q

b
, (54)  

G±
8 = 0, G±

9 = qh±, G±
10 = 0. (55) 

Substituting the relations (49)–(52) into the constitutive equation (7) 
and integrating, the following expressions for the displacement fields 
can be obtained: 
u± =G±

11, (56)  

φ± =G±
12, (57)  

v± =

(
qh±

C±
+G±

12

)
x2 + G±

13, (58)  

where G±11,G±12 and G±13 are six more integration constants. To calculate 
the integration constants, we take into account the boundary conditions. 
The presence of two supports in the lower adherent imposes the 

vanishing of the following displacement components: 
u−(0)= 0, v−(0) = 0, v−(L) = 0. (59) 

The remaining (natural) boundary conditions are 
N+(0)= 0, T+(0) = qh+, M+(0) = 0, (60)  

M−(0)= 0, (61)  

N+(L)= 0, T+(L) = qh+, M+(L) = 0, (62)  

N−(L)= 0, M−(L) = 0, (63)  

where forces and torques arising from the boundary layer have been 
neglected. 

Most of the boundary conditions are identically satisfied, the others 
give 
G−

11 = 0, (64)  

G−
12 =

qh−

C−
, (65)  

G−
13 = 0. (66) 

The remaining three integration constants, G+
11,G+

12 and G+
13, are 

determined through three additional conditions, which can be obtained 
by substituting the expressions (56)–(58) together with (49) into the 
interfacial relations (17)–(20). We obtain the two equations 

G+
11 +

h+

2
G+

12 −
q(h−)2

2C−
=

qε

μb
− ε

(
qh+

C+
+G+

12

)
, (67)  

(
qh+

C+
+G+

12

)
x2 +G+

13 = 0, (68)  

which have to be satisfied for each x2 in (0, L), giving the conditions 

G+
11 =

qε

μb
+

q(h+)2

2C+
+

q(h−)2

2C−
, (69)  

Fig. 4. a) double cantilever beam specimen in the symmetric FIT configuration (S-FIT), and b) in the asymmetric FIT configuration (A-FIT).  

Table 1 
Geometrical parameters of the symmetric (S-FIT) and asymmetric (A-FIT) dou-
ble cantilever beam configurations studied in the numerical simulations.  

Quantity Symbol S-FIT A-FIT Unit 
Length of the support beams a 200.0 200.0 mm 
Width of the beams b 12.0 12.0 mm 
Length of adhesive L 50.0 50.0 mm 
Height of upper beam h+ 4.6 4.6 mm 
Height of lower beam h− 4.6 5.6 mm 
Thickness of the adhesive ε 0.1 0.1 mm  

Table 2 
Adhesive and adherents elastic properties assumed in the numerical study.  

Property Symbol Adherent 
Aluminum 

Adhesive 1 
Scotch-WeldTM 3M 

Adhesive 2 
Araldite ® 

Adhesive 3 
Sikadur ® −30 

Unit 

Young’s modulus E 70.0 0.342 4.13 12.8 GPa 
Poisson’s ratio ν 0.33 0.43 0.41 0.29 –
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G+
12 = −

qh+

C+
, (70)  

G+
13 = 0. (71) 

Substituting the latter expressions into (56)–(58) together with (64)- 
(66) gives 

u+ =
qε

μb
+

q(h+)2

2C+
+

q(h−)2

2C−
, (72)  

u− = 0, (73)  

φ± = −
qh±

C±
, (74)  

v± = 0. (75) 
This solution corresponds to a vanishing deformation of the lower 

beam, and to a shear deformations of amount q(h−)2
2C− + q(h−)2

2C− + qε

μb in the 
upper beam, the term qε

μb being the contribution of the adhesive layer. The 

Fig. 5. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 1 in the symmetric S-FIT configu-
ration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 1 in the symmetric S-FIT 
configuration. 

8



expressions (72)–(75), substituted back into (1), yield the same solution 
obtained for the shear of a composite block in the more general context 
of three-dimensional linear elasticity, up to rigid motions and up the 
choice C± = μ±bh±, with μ± the shear moduli of the materials of the 
adherents (Lebon and Rizzoni, 2010, Eqn. (48)]. 

Finally, substitution of (72)-(75) into the expressions (33)–(38) of 
the forces arising from the boundary layer gives 
F*

2(0)=F*
2(L) = 0, (76)  

F*
3(0)=F*

3(L) = qε. (77) 
The forces (77) correspond to the force resultants arising from the 

tangential stress acting on the lateral surface of the adhesive. Because 
the approximated solution (72)-(75), calculated without taking into 
account the boundary layer, correctly reproduces the exact three- 
dimensional solution in the adherents for the shear of the three-layer 
composite block, we are led to conclude that the boundary layer has 
only a local effect for this loading case. 

Fig. 6. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 1 in the asymmetric A-FIT 
configuration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 1 in the asymmetric A- 
FIT configuration. 
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3.2. Double cantilever beam 

The double cantilever beam specimen is widely used to test the 
mixed mode fracture toughness of adhesive joints. Recently, Bui et al. 
(2018) have proposed an original test, the Flexible Initiation Test (FIT), 
designed to characterize fracture initiation in mode I and decrease 
scattering in fracture initiation load measurements. Fig. 4 shows the 
DCB specimen in the symmetric FIT configuration and loading. In the 
configuration, deformable support beams are bonded to the composite 
body composed of adherents and adhesive. The presence of the (long) 
support beams has been experimentally proven to reduce the scattering 

of the fracture initiation load. 
In this Section, six different configurations are analyzed: three 

symmetric configurations (S-FIT) and three asymmetric configurations 
(A-FIT), with geometrical and material parameters listed in Tables 1 and 
2. The geometrical parameters, shown in Fig. 4 and indicated in Table 1,
have been chosen according to the numerical study and the experi-
mental validation performed in (Bui et al., 2018). The support beams 
and the adherents are chosen to be composed of the same material, 
aluminum. 

Three different materials have been considered for the adhesive: 

Fig. 7. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 2 in the symmetric S-FIT configu-
ration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 2 in the symmetric S-FIT 
configuration. 
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• Scotch-Weld™ 3M 2216 B/A, a ductile epoxy adhesive, denoted as
“adhesive 1”, characterized by a low elastic modulus, 0.342 GPa,
about two orders of magnitude lower than the elastic modulus of the
adherents (70 GPa for aluminum);

• Araldite ® AV138M-1/Hardener HV998, denoted as “adhesive 2”, a
brittle epoxy adhesive with an elastic modulus of 4.13 GPa, about
one order of magnitude lower than the elastic modulus of the
adherents;

• Sikadur ®-30, denoted as “adhesive 3”, an adhesive for bonding
reinforcement with an elastic modulus of 12.8 GPa, comparable to
the elastic modulus of the adherents.

In the simulations presented below, the thickness of the adhesive is
fixed and equal to 0.1 mm. 

The efficiency of the composite beam model based on higher order
interface equations proposed in the present paper is tested against FEA, 
as the adhesive becomes stiffer (i.e. going from adhesive 1 to adhesive 

Fig. 8. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 2 in the asymmetric A-FIT 
configuration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 2 in the asymmetric A- 
FIT configuration. 
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3). For comparison, a composite beam model based on the classical 
spring-type interface equations has also been considered. 

The equations of the composite beam model, (6), (7) coupled with 
the higher order transmission conditions (21), (22) have been imple-
mented in Matlab™ (Release2018a), together with the following 
boundary conditions appropriate for the double cantilever beam model: 
u±(0) = 0, N±(L) = F

±,*
2 (L),

v±(0) = 0, T±(L) = ±P + F
±,*
3 (L),

φ±(0) = 0, M±(L) = ±Pa + C±,*(L),

(78)  

where F±,*
2 (L), F±,*

3 (L), and C±,*(L) are the loading terms arising from the 
boundary layer (cf. Subsection 2.3). In addition to the beam model with 
the higher order transmission condition, equations (6) and (7), com-
plemented by the boundary conditions (78), have been implemented in 
Matlab™ with the classical spring-type interface equations 23 and 24. In 
both cases, higher order or spring-type interface equations, the load 
applied to the cantilever arms has been taken equal to P = 10 MPa. 

Note also that, in the plane stress case, the Lamé constants λ and μ 

utilized in the interfacial equations 23 and 24 or (21), (22) are related to 

Fig. 9. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 3 in the symmetric S-FIT configu-
ration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 3 in the symmetric S-FIT 
configuration. 
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the Young modulus and the Poisson ratio as follows: 

λ=
Eν

(1 − ν)2
, μ=

E

2(1 + ν)
. (79) 

The stress and displacement data calculated with the solutions of the 
composite beam model have been compared with the results obtained by 
a finite element analysis, performed using the commercial finite element 
software COMSOL™ Multiphysics 3.5. The Plane Stress - Structural 
Mechanics Module and triangular mesh elements have been utilized, 
with a minimum number of 8 elements through the adhesive thickness. 

The FE discretization is carried out using Lagrange - Quadratic trian-
gular elements, with 137298 nodes and 1096894 degrees of freedom. 

Variations of the interfacial normal and shear stresses, and interfacial 
axial and transversal displacements with the distance from the left 
(built-in) edge are plotted in Figs. 5–10. The Figures present interfacial 
(peel and shear) stresses and the interfacial (axial and transversal) dis-
placements along the three considered types of adhesive (1, 2 and 3) 
calculated with three different methods: the composite beams with 
higher order interface equations; the composite beams with the classical 
spring-type interface equations; the finite element analysis. Figs. 5 and 6 

Fig. 10. Top figure: normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 3 in the asymmetric A-FIT 
configuration. Bottom figure: axial (left) and transversal (right) displacements at the upper and lower interfaces for a composite with adhesive 3 in the asymmetric A- 
FIT configuration. 
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Fig. 11. Effect of the adhesive thickness on the normal (left) and tangential (right) stresses at the upper and lower interfaces for a composite with adhesive 2 in the 
symmetric S-FIT configuration. 

Fig. 12. Distributions of axial forces (left), shear forces (middle) and bending moments (left) for a composite with adhesive 2 in the symmetric S-FIT configuration. 
The different curves refer to three different models: the spring-type interface model; the higher order interface model implemented without taking into account the 
boundary layer; the higher order interface model in the presence of the boundary layer. 
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present the interfacial stresses and displacements in adhesive 1 for the 
symmetric (S-FIT) and asymmetric (A-FIT) configurations, respectively. 
Figs. 5 and 6 show that all the three methods agree very well for the 
whole range of overlap. The curves for the peel stress and the axial and 
transversal displacements calculated with classical spring-type interface 
model and the imperfect interface model display very small differences, 
except for the shear stress distribution for the symmetric configurations. 
Indeed, the shear stress turns out to vanish in the model with the spring- 
type interface equations, but it is not vanishing and correctly predicted 
by the beam model with higher order interface equations, showing the 
same trend as FEA (cf. top right plots in Figs. 5 and 6). In Figs. 7–9, 10 
similar trends can be observed for the symmetric and asymmetric con-
figures with adhesives 2 and 3, respectively. By comparison of the 
stresses distributions depicted in Figs. 5–10, it can be concluded that 
both peel and shear stresses increase slightly with increasing elastic 
modulus of the adhesive layer, for the parameters utilized in this study. 
An inverse trend can be observed for the displacements distributions, as 
expected. In other words, more compliant adhesive layers undergo 
larger deformations to accommodate the different deformations of the 
two adherents, therefore decreasing the interfacial stresses. 

Fig. 11 illustrates the dependence of the normal and tangential 
interfacial stresses on the adhesive thickness ε for the case of adhesive 2 
in the S-FIT configuration. The interfacial stress components are calcu-
lated using the spring-type model and the proposed higher order contact 
model for three different values of the adhesive thickness ε : 0.1 mm, 
0.05 mm and 0.01 mm. The results shown in Fig. 11 indicate that for the 
normal stress there is almost no difference between the spring-type and 
the higher order interface model, at least for the set of data considered in 
the example. However, significant differences can be appreciated for the 
tangential stress. Contrary to the spring-type model which always pre-
dicts a vanishing shear stress along the glue line, the higher order con-
tact model takes into account a non-vanishing distribution of the shear 
stress, increasing as the adhesive thickness increases. Note that, because 
the adherents’ thicknesses h± are kept fixed (4.6 mm), the numerical 
results actually illustrate the dependence of the interfacial stresses on 
the ratio ε/h±. Then, one concludes that as the ratio ε/ h± increases the 
spring-type interface model is no longer appropriate for a complete 
stress analysis, and more refined contact model like the higher order 
interface model presented in the manuscript should be implemented. 

Fig. 12 illustrates the effect of the extra forces (33)–(38) introduced 
in Section 2.3 and arising from the boundary layer. The Figure shows the 
distributions of axial forces, shear forces and bending moments for a 
composite with adhesive 2 in the symmetric S-FIT configuration. The 
different curves have been calculated by using to three different inter-
face models: the spring-type interface model; the higher order interface 
model implemented without taking into account the extra forces (33)– 

(38); the higher order interface model with the extra forces (33)–(38). 
Notably, all distributions satisfy Saint-Venant’s principle, i.e. N±, T± and 
M± become very small at sufficiently large distances from the loaded end 
(the right end for the double cantilever beam, cf. Fig. 4), except for the 
distribution of the axial forces N± calculated using the higher order 
interface model implemented without taking into account the terms 
(33)–(38). The fact that these N± distributions do not satisfy Saint- 
Venant’s principle is an indication that, when considering higher order 
interface model, it is mandatory to include the contribution of the 
boundary layer. One may wonder why the shear stress and bending 
moment distributions calculated with the higher order interface model 
without taking into account the boundary layer satisfy Saint-Venant’s 
principle. In fact, this is due to the symmetry of the configuration, 
leading to the vanishing of the extra terms (33), (35), (36) and (38). In 
the case of an asymmetric A-FIT configuration, we have numerically 
verified (not reported here) that the shear forces T± and the bending 
moments M± calculated with the higher order interface model without 

taking into account the boundary layer terms do not satisfy Saint-Ven-
ant’s principle. 

Like most analytic models available in the literature, the beam model 
with imperfect interface is unable to predict the vanishing of the shear 
stress and the singularity of the peel stress at the free-edge. However, the 
good fitting to the interfacial stresses distributions predicted by FEA, 
especially for the shear stress, confirms the validity of the present model. 
Of course, some differences could be noted between the results obtained 
by the proposed model and the ones recovered by FEA. Indeed, it could 
be remarked that these differences could be expected a priori as they 
concern two different structural models, i.e. the two beam model and a 
2D continuum solid model. 

4. Conclusions

In this paper, we have propose an original composite beam model
based on the Timoshenko beam model for the adherents and on the 
imperfect interface model proposed in (Rizzoni et al., 2014) for the 
adhesive. We have shown that the method can successfully be used to 
calculate the interfacial and stresses (peel and shear stresses) distribu-
tions for the stress analysis of a double cantilever beam specimen. 

The main advantages of the proposed composite beam model based 
on imperfect interface equations are as follows: (1) the imperfect 
interface equations are rigorously derived from a 3D continuum model, 
thus the interface stiffness constants have a clear physical meaning 
directly related to the material (type of material symmetry, elastic 
constants) and geometrical (thickness) parameters of the adhesive; (2) 
the model predicts correctly the shear stress distributions along the 
adherents/adhesive interfaces; (3) explicit closed forms are available for 
the peel and the shear stresses. 

By modifying the boundary conditions of the set of governing 
equations, other joint configurations could be studied, including adhe-
sively bonded single-lap joints, composite joints, etc. The higher order 
interface model developed in (Rizzoni et al., 2014) and applied in the 
present paper is general enough to allow material symmetries for the 
adhesive different from the isotropic behavior, here considered for 
simplicity. Multiphysics material behavior could also be incorporated, 
based on some recent results (Serpilli et al., 2019). 

The present work has been validated by FEA. The results obtained 
indicate that the present study provides an efficient method for accurate 
stress analyses in adhesive bonded joints and therefore can be used 
effectively for practical applications in engineering. The accurate eval-
uation of the interface stress would be particularly important when 
interface damage and delamination are considered. In these cases sig-
nificant different structural responses could be obtained considering or 
neglecting higher order terms in the interface model. This aspect will be 
object of future researches. 
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Appendix 

The coefficients of system (39)–(42) have the following form: 
α± =Δ−1

[
∓ 4(λ+ 2μ)A−A+D−D+ ∓ 2bεμ(λ+ μ)A±D±

(
A∓(h∓)2 + 4D∓

)
± 2bε2μ(λ+ μ)A−A+D∓h±

]
, (80)  

β± =Δ−1
[
± 4(λ+ 2μ)A−A+D−D+ ± 2bεμ(λ+ μ)A±D±

(
A∓(h∓)2 + 4D∓

)
± 2bε2μ(λ+ μ)A−A+D±h∓

]
, (81)  

Y = − Δ−1ε2λA−A+D−D+, (82)  

ζ± =
b

4

[
4α±

A±
+

4β∓

A∓
+
(α±h± ∓ 2)(h± + ε)

D±
+

β∓h∓(h∓ + ε)

D∓

]
, (83)  

η± =
1

4

[
±

2bε

b±
− 2ε

(α± + β∓)

μ
−

bγ(A−h−(h− + ε) + 4D−)

A−D−
+

bγ(A+h+(h+ + ε) + 4D+)

A+D+

]
, (84)  

θ=
ε

16(λ + 2μ)

[
− 8+ bγλ

(
4

A−
+

4

A+
+
(h−)2

D−
+
(h+)2

D+

)]
, (85)  

κ± =
1

2
b

(
2

C±
+

γh−

D−
+

γh+

D+

)
+

bελ
(
− 2A−A+D∓h± ± α±A∓D∓

(
A±(h±)2 + 4D±

)
∓ β∓A±D±

(
A∓(h∓)2 + 4D∓

) )

16A−A+D−D+(λ + 2μ)
, (86)  

ρ± =
b

2

(
−

2

D±
±

α±h±

D±
∓

β∓h∓

D∓

)
, (87)  

f =Δ−1
[
A−A+

(
D+h−q−

3 −D−h+q+
3

)
+A+D+

(
4D− −A−(h−)2

)
q−

2,2 +A−D−
(
4D+ −A+(h+)2

)
q+

2,2

]
, (88)  

m= 1
4
bf

(
4

A− −
4

A+ +
(h−)2

D− − (h+)2

D+ + ε

(
h−

D− −
h+

D+

))
+

q−
2,2

(A−h−(h−+ε)−4D−)

4A−D−

+
q+

2,2(4D+ − A+h+(h+ + ε))

4A+D+
+

εq−
3,22

2C−
+

εq+
3,22

2C+
−
(h− + ε)q−

3

2D−
−
(h+ + ε)q+

3

2D+
,

(89)  

n= − bf

(
λε

2(λ+2μ)

(
A−+A+

A−A+ + (h−)2

4D− + (h+)2

4D+

)
+ 1

2

(
h−

D− +
h+

D+

))

+
λεq−

2,222

(
4D− − A−(h−)2

)

4A−D−(λ + 2μ)
+

λεq+
2,222

(
4D+ − A+(h+)2

)

4A+D+(λ + 2μ)

+q−
3,22

(
h−λε

4D−(λ + 2μ)
−

1

b−

)
+ q+

3,22

(
1

B+
−

h+λε

4D+(λ + 2μ)

)

−
h−q−

2,2

2D−
−

h+q+
2,2

2D+
+

q−
3

D−
−

q+
3

D+
,

(90)  

with 

Δ= εA−A+D−D+

[
4(λ+ 2μ)+ bεμ(λ+ μ)

(
4

A−
+

4

A+
+
(h−)2

D−
+
(h+)2

D+

)]
. (91) 

For symmetrical configurations, one has 
h− = h+ =: h, (92)  

A− =A+ =: A, C− = C+ =: C, D− = D+ =: D, (93)  

and the coefficients (80)–(87) simplify as follows: 

α± = ∓
1

ε
± δ−1

[
2bhμ(λ + μ)A2D

]
,

β± = ±
1

ε
± δ−1

[
2bhμ(λ + μ)A2D

]
,

γ = −ελA2D2δ−1,

ζ± = ±b(2εAD)−1[4D + A(h + ε)],

η± = ∓

(
1

μ
+

bε

2C

)

θ = ε(4δ)−1
[
8AD + bε(λ + 2μ)

(
4D + Ah2

)]
,

κ± = −
b

C
+

bεhλA

δ
,

ρ± = 2bδ−1[2bεμ(λ + μ) + 2(λ + 2μ)A],

(94) 
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with 

δ = 2AD(λ + 2μ) + bεμ(λ + μ)(4D+Ah2
)
. (95)  
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Glossary 

h±: Adherent thicknesses 
ε: Adhesive thickness 
b: Lateral width of composite 
u±: Axial displacements of adherent beams 
v±: Transversal displacements of adherent beams 
φ±: Cross-sectional rotations of adherent beams 
[f ]: Jump of function f across the adhesive interface 
〈f〉: Average of function f over the adhesive interface 
e
±: Strain tensors 

e±, γ±: Strain components 
ũ±: Axial displacements of adherent beams at the adhesive interface 
q±2 : External horizontal distributed loads 
q±

3 : External vertical distributed loads 
F±2,0 ,F±3,0 ,C±0 ,: External actions (forces and torque) acting on the adherent beams at the end 

x2 = 0 
F±2,L,F±3,L ,C±L , : External actions (forces and torque) acting on the adherent beams at the end 

x2 = L 
τ±: Tangential interfacial stresses 
σ±: Normal interfacial stresses 
N±: Axial forces 
T±: Shear forces 
M±: Bending moments 
A±: Extensional stiffnesses of adherent beams 
C±: Shear stiffnesses of adherent beams 
D±: Bending stiffnesses of adherent beams 
σ: Cauchy stress 
i3: Unit vector in the direction of x3 axis 
K

jl: Reduced elasticity matrices of the adhesive material 
λ,μ: Lamé parameters of the adhesive material 
λ̂, μ̂: Rescaled Lamé parameters of a soft adhesive material 
F

*: Force resultant acting on the lateral boundary of the adhesive and arising from 
boundary layer 

F
±,*: Boundary layer force resultants applied at the ends of the adherent beams 

F±,*
2 , F±,*

3 , C±,* : Boundary layer actions (forces and torque) applied at the ends of the 
adherent beams 

f,m,n: Coefficients of Eqns. (39)–(42) related to external forces 
α± ,β± ,γ, ζ± ,η± ,θ,κ± ,ρ±: Coefficients of Eqns. (39)–(42) related to geometry and material 

properties 
F±

i , i = 1,2,…6: Integration constants 
G±

i , i = 1,2,…13: Integration constants 
q: Distributed shear load 
a: Length of the support beams 
E: Elastic modulus of the adherents 
ν: Poisson’s coefficient of the adherents 
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