

Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep and its application in the drug delivery of tetracyceline hydrochloride

Ghasem Rezanejade Bardajee, Mahdieh Sharifi, Homeira Torkamani, Cedric

Vancaeyzeele

► To cite this version:

Ghasem Rezanejade Bardajee, Mahdieh Sharifi, Homeira Torkamani, Cedric Vancaeyzeele. Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep and its application in the drug delivery of tetracyceline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, pp.126350. 10.1016/j.colsurfa.2021.126350. hal-03230731

HAL Id: hal-03230731 https://hal.science/hal-03230731

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0927775721002193 Manuscript_f93d739de1234aca506c798b87b198a9

- 1 Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic
- 2 acid) grafted onto salep and its application in the drug delivery of Tetracyceline hydrochloride
- 3 4

5

- Ghasem Rezanejade Bardajee,^{a, 1} Mahdieh Sharifi,^a Homeira Torkamani^a, Cedric Vancaeyzeele^{b, 2}
- 6 ^a Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
- 7 ^b Laboratoire de Physicochimie des Polymeres et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, France
- 8

9 Abstract

Current discovery of different modifications of multi walled carbon nanotubes has motivated research for 10 their potential applications in various field such as adsorbent materials, and drug delivery. Many different 11 modified carbon nanotubes have been achieved, including combinations with iron oxide nanoparticles 12 (NPs) for their unique properties including magnetic properties, nontoxicity, biocompatibility and 13 capability which have considerable impact on the delivery of the drug at the targeted area. However, one 14 of the disadvantages of this nanocomposite in biological fluids is that iron oxide NPs might be quickly 15 cleared by the bloodstream before realization of their targets. In order to overcome this obstacle, polymers 16 could be used as stabilizer to achieve a highly stable NPs@MWCNT composite. As a result, a magnetic 17 multi walled carbon nanotube hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep was 18 synthesized and then fully characterized by using FTIR spectroscopy, thermogravimetric analysis, EDAX 19 spectrum, SEM, TEM, AFM images, and vibrating sample magnetometer (VSM) and synthesis mechanism 20 was suggested. Besides, swelling kinetics and loading and releasing of tetracycline hydrochloride as a 21 model drug in various conditions were also investigated. 22

23

24 Keywords

25 Magnetic nanocomposite, Multi walled carbon nanotubes, Hydrogel, Salep, Drug delivery

- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34

¹Corresponding author. Tel.: +98 21 22458309; fax: +98 21 22458315.

E-mail address: rezanejad@pnu.ac.ir

²Corresponding author. E-mail address: <u>cedric.vancaeyzeele@cyu.fr</u>

36

37

38

1. Introduction

Since carbon nanotubes (CNTs) were discovered in 1991, they have come under extreme multidisciplinary 39 research due to their unique physical and chemical properties. As CNTs have the features such as single-40 wall (SWCNTs) or multiwall (MWCNTs) structures, unique size distributions, novel hollow-tube buildings 41 42 and high specific surface areas, they gain applications in many fields such as photocatalysis, medicine, nanoscale electronics, hydrogen storage, mechanical systems and SEM probes [1-5]. To reaches these 43 applications, CNTs were decorated with various functional species. Specifically, multi-walled carbon 44 nanotubes (MWCNTs) were assembled with iron oxide NPs to meet the requirement for applications in 45 drug delivery due to their unique properties such as nontoxicity, biocompatibility and capability to deliver 46 the drug at the targeted area [6-8]. They promote magnetic properties to the composite but also sometimes 47 change other properties like mechanical, thermal and acoustic properties. In principle, magnetic 48 nanoparticles are of great interest from a wide range of aspects, including magnetic resonance imaging, 49 magnetocaloric effect, catalysis, drug release, etc. However, in biological fluids, a lack of colloidal stability 50 is a major disadvantage of iron oxide NPs that might be quickly cleared from the bloodstream before 51 realization of their targets. 52

So, we assumed that a bio-based polymeric hydrogel, involved in wide variety of biomedical applications, 53 could solve this difficulty and lead to stable nanocomposite [7]. Hydrogels first reported in the early 60's 54 [9], are hydrophilic polymers with three-dimensional and cross-linked structure [10]. Hydrogels are divided 55 into two categories based on their origin: synthetic hydrogels obtained from acrylic monomers or natural 56 superabsorbent hydrogels [11]. A lack of biocompatibility and slower degradation rates are the most 57 disadvantages of synthetic hydrogels in compare of natural hydrogels [12-15]. These last are usually 58 prepared by the bonding reaction of acrylic monolayers on a natural polymer scaffold in the presence of a 59 radical initiator and a crosslinking agent. Due to their abundance, renewability, diversity, cheapness, non-60 toxicity, and most importantly, biodegradability and biocompatibility of their natural components, natural 61 hydrogels are more used than synthetic hydrogels. The generally used biopolymers for preparing hydrogels 62 are polysaccharides such as chitosan, alginate, carrageenan or salep [11]... Salep is extracted from tubers 63 of Orchis, Ophyris, Serapias, Platanthera, or Dactylorhiza [16]. It is a valuable source of glucomannan (16 64 to 60%), which is used as a fibrous substance in the treatment of gastrointestinal disorders and as an antidote 65 because it binds to toxins in the gastrointestinal tract and expels them before they enter the bloodstream 66 [17-20]. Due to these characteristics, salep has been commonly used as a drug delivery carrier [21, 22]. So, 67 we described in this article the development of magnetic salep based hydrogels with capacity to control the 68 drug release by external magnetic field that seems to be a great value added in comparison with traditional 69 pH or temperature sensitive smart materials [23, 24]. 70

However, it is difficult to get a homogeneous distribution of magnetic nanoparticles within hydrogel 71 matrices. Up to now, different methods have been reported for synthesis of magnetic MWCNTs 72 (MMCNTs) such as layer-by-layer assembly, electrostatic attraction, hydrothermal, and direct 73 precipitating. They finally result in that explained two different methods in terms of combination of the 74 magnetic materials with the CNTs: (1) encapsulating MNPs in CNTs or (2) attaching MNPs on the surface 75 of CNTs. We preferred the direct in situ chemical precipitation method due to technically simple and 76 sufficient adsorption on MWCNTs, good magnetization of the resulting nanocomposites and therefore a 77 78 convenient separation process by an external magnet [24, 25].

Accordingly, the aim of this study is to improve of magnetic hydrogels by synthesis of a novel magnetic multi walled carbon nanotubes hydrogel based on poly (acrylic acid) grafted onto salep. The main target is the investigation impact of MMCNTs and salep biopolymers on the swelling, and drug release behavior.

82 Tetracycline hydrochloride (TCH) as one of the classes of antimicrobials drug and good water solubility

was select as a model drug. The reasonable pH- and magnetic-responsiveness introduces this magnetic
hydrogel as suitable candidate for potential carriers in drug delivery systems.

- 85
- 86 87

88

89

2. Experimental Section

2.1. Materials

90

Salep (Mn = 1.17×10^6 g/mol, Mw = 1.64×10^6 g/mol (high Mw), PDI = 1.39, eluent = water, flow rate = 91 1 mL/min, acquisition interval = 0.43 s from GPC results) was purchased as a powder from a supplier in 92 93 Kordestan, Iran. Ethanol was sourced from domestic companies. Acrylic acid (AA), ammonium persulfate (APS), Iron (II) chloride tetrahydrate (FeCl₂, 4H₂O), Iron (III) chloride hexahydrate (FeCl₂, 6H₂O) and N-94 N'-methylenebisacrylamide (MBA) were provided by Merck, Germany. Potassium hydrogen phthalate and 95 96 potassium phosphate were purchased from Luba Chemie. Tetracycline hydrochloride was bought from 97 Alborz Daroo Company. Multi-walled carbon nanotubes were received from US Research Nanomaterials, Inc. and used without further purification. Double distillation water (DDW) was used to prepare and 98 99 measure the water adsorption rate of MMWCNT / Hydrogel nanocomposite.

- 100
- 101 **2.2. Apparatus**

102

103 FT-IR spectra of samples in the form of KBr pellets were recorded using a Jasco 4200 FT-IR. UV spectra were prepared with the Shimadzu UV-visible 1650 PC. The pH meter from AZ Instrument Corp. was used 104 to investigate the behavior of the samples at different pHs. Thermal decomposition (TGA) experiments in 105 nitrogen atmosphere were performed by pyrisDiamand TG / DTA. The temperature efficiency of this device 106 was 25 to 750°C at 10°C/min. Scanning electron microscope (SEM), TESCAN model, has been used to 107 study the morphology of superabsorbent surfaces. The Camcan mv2300 X-ray scattering spectrum (EDX) 108 was used to determine the elemental composition of the sample. Transmission electron microscope (TEM), 109 Zeiss LEO906 model at an accelerating high voltage up to 120 kV, was used to obtain particle size. 0.01 g 110 MMWCNT / hydrogel powder was dispersed in 2 mL water. After 5 min ultrasonication, 1 mL of solution 111 put on carbon- grids and allowed to dry thoroughly before viewing by TEM. To obtain a virtual image of 112 the surface with nanometer resolution, the DM-95-50E Atomic Force Microscope (AFM) from DME was 113 114 used. The magnetization and hysteresis loop were measured at room temperature using a vibrating sample magnetometer (VSM) (Model 880 from ADE technologies USA). 115

116

117

2.3. Preparation of Magnetic Multi Walled Carbon Nanotubes (MMWCNT)

118

The synthesis of MMWCNT was conducted by direct precipitating method. This method causes higher 119 magnetization of these nanocomposites simply because FeCl₂ used directly and the quantity of Fe₃O₄ 120 121 deposited on MWNTs was greater [26]. For this reason, initially a solution of FeCl₃. 6H₂O (3.5 g in 20 mL water) and FeCl₂. 4H₂O (0.2 g in 20 mL water) poured in 200 mL degassed water and set the temperature 122 at 50 °C. Then 10 mL water containing 1.0 g of multi-walled carbon nanotube was added to the solution 123 124 during stirring and the temperature was increased to 70 °C. In the next step, 8 mL of ammonia solution was 125 added to reaction under same reflux condition for 1 h. Finally, the obtained product was collected with a magnet and wash with water 3 times and dried in oven at 70 °C for 72 h. 126

1282.4. A typical optimum procedure for synthesis of MMWCNT/hydrogel nanocomposite via129hydrothermal method

130

At this stage, APS is used as the initiator and AA as the monomer. MBA has been used as a crosslinking 131 agent and salep has been used as a substrate for the synthesis of MMWCNT / hydrogel nanocomposites. 132 133 Typically, 1.0 g salep was dissolved in 70 mL hot DDW (70 °C). Then reactor was settled in a hot water 134 bath at 70 °C and mix with a mechanical stirrer at 600 rpm for 10 minutes. After this time, 0.05 g of prepared MMWCNT and 5 mL of the tetracycline hydrochloride (0.1 M) drug were mixed to each other for 30 min, 135 added to homogenous salep solution, and mixed for 20 minutes with a mechanical stirrer. Then 2 mL AA 136 and 0.06 g MBA mixed with this solution. Finally, after homogenizing, 0.03 g of APS were added to the 137 reaction allowed to complete for 30 min. Then, the reaction mixture was cooled to room temperature and 138 the product was dewatered by ethanol (50 mL) and then the dewatered nanocomposite filtered and dried in 139 oven at 50 °C for 24 h. Finally, in grinding step, the obtained powder passed through a mesh sieve No. 60 140 and it stored for other experiments. 141

142 143

144

2.5. Swelling Measurement

A gravimetric method was used to determine the swelling of nanocomposite in water. For this case, a tea bag (i.e. a 100 mesh nylon screen) containing an accurately dry powdered sample $(0.2 \pm 0.001 \text{ g})$ with average particle sizes between 40-60 mesh was immersed entirely in distilled water (200 mL) and allowed to soak for 3 h at the room temperature. The equilibrium swelling (ES) capacity was measured twice at the room temperature using the following formula (Eq. 1):

150 151

152

$$ES (g/g) = (W_2 - W_1)/W_1$$
(1)

where W_1 and W_2 are the weights of dry and swollen gels, respectively.

The water adsorption rate of MMWCNT / hydrogel nanocomposite over time was studied by adding 0.02 g of hydrogel into a tea bag that placed in 200 mL of distilled water. Then the water absorption was measured at specified times. A similar process was investigated under magnetic field and hydrogel without MMWCNT.

To investigate the effect of temperature on the amount of hydrogel water absorption, 0.02 g of hydrogel was added into a tea bag and placed in a beaker containing 200 mL of water in a bath with the desired temperature and water absorption was evaluated after three hours.

pH dependence of the swelling was measured by interaction of certain amounts of the hydrogel samples
 (0.02 g) in solutions (200 mL) at different pH. The various solutions were fixed to the desired pH value by
 addition of diluted HCl or NaOH. The On-Off switching by pH was carried out at buffered solutions with
 pH=2 and pH=9 with 0.01 molar concentrations.

165 166

2.6. Drug release

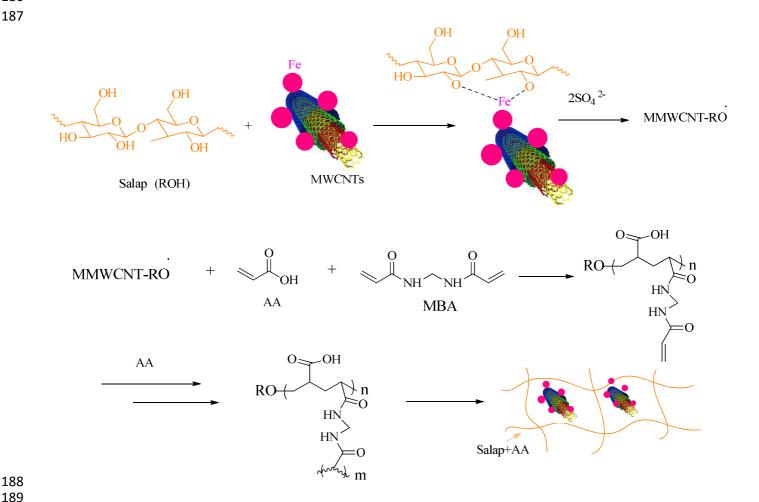
167

For drug releasing study, the MMWCNT / hydrogel nanocomposite $(0.2 \pm 0.01 \text{ g})$ was dispersed in 50.0 of buffer solutions at different pHs in a rotary shaker (200 rpm). At regular intervals, 2.0 mL of the solution was removed from the sample and the UV spectrum was taken and replaced with 2.0 mL of fresh solution. Finally, the amount of drug releasing was measured at 485 nm by UV–vis spectrophotometer using a calibration curve of the drug at different concentrations.

173

3. Results and Discussions

3.1. Synthesis mechanism and spectral characterization 176


At the first step, ammonium persulfate (APS), as an initiator, is decomposed under heating to produce 178 sulfate anion-radical. Then, the anion-radical abstracts hydrogen from one of the functional groups inside 179 chains (i.e. CH, OH) of the salep substrate to form corresponding radical [26]. The oxidation and reduction 180 system of persulfate-saccharide causes a radical polymerization reaction in which the acrylic acid monomer 181 (AA) is converted to polyacrylic acid (PAA) and at the same time grafts to the polysaccharide chain. In 182 addition, crosslinking reaction was carried out in the presence of a crosslinker, MBA, so that the MMWCNT 183 / hydrogel nanocomposite was obtained (see Fig. 1). 184

185

175

177

- 186
- 187

188

190

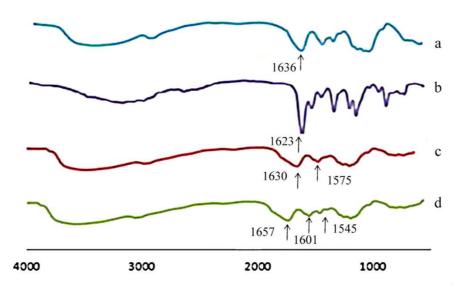
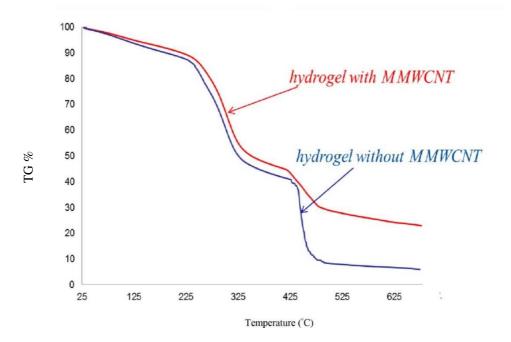

191

Fig. 1. Proposed mechanism pathway for the synthesis of MMWCNT / hydrogel nanocomposite

192 Infrared spectroscopy was used to confirm the chemical structure of the grafted products. Fig. 2 shows the FT-IR spectra of non-magnetic carbon nanotube hydrogel, MMWCNT / hydrogel nanocomposite, AA and 193 salep. Fig. 2a shows the spectrum related to salep (mainly glucomannan). The peak in the region of 1633 194 cm^{-1} can be attributed to the stretching vibrations of the carbonyl group (C = O) in glucomannan of salep. 195 In Fig. 2b, which is related to AA, the peak in the 1623 cm⁻¹ region is related to the stretching vibrations of 196 197 carboxyl groups. Fig. 2c, which deals with hydrogels without magnetic carbon nanotubes, shows two absorption peaks in the region of 1575 cm⁻¹ and 1630 cm⁻¹. These peaks are related to the stretching 198 vibrations of the carbonyl groups of the salep biopolymer chains and PAA, both of which are present 199 simultaneously in the hydrogel. In Fig. 2d, which is related to the MMWCNT / hydrogel nanocomposite, 200 the indicator peaks of the stretching vibrations of the carbonyl groups mentioned above are present, 201

although these peaks have a slight displacement towards a higher wave number. The major peak in the
region of 1545 cm⁻¹ is related to the stretching vibrations of double bonds of carbon nanotubes. In addition,
in all spectra, the broad bands at 3300-3000 cm⁻¹ is related to the stretching vibrations of the hydroxyl
group.

- 206
- 207
- 208


Wavenumber (cm⁻¹)

209 210

0 Fig. 2. FT-IR spectra of (a) salep, (b) AA, (c) hydrogel, and (d) MMWCNT / hydrogel nanocomposite.

211

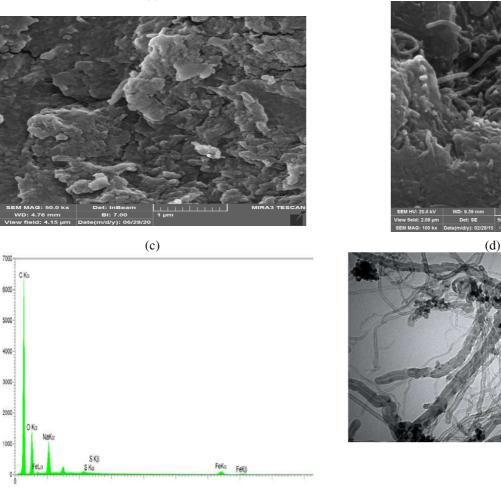
TGA curves of hydrogel without MMWCNTs and with MMWCNTs at the temperature range of 25 to 750 212 °C are shown in Fig. 3. In the case of hydrogel without MMWCNTs, 11% weight loss between 25 °C and 213 225 °C is due to loss of H₂O. Moreover, 40% weight loss between 225 and 325 °C is due to the degradation 214 of the hydrogel structure and releases of CO₂ and H₂O, especially resulting from the decomposition of 215 salep. The third step contains 30% weight loss between 425 and 475°C, is assigned to the degradation of 216 poly (acrylic acid) in hydrogel. On the other hand, hydrogel with MMWCNTs showed a lower weight loss 217 than hydrogel without MMWCNTs in same temperature range. Indeed, the difference in the residual weight 218 of 20 wt% corresponds to the combination of thermally stable iron oxide nanoparticles and MWCNTs of 219 the MMWCNTs composite [27]. 220

- 223
- 224
- 225 226

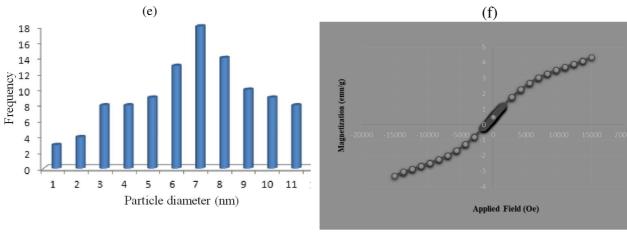
Table 1 Thermo-gravimetric anal	vsis (TGA) of hydrogel without	MMWCNTs and with MMWCNTs
Table 1. Thermo-gravinieure anal	ysis (TOA) of flydroger without	IVITVE VV CIN I S allu WIULIVIIVI VV CIN I S

Fig. 3. TGA curves of hydrogel without MMWCNTs and with MMWCNTs

region	Hydrogel without MMWCNT		Hydrogel with MMWCNT	
	Range °C	Weight loss (%)	Range °C	Weight loss (%)
1 st	25-225	11	25-225	8
2 nd	225-325	40	225-325	38
3 rd	425-475	30	425-475	15


227

228


229 Scanning electron microscopy (SEM) images have been used to study the morphology of MMWCNT / hydrogel nanocomposite surfaces. As Fig. 4a and 4b shows, the synthesized nanocomposite hydrogel has 230 layered surfaces and holes in its structure and has a relatively porous structure. The porosity of the hydrogel 231 232 networks is one of the factors promoting the absorption capability of the hydrogel, so the rate of swelling of the hydrogel can be attributed to its structure [28, 29]. EDX analyses were carried out to corroborate 233 elements used in the hydrogel composition. An EDX spectrum of MMWCNT / hydrogel is described in 234 Fig. 4c. The spectrum indicates characteristic peaks of Fe, O, and C elements in the MMWCNT / hydrogel 235 with Fe typical of the iron oxide particles anchored on MWCNT. 236

237

For TEM observation, the nanocomposite hydrogel (0.1 g in 2 mL water) was sonicated for 5 minutes to 238 disrupt the polymer matrix and disperse the magnetic nanotube in water solution. A drop of this solution 239 was casted in a TEM copper grid to evaluate the distribution of carbon nanotubes in the polymer matrix 240 and the results have been shown in Fig. 4d and 4e with their size distribution histograms. The average 241 diameter of nanotubes in the polymer network was 6 to 8 nm. High magnification TEM image of sample 242 (Fig. 4d) reveals the dispersion of carbon nanotubes in the hydrogel frame. Besides, the dark spot refers to 243 iron nanoparticle. The relationship between the magnetic field and the magnetization of the MMWCNT / 244 hydrogel at room temperature showed in Fig. 4f. The hysteresis loop of the samples confirms that the 245 magnetic behavior of the MMWCNT / hydrogel is highly influenced by the mediating iron nanoparticles. 246 247

(b)

- 249
- 250 251

252

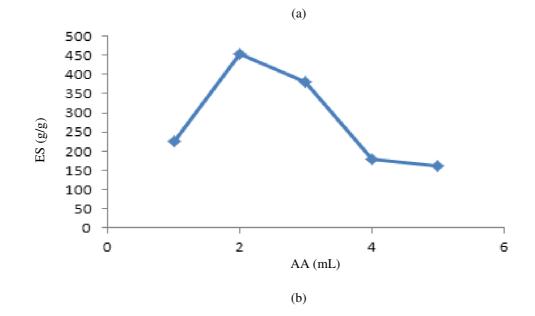
253

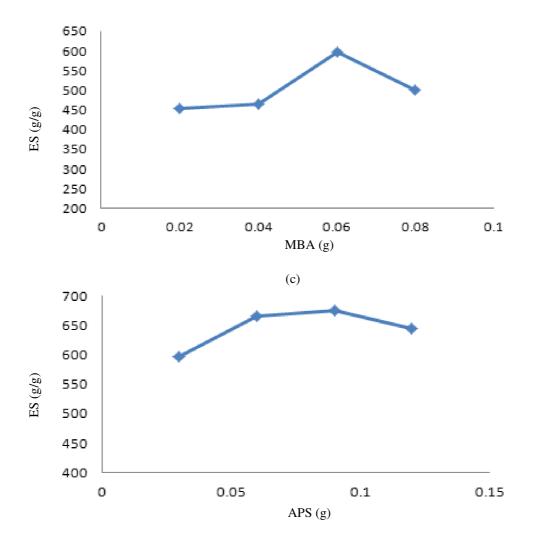
254

255 256

Fig. 4. a) and b) SEM image, c) EDX spectrum of the hydrogel with MMWCNTs, d) TEM image of disrupted hydrogel with MMWCNTs after sonication for 5 min, e) histogram of the MMWCNTs diameter distribution measured from the TEM image and f) Magnetic hysteresis loop for MMWCNT / hydrogel

3.2. Optimization of the grafting conditions


There is a strong relationship between the swelling ratio and network structure parameters. Also, different parameters can affect the final swelling capacity in hydrogels [30]. Here, the amount of monomer, crosslinking agent and initiator were systematically optimized. Besides, the environmental parameters such as reaction time (swelling kinetic), temperature, dual solvents, salinity and pH sensitivity were optimized
 to achieve MMWCNT / hydrogel nanocomposite with maximum water absorbency.


- 262
- 263 264

3.2.1. Effect of monomer, crosslinking agent and initiator

Fig. 5a illustrated the effect of AA amount on water uptake of the synthesized MMWCNT/hydrogel. Different amounts of AA ($1.485 \times 10^{-2} - 7.27 \times 10^{-2} \text{ mol} (1-5 \text{ mL})$) were used, where the maximum of swelling capacity is attained at 2 mL of AA amount.

As the monomer concentration increases to 2 mL, water absorption increases. Due to the increase in the 268 polymerization reaction rate, the number of AA hydrophilic functional groups increases along the hydrogel 269 chains and it causes an increase in water swelling. Finally, water swelling decreases with further increase 270 in monomer concentration. Since, some of undesirable intermolecular cross-linking formed [31]. The effect 271 of MBA concentration as a crosslinking agent on water absorption of the MMWCNT/hydrogel was 272 examined by varying the MBA amount from 0.02 to 0.08 g $(1.297 \times 10^{-4} - 5.189 \times 10^{-4} \text{ mol})$, whereas the 273 amount of AA was kept in optimum value (2 mL of AA) from previous experiment. As seen in Fig. 5b, 274 MBA concentration was an effective variable on the swelling behavior especially in 0.06 g region. 275 According to Flory's theory, adding the extra amount of cross-linker have effect on the generation of 276 immoderate cross-link points. As a result, the network voids for holding water are reduced and the water 277 absorption decreases [30]. Thus, the water absorption capacity was significantly decreased with increasing 278 MBA after 0.06 g. simply because, excess amount of MBA increases the extent of crosslinking of the 279 polymeric chains and decreases the free spaces between them. So, a rigid structure is formed that do not 280 have capacity to hold a large quantity of water [32]. Fig. 5c shows the effect of the initiator content (APS) 281 on the water absorbency. The water absorbency increases with increase in the initiator content from 0.025 282 to 0.09 g and then it decreases with further excess amount of APS. The relation between water absorbency 283 and concentration of APS can be related to the increase in the number of active centers (carboxylic acid) 284 on the salep backbone, which in turn results in more extensive graft copolymerization. This increase in 285 active centers makes the nanocomposite hydrogel more hydrophilic and increases the water absorption 286 capacity. The decrease in adsorption after the maximum value of APS can be attributed to some extent to 287 self-crosslinking. Another important reason can be attributed to the free radical degradation of salep that 288 can also take place at high APS levels [22]. Therefore, the optimal monomer, crosslinking agent and 289 initiator concentration were found to be 2 mL, 0.06 g, and 0.09 g respectively which was kept in further 290 291 analysis.

295

296

297

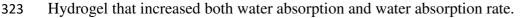
298 299

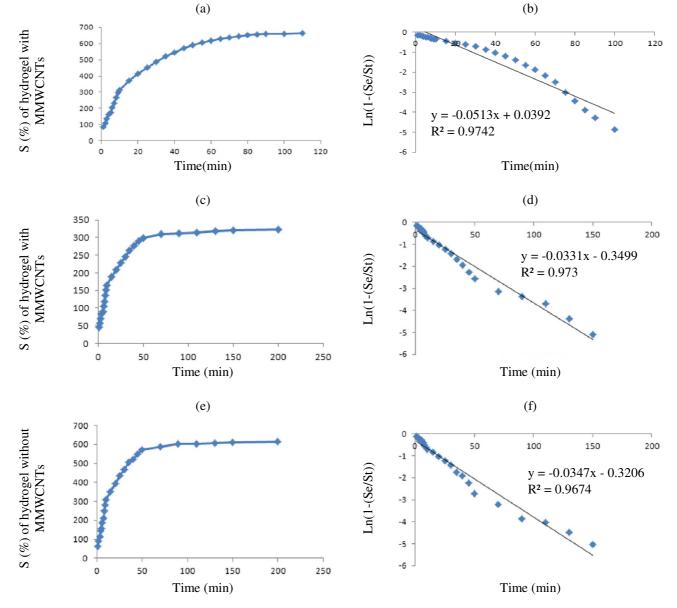
300 301

Fig. 5. Effect of a) monomer amount (reaction conditions: salep weight = 1.0 g, MBA = 1.2×10^{-4} mol, and APS= 1.3×10^{-4} mol), b) crosslinker amount (reaction conditions: salep weight = 1.0 g, AA = 2.9×10^{-2} mol, and APS = 1.31×10^{-4} mol), and c) initiator amount (reaction conditions: salep weight = 1.0 g, AA = 2.9×10^{-2} mol, and APS = 1.31×10^{-4} mol), and c) initiator amount (reaction conditions: salep weight = 1.0 g, AA = 2.9×10^{-2} mol, and MBA= 3.8×10^{-4} mol) on equilibrium swelling capacity of the MMWCNT / hydrogel nanocomposite.

3.2.2. Effect of time (swelling kinetic)

Different parameters such as swelling capacity, size distribution of powder particles, specific surface and composition of polymer affected on swelling kinetics of the hydrogels (super absorbents) [33]. Fig. 6a represents the swelling (S) behavior of MMWCNT / hydrogel in distilled water at consecutive time intervals. The water absorbency intensely increased versus time up to 60 min and then, it begins to level off. The data may be well matched with a Voigt-based Eq. (Eq. 2) [34]:


307 308


309

$$S_t = S_e (1 - e^{-t/\tau})$$
 (2)

where $S_t (g/g)$ is swelling at time t, S_e is equilibrium swelling; t is time (min) for swelling S_t , and τ (min) stand for the rate parameter. One can obtain the rate parameter from a plot of ln $(1 - (S_t / S_e))$ vs. time (t) using the above formula with a little rearrangement. The slope of the fitted straight line (slope = $-1/\tau$) gives the rate parameter. As one can see in Fig. 6b and using Eq. (2), the rate parameter τ for swelling of the MMWCNT / hydrogel in water is found to be 23.42 min. Fig.6c, d shows the rate parameters for swelling of the MMWCNT / hydrogel in presence of magnetic field that τ increases to 30.21 min.

- In the presence of an external magnetic field, the MMWCNT / Hydrogel nanocomposite is trapped inside
- the magnetic field. Indeed, the magnet reduces the distance between the ions and produces a close packing
 of ions, which prevents transudation of water into MMWCNT / Hydrogel. So, swelling capacity of the
- 319 hydrogel is reduced.
- Besides, the rate parameters for swelling of the hydrogel without MMWCNT is reported around 28.21 min that showed that swelling capacity of the hydrogel without MMWCNT is reduced in compare of MMWCNT / Hydrogel (see Fig. 6e, f). Due to, more space is created by carbon nanotubes in MMWCNT / Hydrogel that increased both water absorption and water absorption rate

324

325 326

320 327

water.

329 330

331

3.2.3. Effect of swelling medium temperature

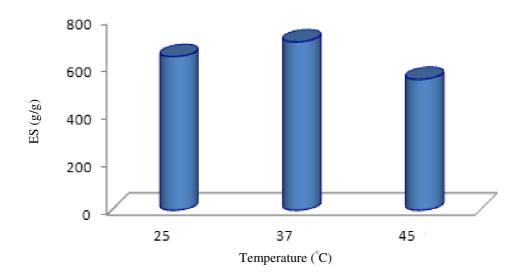

The equilibrium swelling (ES) capacity of the nanocomposite sample at different temperatures (25, 37 and 45 °C) is shown in Fig. 7. The synthesized MMWCNT/hydrogel has the highest swelling at human body temperature (37 °C). At this temperature, the higher flexibility of the network chains causes better diffusion of water molecules in nanocomposite networks and consequently the water swelling increases. However,

Fig. 6. a) The swelling kinetics and b) Voigt equation for swelling of hydrogel with MMWCNTs in distilled water. c) The

swelling kinetics and d) Voigt equation for swelling of hydrogel with MMWCNTs in distilled water in present of external

magnetic field e) The swelling kinetics and f) Voigt equation for swelling of hydrogel without MMWCNTs in distilled

at higher temperatures, breaking of hydrogen bonds between functional groups (mainly hydroxyl and 336 carboxylic moieties) of hydrogel nanocomposite and water promotes a decrease in swelling capacity [35]. 337

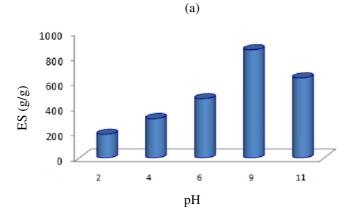
338

Fig. 7. Temperature effect of MMWCNT/hydrogel on water absorption

339

340

341 342


3.2.4. pH sensitivity and pulsatile behavior

To study the sensitivity of the MMWCNT/hydrogel to pH, the swelling capacity of the nanocomposite was 343 studied at various pHs ranging from 2.0 to 11.0. As one can see in Fig. 8a, the swelling capacity increases 344 with the increase of pH until pH = 9 and then decreases with further raising pH to 11. At pH = 9, the 345 functional groups of carboxyl groups (COOH) are converted to carboxylates anion (COO⁻). As a result, the 346 highest water adsorption of nanocomposite is observed due to the increase in electrostatic repulsion. 347 However, at pH=11, increased ionic strength of the outer solution can reduce electrostatic repulsion and 348 349 thereby reduced water adsorption of nanocomposite.

The labeled nanocomposite further exhibited reproducible swelling-deswelling cycles as demonstrated in 350 351 Fig. 8b. At pH = 9, the hydrogel swelled up to 809.37 g/g (%) due to anion–anion repulsive electrostatic forces, while at pH = 2, it reduced within a few minutes due to the hydrogen bond-type attractive forces 352 between polymer chains. 353

354 This sudden and sharp swelling-deswelling behavior at different pH values makes the system highly pHresponsive and efficient for tailoring pulsatile (on-off swelling) drug delivery systems. It is well known 355 that smart materials are the ones that have one or more properties that could be significantly altered in a 356 357 controlled fashion by external stimuli such as mechanical stress, temperature, moisture, pH, and electric or magnetic fields. In brief, the hydrogel nanocomposite in question can now be considered as a truly smart 358 material. 359

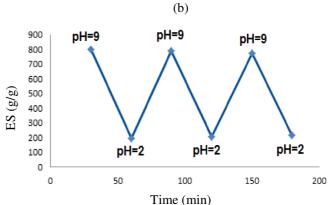
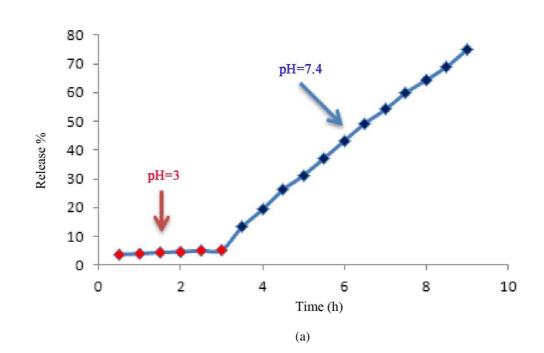



Fig. 8 a) Swelling dependency of the optimized MMWCNT/hydrogel on pH and b) on–off switching behavior of the optimized nanocomposite in pH = 9 and pH = 2.

3.3. Drug release studies

To evaluate the drug release from the nanocomposite in vitro, the tetracyceline hydrochloride (TCH) loaded nanocomposite was immersed in phosphate buffers with different pHs at 37 °C and recorded the release of tetracycline by UV at regular intervals. Overall, the drug delivery tests were carried out mimicking the colon and stomach condition. At an acidic pH (similar to stomach condition), the drug release only reached 5% after 5 h with a slower release. However, to an ideal microbial effect of tetracycline the pH = 7.4MMWCNT/hydrogel was capable of drug-controlled delivery with good properties of delayed release (see Fig. 9a). This shows that the amount of tetracyceline hydrochloride release is pH dependent. Three possible interactions assumed between TCH and MMWCNTs/hydrogel which are known as followed: (a) π - π stacking interaction; (b) hydrophobic interaction; and (c) hydrogen-bonding interaction between the TCH-OH and the -COOH groups. The results showed that the release capacity was enhanced with the increment of pH. The effect of magnetic field on drug release synthesized MMWCNT/hydrogel also investigated at pH=7.4 and 37 °C (Fig. 9b). As can be seen, the amount of released drug from all samples was decreased by a factor of two by applying external MF.

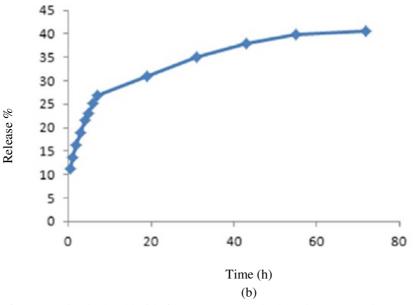


Fig 9. Release studies of tetracyceline hydrochloride from MMWCNT/hydrogel at 37°C and (a) at pH 3 or 7.4 without external
magnetic field (MF) and (b) at pH 7.4 with MF.

390

391 4. Conclusion

392

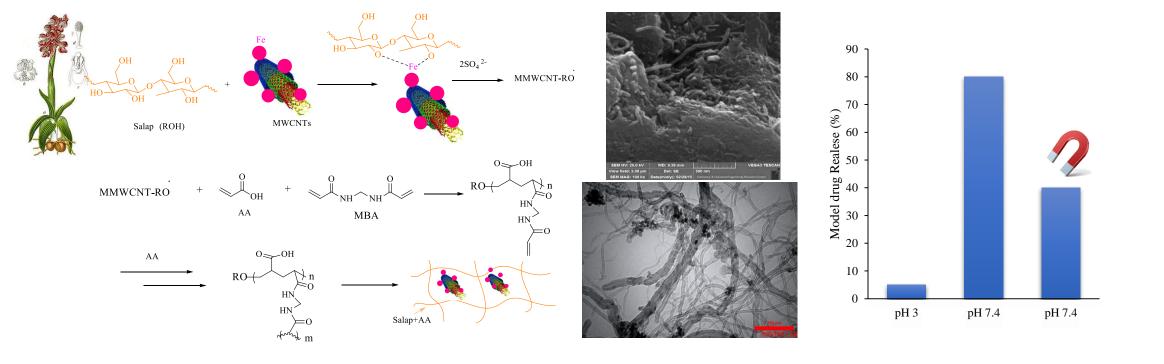
In the current work, the synthesis and swelling capacity of a new magnetic multi walled carbon nanotubes 393 hydrogel nanocomposite based on poly (acrylic acid) grafted onto salep were described. Factors affecting 394 the water swelling during the hydrogel synthesis (monomer concentration, MBA concentration, APS 395 concentration) were systematically optimized and the impact of various environmental conditions (time, 396 temperature, pHs) were examined. The nanocomposite was fully characterized and confirmed by FTIR, 397 SEM, TEM, EDAX, TGA, and VSM. The rate parameters for swelling of the hydrogel without MMWCNT 398 399 is reported around 28.21 min that showed that swelling capacity of the hydrogel without MMWCNT is reduced in compare of MMWCNT / Hydrogel. Also, the nanocomposite exhibited high sensitivity to pH. 400 So that, the repeatable swelling-deswelling behavior of nanocomposite in pHs 2 and 9 could classify it as 401 a smart material with potential application in pharmaceutics. The response of the prepared nanocomposite 402 against tetracyceline hydrochloride release at different pHs made this MMWCNT / Hydrogel suitable for 403 the drug release at pH= 7.4. The results of VSM exhibited that the MMWCNT/ hydrogel has a 404 superparamagnetic property and it decreases release of the drug in presence of external MF. 405

406

Acknowledgments

407 408

409 The authors are grateful to PNU and INSF for financial support (Contract Number 46384) of this work.


- 410
- 411
- 412
- 413

414 **References**

[1] Y. Hu, R. Jiang, J. Zhang, C. Zhang, G. Cui, Technology, Synthesis and properties of magnetic multiwalled carbon nanotubes loaded with Fe₄N nanoparticles, Journal of Materials Science, 34 (2018) 886-890.
[2] H. Yan, X. Xue, Y. Fu, X. Wu, J. Dong, Three-dimensional carbon nanotubes-encapsulated Li₂FeSiO₄
microspheres as advanced positive materials for lithium energy storage, Ceramics International, 46 (2020)
9729-9733.

- [3] Y. Lee, J. Yoon, H.-J. Kim, G.-H. Park, J.W. Jeon, D.H. Kim, D.M. Kim, M.-H. Kang, S.-J. Choi,
 Wafer-Scale Carbon Nanotube Network Transistors, Nanotechnology, (2020).
- 422 [4] X. Guo, Y. Huang, W. Yu, X. Yu, X. Han, H. Zhai, Multi-walled carbon nanotubes modified with iron
- 423 oxide and manganese dioxide (MWCNTs-Fe₃O₄-MnO₂) as a novel adsorbent for the determination of BPA,
 424 Microchemical Journal, (2020) 104867.
- 425 [5] S.K. Prajapati, A. Malaiya, P. Kesharwani, D. Soni, A. Jain, Biomedical applications and toxicities of 426 carbon nanotubes, Drug Chemical Toxicology, (2020) 1-16.
- 427 [6] P. Ghoderao, S. Sahare, P. Alegaonkar, A.A. Kulkarni, T. Bhave, Multiwalled Carbon Nanotubes
- 428 Decorated with Fe₃O₄ Nanoparticles for Efficacious Doxycycline Delivery, ACS Applied Nano Materials,
- 429 2 (2018) 607-616.
- [7] M.S. Amini-Fazl, R. Mohammadi, K. Kheiri, 5Fluorouracil loaded chitosan/polyacrylic acid/Fe₃O₄
 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system, International journal of
 biological macromolecules, 132 (2019) 506-513.
- 433 [8] L.B. Sukhodub, L.F. Sukhodub, Y.I. Prylutskyy, N.Y. Strutynska, L. Vovchenko, V. Soroca, N.
- Slobodyanik, N. Tsierkezos, U. Ritter, Composite material based on hydroxyapatite and multi-walled
- 435 carbon nanotubes filled by iron: Preparation, properties and drug release ability, Materials Science
 436 Engineering: C, 93 (2018) 606-614.
- [9] P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery,
 Drug discovery today, 7 (2002) 569-579.
- [10] A.S. Hoffman, Hydrogels for biomedical applications, Advanced drug delivery reviews, 64 (2012) 1823.
- 441 [11] M.M. Khansari, L.V. Sorokina, P. Mukherjee, F. Mukhtar, M.R. Shirdar, M. Shahidi, T. Shokuhfar,
- 442 Classification of hydrogels based on their source: a review and application in stem cell regulation, JOM,
 443 69 (2017) 1340-1347.
- [12] M.M. ZOHOURIAN, K. Kabiri, Superabsorbent polymer materials: a review, Iranian Polymer Journal,
 17 (6) (2008) 451-477.
- 446 [13] S. Afroz, F. Afrose, A. Alam, R.A. Khan, M.A. Alam, H. Materials, Synthesis and characterization of
- 447 polyethylene oxide (PEO)—N, N-dimethylacrylamide (DMA) hydrogel by gamma radiation, Advanced
- 448 Composites, 2 (2019) 133-141.
- [14] P. Jiang, G. Li, L. Lv, H. Ji, Z. Li, S. Chen, S. Chu, Effect of DMAEMA content and polymerization
 mode on morphologies and properties of pH and temperature double-sensitive cellulose-based hydrogels,
 Journal of Macromolecular Science, Part A, 57 (2020) 207-216.
- 451 Journal of Macromolecular Science, Part A, 57 (2020) 207-216.
- [15] F. Afrose, S. Afroz, T.S.B. Monir, M.S. Rahaman, A. Alam, R.A. Khan, M.A. Alam, Synthesis and
 Characterization of Hydrogel based on Poly (vinylpyrrolidone) and N-hydroxyethyl acrylamide with Agar
 by Gamma Radiation, Journal of Noakhali Science and Technology University (JNSTU), 3 (2019) 1-7
- 455 [16] C. Ece Tamer, B. Karaman, O. Utku Copur, A traditional Turkish beverage: salep, Food Reviews 456 International, 22 (2006) 43-50.
- 457 [17] G.R. Bardajee, A. Pourjavadi, R. Soleyman, N. Sheikh, Gamma irradiation mediated synthesis of a
- 458 new superabsorbent hydrogel network based on poly (acrylic acid) grafted onto salep, Journal of the Iranian
 459 Chemical Society, 7 (2010) 652-662.
- [18] J.K. Keithley, B. Swanson, Glucomannan and obesity: a critical review, Alternative therapies in health
 medicine, 11 (2005) 30-35.
- 462 [19] H. Chen, Q. Nie, J. Hu, X. Huang, K. Zhang, S. Pan, S. Nie, Hypoglycemic and hypolipidemic effects 463 of glucomannan extracted from konjac on type 2 diabetic rats, Journal of agricultural food chemistry, 67
- 464 (2019) 5278-5288.
- 465 [20] Z. LV, Y. WU, M. HE, Q. YAN, M. CHEN, L. FENG, J. ZHAO, B. WANG, Effect of Modified
- Konjac Glucomannan on Lipid Metabolism and Related Gene Expression of Schizothorax prenanti, Journal
 of Food Science Biotechnology journal, (2018) 18.
- 468 [21] G.R. Bardajee, Z. Hooshyar, One-pot synthesis of biocompatible superparamagnetic iron oxide 469 nanoparticles/hydrogel based on salep: characterization and drug delivery, Carbohydrate polymers
- 470 101 (2014) 741-751.

- 471 [22] G.R. Bardajee, F. Mizani, S.S. Hosseini, pH sensitive release of doxorubicin anticancer drug from gold
- 472 nanocomposite hydrogel based on poly (acrylic acid) grafted onto salep biopolymer, Journal of Polymer
 473 Research, 24 (2017) 48.
- 474 [23] J. Zhang, Q. Huang, J. Du, Recent advances in magnetic hydrogels, Polymer International, 65 (2016)
 475 1365-1372.
- 476 [24] D. Xiao, P. Dramou, H. He, L.A. Pham-Huy, H. Li, Y. Yao, C. Pham-Huy, Magnetic carbon nanotubes:
- 477 synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system,
 478 Journal of Nanoparticle Research, 14 (2012) 984.
- [25] X. Song, F. Yang, X. Wang, K. Zhang, Preparation of magnetic multi-walled carbon nanotubes and
 their application in active dye removal, Micro Nano Letters, 6 (2011) 827-829.
- [26] G.R. Bardajee, S.S. Hosseini, C. Vancaeyzeele, Graphene oxide nanocomposite hydrogel based on
 poly (acrylic acid) grafted onto salep: an adsorbent for the removal of noxious dyes from water, New
 Journal of Chemistry, 43 (2019) 3572-3582.
- 484 [27] G.R. Bardajee, M. Zamani, M. Sharifi, H. Mahmoodian, Preparation of Novel Fluorescence
 485 Nanosensor κC-CdTe/ZnS Quantum Dots for High Accurate Detection of Epirubicin, Materials Today
 486 Communications, (2020) 101874.
- [28] X. Kang, Z. Xia, R. Chen, P. Liu, W. Yang, Effects of inorganic cations and organic polymers on the
 physicochemical properties and microfabrics of kaolinite suspensions, Applied Clay Science, 176 (2019)
 38-48.
- 490 [29] K. Kabiri, H. Omidian, S. Hashemi, M. Zohuriaan-Mehr, Synthesis of fast-swelling superabsorbent
- 491 hydrogels: effect of crosslinker type and concentration on porosity and absorption rate, European Polymer
- 492 Journal, 39 (2003) 1341-1348.
- 493 [30] P.J. Flory, Principles of polymer chemistry, Cornell University Press1953.
- 494 [31] S. Havanur, V. Farheenand, P. JagadeeshBabu, Synthesis and optimization of poly (N, N-
- diethylacrylamide) hydrogel and evaluation of its anticancer drug doxorubicin's release behavior, Iranian
 Polymer Journal, 28 (2019) 99-112.
- 497 [32] M. Sadeghi, B. Heidari, Crosslinked graft copolymer of methacrylic acid and gelatin as a novel
 498 hydrogel with pH-responsiveness properties, Materials, 4 (2011) 543-552.
- [33] F.L. Buchholz, N.A. Peppas, Superabsorbent polymers: science and technology, ACSPublications1994.
- [34] H. Omidian, S. Hashemi, P. Sammes, I. Meldrum, A model for the swelling of superabsorbent
 polymers, Polymer, 39 (1998) 6697-6704.
- [35] R. Ebrahimi, The study of factors affecting the swelling of ultrasound-prepared hydrogel, Polymer
 Bulletin, 76 (2019) 1023-1039.

