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ARTICLE INFO ABSTRACT

Article history: In this paper, several active set methods based on classical problems arising in
Received 31 January 2020 Contact Mechanics are analyzed, namely unilateral/bilateral contact associated with
Received in revised form 26 September 2020 Tresca's/Coulomb’s law of friction in small and large deformation, The purpose of this
Accepted 28 November 2020 work is to extend an Inexact Primal-Dual Active Set (IPDAS) method already used in
Available online 17 December 2020 Hueber et al. (2008) to the formalism of dynamics and hyper-elasticity. This method
Keywords: permits to solve the unilateral problem with Coulomb's law of friction by taking into
Unilateral constraint account an alternative for the latter based on the approximation of the Coulomb's law
Friction !awv ‘ by a succession of states of Tresca friction in which the friction threshold is fixed at each
HyPer‘?I“S“ClW fixed point iteration. The mechanical formulation in the hyper-elasticity framework is
Dynamics first presented, next, we establish weak formulations of the different cases of frictional

Semismooth Newton method

PrimaleDusl Active St contact problems and we give the finite element approximation of the problems. Then,

we detail the numerical treatment within the framework of the primal-dual active set
strategy for different frictional contact conditions. We finally provide some numerical
experiments to bring into light the efficiency of the IPDAS method and to carry out
a comparison with the augmented Lagrangian method by considering representative
contact problems in both small and large deformation cases.

1. Introduction

Frictional contact boundary condition remains an important basic concept to mathematical and numerical analysis
of contact dynamics. In literature, many references come up with usual contact conditions approaches (cf [1-12]), since
unilateral constraints and Coulomb friction generally lead to a non-linear and non-smooth mathematical problem. To
handle the non-linearities due to the frictional contact conditions, several methods have been successfully tested, namely,
the penalty method (cf [13,14]) which consist in approximating the original conditions by simpler ones, the quasi-
augmented lagrangian [1], the bi-potential method (cf[15,16]), the conjugate gradient method (cf[9,12]), Uzawa method
(cf [10,17]) and Nitsche finite element method (cf [5,18,19] and references therein). Alart and Curnier [1] proposed a
quasi-augmented Lagrangian formulation combined with a Generalized Newton method to solve these continuous but
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non-differentiable equations, Similarly, De Saxcé and Feng proposed in [15] so-called bi-potential energy to take into
account the frictional contact. The bi-potential, which is not globally convex, is based on the theory of Implicit Standard
Material and it is minimized generally using a gradient method. The Nitsche finite element method consists of writing
the contact and frictional conditions directly in the variational formulation, leading to a straightforward finite element
method and a non-linear discretized problem. Let us notice that, in a numerical treatment, all these methods can be
extended to an integral formulation, except the bi-potential method that have to be considered at each node of the mesh
of a finite element method,

Lately, Primal-Dual Active Set strategies (PDAS) arise as one of the most prominent methods for solving frictional
contact problems (cf [20-22]). The main purpose of such methods is to separate the set of nodes that can be in contact
into two subsets: the first subset 4 includes all nodes that are currently in contact (active) whereas the second subset 7
includes all the other nodes (inactive). In practical terms, PDAS do not require the use of the Lagrange multipliers. As a
matter of fact, the boundary conditions on the nodes in the subsets .4 and 7 are classical and can be directly enforced.
Some works have been dedicated to studying the efficiency of PDAS methods, as well as to solve non-linear multi-body
contact problems in elastodynamics (cf[21,22]), or to solve linear elasticity problems with unilateral boundary conditions
(cf [20,23]).

Hence, the novelty of this article is to propose an innovative, fast and efficient PDAS method to solve a problem of
hyper-elastodynamics with unilateral contact and Coulomb friction. The idea of this paper is to present in detail the PDAS
method for several frictional contact cases against a rigid foundation, namely the unilateral contact, the bilateral contact
with Tresca’s friction, and finally the unilateral contact with Coulomb's friction.

First, this work puts the light on the evolution of a hyper-elastodynamic body in bilateral contact with a rigid
foundation. As the contact involves friction of Tresca type, a bilateral contact condition combined with a Tresca’s law of
friction is considered. Then, this paper extends this case to the unilateral case with Coulomb’s law of friction, considering
an alternative for the latter based on the approximation of the Coulomb’s law by a succession of states of Tresca's
friction, already used in [21] for elasto-statics. Second, Duvaut and Lions proposed in [24], a formulation based on the
similarity between Tresca and Coulomb laws, applied numerically in [10] and [21] for Active Set. The Tresca’s friction
contact problem presents the advantage that it can be reduced to a problem of minimization under constraints. Here,
more precisely, the idea is first to solve the problem with Tresca’s friction threshold fixed, next to update this threshold
according to the results obtained on the normal part of the contact efforts, and then to iterate this principle until
sufficiently stable threshold values are obtained. The convergence of this fixed point method, has been proven in [25].

Moreover, the performance and the efficiency in terms of computational costs of PDAS strategies for non-linear and
non-smooth problems, proven in [21,22,26], are very significant. Indeed, we provide in this work a comparison between
PDAS methods and the quasi-augmented Lagrangian method, in terms of numerical accuracy, convergence rate and CPU
time.

The discrete frictional contact conditions are realized by applying an active set strategy to the non-linear complemen-
tary function based on a Newton semi-smooth iterative scheme (cf [20,23]). For each case involving several frictional
contact conditions, we present in detail the operators and the active and inactive sets which describe the non-linear

frictional contact problems. In order to confront the PDAS to the quasi-augmented Lagrangian method for solving several
frictional contact problem for hyper-elasticity, we mainly study and compare the properties of both methods in terms
of numerical convergence with respect to several parameters such as the number of degrees of freedom, the number of
iterations and the CPU time. Moreover, we also analyze the behavior of solutions considering various contact conditions,
The remainder of the article is organized as follows. In Section 2, we present both the mechanical problem and the
variational formulation in the framework of hyper-elasticity. Section 3 is devoted to the discretization of the variational
problem. In Section 4, we recall the frictionless unilateral contact law with a gap before applying an Active Set strategy
for this law based on a Newton semi-smooth iterative scheme, Section 5 is dedicated to a bilateral contact condition
combined with a Tresca's law of friction, whereas a unilateral contact with Coulomb’s law of dry friction is considered
in Section 6. Section 7 is divided into two parts. First, a full PDAS strategy for unilateral contact with Coulomb's friction
law is considered. Next, an inexact PDAS with fixed point method related to the friction bound is introduced. Finally,
Sections 8 and 9 are exclusively devoted to the numerical results, first in the static case then in the dynamic case.

2. Formulations of the dynamic contact problem

In this section the mechanical problem of hyper-elasticity and the associated variational formulation are presented.
2.1. Hyperelastodynamic contact model

Let us consider a hyper-elastic body which occupies a domain 2 CcRi(d=1,2, 3) of boundary I'. The former is
assumed Lipschitz continuous and consists in three disjoint measurable parts [, Iy and I3 such that meas (17) > 0. The

notations x = (x;) and v = (1;) stand for a point in 2U /" and the outward unit normal at I, respectively. In what follows,
the Einstein summation convention holds, and the indices i, j, k, I range between 1 and d. Let us denote by I the second
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Fig. 1. Physical setting of a deformable body against a foundation.

order tensors space defined on &9 or, equivalently, the space of square matrices of order d. The usual inner product and
norm on R? and M9 reads:

wev=upi, ol =(v-0)!  VuveR?
1
Wiy =My, lyl=(:p)2  VILyeM.

u denotes the displacement field and 11 the first Piola-Kirchhoff stress tensor, The normal and the tangential components
of won I" are given by u, = u - v and I, = o — u,v. Also, the normal and the tangential components /7, and I1, are
denoted by /7, = (ITv) - v and I, = Ilv — [1,v. The divergence operator is defined by DivII = (1T ;). For the sake of
clarity, a concise notation of the partial derivative is used : Ujj = du;/dx;.

We considered material described with a hyper-elastic constitutive law that is characterized by the first Piola-Kirchhoff
tensor II. This former is derived from an internal hyper-elastic energy density W : 2 x M‘i — R, II = %W(x, F) =
dW(x,F), for all x € 2 and F € M. Here F is the deformation gradient defined by F = 1+ Vu and 9 represents the
differential with respect to the variable F (cf [27,28]). In the following, the dynamic frictional contact of a hyper-elastic
body with a perfectly rigid obstacle, the so-called foundation, is considered (see Fig. 1).

The hyper-elastic body displacement is driven by the body force of density f, and the surface traction of density f,
that acts on 3. The mechanical hyper-elastic problem is investigated on a time interval [0, T] with T > 0, and the time
variable denoted by t. For the sake of conciseness, we do not refer to the dependence of the functions on x and t, and
the derivatives with respect to the time reads (.). The displacement on the boundary I is prescribed, and also on I3
when the contact condition holds. The frictional contact conditions are formulated as the unilateral contact conditions
combined to a Coulomb’s law of dry friction. The unilateral contact relations on 7 depend on the normal displacement
u, and the normal contact pressure I, as follows,

u, =g, 11, <0, (u,—g)i, =0, (2.1)

where the gap g measures the distance between a point on I and its projection onto the rigid obstacle. See [29] for
further detail about large sliding frictional contact between deformable solids. The Coulomb’s friction law depends on the
tangential frictional stress IT,, the normal contact pressure 7, and the tangential contact velocity i, by these relations:

Xl < e |17, (2.2)

Wy o
=IO, = p |1, = if i1, #0, (2.3)
[l ||
where ;¢ denotes the coefficient of friction.
Using the previously introduced notations, the formulation of the dynamic contact problem in the framework of
hyper-elasticity is:

Problem 7. Find a displacement field ut ; 2 x [0, T] — R? and a stress field 11 : 2 % [0, T] — 149 such that

IT=03gW(F) in £ x (0, ) (2.4)

—pli+DIVIT+f, =0 in 2 x (0, T), (2.5)

u=0 on N x(0,7T), (2.6)

v=f, on I x(0,T), (2.7)

U =g, M, =0, (u,—g)I, =0 on I3x (0, T), (2.8)

M| < e 07,

W ﬁﬁ if i, £0. on I3x(0,7T), (2.9)
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u(0) =1y, 1(0)=1u; in 2. (2.10)

Compatibility conditions on the initial displacement are written as follows II(x,0) = 9W(x,1+ Vu(x, 0)). The
constitutive law of the material is described by Eq. (2.4). Eq. (2.5) represents the equation of motion in which p denotes
the density of the material and is assumed to be constant, for the sake of simplicity. Conditions (2.6), (2.7) represent the
displacement and traction boundary conditions, respectively. Finally, conditions (2.8) and (2.9) represent the frictional
contact conditions previously described in this section. Note that the conditions (2.8) are equivalent to the following
subdifferential inclusion (cf [30])

— I, € 0¥ (u, —g) on I3 x(0,T), (2.11)

where 9 represents the subdifferential operator in the sense of the convex analysis and ¥, denotes the indicator function
of the set A C . A similar consideration for the frictional stress leads to

—I; € —pfld|lu | on I3 x(0,T), (2.12)
which is equivalent to (2.9). Finally, (2.10) represents the initial conditions in which g and u, are the initial displacement
and velocity, respectively.

2.2. Variational formulation

In order to derive the variational formulation of Problem P, some preliminary material is needed. Throughout this
paper the standard notations for Sobolev and Lebesgue spaces associated to 2 and I are used, The following spaces are
considered

V={veW"(2:RY) : v=0o0n N}, s>1 H=I%2;RY

These are real Sobolev spaces endowed with their standard inner products (u, v)y and (I1, 7)y and their associated norms
I - llv and || - |lu, respectively. The duality pairing between V* and V will be denoted by (U, vy« y. We also define
W={veH (2;RY) : v=0 on ). Clearly V. ¢ W € H ¢ W* ¢ V* with all embeddings being continuous,

Note that, for convenience, the Lagrange multipliers A, and A: are taken as equal to —/7, and —II,, respectively. To
this end, we defined by X, = {vy|r,: ve VandX. = {vlp;: veV } the trace spaces equipped with their usual norms.
We denote by Y, and Y, the duals of the spaces X, and X;, respectively. Moreover, we denote by {-, Dyvex, and {, by, x, the
corresponding duality pairing mapping. Then a function ¢, : X, — (—o0, +o¢] is introduced, defined by

‘pu(l'l'} = f lp}*(t"u)dr Y, € Xo.
I3

Therefore, the Lagrange multiplier 2, related to the contact stress verifies an extended subdifferential inclusion derived
from the pointwise subdifferential inclusion defined in (20,14,

Ay € (U, —g) in Y,. (2.13)

Similarly, we introduce the function ¢, : X; — (—oo, +o00] defined by
o) = [ Wscer Vo ex,,
I3

and, therefore, the condition (2.12) leads to the following extended subdifferential inclusion
Ap € phydg(u) in Y, (2.14)
Also, for a regular stress function IT the following Green’s formula holds:

/ H:Vvdx—i—[ Divl‘[-vdx:fl‘lv-vda for all v € Hy. (2.15)
2 2 I

Moreover, in the study of the mechanical problem (2.4)-(2.9) we assume that the body forces and tractions densities have
the regularity

fo € L. T IPNQ)),  f, € 10, T; P2(1y) (2.16)
where €(1,00) if d=2, siid +e(1,00) if d=2,
i :%} If d::‘}, P2 :% if d:3
Now we turn to the hybrid variational formulation of Problem 7. To this end we introduce the element f defined by
(FCe). vly = (Folt), v)u + (F4(1), v)iry) Yoel. (2.47)

By using the duality pairing between V* and V, Green's formula (2.15) and definition (2.17), we can see

(,Ou(t) U}V‘xV + (H, Vv)v‘xv - (f(t) U)V + f nl‘l‘l da + f I, - v, da.
B 13
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Then by using the Lagrange multiplier 4, related to the normal contact stress 11, and the Lagrange multiplier A,, related
to the tangential contact stress IT,, we obtain the variational formulation of the frictional contact problem P in terms of
two unknown fields.

We are now in a position to introduce the definition of the weak solution for the considered problem.

Problem Py. Find a displacement field w € L0, T; V) with 1 L0, T; W) and ii € L%(0, T; V*), @ normal stress field
Av 1[0, T] — Y, and a tangential stress field X, : [0, T] > Y, such that Vv e V

{pU(t), V)yexy + (IL, VO)yery + (A,(0), Uy, + (Ao (t), 0y, x. = (F(E), v)y, (2.18)
Au(t) € dgu(uy, —g) inY,, (2.19)
(L) € Ay dg (u,) iny,, (2.20)
forallt € [0, T] and, moreover,
u(0) = uy, 1(0) = u,. (2.21)

A pair (u, 1) which satisfies (2.18), (2.19), (2.20) and the hyper-elastic constitutive law in the form 11 — JpW(F) is
called a weak solution to the frictional contact problem 7y. See [27,28] and [31] for further details on the analysis of
variational formulation of hyper-elasticity problems.

3. Variational approximation

This section is devoted to the discretization of the variational problem Py, based on arguments similar to those used
in [32-38].

First, we recall some preliminary material concerning the time discretization step. Let N be an integer, let At = # be
the time step and define

th=naAt, 0<n<N.

Below, for a continuous function f(¢) with values in a function space, we use the notation f; = f(t;), for 0 < j < N, Finally,
for a sequence {w,,}ﬁ’:l, we denote the midpoint divided differences by

! 4 :
U—-‘nﬁzl = (wy, — Wy—1)/ At = 5{“*'11 + w,q), (3.1)

and, equivalently, we have 1w, = gfu,,_]+%(ur,,—wnﬁ, ). In the rest of the paper, we use the notation jn_% = 51(],,-}—13,1_1),
where 0, represents the approximation of C(tn). Note that the time integration scheme we use is based on the implicit
second order midpoint rule given in (3.1).

We now present some material concerning the spatial discretization step. Let £2 be a polygonal domain. Moreover, let
{7"} be a regular family of triangular finite element partitions of £2 that are compatible with the boundary decomposition
I = ITUT; UT;, ie, if one side of an element Tr < 7" has more than one point on I, then the side ljes entirely on
N, T5 or T5. The space V is approximated by the finite dimensional space V" ¢ V of continuous and piecewise affine

functions, that is,
V=" e [CEN ¢ e (T YT e T,
v" =0 at the nodes on 17},

where Py(Tr) represents the space of polynomials of degree less or equal to one in Tr and h > 0 denotes the spatial
discretization parameter. For the discretization of the Lagrange multiplier spaces Y, and Y;, we use discontinuous
piecewise constant functions as it is done in [39]. The discrete Lagrange multiplier spaces are denoted by Y and Yi'.
More details about the discretization step can be found in [12,37,38].
Let ug e V" and u’,’ € V" be finite element approximations of uy and u,, respectively. Then, using the previous
notations, the midpoint scheme (3.1) and time approximation for the discretization of the tangential velocity u.(t) given
by u'r”_jl = (U, — Uy ,_1)/ At it leads to the following fully discrete approximation of the Problem Py at the time t"-%

Problem P}, Find a discrete displacement field uhat = (hauyN_— vh q discrete normal stress field A3t = (AN

Y and a discrete tangential stress field MAC = (A AN YR such that, foralin = 1, . .N,

™n
s AL h h 3 hAt I hat I
(p!lm%, Vv + (I, Vo y + (/».,:7%. vl')&'f"«Yf‘ -+ ﬂf”,%' Url)vé‘./\'ﬁ'
I/ h h
=(f,i:“1v”t)v-*xv VeV (3.2)
2

— LA € g (u, A — gy, (3.3)
rl—j f!ﬁj

hAt 5 har - - hAL
—lr: 1 € — [tk 1B (g 71)- (3.4)
—j n*j n 7

T
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hAt I hat !
i = u, Suy®t = ui. (3.5)

QAL -hAt
Where ii:‘m] = ""—A—:I"—" is the midpoint time approximation of the acceleration ii at the time ¢ ;.
=1 1
Starting from the Problem 73{}’" and using the formalism introduced in [40] and [9] based on the Galerkin approxima-

tion for hyper-elasticity, we will directly pose the elementary discrete strong problem as follows.

Problem 7. Find a global displacement vector u™ — {uWN_ ., a global normal stress vector At =20 and a

n=
global tangential stress vector A% = (A2 such that, for all n = 1

piidt 1 + A(Hd! 1 ) + lpdt 1 v + )'--:Ar 1 —f = D
n—s n—s n—3 L,

—nY e B(p.‘(llyf:j. —Z),

H‘*j

At At
— A € —uk,
ﬂ“*? n

ug" = ug, Sug = uy.

1 a@r(lirm 1))
2 e

where A(.) is the internal force vector coming from the first Piola-Kirchhoff tensor J7.
In the rest of the paper, to simplify the notation and the readability, we do not indicate the dependence of various

variables with respect to the discretization parameters At and h, i.e., for example, we write i instead ofu::i”l.

4. Frictionless unilateral contact law with a gap

2

At first, we consider a frictionless unilateral contact law with a gap. Denoting by p the index of the vertices on Fg” e l3
and with these considerations, the discrete unilateral conditions verified on the contact boundary I‘;’ are given by

U, , <g, (4.1)
P

Avp >0, (4.2)
(typ — &)hvp =0, (4.3)
Ao, =0. (4.4)

The discrete Signorini conditions (4.1)-(4.3) are represented by the following nonlinear complementary function ’R’},(ul,!p.

hup) =0

RE(Uy p, by p) = Avp = max(0, A, + ¢, (1, p — g)).

(4.5)

Such a result was already proved in [26]. Now, we recall the generalized derivative of the complementary function in the

gap and contact cases.
Gap case: AoptC(u,p,—g) <0
Rk Pl = N

Then, it is obvious to see that

ds B =10, (4.6)

d,,RE =dx, . (4.7)
Contact case: A, + iy p—g)=0

Rty py 1 p) = —Cy(ty p — £).
Then

dy, ,R) = —c,du,, (4.8)

d, RS = (4.9)
By combining (4.6) and (4.9) with Gry the generalized derivative of R*, we obtain

gnz‘-(“l',ﬂ! ;\'I',P)(Eut'.p’ 3;‘-1'.11} =—¢(1 - r\)c.‘up)'suv.p + f'\,(;ap‘”‘-r._u‘ (4.10)
where

Xegp = 1, if hy p 4+ c(u,p — g) < 0,
Aogp =0, if 2, p + ofu,, —g) > 0.
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Using now the semismooth Newton formalism at the current u(P ; A , one can derive the new iterate u[“”, Aff””) b
g vps Aep v.p ) y

the following iterative scheme of index k:

O (1, AL )BulkE D, 52041y = ~F G iy, (4.11)
(k+1 (k+1)y _ k (k (k+1) k+1
where  (u{f+1, 30 )_(uE.)p.Al,.},)qL(auw BARE Y (4.12)

Gap case: Xogp =1

(k+1) ) _ _5(k)
A'|'Ap - Au,p . Au,p' (413)
Next,
A{f;” - (4.14)

Contact case: Xgap =0

= c\,(u{_’f:{” = ufffg,) = c,.(ugfz, - g). (4.15)

Next,

il = (4.16)

Let us denote by & the set of all nodes of the finite element mesh belonging to F3" and p the index of a node belonging
to &.
Primal-Dual Active Set (PDAS) method

In the following, we use the same notations as in [21]. The discrete contact conditions (4.1)-(4.3) are realized by

applying an active set strategy on the nonlinear complementary function R} based on a Newton semi-smooth iterative
scheme. The active and inactive sets are defined as follows

A{‘.*] ={pes: )Lfk; + c,,.(uffj, —g) = 0},

*l'=ppes: )&L";, + cu(uf,’ffu —-g)<0)},.
The status of a given node at the iteration depends on the set it belongs to; it can be either in the non-contact {gap) or

contact status.
At each increment n corresponding to the time f,_1, we also introduce the global nonlinear complementary operator
2

Rl ) = (R0 7B 4 RY(.,.)) which describes the system of nonlinear equations arising from the discretized
problem 7¢°*" in the case of frictionless unilateral contact, and defined by

R"(u, L) = pit + A(u) + »,v —f
R(u,A) = | RMu, 1) = Avp = max(0, i, + c,(u,p —g)) | =o0.
RMu, 1) =0

Now, we turn to the description of the iterative active set algorithm of index k.
(i) Choose (1™, A%), ¢, > 0 and set k = 0.
(ii) Set the active and inactive sets:

At =pes: ¥+, - g >0,
G5 = AR,

(iii) Find (a0 A%y such that

pi*TY 4 ANy 4 i)y, _ g (4.17)
uf=g forall pe V] (4.18)
MOV=0 forall peztt, (4.19)

(iv) If (= a0y _ ) oy < ¢ [R(u%+N, AUty < ¢ AT = Ak then stop, else goto (ii).

Remark. The nonlinear system (4.17) corresponding to R"(u'* 1) A1)y — 9 K35 to be solved by a Newton method at
each active set iteration.

5. Bilateral case with Tresca’s law of friction

In this section only, we consider a bilateral contact condition combined with a Tresca's law of friction,
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Denoting by p the index of the vertices on F;’ € I3 and with these considerations, the discrete conditions verified on
the contact boundary are given by

U, p =0, (5.1)
Azpll = S, ‘
IAepll < § = 1.5 =10, (5.2)

IRepll = S=38=>0:1,, = i,

where S > 0 is the Tresca’s friction threshold fixed. In order to derive the iterative scheme, we introduce a nonlinear
complementary function R}(it; ,, X, ,) = 0 defined by

Ryl p. Aep) = Max(S, e + Cotte pl e p — SChep + Cit ). (5.3)
Let us prove this result.
Proposition 5.1. Let ¢, > 0, the Tresca’s friction conditions (5.2) are equivalent to ’R,’;(itr,p, Aepl=0.
Proof. Let us assume that (5.2) hold. Then, either IA:pll < Sor|x;,ll = S. First, if IA:pll < S, it implies that i, =0
So

Rl p, Xep) = Max(s, [[Ae pl)Acp — S(Ae ) = 0. (5.4)
Suppose now that |[A, ,|| = S and Ay p = Bt , with 8 > 0; therefore

Re(ite p, Aep) = Max(S, (8 + colite p Bt p — Bllite (B + . )ity = 0. (5.5)
Conversely, assume now that Ri‘(!'l,‘p. Arp) = 0 holds; depending on the value of X;, and il; p, one can have

S =max(S, |A;p + ccil; p ), (5.6)

IXep + el pll = max(s, (A, + oty ). (5.7)
By combining (5.3) and (5.6), we get

Shep =S(Aep +ceit, ), (5.8)

which means that ., = 0, since ¢; > 0, and therefore (from (5.6)) S > Az pll. At last, we combine (5.3) and (5.7) to
obtain

”lz,p -+ Cri‘r,p“lr,p = S(Xr.p S Cri‘r.p)- (5.9)
Note that [[A; , + c.11, || = S > 0. We get IAcpll =S. Also, it is trivial that
Sc, .
hep=——"""— 4. (5.10)
i ”lr,p‘i‘fr"t,p“ —s P
Let B = Mﬁm With (5.7), it is clear that 8 > 0, which concludes the proof. A similar proof is available in [18]. O

Now, we compute the generalized derivative of 'R‘}(-, +) in the stick and slip cases
Stick case: [|A,p + ¢ it p|| < S
R?—-(ﬂr,py Aep) = =S, p.

By definition

OR:
dp, RY= —Zdi, .
HeEpty By P
IR
dy, R = A, .
Aepltr al:‘p P
and then
di, , R} = —Sc.dit, p, (5110
th T =1, ¥5.12]

Stip case: [|X;p + coit, pl| > S

R, s g, pl = e - Coblesplli 5 — 50.e Tty 1)
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We get
(Aep +Celty p)! .
d; (c T )dur , 5.13
bR =\ cri SOl e
(g Tl 1" .
dlr.pRﬁ = (ll’.P “l 2 +c I': < “ + “lr.p + Cr"r,p”"Z - SIZ)d)tr,p- (5.]4)
T,p T™T,p

By combining (5.11)-(5.14), with Gr) the generalized derivative of R*, we obtain

(Aep + colty )

(TN T S ) G P T (SXe,p + c. i, ) (5.15)

= S(XsiipShe p + 08U p) + NsppllA, + ¢, e plldAs p (5.16)
where

Ksip =0, if [[Aep + it pf| < S (5.17)

Xstip =1, if | Ay p + celt || > S. (5.18)
Using now the semismooth Newton formalism at the current (u(r"i), A k)) one can derive the new iterate (t'u(r";”, lgfj”)

Gra (i, A )Suls D, 5AKH) = —RA(@l) A1) (5.19)

(ug';; Haleh= iR, xg"g,) +(saltY, sty (5.20)
Stick case: Ay =0

—~ SR i) =18 u“" (5.21)
and then, since S¢; > 0

g (5.22)

Slip case: Xeiip = 1
()L“‘] + e L
( {A(k) + ¢, u”"

.(k.
Sctlz)(u”;” u”‘))

0y
T.p ”A.(k y Cr"(k] ”

= — A%, + i) e + S0 + i),

= SE + I, + I )Y — A

and then
k) ( (k
® (l”‘) + c,u(r p) k1) o TS k) + c :,) 0
(CZ Tp——w SCTI‘))" T Tp——T T.p
Hl,p +cugll Ill + i1,|I

( s el YT
e +cru”‘) I

T.p

k) \T
(R, +e )
—Sh + MY+ ¢, il n.'z)x‘“” — e T g

T r.p T.p ”l(k) ks Crufkj ” T:P

T,p
=0

At this point, for the sake of clarity, let

C A 4 il )

A4 il ||

T.p

1
125, + )
With these notations, one can write
crE(k)(pm _ slz)mgf;n e (E(k)(pfm =&l lz)lg’f;n = EMF® (m Fop. i ))
Now, let
M¥ = EROFR _ s1,),
WY = EUFO(AH 4 i),

F9 =3

Elk) —
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Then

CTMLH!'I{:(_;” + (Mf,k) + Ig)k(r’f;” = hg‘).

In order to simplify even further the notations, we introduce the following operators;
(k) (k)y—=1pn(k)
Lp == Cr(’Z +Mp ) Mp s
rgt} - “2 ox M;]k))flht(gk).
And, at last
(k) g (k+1) (k+1) __ (k)
B e R i (5.23)
Let us denote by S the set of all nodes of the finite element mesh belonging to F3“ and p the index of a node belonging
to S. At each increment n for the time r”_%, we also introduce the operator ® which describes the system of nonlinear
equations arising from the discretized problem 7{°%! in the case of bilateral contact and Tresca friction, and defined by
R"u,A) = pii + A(u) + X, — f
R, L) = RMu,A)=0 =0.
Ry(ite p, e p) = Max(S, hep + Coity plAep — S(hep + . tt, p)
It leads to the following algorithm of index k
(i) Choose (4, A1)y, set k = 0.
(ii) Set A = (pe 5 : AW 4 il > S), T = 5\ Ak,
(iii) Find (u®**+V 3®+1)y such that
piiﬁﬂ-]) _I_A("”H—l)) + l[;'(-}-l] Zf, (524)

(k+1) _
u,, =0 forall pes,

k1
v a

k) prtk+1) (k+1) _ (k) - k+1
LE,‘ e F LR forall  pe Al

Bl =0 forall  pew

(iv) I (D, KDy () AR < € R@u*HD, AEFD) < € and AFT = 4 then stop, else goto (ii).

Remark. The nonlinear system (5.24) corresponding to R¥(u*+D A6+1Y = 0 has to be solved by a Newton method at
each active set iteration.

In this specific problem, and for a two dimensional case, one can obtain a simplified equivalent version of the algorithm.,
Let gjgf be the generalized derivative of ®* in the slip case
T

{lz,p + Cti‘r.p}r
1Az p + coite |
— S0 p + C . ) + Az + Critr‘plfr?l[_p.
Denote by 7, the unit slip vector: since the problem is bilateral, we have on the contact boundary
Yo =5, (5.26)
(Aep +celte )
[z p + coity ]
Shep+ €8l = ar. (5.28)
Combining (5.25)-(5.28), we get

gﬂip(ﬂr,p, lr‘p)(‘Sﬁr‘i:n ‘”‘-r.p) = X”,

e (8Arp + .81, ) (5.25)

7 (5.27)

Grea lite p, Ao p)(Bite . 83, ) = Sa(te — I)r + [hep + Ceite pl[0A, .

Since " 4+ vvT = [, in the 2D case, we have:

0
(rtT =Ly =w'r = (0) .

Therefore, (5.23) becomes

(k) (k)
l[‘p + Celly

yle ) — 57— 30
L Hlﬂ"‘i, 410 u?fL I P
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The simplified algorithm takes the following form

(i) Choose (u'®, A9y, set k = 0.

(ii) Set AT = {pe §: A + i) > 5), v =g\ ak+1,
(iii) Find (u*+1 3 +Dy such that

pﬁ(kJr]) JrA("(kJrlJ) + A.(l.k+]J :f,

u{jf:,“” =0 forall pes,
=0 fual  penht,
AW e il
(k+1) _ T.p top k+1
P R _Sﬁ forall pe ATt
AT, + ety |l

(iv) IF (| (a0, A%y — (0 A0 < ¢, [R**D, A%+ DY) < ¢ and AL = 4K then stop, else goto (ii).
6. Coulomb’s friction law with a gap

We consider now an unilateral contact with Coulomb’s law of dry friction instead. Denoting by p the index of the
vertices on I3}’ € I'; and with these considerations, the discrete conditions on the contact boundary are

Upp =8, (6.1)
Avp =0, (6.2)
(uu.p “g}}\-xr,p =0, (6.3)
Ao pll < relds pl,
IAepll < w2 pl = '—.‘r.p =0, (6.4)

”)‘-r.p” = Hl)‘-r.pl =348 = 0: Aor,p = ﬁ“!‘pa

The discrete Signorini conditions (6.1)-(6.3) are represented by the following nonlinear complementary function Rﬁ(ur!p,
A-v,p) =0

R B dip) = Mg — AR, by i fin, gl (6.5)

Such a result was already proved in [26]. In order to introduce the second nonlinear complementary function associated
to the frictional conditions, that is to say equivalent to (6.4), one may consider (5.3) where g, , is used instead of the
Tresca’s friction threshold S:

Ri(”v,p: ﬂr.pa Au,ps l1,',p) i max(ukv.pz ")tr,p + Cr!.{r.p”))\r,p &= H)\u,p(lr,p + Cri‘Lp)- (6-6)

The proof of this result is quite similar to the one provided in the previous part. Now, we provide the generalized derivative
of the complementary functions in the gap, stick and slip cases.

Gap case: A, p+ c,(u,, —g) <0
Rﬁ(“\:‘p, }‘vu,p) = }‘-L"p!
R?(“L',pe l-lr,p: A—v,p: A1\;)} b "A-LP + G i'ﬂP“A’T‘P'

The, SiNCE R, Bep, hip, o) =0

dy,,RY = 0, (6.7)
£]‘/"-\:.,z:17\)'iT = d}“V‘P‘ (68)
Byl =, (6.9)
A, cott, )
dﬂr F’R_)r‘ — Cf)"r.p(_ir._‘p)d"r‘p =0, (6.10)
' Az p 4+ cotic pll
d;, Ry =0, (6.11)
(Ar p+ Cr'-lr.J}T ;
4. R = (A k. N S 10 AT ST SO T )dkr 6.12
hap P lldcp + et Flhep+ettepllz jhsp (6.12)
>

Stick case: phip = Ao p + Coite | = 0

R0 gy Ken) =ttty 2,

ok . 3 w &
Ry p, Wz p, Ay p, Arp) = —pceh, plic p.
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Then
dy, 5 P = —c.dit, p, (6.13)
d;, , R} =0, (6.14)
dubpni =0, (6.15)
da, , RE = —Cr Ay pdily p, (6.16)
ds, , J; = —pc lly pdi, (6.17)
diy ;R =1, (6.18)

Slip case: ||A, + ot 5 > Ay p >0

Ri(“v,pa )\u,p) = _Cv(ul.‘,p = g}:
Rl i AopsAep) = e+ Colte plhep — pehy p(hep + Gty 1),

Then
duup y = —cpdu,, p, (6.19)
dy,, Ry =1, (6.20)
thess B = U, (6.21)
Aop it ) i
dy. R — ( i B 7 PO )dur . 6.22
Ur p p‘-zp +Crlhp|| — MG pl2 N:D ( )
dl\;_p’Ri = *nu()‘-r.p + ¢ ul"p)d/\-l',pv (6.23)
(Aep + crity p)7 .
d R":(;\r OBV ERLL g (e Gl o [ Hi .')dk : 6.24
Aepier P ”A-Ep T, urp” [ p TG p“ 2 = Ay plp T.p ( )

By combining (6.7)-(6.24), with ¢ G and Gr» the generalized derivative of ® * and R%, respectively, we obtain

(_}’ (“n Ay p)(fsut ps Oy p) = —C{ Xsrick + Asiip }Slt.._p + f\)GaplSA-l"pv (6.25)
Qﬂl}(uu,p, p, Ay ps A p)duy p, Stk p, A, p, Shep) = Aeapllhep + Colly plI6A, (6.26)

+ flimck(—uc‘,)t,_pﬁﬂw — jucln, .U‘S)W,p)
(Aep + oty p)! ) "
Xap((Cheprn2 Toben) _ s, 12 )dite p — (e p + ot )55
+ Xipl (€ rpll)trp+crl‘rp|l HCe Ay pla p— 1 P T .p) P
()‘-I,p +Czut.p)

+ (Ar ;
Pllep + colte |

£ “lr.p +c; !'lz.pli’z . H)‘-n,plz)glr.p)

where
XGup = ]: Nsrick = D! A'S[ip =0 if}‘-up =+ Cr(“»mp o g} = 0,
fl’Gap =0, Xy = 1, Ay = 0 iffi;\v‘p = ”lr.p + Cr!.’!‘p“ > 0,
Xeap = 0, Xgjp = 0, Naip = 1if ”)"r.p + Cr’:‘r‘p“ > .“A-v.p > 0.

Using now the semismooth Newton formalism at the current i, al, A A1), one can derive the new iterate
(kD glern) (k) kH))
v,p t T,p ) v.p 3
Gra (Ul AL )(sulksD, gakiny —RiGd, Al (6.27)
GO (k (k+1) sy (k1) g1 (k
G (s iy, A%, A YUl D), ik BT, A (6.28)
K atk) 4k o (k
= —rR}ul f}.u L J’D,A( ))
(lfk-+ 1) "”{-}']) )\.k+l] l{k—F]) (6.29)
= (ulfl, u”" )L(L"L,JL(M)-F{(SU(“ B BT, gy,
Gap case: Xgop = 1, Xgjor = 0, Xg = 0
fk+1 ”\ f
A — a8 =g (6.30)
1A% + cru“‘J pIOSEY =28y = — Y 4 ¢, i) LIRS, (6.31)
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Next,
(k+1) _
Ay =0,
(k1) _
Ay, =0,
since [|A7, k) + cru“‘) || > 0.
Stick case: Agap = 0, X = 1, Asiip = 0

~ (Y — ) = ¢, — g},

. (k Qlk (k) ¢ (K
- ;.LC,JL(J‘,L(M((,H )) J10a 15 }(A{.):,'”
Next,
(k+1) _
Hg g
'
- (k+1) TP (k1) (k)
ey e e i
v.p

S“p case: -’Y(Iap = 0 Astick = 0 z‘ghp =1
For R}, we get once again

it =
For R}, we obtain

( g (A + i)

”WA i)

— (2 +c Ayl _ 30y

k -k
(l (;u L ey
P, + el

I, + il I+ 0 B0W 1 e i),

Tp v,p
For recall,
k < (k) AT
g _ 50 O T Cetily)f
“PING + cdl)
ER) — 1

1L, + e )

Therefore, after an elementary computation

crE(k)(F(k) ”"lg)(u k) u”“) HE “()L”" +c. 1t

+ (EWr - ) + L) EW(FY - i 2, = 0,

v.p
Now, let
MY = EVED — 50
) = EER) (l‘:‘}, + cr!'lgfp).

Then

CrM;(k)ﬂ(f.;” . ,[LE“()(A.{H + CTI.!”{) )k(""‘” "

v.p

= hg") =B c,u”( Atk

g vp'

In order to simplify even further the notations, we introduce the following operators:

L = c(lz + M;¥)~'m Y,
-*[k) - U 4 M'ﬁ(k])—lh(k]!
l!\] = '“(12 +M k))k E{k)(l(" +Crll(k))

ucrkgﬂjl )(u””"” i

—39) = e,

« (k)
T,

(k) (k)
At

+ 1A, + il — a1 )Y - a8

(k+1
VIR

(1> + Myl

(6.32)
(6.33)

(6.34)
(6.35)

(6.36)

(6.37)

(6.38)

(6.39)
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And, at last

ARk _ (K (k1) |y (k1) _ (k) (k) (k
LW — A0 o QdD) — palid _ 0 i,

Gap case: Xggp = 1, Xstir = 0, X, = 0

A&_’j” =0, (6.40)
k+1
A=, (6.41)
Stick case: Xeap = 0, Xt = 1, Xsiip = 0
w5l =g, (6.42)
(k+1) i) k)
- (k1 TP (k1) _ ol
LN 2 )\(—k}kv,p - "r.p' (6.43)
v,p
Slip case: Xgap = 0, Xsjicrk = 0, Xgpp = 1
w3 =g. (6.44)
By using (5.26)-(5.28) and z¢" + vv' = I, we deduce from (6.39) the following expression
— #8, + e AN — a8y + A 4 c i aden — AW (6.45)
L (k . (
= — (A%, + e 18I, + mAE AP + e, AT

Therefore, after an elementary computation
k - (k)
(&2 +edd)

TN

(k+1) 2 (k)
\Il‘f}) pak =)o

= HAy,

(k+1) _ (k+1)
)"I,p il 'u'kv‘p

7. Full iterative scheme for the Coulomb’s friction law with a gap case

Let us denote by S the set of all nodes of the finite element mesh belonging to Fg" and p the index of a node belonging
to S.

7.1, "Full” primal-dual active set

The discrete friction contact condition (6.1)-(6.4) are realized by applying an active set strategy on the nonlinear
complementary functions R} and ?? based on the Newton semi-smooth scheme derived in part 4. The active and inactive
sets are defined as follows

A —pes: A+ cl‘(u(v'f}) —g)> 0},
L' =pes:\M +oul —g) <0},
A =(pes: MY+ i) -k > 0,

k -k
I ={pes: I + il — urd <o,

The status of a given node at the iteration k depends on the set it belongs to; based on the previous part it can be either

in the non-contact, slip or stick status.
At each increment n for the time t, 1, we also introduce ® which describes the system of nonlinear equations arising
2

from the discretized problem P¢* in the case of unilateral contact and Coulomb friction, defined by
RMu, L) = pit +A(u) + Ly + A, — f

R(u, X)) = Ry, A) = A, p— max(0, Ay,p + ¢(ttyp — £)) . =0.
'Rﬁ(!l, A) = 'nax(li)\-r,p: ”)Lr.p + ¢ "r.p” )lr‘p = }1)¥1"p(lr.p + ¢ "r‘p)

Now, we turn to the description of the iterative active set algorithm of index k.
(i) Choose (9, A9, ¢, > 0, ¢, > 0 and set k = 0.
(ii) Set the active and inactive sets:
k (k
At =fpes: Al +o.(u¥ —g)> 0),
T = 5\ AL,
AN =pes: A+t ) - a5 0),

p v.p
k+1 __ o nea|
T = BN AT,



S. Abide, M. Barboteu, S. Cherkaoui et al,

(iii) Find (u®*+V, A®*+1y such that

pite ) Atk 4 Lkt Dy, g a e (7.1)
utV=g forall pe Akt (7.2)
=0, V=0 forall pezl’ (7.3)
L9 — AL £ AR = 0 A8 forall p e AT 0 A, 4)
- (k
it 4 :;{'%’Affg” =al¥)  forall pezi'n.altt, (7.5)
v.p

() I D, 8 0) — ) AW)) < 6, RN, A D)) < ¢, Ak = A and 41 = 4k then stop, else goto (ii).

Remark. The nonlinear system (7.1) corresponding to R"(u**V A+ = ¢ has to be solved by a Newton method at
each active set iteration.

For the 2D case, we turn to the following iterative active set algorithm of index k.
(i) Choose (u'®, A, ¢, > 0, ¢, > 0 and set k = 0.
(ii) Set the active and inactive sets:

A{‘.“ ={pesS: Afk:) + c..(uf_ffg) —g) > 0},
IE-H =5\ -"‘EH’
A =(pes: ||k(f‘}, + ctix(r’fi}ll = ].l/\(uk,;? > 0,
Tl = g A,

(iii) Find (u%+D, A&V such that

pit* ) A1) 4 )LEf"“”v +l(rk+” -l (7.6)
udV =g  forall pe Akt (7.7)
M =0, W =0 foral perrt, (7.8)

- (k
" (Agf;, + cru[;)

WD) — b DB TP fr a)) p € AR A Akt (7.9)
. -k o
or R [P S | ‘ :
i)
(k1) DB (k1) k) I e
w, )L(—k)l"’p =u;, forall per;™ NAT. (7.10)
v.p

(iv) I (@0, 2850y — (@ A0 < e, RN, AEHD)) < €, 4T = 4k and 4KH! = 4K then stop, else goto (ii).
7.2. “Inexact” primal-dual active set with fixed point method

In the case we consider a fixed point method related to the friction bound, we can approximate the Coulomb friction
by a succession of states of Tresca friction in which the friction bound is fixed at each fixed point iteration of index i
(cf [21]). Since we have notice that (7.10) can lead to numerical instabilities when AE“; is small, we introduce a variant
of the previous method. In this way, we have to introduce the couple (uK), A"y which represents the value of (u, X) at
the ith fixed point iteration and at the kth active set iteration. Moreover, (u~" 1=1)) represents the value of (u, X)
obtained at the convergence of the active set method for the fixed point iteration i — 1. Therefore, for each active set

iteration, we fix the friction bound lffj,'§+1] to the value k[.f;,"‘) obtained at the previous fixed point iteration. Then, the
condition (7.10) leads to /" = .

For the 2D case, we can consider the following active set algorithm of index k coupled with a fixed point method of
index i;
(i) Choose (u'®), %)) and set i = 1.
(ii) Set (u® A0:0)) = (-1 A 0=L)y ¢ 5 0, ¢, > 0 and set k = 0.
(iii) Set the active and inactive sets:

At =(pes:alih 4 o (ul¥ — g) > 0},
I{\I‘+1 _ S\Af—l,
A = (p e s INED + il Pl - paly) > o),

P T,p
k+1 _ o k+1
T =B\ AT,
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(iv) Find (%1 A0k el that

pﬁ(k; 1) +A(u”’k+”}+kg’k+”u Jrk(ri.kﬂj =f, (7.11)
Uit e Horall  pest (7:48)
Abgt =0, AMD_0 forall pezt, (7.13)
ik ik
3kt ;ckff‘;]"JM for all p e AXF1 N gk+t, (7.14)
A2 + eyl
a0 =0  forall peztt!n .k, (7.15)

(v) IF [|(ubhtD J LDy _ lik 300y < IR(uKD, AGKY < ¢ gkt = Af and A = 4K then stop and set
(u®), Oy = (kD) A GR) else goto (iii) with k = k 4 1.
(Vi) IF (), M) — (=10 X011 < e R(ut), X < ¢, then stop, else goto (ii) with i = i + 1.

Before presenting our numerical results, we would like to point out an interesting feature of the Inexact Active Set
method that we expect to demonstrate in the following sections. It turns out such a method has the particularity of having
symmetric linearized systems, unlike the linearized systems resulting from the Augmented Quasi Lagrangian for the 2D
friction problems, This feature makes it possible to counterbalance the well-known slowness of the fixed point. Despite
this fact, the fixed point method is strongly dependent on the coefficient of friction, unlike the augmented Lagrangian
method, we refer to [4] and [8] for more details on this subject.

The next two sections are devoted to the numerical results, first in the static case then in the dynamic case,

8. Numerical simulations in the static case

The aim of this section is to provide numerical simulations on academic static cases to depict the mechanical behavior
of the contact problem’s solution 7. We display numerical simulations based on two static configurations: the bilinear
contact with Tresca’s law of friction and the unilateral contact with Coulomb’s law of friction, both for a linear elastic
beam on a perfectly rigid foundation. The numerical solution of Problem P is computed both with the active set method,
described in Sections 5-7, and the Augmented Lagrangian method in order to highlight the performances and accuracy
of the former compared to the latter, since an analytical solution is not available, For the Augmented Lagrangian method
(cf[1]), it is required to introduce in the initial mesh additional fictitious nodes corresponding to the Lagrange multipliers.
Note that the way these nodes are taken into account depends on the contact element considered for the spacial
discretization of the interface I, In this section, the discretization use a “node-to-rigid” type of contact element, that
is to say a set composed of one node of the contact boundary 3 and one additional Lagrange multiplier node. For more
details on Computational Contact Mechanics, we refer to [1,9,12,37,38].

In this section, the domain §2 is the cross section of a three-dimensional deformable body submitted to the action of
traction forces so that a plane deformation hypothesis can be assumed. The details of the physical setting are given as
follows. The foundation is defined by {{xl,xz) eR?: x < 0} for the case of bilinear contact with Tresca’s law (see Fig. 2),
and by {(x,, X eR?: x; < —1} for the case of unilateral contact (see Fig. 6). The domain is defined by

2 ={(x1,x) e R : x, €]0,10[ ; x, €]0, 11},

N={x,%)eR?: x,=0; x [0, 11},

D={(x, %) eR?: % €]0,10[: x, = HU{x,x)eR: x,=10; x; €0, 1},
s ={(x;, %) e R?: x, €]0,10[ ; x; = 0}.

The displacement field is constrained on I'y. The part of the boundary 73 is subjected to vertical traction of density f,. The
body lies on the part I'y of its boundary, whose behavior at the interface is described by a friction contact law. Regarding
the spatial discretization, the number of nodes on I'; is parametrized by nbc. The behavior constitutive law of the material
is described by an elastic linear law where the elasticity tensor, denoted by &, satisfies the following equation
Ex

E€)yp = ——

(8€)ap (T4 &)1 - 2x)
with E, ¥ and 8,4 be respectively the Young modulus, the Poisson ratio of the material and the Kronecker symbol.

E
(e11 +€22)5aﬁ+meaﬁs l=a,p <2,

8.1. Bilateral contact and Tresca friction example

For nbe = 128, as depicted in Fig. 2, 9728 2D elastic elements were considered for 10024 degrees of freedom. The
interaction between the foundation and the deformable body is depicted by a bilinear contact law with Tresca's law of
friction.
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Fig. 3. Deformed configuration of the bilateral beam against a foundation.
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Fig. 4. Normal contact stresses on the contact area.

We provide below the value of the parameters used for the computation:

E=100N/m? =03,
fo=1(0,0)N/m®, f, = (0, —0.

1)N/m  on 13,

¢, =10, ¢, =10, Tlagrangian = 0.1

stopping criterion : e = 107°,

In Fig. 3, we plot the deformed configuration and the frictional contact stresses on the boundary 13.

Accuracy of the active set method comparing to the augmented Lagrangian method.
First, we investigate the accuracy of the active set method of the finite element model by comparing it to the well-

known quasi-Augmented Lagrangian (cf [1]). The boundary I3 is divided into 128 equal parts; the normal contact

stress

o, and tangential friction stress |o, || with respect to the abscissa is plotted in Figs. 4 and 5 for each method. We note

that, for o, and ||o. ||, there is no notable difference (= 1.1077), thus confirming the accuracy for this test case.



S. Abide, M. Barboteu, S. Cherkaoui et al.

0.0020 - ."'_ 3
" g
L ] L ]
2 L
o -
=z
= 0.0000F 3
e
3
fis)
=
£ -0.0020} -
o .
= R 2 a s
= = Primal dual Active Set [N
e Quasi augmented Lagrangean []
-0.0040 =
0.0 50 100 150 200

Abscissa of contact points

Fig. 5. Tangential friction stresses on the contact area.

Table 1
Results of the active set method for the bilateral contact and Tresca friction laws in comparison with the number of degrees of freedom (dof), the
number of contact nodes (nbc), the Newton iterations (Nit) and the total CPU time (CPU) in seconds.

nbc 8 16 32 64 128 256 512

dof 76 166 586 2414 10024 40528 162976

Nit 7 9 9 11 12 13 13

CPU <1 <1 <1 2 11 70 454
Table 2

Results of the augmented Lagrangian method for the bilateral contact and Tresca friction laws in comparison with the number of degrees of freedom
(dof), the number of contact nodes (nbc), the Newton iterations (Nit) and the total CPU time (CPU) in seconds.

nbc 8 16 32 64 128 256 512
dof 92 198 650 2580 10280 41040 164000
Nit 5 9 9 11 10 11 9

CPU <1 <1 <1 5 23 145 807

Now, we can compare the efficiency of the implemented algorithms.

Performances of the algorithms. In Table 1, we provide the number of degrees of freedom (dof), the number of Newton
iterations (Nit) for the convergence of the Active set method for the bilateral contact associated with Tresca friction laws
and the total CPU time required to reach the convergence (CPU) in second for several values of the number of contact
nodes on the boundary I (nbc), i.e. several discretizations. We conduct the same study for the Augmented Lagrangian
method (Table 2).

At first and even though it becomes only clear when nbc > 64, if we were to consider only the number of iterations,
it seems the Augmented Lagrangian method is slightly more efficient than the Active set method. However, in the same
time, it also appears that the latter is much faster CPU time-wise than the former, almost twice as fast. Such a behavior
was to be expected; we can assume it arises from the fact that the active set method do not require to use Lagrange
multipliers. It implies that the linear system arising from the nonlinear problem is smaller for the active set method, as
confirmed by the comparison between the number of dof in both cases, and may be less ill conditioned than the original
augmented system, a well-known characteristic of frictional contact problems.

8.2. Unilateral contact and Coulomb friction example

For nbc = 128 depicted in Fig. 6, 9728 2D elastic elements were considered for 10024 dof. The behavior of the
interaction between the foundation and the deformable body is depicted by a unilateral constraint combined with a
Coulomb’s law of friction.

We provide below the value of the parameters used for the computation:

E=100N/m?, & =0.3,

fo=(0,0) N/m?, f, =(0,—0.1)N/m on I3,
& =10, ¢, =10, Tagrangian = 0.1, 10 = 0.2,
stopping criterion : ¢ = 107°
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Fig. 6. Physical setting of the unilateral beam against a foundation.
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Fig. 7. Deformed configuration of the unilateral beam against a foundation.
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Fig. 8. Normal contact stresses on the contact area.

In Fig. 7, we plot the normal contact stresses and the deformed configuration on the boundary /3.

Accuracy of the active set method comparing to the augmented Lagrangian method.

Once again, we assess the accuracy of the active set method by comparing it to the well-known Augmented Lagrangian.
The boundary 773 is divided into 128 equal parts; the normal contact stress o, and tangential friction stress ||o, || with
respect to the abscissa are plotted in Figs. 4 and 5 for each method. Once again, it turns out that for the contact stress
computed by both methods, be it o, or llo-|l, there is no visible difference (~ 1.1077), thus confirming the accuracy on
this test case (see Figs. 8 and 9).

Performances of the algorithms. In Table 3, we provide the number of degrees of freedom (dof), the number of Newton
iterations (Nit) for the convergence of the Active set method regarding the unilateral contact combined with Tresca friction
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Table 3
Results of the active set method for the unilateral contact and Coulemb friction laws in comparison with the number of degrees of freedom (dof),
the number of contact nodes (nbc), the Newton iterations (Nit), the fixed point iterations (fpit) and the total CPU time (CPU) in seconds.

nbc 8 16 32 64 128 256 512

dof 76 166 586 2414 10024 40528 162976

Nit 15 25 37 45 44 46 39

fpit 5 5 5 5 5 5 7

CPU =1 <1 1 9 61 364 1448
Table 4

Results of the augmented Lagrangian method for the unilateral contact and Coulomb friction laws in comparison with the number of degrees of
freedom (dof), the number of contact nodes (nbc), the Newton iterations (Nit) and the total CPU time (CPU) in seconds.

nbc 8 16 32 64 128 256 512
dof 92 198 650 2580 10280 41040 164000
Nit 4 17 20 23 26 27 28

CPU <1 <1 1 9 62 405 2972

law, the number of fixed point iterations (fpit) to approximate the Coulomb friction law and the total CPU time (CPU) in
second for several values of the number of contact nodes on the boundary 77 (nbc), i.e. several discretizations. We conduct
the same study for the Augmented Lagrangian method for the unilateral contact and Coulomb friction laws (Table 4). In
this case, unlike the previous configuration, the number of Newton iteration is no longer appropriate to compare both
methods, as the active set method approximates the Coulomb friction with an extra inner loop invelving a succession of
states of Tresca friction while the Augmented Lagrangian method does not, Therefore, the only reliable criterion available
is the CPU time. Despite this extra loop, out of the two methods, the active set method remains the fastest. Given the
result obtained in the last case, for nbc = 512, we can even infer the gap between the two methods widen as the number
of degrees of freedom increases. Such an assumption should be confirmed for more complex problems.

9. Numerical simulations in the dynamic case

As we assess the performances and accuracy of the active set methods implemented on simple static cases, our aim is
now to evaluate the robustness of these methods on more complex problems. We carried out these simulations based on
two dynamic contact configurations: the unilateral contact with a Coulomb's law of friction of a linear elastic beam and
the bounce of a hyper-elastic ring, both on a perfectly rigid foundation. Once again, the numerical solution of Problem 7 is
computed with both the active set method and the augmented Lagrangian method in order to highlight the performances
of the former compared to the latter. As for the first numerical examples, the domain £ depict the cross section of a
three-dimensional deformable body subjected to the action of initial velocity so that a plane stress hypothesis can be
assumed. Note that, as we already validated the accuracy of the active set methods, since a dynamic configuration does
not inherently significantly change the active set procedure and to keep the article at reasonable length, we consider there
is no need to linger any longer about accuracy.

9.1. Academic example: compression of a beam against a perfectly rigid foundation

The reference configuration is the same as the one introduced in Section 8.2.
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Table 5

Results of the active set method for the unilateral contact and Coulomb friction laws in comparison with the number of degrees of freedom (dof),
the number of contact nodes (nbc), the total numbers of Newton iterations (Ntit), the average fixed point iterations (afpit) and the total CPU time
(CPU) in seconds.

nbc 8 16 32 64 128 256 512

dof 76 166 586 2414 10024 40528 162976

Ntit 119 153 191 254 258 240 216

afpit 4 4 4 4 5 4 5

cPuU 0.07 0.33 252 25.57 162.28 861.92 3295.57
Table 6

Results of the augmented Lagrangian method for the unilateral contact and Coulomb friction laws in comparison with the number of degrees of
freedom (dof), the number of contact nodes (nbc), the total numbers of Newton iterations (Ntit) and the total CPU time (CPU) in seconds.

nbc 8 16 32 64 128 256 512
dof 92 198 650 2580 10280 41040 164000
Ntit 37 58 80 87 a8 112 119
CPU 0.04 0.28 2.25 20.05 113.78 769.38 5773.57
6000 = e , —
—— Active set | |
——-=_ Augmented Lagrangian
5000 1| = S
4000 1
)
£ 30001
5 |
. i
J |
2000 1+
1000 4
0 T i i i |
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nbc

Fig. 10. Active set and augmented lagrangian CPU time with respect to nbc.

We provide below the value of the parameters used for the computation (see Tables 5-8).

p=1000 kg/m?®, T =05s k= 1—’0,
E=10N/m?, « =0.3,
fo=(0,0)N/m?, f,=(0,-0.1)N/m on I3,
6 =10, ¢ =10, TIugagian = 0.1, 1 =0.2
stopping criterion : ¢ = 1078,
In this specific case, it appears that the active set method only performs better than the Augmented Lagrangian method

for nbc > 512 (see Tables 5-6). However, as shown in Fig. 10, we can safely assume that the more nodes in contact we
have, the more the gap in CPU time between the methods will widen, making the active set method all the more relevant.

9.2. Relevant example: Bounce of a hyper-elastic ring against a perfectly rigid foundation

We now introduce another representative configuration to assess the performances of the active set type methods in
a large deformation framework. It is a relevant example of friction contact problem, namely a hyper-elastic ring bouncing
on a perfectly rigid foundation,

Let nbc be the number of nodes on I". Here, as depicted in Fig. 11, the boundary 7 is divided into 128 equal parts,
1664 hyper-elastic 2D elements were used for 2048 dof. The compressible material response, is described by a variant of
the Ogden constitutive law (cf [41]) defined by this energy density function

W(C) == C1U] — 3) + co(lp — 3}+ﬂ(f3 — 1}—((.‘1 + 2¢5 4+ a)In /.

With 1y, I, and I3, the three invariants of the tensor C, with C = F'F.
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i hypeniscoelastic ring

Fig. 11. Sequence of the deformed hyper-elastic ring before, during and after impact.

Table 7

Results of the active set method for the unilateral contact and Coulomb friction laws in comparison with the number of degrees of freedom (dof),
the number of contact nodes (nbc), the total numbers of Newton iterations (Ntit), the average fixed point iterations {afpit) and the total CPU time
(CPU) in seconds.

nbc 32 64 128 256 512

dof 192 384 1792 4608 15360

Ntit 1876 1904 1944 1961 2022

afpit 4 4 4 4 4

CPU 6.32 12.39 99.22 304.62 1841.23
Table 8

Results of the augmented Lagrangian method for the unilateral contact and Coulomb friction laws in comparison with the number of
degrees of freedom (dof), the number of contact nodes (nbc), the total numbers of Newton iterations (Ntit) and the total CPU time
(CPU) in seconds.

nbc 32 64 128 256 512

dof 256 512 2048 5120 16384
Ntit 1462 1568 1705 1782 1866
CPU 8.59 18.03 139.69 428.80 2693.86

Next, we provide below a description of the physical setting.

2 = {(x1,%) € B*: 81 < (x; — 100)* + (x, — 100)* < 100},
n=a, =0,
Iy = {(x, %) e B?: (x — 100) + (x, — 100)* = 100}.

The ring is thrown toward a foundation given by [(x,,xz) eER?: xp < —50}. as shown in Fig. 11, with an initial velocity
at 45° angle. For the discretization, we use 1664 elastic nodes and 128 contact nodes. For the numerical experiments, the
data are:

p=1000 kg/m*, T=5s, k=
y =(0,0)m, wy =(10,—-10) m/s,
c; =0.5MPa, ¢, =0.05MPa, a=05x 10" MPa,
¢, =10, ¢ =10, Tlagrangian = 0.1

g=50m, pn=0.2,

stopping criterion : € = 107¢,

]

As in the previous section, we compare the results obtained by the active set type method and the augmented
Lagrangian method (see Tables 7-8).

Even though it is the most complex case considered so far, the performances do not decrease. As shown in Fig. 12, once
again it seems that the more number of nodes in contact we have, the more the gap in CPU time between the methods
will widen, which is consistent with our assumption in the previous. However, this is not enough to explain the gain
in CPU time for the Inexact Active Set method comparing to the Quasi Lagrangian method. As mentioned at the end of
Section 7, for the former, the linearized systems are symmetrical, even in a frictional case, while the increased linearized
ones are not, for the latter.
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Fig. 12. Active set and augmented lagrangian CPU time with respect to nbc.

It clearly shows the robustness of the active set method in a complex configuration. It seems that avoiding the Lagrange
multipliers is still a relevant and strong argument in favor of the Active set type methods, comparing to the classical
Augmented Lagrangian method.

10. Conclusion

A concise analysis of several active set methods through classical problems arising in Contact Mechanics, for instance
unilateral/bilateral contact associated with Tresca's/Coulomb's law of friction, has been presented in this work. Indeed,
we established a variational formulation from the hyper-elastodynamic problem along with a numerical approximation
of the problem and we provided a minimization formulation through the augmented Lagrangian formalism. From there
on, we proposed an overview of various active set type methods, recalling the one introduced in [26] in the frictionless
case and extending it to the bilateral contact case with Tresca's law of friction, then to the unilateral case with Coulomb's
law of friction with their algorithms. We also considered an alternative for the latter based on the approximation of the
Coulomb’s law by a succession of states of Tresca friction in which the friction threshold is fixed at each fixed point
iteration (cf [21]). Introducing such a combination, and highlighting its relevance on a hyper-elastodynamic problem, is
one of the main contribution of this work. In order to assess the behavior of the active set type methods, we performed
numerical simulations. We carried them out on four test cases, two in static and two in dynamic, with the augmented
Lagrangian method taken as reference: three in the small deformation framework by considering a beam and one in the
large deformation framework with the bounce of a hyper-elastic ring against a rigid foundation.

As a first result, and despite the fact that it is not a reliable criterion in the Coulomb's case, it turns out that the active
set methods take more iterations than the Augmented Lagrangian to converge. However, they also seem to be faster in
terms of CPU time than the augmented Lagrangian. This can be explained by the fact that the linear system arising from
the nonlinear problem is smaller for the active set methods, symmetric even in a 2D frictional case, and that it might be
better conditioned. Nevertheless, and as it was mentioned before, the fact that the active set type methods do not require
the use of the Lagrange multipliers cannot be neglected from an implementation point of view. Therefore, for all these
reasons, it seems consistent to consider an active set type method over the augmented Lagrangian method, even in a
friction case.

At this point, we can already highlight some prospects which could be considered in the continuation of this paper.
From an analytical point of view, a challenging prospect would be to prove the convergence of the inexact primal-dual
active set with fixed point method, which remains for now an open question, at the best of our knowledge. Moreover, the
method has been developed as a nodal method, i.e. the status of each zone is determined using the values at the nodes of
the mesh. A generalization to an integral formulation will be investigated in the future. From a numerical point of view,
it would be interesting to study whether such a method could be extended even further to multibody contact problems,
for instance those arising in granular mechanics.

We would like to thank the Reviewers for the attention paid to this article and in particular for their comments and
corrections.
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