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Attraction domain estimation of linear controllers for the attitude
control of VTOL vehicles: P/PI control of a quadrotor

Jeremy Barra1,3, Gerard Scorletti3, Suzanne Lesecq1, Mykhailo Zarudniev2, Eric Blanco3

Abstract— In this paper, we present a numerical method
based the Lyapunov theory to estimate the attraction domain of
a class of nonlinear systems. This problem is motivated by the
analysis of linear attitude controllers for the control of Vertical
Take-Off and Landing (VTOL) vehicles such as quadrotors.
These linear controllers are typically designed in order to ensure
local stability around the hover point. The purpose of this work
is to estimate their attraction domain around this point. The
proposed attraction domain estimation method requires to solve
a convex optimization problem involving parameter-dependent
Linear Matrix Inequalities (LMI). This problem is generally
difficult to solve as it is an infinite dimensional optimization
problem. However, we reveal that the specific structure of the
VTOL vehicles attitude model can be exploited to make this
LMI problem finite dimensional and thus numerically solvable.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have gained significant
attention in the recent years. Depending on the application
domain, the UAV may vary in shape, size and weight. Here,
we focus on Vertical Take-Off and Landing (VTOL) vehicles,
especially on quadrotors. The following work is based on the
experimental quadrotor platform Bitcraze Crazyflie 2.0 which
was used to validate the nonlinear model under study.

The feedback control of such vehicles has been widely
addressed in the literature, see e.g. [1], [2]. The literature
shows that the complex dynamics of the quadrotors represent
a challenge from a control point-of-view. Indeed, the quadro-
tor model exhibits nonlinear dynamics, coupling between
control axes and uncertainties such as aerodynamical effects
[3], [4]. To address the control problem, the literature reports
two main approaches, namely, nonlinear and linear control
design techniques. The nonlinear design techniques account
for these complex dynamics during the design process and
ensure the stability for the nonlinear model on a large
operating domain [5], [6]. However, they may lead to a
complex control law design and implementation process.
The linear control design techniques rely on a linearised
model of the quadrotor, generally at the hover point, which
simplifies the dynamics because the axes are decoupled at
this equilibrium point. Classical controllers can then be used,
such as off-the-shelf Proportional-Integral-Derivative (PID)
controllers designed for each axes [7]. The main drawback
of the linear control design techniques is that they do not
theoretically guarantee the stability of the quadrotor far from
the linearisation point. In this paper, we use these linear
control design techniques for the control of the experimental
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quadrotor platform Bitcraze Crazyflie 2.0. We experimentally
observe stable flight of the quadrotor even far from the
linearisation point where couplings have a non-negligible
effect. Nevertheless, a formal proof on the model of this
nice behaviour could improve the design process of the linear
controllers.

The contribution of the present work is to give a numer-
ical method based on the Lyapunov theory to estimate the
attraction domain for a class of nonlinear control systems that
includes those represented by the VTOL attitude model. This
method relies on a Linear Matrix Inequalities (LMI) prob-
lem formulation to parametrise the search for a Lyapunov
function as a convex optimization problem.

This proposed method is applied to the analysis of the
linear attitude control of a quadrotor. First, P/PI controllers
are synthesised for a linearisation of the quadrotor attitude
model at the hover point using standard linear control design
techniques. Then, our numerical method is used to estimate
the attraction domain of these controllers around the hover
point when they are used to control the quadrotor nonlinear
dynamics. The parametrisation of this problem by the attitude
angles of the UAV leads to a parameter-dependent LMI of
infinite dimension which is not solvable numerically [8].
Consequently, we propose a solution that exploits the specific
structure of the VTOL attitude model to make this LMI
problem finite dimensional and thus solvable numerically.

The paper is organised as follows. For the sake of com-
pleteness, we first present in section II the well-known
quadrotor dynamical model and in section III the design
of the linear attitude controllers. Then, in section IV, we
develop our contribution, which is a method based on a LMI
problem formulation to estimate the attraction domain for a
class of nonlinear control systems that includes the VTOL
attitude model. This method is then applied to the attrac-
tion domain estimation of the quadrotor attitude controllers
previously designed in section III.

II. QUADROTOR ROTATIONAL DYNAMICS

In this section, we present the equations of the rotational
motion of the quadrotor. Then, the attitude nonlinear model
is linearised about an equilibrium point to gain insight about
its structure and stability.

A. Equations of motion

Consider the body-fixed referential Rb = (G,~xb, ~yb, ~zb)
and the inertial one Ri = (Oi, ~xi, ~yi, ~zi), see figure 1. The
equations of motion are given under usual assumptions:
• the quadrotor is a rigid-body of constant mass;

2020 European Control Conference (ECC)
May 12-15, 2020. Saint Petersburg, Russia

978-3-907144-02-2©2020 EUCA 1644

Authorized licensed use limited to: Ecole Centrale Lyon. Downloaded on May 20,2021 at 08:27:12 UTC from IEEE Xplore.  Restrictions apply. 



• its structure is symmetrical about the ~xb and ~yb axes;
• the origin G of Rb is the quadrotor center of gravity.

Fig. 1: Body-fixed and inertial referentials

The attitude state vector is given by x = [ωᵀ, ηᵀ]ᵀ where
ω = [ωx, ωy, ωz]

ᵀ are the angular velocities expressed in Rb
and η = [φ, θ, ψ]ᵀ (resp. roll, pitch, yaw) are the quadrotor
attitude Euler angles expressed in Ri. The attitude input
vector is u = [τx, τy, τz]

ᵀ where τ = (τx, τy, τz) are the
moments created by the rotors. From a standard Newton-
Euler modelling formalism [9], we get:

ω̇x = 1
Jx

[τx − (Jz − Jy)ωyωz]

ω̇y = 1
Jy

[τy − (Jx − Jz)ωxωz]
ω̇z = 1

Jz
[τz − (Jy − Jx)ωxωy]

φ̇ = ωx + sφtθωy + cφtθωz
θ̇ = cφωy − sφωz
ψ̇ =

sφ
cθ
ωy +

cφ
cθ
ωz

(1)

where ci = cos(i), si = sin(i), ti = tan(i). J is the
quadrotor inertia matrix such that:

J = diag(Jx, Jy, Jz) =

Jx 0 0
0 Jy 0
0 0 Jz

 (2)

B. Model linearisation

The nonlinear model (1) is linearised in order to apply
classical linear control theory tools. Usually, the quadrotor
model is linearised at the hover equilibrium point η =
[0, 0, 0]ᵀ [9]. Here, we linearise the model about a general
equilibrium point x̄ = [0, 0, 0, φ̄, θ̄, ψ̄]ᵀ:

δω̇x = δτx
Jx

δω̇y =
δτy
Jy

δω̇z = δτz
Jz

δφ̇ = δωx + sφ̄tθ̄δωy + cφ̄tθ̄δωz
δθ̇ = cφ̄δωy − sφ̄δωz
δψ̇ =

sφ̄
cθ̄
δωy +

cφ̄
cθ̄
δωz

(3)

The linear model (3) exhibits a cascade structure with 2
subsystems related to the angular velocities and positions.
The model can be represented as a set of gains and integrators
with couplings between axes parametrised by the attitude
angles of the quadrotor. We adopt for the controllers design
the common assumption that the quadrotor is close to the
hover point [9] [10]. In that case, the couplings vanish,
allowing to use a decoupled control law on each axis.

III. DESIGN OF ATTITUDE CONTROLLERS

We now present the design of the attitude controllers of the
quadrotor. Several linear and nonlinear control designs have
already been proposed in the literature for such vehicles. We

focus here on linear control design methods as we aim to
implement classical PID controllers. The controllers outputs
feed the rotors to modify their rotating speeds and generate
torques that modify the attitude of the quadrotor. For the sake
of simplicity, we consider hereafter that the relation between
the control inputs and the physical torques is given by a
constant gain D = diag(Dx, Dy, Dz), see figure 2.

A. P/PI control design

For each axis, the control of the attitude is performed using
2 nested control loops exploiting the cascade structure of (3).
The nested controllers respectively track the angular velocity
and the attitude angle thanks to the structure presented on
figure 2 for the ~xb axis as an example. The chosen controllers
are given by:

Kω = kpω , Kη = kpη +
kiη
s

(4)

where kpω = diag(kp,ωx , kp,ωy , kp,ωz ), kpη =
diag(kp,φ, kp,θ, kp,ψ) and kiη = diag(ki,φ, ki,θ, ki,ψ).

The internal loop dealing with the angular velocities
should be tuned to be as fast as possible to not interfere
with the external loop related to the attitude angles. This
is realised by an inner proportional controller Kω , whose
diagonal gains are chosen large enough so that the bandwidth
of the inner loop is much higher than the one of the outer
loop. The outer controller Kη contains proportional gains and
an integral action is introduced to account for unmodelled
dynamics and unknown disturbances such as wind gusts.
Considering that the inner feedback can be reduced from
the external loop perspective to a gain of 1, the gains of
Kη are then tuned to maximize the bandwidth of the system
while guaranteeing sufficient phase and gain margins.

Fig. 2: Control structure of the roll angle with 2 nested loops

Figure 3 presents the step response of the attitude system
when the P/PI control law is applied both on the linear
and on the nonlinear models of our experimental quadrotor
platform Bitcraze Crazyflie 2.0. Both systems are stable, but
their dynamics differ significantly because of the couplings
between the axes on the nonlinear system. These couplings
have a non-negligible effect even for relatively low attitude
angles of 20 deg. Moreover, as it is developed for the
linearised model, the stability of the quadrotor coupled with
the P/PI control law is, at this point, only guaranteed close to
the hover position. Therefore, it appears necessary to perform
a deeper analysis of this controlled system to ensure that
instability does not occur during a flight condition different
from the hover point.

IV. STABILITY ANALYSIS

We first present in this section a general stability theorem
for a given class of nonlinear systems. Then, we show that
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Fig. 3: Step responses of the linear and the nonlinear systems

the VTOL attitude model belongs to this class of nonlinear
systems and we adapt more specifically the theorem to the
attraction domain estimation for this case. Finally, the analy-
sis is applied numerically to the attraction domain estimation
of P/PI attitude controllers designed for our experimental
quadrotor platform Bitcraze Crazyflie 2.0.

A. Motivation

Stability analysis of a closed-loop system is typically per-
formed using the Lyapunov theory. Classically, one chooses
an ad-hoc Lyapunov function given the system model and the
control law. This choice may be complex, and the control
law sometimes requires additional terms to simplify the
equations hence the stability proof. Such an approach is
for example adopted in [11], [6] where PID-like control
laws containing additional cancelling terms are proven to
stabilize the attitude of a quadrotor. In this paper, we consider
the search for a quadratic Lyapunov function as a convex
optimization problem involving Linear Matrix Inequalities
(LMI) that can be solved numerically [12]. Compared to
the classical approach, the LMI approach leads to a more
systematic method for proving the system stability.

B. General stability theorem

Consider a nonlinear system given in the form:

ẋ = (A(∆(x)) +Ask(x))x (5)

with
• A(∆(x)) = ∆(x) ? M with ∆(x) a block-diagonal

matrix, M =

[
M11 M12

M21 M22

]
and ? the Redheffer

star product defined here by ∆(x) ? M = M22 +
M21∆(x)(I−M11∆(x))−1M12 where I is the identity
matrix.

• Ask(x) is a skew-symmetric matrix such that Ask(x) =∑n
i=1 xiAsk,i, Ask,i = −Aᵀ

sk,i

We want to evaluate the stability of the equilibrium point
x = 0 which is the origin of the system (5). In the following
theorem, we give the conditions under which this equilibrium
point x = 0 is globally asymptotically stable.

Theorem 1. For the system (5), if the matrices P = P ᵀ > 0
and W = W ᵀ exist such that the following statements hold
true: [

I
∆(x)

]ᵀ
W

[
I

∆(x)

]
≥ 0, ∀x ∈ Rn (6)

M11 M12

I 0
M21 M22

0 I


ᵀ  W 0

0

[
0 P
P 0

] 

M11 M12

I 0
M21 M22

0 I

 < 0 (7)

Aᵀ
sk,iP + PAsk,i = 0, i = 1, . . . , n (8)

then the origin x = 0 of the system (5) is globally asymp-
totically stable.

Proof. Consider the equation y = (∆(x) ? M)x, associated
with a linear-fractional representation (LFR) given on figure
4 that corresponds to the following equations:

p = ∆(x)q (9a){
q = M11p+M12x
y = M21p+M22x

(9b)

where p and q are internal signals of the system.

Fig. 4: Linear fractional representation corresponding to (9)

From equation (7), given the matrices P = P ᵀ > 0
and W = W ᵀ satisfying the theorem 1, we can write the
following quadratic form [8]:

[
p
x

]ᵀ 
M11 M12

I 0
M21 M22

0 I


ᵀ  W 0

0

[
0 P
P 0

] 

M11 M12

I 0
M21 M22

0 I

[px
]
< 0

(10)
which according to equation (9b) gives:[

q
p

]ᵀ
W

[
q
p

]
+ yᵀPx+ xᵀPy < 0 (11)

From equation (6) and (9a), we have:

qᵀ
[

I
∆(x)

]ᵀ
W

[
I

∆(x)

]
q ≥ 0⇔

[
q
p

]ᵀ
W

[
q
p

]
≥ 0 (12)

which gives from equation (11):

yᵀPx+ xᵀPy < 0 (13)

From equation (8), we have [13]:
n∑
i=1

xᵀiA
ᵀ
sk,iP+PAsk,ixi = 0⇔ Ask(x)ᵀP+PAsk(x) = 0

(14)
leading to:

xᵀ(Ask(x)ᵀP + PAsk(x))x = 0 (15)
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Now, from (13) and (15), we get:

ẋᵀPx+ xᵀPẋ < 0 (16)

that is, V̇ (x) < 0 for x solution of (5) and with V (x) =
xᵀPx > 0, x 6= 0 which is a Lyapunov function. We
therefore conclude that the origin of the system (5) is
asymptotically stable. �

To guarantee the stability of the system (5), a matrix W =
W ᵀ should be determined such that (6) holds true. Such a
matrix cannot be found generally as it involves a parameter-
dependent LMI which requires to solve an infinite number
of LMI. However, a matrix W can be found when ∆(x)
exhibits a specific structure, which is the case hereafter.

C. VTOL attraction domain

The previous theorem is now applied to the attraction
domain estimation of linear VTOL attitude controllers. Con-
sider the attitude system given in (1) which is common for
most VTOL vehicles such as the quadrotor. It is written in
the compact form hereafter :{

Jω̇ = −ω̂Jω + u
η̇ = S(η)−1ω

(17)

with u = D(−kpωω − kpηη − kiηxi) where ẋi = η,
D = diag(Dx, Dy, Dz) is the diagonal matrix of gains
corresponding to the relation between the outputs of the
controllers and the physical torques and:

ω̂ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 , S(η)−1 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


This attitude system can be written under the form (5) where
the skew-symmetric part is given by ω̂. Indeed, consider
the change of variable z = Jω and the state vector x =
[zᵀ, ηᵀ, xᵀi ]ᵀ, the system (17) can be written as:

 żη̇
ẋi

 =

(−DkpωJ−1 −Dkpη −Dkiη
S(η)−1J−1 0 0

0 I 0


︸ ︷︷ ︸

A(∆(x))

+

 −ω̂ · · · 0
...

. . .
...

0 · · · 0


︸ ︷︷ ︸

Ask(x)

) zη
xi


(18)

The time-varying matrix S(η)−1 can be represented in
the LFR form as an interconnection between a term ∆(x)
depending on the value of the attitude angles η and a static

system G =

[
G11 G12

G21 G22

]
. As a consequence, the full

A(∆(x)) matrix admits a LFR representation A(∆(x)) =
∆(x) ? M = where:

M11 = G11 M12 =
[
G12J

−1 0 0
]

M21 =

 0
G21

0

 M22 =

−DkpωJ−1 −Dkpη −Dkiη
G22J

−1 0 0
0 I 0

 (19)

and where the Gij components are given by:

G11 =


−1 0 −1 0 0 0
0 −1 0 −1 0 −1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 −1 0 −1

 G12 =


0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1


G21 =

 0 0 0 0 1 0
−1 0 −1 0 0 0
0 −1 0 −1 0 −1

 G22 = I3

(20)
The varying term ∆(x) is a block-diagonal matrix given

by:
∆(x) = diag(∆φ,∆φ,∆θ) (21)

with:

∆i =

[
ci − 1 si
−si ci − 1

]
, i = (φ, θ) (22)

To apply theorem 1, a matrix W = W ᵀ should be deter-
mined such that it satisfies the inequality (6) characterizing
∆(x) for all x ∈ Rn, leading to a global stability property
of the system. However, in the case of a quadrotor flying
in normal flight conditions (attitude angles in the range of
25 deg), such a global property could be too conservative.
Thus, we introduce the following bounded set:

Br = {x | |x4| ≤ φmax, |x5| ≤ θmax} (23)

with x4 = φ and x5 = θ. Then, the inequality (6) of theorem
1 can be modified such that:[

I
∆(x)

]ᵀ
W

[
I

∆(x)

]
≥ 0, ∀x ∈ Br (24)

leading to a local stability version of theorem 1.

Lemma 1. For the specific structure of ∆(x) given by (21)
and for θ ∈ [−θmax, θmax] (resp. φ), the inequality (24) is
satisfied by any matrix W ∈ W such that:

W = {W such that:

W =


[
αφS ⊗ I2 0

0 αθtI2

] [
U ⊗ I2 0

0 wI2

]
[
U ⊗ I2 0

0 wI2

] [
(U − S)⊗ I2 0

0 (w − t)I2

]

}

(25)

where ⊗ is the Kronecker product, U = Uᵀ, S = Sᵀ > 0,
w ∈ R, t ∈ R+ and αi = 2(1− cimax), i = (φ, θ), imax =
(φmax, θmax).

Proof. First, note that the product ∆ᵀ
i ∆i is bounded:

∆ᵀ
i ∆i =

[
2(1− ci) 0

0 2(1− ci)

]
≤ αiI2 (26)

where αi = 2(1−cimax), i = (φ, θ), imax = (φmax, θmax).
Consider the block-diagonal matrix ∆̃φ = diag(∆φ,∆φ).

For S = Sᵀ, we have the property that S ⊗ I2 commutes
with ∆̃φ. From this property, the equation (26) and for a
matrix S = Sᵀ > 0, we can write the following inequality:[

I

∆̃φ

]ᵀ [
αφS ⊗ I2 0

0 −S ⊗ I2

] [
I

∆̃φ

]
≥ 0 (27)
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Moreover, the ∆i block satisfies:

∆i + ∆ᵀ
i + ∆ᵀ

i ∆i = 0 (28)

Thus, given a matrix U = Uᵀ, combining the previous
commutation property with (28), (27) becomes:[

I

∆̃φ

]ᵀ [
αφS ⊗ I2 U ⊗ I2
U ⊗ I2 (U − S)⊗ I2

] [
I

∆̃φ

]
≥ 0 (29)

Following the same method, the proof can be extended to
the full ∆(x) matrix by introducing the scalars t ∈ R+ and
w ∈ R corresponding to the block ∆θ such that:

[
I

∆(x)

]ᵀ 
[
αφS ⊗ I2 0

0 αθtI2

] [
U ⊗ I2 0

0 wI2

]
[
U ⊗ I2 0

0 wI2

] [
(U − S)⊗ I2 0

0 (w − t)I2

]
[ I

∆(x)

]
≥ 0 (30)

which gives the matrix W stated in the lemma 1. �

The asymptotic stability property of the theorem 1 along
with the inequality (24) is local as it is only defined for
x ∈ Br. We are now interested in estimating the domain of
attraction of this local asymptotic stability property for the
system (17). Consider an ellipsoid Ep defined by:

Ep = {x | xᵀPx ≤ 1} (31)

Theorem 2. If there are matrices P = P ᵀ > 0 and W ∈ W
satisfying (7)-(8), and:[

φ2
max eᵀ4
e4 P

]
≥ 0,

[
θ2
max eᵀ5
e5 P

]
≥ 0 (32)

with ei is a vector of dimension n where the ith element
is equal to 1 and the others to 0. Then x = 0 is locally
asymptotically stable and the ellipsoid Ep ⊂ Br is an
invariant domain of attraction.

Proof. From the proof of theorem 1, if the conditions (7)-(8)
are satisfied by P = P ᵀ > 0 and W ∈ W , then V (x) =
xᵀPx is a Lyapunov function such that V (x) > 0, x 6=
0 and V̇ (x) ≤ 0,∀x ∈ Br giving that x = 0 is locally
asymptotically stable. The condition (32) ensures that any
initial state x(t0) ∈ Ep ⊂ Br, see [14], [12]. It follows that
as V (x(t)) ≤ V (x(t0)) ≤ 1, ∀t ≥ 0, the ellipsoid Ep is an
invariant domain of attraction for the system (17). �

The largest region Br can be found by manually maximiz-
ing the bounds θmax and φmax. Finally, in order to find the
largest ellipsoid Ep that can be contained in Br, the following
minimization problem can be solved [12]:

min
P, W∈W

TrP

subject to eq.(7), eq.(8), eq.(32)
(33)

In order to solve numerically the problem (33), the Linear
Matrix Equality constraint (8) has to be eliminated. This
is done by parametrizing the P matrix decision variables
according to (8), which can be done numerically using the
Jacobi or Gauss-Seidel iteratives methods [15]. Then, the
minimization problem (33) is solved using the Matlab Robust
Control Toolbox.

D. Application to the Crazyflie quadrotor

The previous results are now applied to the attraction do-
main estimation of P/PI controllers designed for the attitude
control of a quadrotor. The following numerical values are
choosen, corresponding to the model of our experimental
platform Bitcraze Crazyflie 2.0:

J = diag(1.2× 10−5, 1.2× 10−5, 2× 10−5)

D = diag(9.7× 10−6, 9.7× 10−6, 5.9× 10−5)
(34)

The gains of the controller are fixed to:

kpω = diag(250, 250, 50)

kpη = diag(32, 32, 32), kiη = diag(10, 10, 10)
(35)

The optimization problem (33) is solved numerically to
compute the matrices P = P ᵀ > 0, W ∈ W such that the
asymptotic stability of the system is proven for the largest
domain of initial conditions Ep contained in the largest set Br
defined by the bounds on the angles φ and θ. The maximum
set Br was found to be |θ|≤ 30 deg (resp. |φ|) with the
following P matrix:

P =



1.01 0 0 0.31 0 0 0.04 0 0
0 1.01 0 0 0.32 0 0 0.03 0
0 0 1.01 0 0 0.69 0 0 0.09

0.31 0 0 36.59 0 0 0.02 0 0
0 0.32 0 0 37.42 0 0 1.11 0
0 0 0.69 0 0 44.69 0 0 9.78

0.04 0 0 0.02 0 0 1.46 0 0
0 0.03 0 0 1.11 0 0 1.45 0
0 0 0.09 0 0 9.78 0 0 4.58


× 10−1

(36)
The figure 5 represents the set of bounds Br and the

projection of the ellipsoid Ep onto the plan (φ, θ). The
projection of various trajectories of the nonlinear closed-loop
system are plotted (dashed line). According to the previous
study, for initial conditions taken in the ellipsoid Ep, the
trajectories of the nonlinear system remain in the bounded
set Br, as shown on figure 5.

Fig. 5: Projection of Ep in the plan (φ, θ)

V. CONCLUSION

In this paper, the design of linear controllers for the non-
linear attitude model of the quadrotor has been investigated.
Simple axis-decoupled P/PI controllers were designed using
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the linearisation of the nonlinear model at hover point and
tuned using standard frequency design techniques. A method
involving the resolution of LMI has been given to estimate
the domain of attraction around the hover point of these
controllers when they are applied to the nonlinear system.
While generally corresponding to an infinite dimensional
optimization problem, we showed that the specific structure
of the VTOL attitude model such as the quadrotor one could
be exploited to make this problem finite dimensional and
thus numerically solvable. A numerical example showed that
the P/PI controllers designed for our experimental quadrotor
platform Bitcraze Crazyflie 2.0 stabilize the nonlinear model
for roll and pitch angles up to 30 deg.

Finally, the present work provides a set of LMI conditions
to evaluate the domain of attraction of a priori designed linear
controllers for the VTOL nonlinear attitude model. These
conditions could be extended in the future to perform the
synthesis of nonlinear controllers as in [14] or to investigate
the stability of the full VTOL nonlinear model including the
translational motion.
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