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Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and
to “reconstruct” some supposed influences. In the 1970s emerged a new way of performing science under the name
“chaos”, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To
provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some
writings about the early times of a few contributors to chaos theory. The purpose is to exhibit the diversity in the
paths and to bring some elements — which were never published — illustrating the atmosphere of this period. Some
peculiarities of chaos theory are also discussed.

Chaos is a word which is, in science, very often quickly as-
sociated with the overgeneralized butterfly effect, inherited
from the title of a talk given in 1972 by Edward Lorenz,
one of the great contributors to the so-called chaos theory.
This theory is a branch of the nonlinear dynamical sys-
tems (NDS) theory which was boosted by Poincaré’s works
at the late 19th century. It was then further developed by
many great mathematicians for few decades. In the 1960s,
with the occurence of computers, chaos theory emerged
as a new methodology which is neither “pure” mathemat-
ics nor disconnected from the strongly mathematical NDS
theory. The scientists working on chaos constitute a very
interdisciplinary community whose emergence is associ-
ated with a high rate of disciplinary migration. Some of
its contributors describe here how this migration occured.

a)http://www.quantware.ups-tlse.fr/dima

I. INTRODUCTION BY CHRISTOPHE LETELLIER

Chaos emerged in the 1970s. In their contribution to the
problem of turbulence, Ruelle and Takens introduced the con-
cept of strange attractor, strange meaning neither a limit cy-
cle nor a quasiperiodic motion.1 They associated turbulence
with a “very complicated, irregular and chaotic” motion. A
few years later the term chaos was used by Li and Yorke in
a very suggestive title Period-3 implies chaos.2 Then Rössler
used it systematically to designate the aperiodic behavior he
was studying in the state space.3–6 With the word “chaos” as
a banner, scientists paid attention to aperiodic solutions which
were not quasi-periodic and characterized with concepts in-
herited from the early works by Poincaré7,8 and Birkhoff9

which were synthetized in a masterpiece by Lorenz in 1963.10

A history of the dynamical systems theory and chaos was al-
ready provided by Aubin and Dahan Dalmedico, focusing on
three important contributors from the 1960s (Smale, Lorenz
and Ruelle).11 This field is polymorphic and many branches
emerged in the 1960s, in mathematics with Thom and Smale,
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in plasma physics with Chirikov, in meteorology with Lorenz,
in control theory with Mira and Gumowski,... and exploded
in the 1970s. Depending on the field from which it emerged,
the influences were not always the same. Browsing the list of
quotations in pioneering papers does not always allow to re-
veal them as evidenced with Lorenz’s paper in which the book
by Nemytskii and Stepanov12 is quoted after the suggestion
from a reviewer.13 It is therefore important to have access to
direct recollections of contributors as published, for instance,
by Abraham and Ueda.14

This paper is devoted to a few contributors who never wrote
before about their early times in chaos. Some others were con-
tacted but declined the invitation. All of them were asked to
focus on their early times without any other indication. Var-
ious drafts were produced, inflating under some exchanges
with Letellier who always asked for more details. Contrib-
utors were always left free to develop or not some points. No
length limitation was imposed and final texts extend from 2
to 22 pages. Here only excerpts are selected by Letellier, fo-
cusing on the very early times. When possible, the context
in which a notable result was obtained is exhibited. These
excerpts may (should ?) be considered as biased, by contrib-
utor’s views as well as by the "selection process" from the
whole text. We do not pretend to provide an objective view of
the history of chaos, but rather how each one remembers his
history of chaos. One of the motivations — not clearly stated
to the contributors — was to exhibit the plurality of the paths
followed by some scientists who contributed to chaos theory
as well as the recurrence of some influential works.

The subsequent part of this paper is organized as follows.
Sections II to XIV are the excerpts of the contributions, or-
dered according to a chronological order of the key contribu-
tions. Section XV provides a short analysis and gives some
conclusion.

II. THE SMALE PROGRAM BY RALPH ABRAHAM

Steve Smale finished his Ph.D. thesis in differential topol-
ogy in 1956, working with Raoul Bott at the University of
Michigan. At that time I was there in Ann Arbor, finishing
my undergraduate program in Engineering Mathematics. I
was introduced to differential topology in a course by Bott,
on general relativity in 1960, working with Nathaniel Coburn.

Solomon Lefschetz began devoting half of every year to
build up a graduate program in the mathematics department
of the National Autonomous University of Mexico. He had
become interested in the Russian literature on dynamical sys-
tems theory.15 Smale attended Lefschetz’ summer conference
in Mexico City.16 There he met René Thom, Morris Hirsch,
and Elon Lima. Around 1958, Lima finished his Ph.D. the-
sis on topology with Edwin Spanier in Chicago, and intro-
duced Smale to Mauricio Peixoto. Peixoto was a Brazilian
student of Lefschetz in Princeton, 1958-59. His theorem on
the structural stability of flows in two dimensions,17 was an
early breakthrough in dynamical systems theory.

In 1960, I arrived at UC Berkeley which, suddenly had
a brand new staff of mathematics professors and visitors.

Smale arrived along with Spanier (algebraic topology), Shing-
Shen Chern (differential geometry), and Hirsch (differential
topology) from Chicago, Thom (differential topology) from
Paris, Chris Zeeman (topology, expositor of catastrophe the-
ory) from Warwick, Peixoto from Rio, Bob Williams (knot
theory), Dick Palais (nonlinear functional analysis) and oth-
ers comprising a research group on dynamical systems theory
based on differential topology. Hirsch (a student of Spanier)
and I were among the newbies in this group. The Smale pro-
gram was focused on the stable manifolds, structural stability,
and conjugacy of diffeomorphisms. At this time we devoted
much time reading and discussing the works of Poincaré and
Birkhoff, especially concerning the stable curves of surface
transformations and their transversal intersections.

Smale had proved the existence of stable and unstable man-
ifolds, his first major result in this field.18 He developed the
horseshoe map, his second major result. After this publication
Thom proved that transversal intersection of stable manifolds
is a generic property of diffeomorphisms.19

Smale’s program was boosted into orbit by his influential
survey20 which set out its foundations: conjugacy of diffeo-
morphisms, fixed and periodic points, stable and generic prop-
erties, the nonwandering set, hyperbolic fixed points, stable
manifolds, ... Already we find drawings of homoclinic inter-
sections of stable and unstable manifolds for surface trans-
formations, discovered by Poincaré and analyzed in detail by
Birkhoff and Smith.21 Smale’s ingenious simplification of the
homoclinic tangle in the two-dimensional case, the horseshoe
map, is shown in Fig. 1. Smale carefully credits his prede-
cessors — Poincaré22, Birkhoff,23, Morse,24 Andronov and
Pontrjagin,25 Thom,26 Elsgolts,27 Reeb,28 and Peixoto.29
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FIG. 1. Smale’s horseshoe map. A global diffeomorphism maps the
square Q into the region bounded by dotted lines with G(A) = A′,
etc. Each component P1 and P2 of g−1(g(Q)∩Q) is such that g is a
linear map with g(Pi) = Qi (i = 1,2).

In 1962 I moved on to Columbia, and in 1964, to Prince-
ton where Lefschetz still had huge influence. I was able
to teach graduate courses and, with Jerry Marsden and Joel
Robbin, I rewrote much of celestial mechanics with the new
language and technology of global analysis.30 In another, I
treated the transversality of stable manifolds in the global con-
text of (infinite-dimensional) manifolds of mappings.31

Around 1966, I began to receive letters from René Thom
in which he reported regular progress in his creation of catas-
trophe theory. In this simple context of gradient (non-chaotic)
dynamical systems, he made crucial use of the language of at-
tractors, basins, and bifurcations, which became fundamen-
tal in the further evolution of dynamical systems theory, and
later, chaos theory. He popularized a style of application of



3

these notions, introduced earlier by Poincaré and his Rus-
sian followers.32 The impact on the mathematical commu-
nity was further facilitated by a series of exemplary articles
by Zeeman.33

In 1968, a four-week conference on global analysis (July 1-
26) was edited by Chern and Smale.34 This was the moment, I
believe, at which our group finally became aware of the exper-
imental work and simulations on chaotic attractors. Yoshisuke
Ueda, discovered the first clearly chaotic attractor in analog
simulation, the Japanese attractor,35 for which he accurately
drew the homoclinic tangle of inset and outset curves for the
forced Duffing equation{

ẋ = y

ẏ = µ
(
1− γx2)y− x3 +Bcosνt

(1)

obtained at Kyoto University, on November, 1961 (Fig. 2),36

Edward Lorenz, discovered his chaotic attractor, at MIT, on
1963,10 and Christian Mira, discovered in 1978 his chaotic at-
tractor in an iterated quadratic map of the plane creating the
theory of critical curves for iterated maps.37,38 These discov-
eries sounded the death knell for our approach based on dif-
ferential topology.

FIG. 2. Yoshisuke Ueda discovered (November 27, 1961) his chaotic
attractor in a Poincaré section of the forced Duffing equation (1).
Courtesy of Yoshisuke Ueda.

In 1971-73, new people had arrived in my department (UC
Santa Cruz), including John Guckenheimer, a recent Ph.D.
with Smale, and veterans of our group, Palais and Mike Shub.
Palais collaborated in creating a computational program us-
ing a digital mainframe and a primitive graphics terminal. We
were able to recreate the attractors of Ueda, Lorenz, and Mira,
with assistance of a talented group of undergraduates. After
a couple years we also studied the Rössler attractor and other
new developments. Guckenheimer was also active in compu-
tational dynamics at UCSC in the 1970s.

An important meeting, was jointly sponsored in 1977 by the
New York Academy of Sciences and the University of Tübin-
gen. My own contribution was the first announcement of my
simulation of chaos using digital computer graphics. This
work evolved into the graphic introduction for chaos theory
written jointly with the artist, Christopher Shaw.39

Around 1978, a group of students, primarily Rob Shaw,
Doyne Farmer, Norman Packard, and Jim Crutchfield, later
known as the Santa Cruz Chaos Cabal (after Gleick’s best-
seller40) began a literature seminar and chaos program — the
methodology to investigate chaotic attractors with the help of
computers, for instance, as synthetized by Lorenz. This re-
sulted in an audacious article in the Scientific American of De-
cember, 1986, in which chaos theory reached a wide popular
audience for the first time.41

III. BORIS CHIRIKOV – SPUTNIK OF CHAOS BY DIMA
SHEPELYANSKY

Boris Chirikov (1928–2008) was the founder of the phys-
ical theory of Hamiltonian chaos and made pioneering con-
tributions to the theory of quantum chaos.42,43 In 1959, he
invented a simple analytical criterion, now known as the
Chirikov criterion, which determines the conditions for the
emergence of deterministic chaos in dynamical Hamiltonian
systems.44,45

There are various research directions launched by Boris
Chirikov in the field of chaos. They include chaotic dynamics
of particles in plasma magnetic traps and accelerators, chaos
border for the Fermi acceleration model, emergence of chaos
in various Hamiltonian systems,46,47 quantum chaos,48,49 in
dissipative dynamical systems,50,51 and many others.

I joined Chirikov’s group at the Institute of Nuclear Physics
(INP) in September 1976, at the beginning of my fourth year
at the Novosibirsk State University. As many other students, I
knew Chirikov from the course of Electrodynamics given by
him and Igor Meshkov at our second year. But my choice was
also significantly influenced by a recommendation of George
Zaslavsky, who had worked with Chirikov and gave outstand-
ing recommendations for his research.

Chirikov was the head of a theory group composed of about
ten people working on nonlinear dynamics and stochasticity
(now we say chaos); it included essentially Felix Izrailev, Vi-
taly Vecheslavov and Lida Hailo, who worked as a program-
mer.

I remember Chirikov’s office in 1976-1978. The main fo-
cus of the room was a teletype terminal directly connected
to a computer BESM-6 at the Computer Center of Siberian
Division of Russian Academy of Sciences, located at about
1 km distance down along Prospect Nauka. This was the most
powerful soviet computer at that time. From the terminal it
was possible to submit short runs on BESM-6, and even to
work in interactive mode. Chirikov defined the main scien-
tific group aim as the investigation of fundamental laws of
chaos and foundations of statistical mechanics for classical
and quantum systems.

In 1977, the now famous quantum kicked rotator model was
invented. The model is the quantized version of the classical
standard map, now known as the Chirikov standard map.46,47

It has the form {
p̄ = p+K sinx
x̄ = x+ p̄

(2)
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where bars mark the new values of conjugated variables of
momentum p and coordinate x, K is dimensionless parameter
characterizing the kick strength. An example of the Poincaré
phase space is shown in Fig. 3.52

FIG. 3. Left: Boris Chirikov, Toulouse, June 6, 1998. Photo by D.
L. Shepelyansky. Right: Amplitude of the eigenstate of the Ulam
approximate of Perron-Frobenius operator of the Chirikov standard
map at K = 0.971635406; amplitude is proportional to color with
maximum for red and zero for blue; upper part of phase plane is
shown for the range 0 < x

2π
≤ 1, 0 < p

2π
≤ 0.5. From Frahm et al,

2010.

Back in the late spring of 1977, Chirikov suggested that I
work on the kicked rotator model, starting from the improve-
ments of the computer code. Following his suggestions, I
achieved a significant reduction of the CPU time, and I am
still proud that the improved figures we obtained, were used
in the Russian version of the kicked rotator paper published as
INP preprint in 1978.53

At those times even chaotic dynamics in nonlinear classical
systems was a rather new and unusual subject for the world
scientific community. For example, there wasn’t any special-
ized journal in this field, and often it wasn’t easy to explain
to an editor how it happens that, in spite of Laplace deter-
minism, simple equations produce chaotic unpredictable be-
haviour. Quite often, editors blamed errors of numerical sim-
ulations, and rejected papers on chaos. The world wide circu-
lation of research results was initiated by Joe Ford (Georgia
Tech), who, every week, patiently collected the abstracts of
new preprints on chaos and nonlinearity, with young collabo-
rator Franco Vivaldi, and send them to colleagues and friends.
Chirikov knew Joe Ford from their first meeting in Kiev in
1966, where Ford came as a tourist with a group of school
pupils to visit the USSR. Finally, the first specialized nonlin-
ear journal, Physica D, was created in 1980. During many
years Ford and Chirikov worked in the editorial board of this
journal.

IV. MY DANCE WITH CHAOS BY OTTO RÖSSLER

The first skill that I developed and which was significant
for my contribution to chaos was related to my interest in tele-
phones. It gradually led to repairing and then building radios
and radio emitters. I got my radio amateur’s licence DL9KF
when I was 17. After my medical studies, I got a first scientific

position at the Max Planck Institute for Behavioural Physiol-
ogy in Biocybernetics at Seewiesen. During that year, I de-
veloped a big friendship in very long discussions with Konrad
Lorenz. I then spent one year as an intern at the University of
Marburg partly under the supervision of Reimara Waible who
became my wife, one year later.

I hereafter obtained a one-year position for working with
Robert Rosen. In the continuation of Nicholas Rashevsky,
the pioneer of mathematical biology,54–56 Rosen developed
a bridge between dynamical systems theory and biology.57

Bob and I had an immediate resonance. From his book I dis-
covered Andronov, Khaikin and Vitt’s textbook58 which later
led me to building a three-variable chemical multivibrator.59

Bob’s book made me firm in dynamical systems thinking.
A few years before, I had met Friedrich-Franz Seelig. He

offered me to join his new group at the University of Tübin-
gen. In the early 60s, Seelig had done his diploma work with
Hans Kuhn and Fritz-Peter Schäfer to build an analog com-
puter consisting of a network of electrical oscillators, con-
nected to capacitors to solve the two-dimensional Schrödinger
equation.60 This system was triggered by means of a radio fre-
quency generator. Sharing an interest for the origin of life,
in differential equations and electronics (computers), Kuhn,
Seelig and myself we agreed that nonlinear systems like my
evolutionary soup and electronic systems were virtually iso-
morphic. This triggered a cooperation project between Seelig
and me to look for reaction-kinetic analogs to electronic cir-
cuits. I therefore joined Seelig in 1970. Seelig bought an
analog computer — a Dornier DO 240 — equipped with po-
tentiometers, a digital clock and two function generators...

I was free in my research and, started to study few-variable
systems. Chaos theory is fun. With three variables, recur-
rent motions can fall into a dance that is beautiful and non-
repeating and surprising at every round. This dance is chaos.
Art Winfree stimulated and paved my way into the fascinat-
ing topic of chaos theory. In 1972, Art Winfree had invited me
for a talk on chemical automata at Purdue University.59,61 He
showed me his later well known beautiful experiments with
the Zhabotinsky reaction.62,63 We started to exchange letters
about interpreting chemical reactions in terms of dynamical
system theory. In 1975, we met again at a Chronobiology
Meeting held in Vienna where I gave a talk on biological
clocks. Art found my talk a little bit boring and asked me
whether I could do something more interesting in the context
of my liquid automata?64 I told him that I was thinking about
a three-variable limit cycle that looks like a knot and hence
cannot be flattened into a planar circle-like thing for being ir-
reducibly three-dimensional. He replied that this sounded to
him like chaos. He told me that he had just attended a confer-
ence in Aspen, Colorado, on "chaos” and that he had collected
all the papers written on the subject and he would send me a
folder with them. Four weeks later I received a big folder with
all the papers, most still in preprint form.

The folder included Lorenz’s paper of 196310 and more re-
cent ones like those by Jim Yorke,2 Bob May and George Os-
ter. Art wrote me explicitly that I should do him the favor
of finding a chemical version of the Lorenz attractor.65 Of
course, I didn’t succeed. I came up with the idea of a rope
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wrapped about my nose several times before falling down and
then coming back up again in a loop. This mental picture was
the origin. Next came a characterless turning of the knobs on
the analogue computer. Simplifying and reducing the system
then was sufficient to arrive at the desired attractor.3 I finally
got the equations5


ẋ =−y−0.95z

ẏ = x+0.15y

ε ż = (1− z2)(z−1+ x)−δ z

(3)

Describing sharp transitions at the two thresholds [Fig. 4(a)]
where suddenly things switch from one two-dimensional
plane to the other, is a bit demanding numerically. After sim-
plifying the equation as much as possible by trial and error,
the “miracle” happened that the two formerly overlaid simple
linear two-dimensional flows gave rise to a new everywhere
smooth three-dimensional flow3

ẋ =−y− z
ẏ = x+ay
ż = b+ z(x− c) .

(4)

It is not actually the really simplest one, by the way, since I
could find later the still simpler one66


ẋ =−y− z
ẏ = x
ż = b(1− y2)− cz

(5)

I should add here that the stimulation I had obtained from
Ralph Abraham and his school — the "Santa-Cruz kids" —
was crucial. Norman Packard, Rob Shaw, Jim Crutchfield and
Doyne Farmer then jointly coined the name for the attractor.67
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FIG. 4. The chaotic attractor obtained after some simplifications of
the original equations. Parameter values for system (3): δ = ε =
0.03. For system (4): a = 0.2, b = 0.2, c = 5.7. For system (5)
b = 0.275 and c = 0.2 and initial conditions are x0 = 1, y0 = −1.4
and z0 =−0.4.

The movie with the "sound of chaos” (named after Simon
and Garfinkel’s “Sound of Silence”) was obtained on the ana-
log computer jointly with Reimara.68 The sound produced by
this simulational reality proved to be familiar to the ear. So
chaos is something that is very close to everyday life.

V. HOW I BECAME INVOLVED IN CHAOS BY PHIL
HOLMES

In 1973 I was finishing a PhD thesis on noise transmission
in structures at Southampton University (U.K.), when I no-
ticed that a course on differential topology and its applications
to dynamical systems would be taught by David Chillingworth
in the Mathematics Department. This introduced me to René
Thom’s catastrophe theory and to many analytical tools that I
had not known before. While auditing the course, I met David
Rand, who was also completing his thesis and who wanted
to move towards applied mathematics. We began working to-
gether and found an interesting mistake in the interpretation
of the amplitude response function for periodic solutions in a
preprint of Christopher Zeeman’s on Duffing’s equation with
a stiffening spring (α > 0):

ẍ+2ζ ẋ+ k(x+αx3) = f cos(ωt). (6)

The mistake involved a misinterpretation of the cusp catastro-
phe which occurs as a limiting case when 2 curves of saddle-
node bifurcations collide in the ( f ,ω) parameter space. Zee-
man’s paper finally appeared in 1976.69 We corrected the mis-
take and sent our preprint to Christopher. He encouraged us to
submit and publish, and in due course our paper came out,70

followed by further papers on van der Pol’s equation71 and on
a combined Duffing-van der Pol oscillator.72 We did not learn
of Yoshisuke Ueda’s analog simulations of chaos in a similar
equation with a cubic damping term until I moved to Cornell
University in 1977. Shortly thereafter, Ueda visited Cornell
and described some of his results.

However, while still in Southampton David Rand and I
found two preprints on nonlinear oscillations by Floris Tak-
ens and things began to become chaotic. Takens’ papers ap-
peared in 1974.73,74 I believe that they established fundamen-
tal examples for the classification of bifurcations in dynamical
systems.

Cartwright had found a curve of homoclinic bifurcations
in a two-dimensional averaged van der Pol equation.75 David
Rand and I were able to relate it to the homoclinic bifur-
cations studied by Takens, and thus assemble the correct
codimension-2 bifurcation set.71 Motivated by Takens’ work,
I borrowed an analog computer, from the undergraduate lab-
oratory and (physically) programmed it to simulate Duffing’s
equation in the form{

ẋ = y
ẏ = x− x3−δy+ γ cos(ωt) .

(7)

This system has a potential energy function with two wells
separated by a peak. With damping δ > 0, but without peri-
odic forcing (γ = 0), almost all solutions approach one or the
other of the two stable equilibria (x,y) = (±1,0), except for
the stable manifold of the saddle point (x,y) = (0,0). More
significantly for chaos, when damping δ = 0, there are two
homoclinic orbits beginning and ending at the saddle point.
I had read and understood relevant parts of Smale’s paper20

and realized that this implied that, with sufficiently large pe-
riodic forcing γ 6= 0, the Poincaré map of equation (7) has
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infinitely-many transverse homoclinic points, and therefore
contains Smale horseshoes (see Fig. 5 for an example).
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FIG. 5. Coexistence of a chaotic attractor and a large stable period-
1 limit cycle. Parameter values: δ = 0.15, γ = 0.30, and ω = 1.
Initial conditions: x0 = 1 for the chaotic solution and x0 = 1.8 for the
period-1 limit cycle, and y0 = 0.

Two conferences sponsored by the New York Academy of
Sciences in 1977 and 1979 focused on bifurcation theory and
nonlinear dynamics,76,77 and did much to stimulate the field
by bringing diverse researchers together. I chaired a related
conference in 1979 which both engineers and mathematicians
attended.78 Since I had trained as an engineer and at that
time was still trying to become an applied mathematician, this
meeting was important for my future.

Throughout my early work and collaborations I was most
excited by the combination of computer simulations, rigor-
ous mathematical theorems, and physical experiments that, to-
gether, could create new models of dynamical processes. The
classification of bifurcations played a key role in this.

VI. HOW CHAOS SHAPED MY ACADEMIC LIFE BY
RENÉ LOZI

Strangely enough, although I was very interested in the first
examples of chaotic attractors from the end of the 1970s, I
never paid attention too much to the Rössler attractor. How-
ever, the qualitative procedure of this method was strongly
inspiring me during several years, allowing to propose a ge-
ometric model of slow-fast Lorenz-like attractor79 and the
Alpazur oscillator with Hiroshi Kawakami.80,81 Moreover, I
was interested in his researches on hyperchaos and his proto-
typic models,82–84 map (although non-continuous) three years
later.85

I started my studies at the University of Nice in October
1967, in mathematics and physics. I had been taught that there
was a list of ODEs written by Bernoulli, Lagrange, Clairaut,
Riccati, etc. and a list of solving methods. No physical sense,
in fact no meaning at all, was attached to these academic exer-
cises. No numerical method was taught. Moreover, between
professors, there was a strict separation between “pure math-
ematician” and the few “applied mathematician” who were

able to use a computer. At the university I took my first pro-
gramming course about FORTRAN IV in 1968, using punched
cards. I discovered with fascination the methods of numerical
integration of ordinary differential equations (ODEs). Dur-
ing 1970-71, I was following my bachelor’s degree under the
supervision of Professor Martin Zerner (1932-2017). Martin
was the first guy, who was able to use a computer that I ever
met.

During his lectures, my mind knew a breakthrough that
changed the paradigm: the set of all the equations I was
taught, were of zero measure in the set of all ones existing.
No closed formula of solution can be found for most of them.
Only numerical methods were able to provide approximate
solution. Of course, in this scope, computer was essential.
Moreover, ODEs were useful to model physical, chemical or
even biological situations. This new paradigm has guided my
research career throughout my whole life.

While preparing my Ph.D.,86 the name “bifurcation” was
largely unknown in the communities of mathematical and nu-
merical analysis in France. Of course, the term bifurcation
was introduced 90 years before by Henri Poincaré87 but we
must consider that the decade 1960-70 was the golden age of
the Bourbaki group,88 whose philosophy was drastically op-
posed to Poincaré’s way of thinking. Moreover, Jean Alexan-
dre Dieudonné, one of the founders of the Bourbaki group,
arrived at Nice in 1964. He was the most prominent professor
from the department of mathematics. Poincaré’s works were
therefore not at all in my mind.

With Gérard Iooss89 I worked on the famous dynamo prob-
lem explaining the origin of the magnetic earth field.90 We
both attended to a conference in Roma (1977). The open-
ing talk was given by David Ruelle.91 In his talk, Ruelle con-
jectured that, for the Hénon attractor, the theoretical entropy
should be equal to the characteristic exponent. This is how
I discovered the first example of chaotic and strange attrac-
tor [Fig. 6(a)].92 At that time, the term “strange” was used,
referring to Ruelle and Takens’ paper. Today, we would use
“chaotic” rather than strange which now refers to the fractal
properties of the invariant set. Nevertheless, this is rather the
fractal properties of this attractor which were highlighted by
Michel Hénon and astonished the research community. Hénon
who explored numerically the Lorenz map using the IBM-
7040, found difficult to highlight its inner nature due to its
very strong dissipativity. Hénon built the metaphoric model{

xn+1 = 1−ax2
n + yn

yn+1 = bxn
(8)

parameter b. With b = 0.3, the contraction in one iteration is
mild enough that the sheaves of the attractors are visible [Fig.
6(a)].

Beyond bifurcation problems, my main interest was fo-
cused to discretization problems and the finite element method
in which nonlinear functions are approximated by piecewise
linear ones. During the Roma conference, I tried to apply the
spirit of the method of finite element to the Hénon attractor.
Back to Nice on June 15 in the morning, I eventually decided
to change the square function of the Hénon attractor, which
is U shaped, into the absolute value function, which has a V



7

(a) (b)

FIG. 6. Some simple mappings: (a) The Hénon attractor and (b) The
Lozi attractor.

shape, implying folding property. I tested this modification,
on my small desktop computer HP 9820. I shifted the param-
eter value a from 1.4 to 1.7 and b from 0.3 to 0.5 (why? I do
not remember!) and plotted what is known today as the “Lozi
map” [Fig. 6(b)].93 Iooss and Chenciner encouraged me later
to publish the formula94{

xn+1 = 1−a|xn|+ yn

yn+1 = bxn
(9)

This was for me the very beginning of my career in chaotic
dynamical systems.

I was convinced that few weeks would be enough to ex-
plain and give a proof of the structure of a so simple attractor,
but I failed. In the next two years I attended a workshop on
iteration theory at La Garde-Freinet (1979) where Michal Mi-
siurewicz, after some questions at the end of my talk, jumped
on the stage. On the blackboard he gave some clues of his
forthcoming results presented at the famous New-York con-
ference, seven months later95 where I am proud to have shook
the hand of Edward Lorenz. There I listened with a mix of
anxiety and curiosity the first proof by Misiurewicz for the
existence of a chaotic attractor for the map I discovered two
and half years before.95 I was interested in the session devoted
to turbulence due to the concept of strange attractor developed
by Ruelle and Takens.96 The talk by Vidal97 on the Belousov-
Zhabotinsky reaction was of a so great interest for me. Of
course, the talk by Misiurewicz95 was a kind of ecstasy for
the young researcher that I was.

VII. MY ROAD TO CHAOS BY LEON GLASS

For my Ph.D. at the University of Chicago, I studied dy-
namics of molecules in liquid argon. For postdoctoral studies,
I was interested in going back to my original fascination with
medicine and psychology. I received a postdoctoral fellow-
ship to study the brain at the newly formed Department of
Machine Intelligence and Perception at the University of Ed-
inburgh in 1968.

I returned to Chicago to a Postdoc. Jack Cowan had
hired two remarkable young scientists, Art Winfree and Stuart
Kauffman for their first faculty positions. Although my initial

plan was to continue working on vision, I became intrigued
by Kauffman’s studies. Kauffman had constructed random
Boolean switching networks and found that for networks in
which each element only had a couple of inputs, the dynam-
ics was amazingly orderly.98 I rejected the Kauffman’s no-
tion of discrete states and discrete times, but embedded the
switching network logic in differential equations.99,100 This
was really my first research that involved nonlinear dynamics.
I learned about some of the basic notions including bifurcation
and stability theory — topics that were not considered appro-
priate to include in graduate physical science programs at the
time. This was immediately before the explosion of interest
in chaos.

Michael Mackey, who had training in Biophysics and Math-
ematics, was a young faculty member at McGill University in
Montreal. I had met Mackey at Gordon Conferences in The-
oretical Biology in the early 1970s, and I was delighted when
the opportunity came to apply to McGill. I moved to Montreal
in March 1975 and a few months later went out west to spend
a month at the Aspen Center for Theoretical Physics. A talk
by Stephen Smale, about the period-doubling route to chaos
was intriguing. Mitchell Feigenbaum was also there and he
attributed that meeting also to piquing his interest in chaos.101

When I got back to Montreal, I was excited to discuss chaos
with Mackey. I asked him if physiological systems could dis-
play chaos. He said he did not know. We decided to write a
team grant application on the theme “Oscillation and Chaos
in Physiological Systems.” We certainly proposed to study
both difference and delay differential equation models for two
physiological systems: Mackey would look at hematopoiesis
and I would look at respiration. In one of the models for
hematopoiesis there were several novel features. There was
just one variable — the blood cell concentration. Instead of
just using negative feedback, the equation

ẋ = β
xτ

1+ xn
τ

− γx γ,β ,n > 0 (10)

had a non-monotonic feedback term. And since it took some
time to produce red blood cells once the signal was received,
the production incorporated a time delay term. We searched
for chaos in the model. Most exciting was the day when
Mackey and I both sat in front of a primitive computer screen
and watched the trajectory. Since there was only one variable,
we plotted two coordinates, the current value and the value in
the past. To the best of my knowledge, this was the first use of
time delay embedding to examine complex dynamics and bi-
furcations. We tweaked parameters and eventually found what
we were seeking.102,103 It was chaotic (Fig. 7), and the route
to chaos seemed similar to what had been observed in simple
quadratic maps.2,104

General interest in chaos had been piqued by Robert May’s
1976 review.105 We submitted our findings on chaos in sim-
ple mathematical models of physiological systems to Sci-
ence, and were delighted when it appeared.102 We empha-
sized the concept that diseases could be characterized by ab-
normal dynamics that might be associated with bifurcations
in nonlinear equations. In November 1977, Okan Gurel and
Otto Rössler organized a meeting on Bifurcation Theory and
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FIG. 7. Time delay embedding of a chaotic time series from the
model for blood cell production using the time delay equation (10)
that we proposed in 1977.102 The trace is similar to the time delay
embeddings presented at the New York 1977 conference organized
by Gurel and Rössler. Image from the original tracings made in 1976
or 1977 where x(2) is the delayed variable and x(1) is the current
variable.103

Applications.106 I was invited to speak, and ran through a
sequence showing the various dynamics in the chaotic time
delay equation as a parameter changes using the time delay
embedding.103

There were many people at the 1977 meeting. One was
Robert Shaw, spending significant time to develop a way to
beat roulette by entering data from the roulette wheel into a
computer program in a shoe.107 The Dynamical Systems Col-
lective wrote an influential paper in 1980 showing how you
could get a two dimensional portrait of a time series by plot-
ting the value of one variable on one axis and its derivative,
or as suggested in a footnote its value at an earlier time, on
the other axis.108 One member of the group, Farmer, went
on to study the time delay equation modeling blood cell dy-
namics for his doctorate, referring to it as the Mackey-Glass
equation!109 Another person at the meeting was David Ruelle.
Ruelle suggested to me that I could look at the return map to
a cross section on the time delay embedding. He correctly
thought that it would be parabolic. As far as I know the only
published return plot for this equation appeared in a Scholar-
pedia review article that Mackey and I presented many years
later, when we finally took Ruelle’s suggestion.110

VIII. FIRST CHAOTIC STEPS BY ARKADY PIKOVSKY

As a second-year physics student at the Department of Ra-
diophysics at the University of Gorky, I had to decide the di-
rection of my studies. In early 1974, I approached Michael
Rabinovich, that time reader at the Theory of Oscillations
chair, and asked if I can do specialization under his supervi-
sion, and he agreed. He gave me some review articles111,112 to
read. I understood very little of them. Nevertheless, when he
formulated a first research project — deriving a kinetic equa-
tion for modes for the Rayleigh-Bénard convection problem, I
started to read books and articles, and almost the whole third

year in the University struggled with nonlinear equations for
convection. So I read what was relevant to this field in the
literature, and at the beginning of 1975, read a paper by J.
McLaughlin and P. Martin.113 They wrote about a strange at-
tractor in convection, and I understood nothing.

This paper contained only the 13th citation of the famous
1963 Lorenz paper10 and only the 11th citation of the equally
important 1971 paper by Ruelle and Takens,1 and it was
the first publication that cited both. McLaughlin and Mar-
tin matched Lorenz’s nonperiodic flow with the strange at-
tractor concept. As a matter of fact, stochastic dynamics
(that is how deterministic chaos was called in the Russian
literature that days) was a known concept due to works of
Boris Chirikov and his group,114 but a general belief was
that conservative Hamiltonian chaos does not survive dissi-
pation, and in dissipative systems only limit cycles can be
stable (robust) attractors. Lorenz’s model and the theoreti-
cal concept of Ruelle and Takens demonstrated that dissipa-
tive chaos could be permanent, and more and more examples
of it appeared in 1975. To us, these novel ideas came, not
in a direct way of reading the McLaughlin-Martin paper, but
through the mathematical group on dynamical system theory
around Ya Sinai in Moscow.115,116 M. Rabinovich, together
with Svetlana Vyshkind, studied low-dimensional models of
nonlinearly coupled modes and observed irregular dynamics
there.117 He met Ya Sinai and from him got to know about the
concept of strange attractors. M. Rabinovich returned from
Moscow very enthusiastic about this, and I was eager to learn
more in this direction (at this point I also realized that I had
already read about this in McLaughlin-Martin paper). M. Ra-
binovich brought from Moscow several preprints and lecture
notes that Sinai gave him (I remember it was a text by O.
Lanford III among them) which I tried to read. But this was
rather hard for a non-mathematician, with some objects like
“Axiom A” that I could not identify. Thus I took a step back
and started from more basic texts like translated to Russian
Smale’s review20 and lectures by A. Katok and others at Rus-
sian mathematical schools.

Around the middle of 1976, M. Rabinovich first realized
that there is a close analog of the Lorenz system in the realm of
coupled oscillators (or oscillatory modes). The linear terms in
the Lorenz model can be interpreted as a combination of dis-
sipation and parametric excitation, while the nonlinear terms
correspond to a “classical” three-mode resonant interaction.
This model is known as the Rabinovich system118

ȧ1 =−ν1a1 +ha∗2 −a2a3

ȧ2 =−ν2a2 +ha∗1 +a1a∗3
ȧ3 =−a3 +a1a∗2

(11)

where the system is written in three columns, with dissipa-
tive, excitation, and nonlinear coupling terms, correspond-
ingly. Remarkably, the complex solutions of the Rabinovich
system appeared to lie on the real-valued three-dimensional
manifold [Fig. 8(a)], what made the analogy with the Lorenz
system nearly perfect.

The second idea came after a paper by Rössler.3 There he
argued that in a three-dimensional slow-fast system, with a
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two-dimensional S-shaped slow manifold, one can reduce the
dynamics to a one-dimensional non-invertible map and thus
get chaos. Slow-fast systems were a popular object at the
Theory of Oscillations chair, in the context of electronic cir-
cuit dynamics. M. Rabinovich decided to construct a chaotic
electronic generator with slow-fast dynamics.

Working on these two problems was an exciting time for
me. The computations’ results had to be put to the graphs (on
a graph paper) by hands. we used an analog computer with a
plotter. One could easily arrange a simple set of equations on
this analog computer, but accuracy was miserable. So one just
adjusted parameters (through rotation of a potentiometer) to
obtain a beautiful plot. Moreover, while plotting a long trajec-
tory, parameters could deviate, and it suddenly exploded. In
Fig. 8 I present analog computer phase portraits of the Rabi-
novich system and of the slow-fast dynamics in an electronic
circuit from papers.118,119

2. The phase volume shrinks uniformly: 

so  that the attractor should have a zero  Lebesgue mea- 
sure. 

3. The confinement of the parametric instability with- 
in the framework of (6) takes place arbitrary supercri- 
ticality. In fact, let us  put 

then 

i.e. , all  the trajectories a r e  contained in the ellipsoid 
u s  9h2k-l. 

We consider now the ES, and pay attention to their 
evolution with increasing pump h. At h < ( U ~ U ~ ) ' / ~  there 
is a single equilibrium state 0(0 ,0 ,0)  to which a l l  the 
trajectories a r e  attracted. At k >(u,v,)"~ the threshold 
of parametric excitation i s  exceeded and two nonzero 
ES appear: ~ * ( i ( z ~ 1 ) ' ~ ~ , ~ ( ~ ~ 1 ) ' ~ ~ , ~ ~ ) ,  where z0=(h2 -vl 
U , ) ~ / ~ , Z  =(h - z0)v;l, and correspond to the static reg- 
ime of instability elimination. The zero-point ES then 
becomes unstable. 

We call attention to the high effectiveness of the con- 
finement of the instability within the considered triplet. 
Thus, the dispersion relations admit of the decay of the 
plasmon (k, w,) into a pair of waves not connected with 
the 

but for this purpose it is necessary to exceed the plas- 
mon threshold amplitude, which can be estimated in di- 
mensionless variables a t  v:/~. But at any h we have 
lzO < vz, so that the ES C*  a r e  stable to excitation of an 
"extraneous" pair. We note that this conclusion can be 
arrived a t  only for the static confinement regime; in the 
stochastic regime the question remains open. 

At v, < v, + 1 the ES C* a re  always stable. This is 
precisely the case in decay (with participation of ion 
sound) confinement of Langmuir waves excited by an el-  
ectromagnetic wave in an isotropic plasma.L231 In this 
stiuation x and y a r e  plasmons parametrically connected 
with the pump and having close frequencies, therefore 
v2= V'. 

In the case considered by us, that of wave interaction 
in a magnetoactive plasma, the plasmons x and z a r e  
practically equally damped: vi - 1, and the condition 
v, < vl + 1 = 2 may be violated a t  sufficiently large damp- 
ing y of the ion sound. Then the ES C* becomes unstable 

We note that in a collisionless plasma the plasma- 
wave damping decrements can be quite small ,  and then 
v, >> vi. In this case ho = 0.5 v2, and in terms of the ini- 
t ial  variables I E ~ I  > y (2 1 W,,, )-', i. e. , the pump 
wave amplitude a t  which the ES C* become unstable does 
not depend on the plasmon damping decrement. 

Thus, a t  sufficiently large supercriticalities, all the 
ES of the system (6) a re  unstable. They have the follow- 
ing structures: 

ES 0-saddle-node with two-dimensional stable sep- 
aratriv (corresponding to two negative eigenvalues) and 
two one-dimensional unstable ones (positive eigenvalue). 

ES Ci--saddle-foci. The trajectories approach them 
along one-dimensional separatrices and move away un- 
winding along two-dimensional separatrices (correspon- 
ding to complex-conjugate eigenvalues with positive real  
parts). 

4. NUMERICAL INVESTIGATION OF THE SYSTEM (6) 

A numerical investigation of the system (6) has shown 
complicated and entangled trajectories exist in it a t  h 
>hO. A typical realization appears outwardly a s  follows: 
the generating point in phase space makes several  rev- 
olutions around the ES C', then goes over to C - and ro- 
tates around it, returns back to c+, etc. (see Fig. 1). 

It is convenient to carry out the investigation with the 
dimensionality of the phase space decreased. This is 
done, f irst ,  by constructing a two-dimensional mapping 
of the sequence and, second, by using the construction 
of the inverse limit to reduce it to a one-dimensional 
mapping (this was done by for the Lorenz 
system). 

For  the secant plane we take the two-dimensional se t  
C-that part of the plane z =zO on which H < 0. The map- 
ping of the sequence *: C - C, which se ts  the initial 
point U,EC in correspondence with the point ( T ~ + ~ E C ,  at 
which the trajectory that begins a t  U, returns to C fo r  
the first  time, was constructed a t  v, = 1, v, = 4, and h 

I/ 

FIG. 1. Result of an analog simulation of the system (6) at 
vi=l ,  v,=4, and h = 6 . 7 5 .  
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(a) Rabinovich system (b) Chaotic generator

FIG. 8. Phase portraits of two strange attractors created on an analog
computer produced by (a) the Rabinovich system (11) and (b) the
electronic chaotic generator. Reproduced with permission (a) from
Zhu. Eksp. Teor. Fiz., 74, 1366 (1978) and (b) from Dok. Akad.
Nauk SSSR. 239, 301 (1978). For both, copyright 1978, Russian
Academy of Sciences.

IX. TÜBINGEN BLUES BY LARS FOLKE OLSEN

My own introduction into the field came when I first went to
the department of biochemistry, Odense University (now Uni-
versity of Southern Denmark) as a graduate student in 1975 to
study bistability and oscillations in a single enzyme reaction
known as the peroxidase-oxidase reaction. My supervisor was
professor Hans Degn, who had studied this and other oscillat-
ing chemical reactions since the early 1960s.120,121 In those
days the typical project for a biochemistry student was to pu-
rify a new enzyme (or a known enzyme in a new organism),
establish an assay to measure its activity and finally determine
its KM and turnover. However, since my high-school days I
had a crush for mathematics and physics.

In the fall of 1975 Hans Degn urged me to attend a meet-
ing on “Rhythmic Functions in Biological Systems” in Vi-
enna (September 8-12). The meeting was mostly on circa-
dian rhythms and I did not know any of the participants and
also had nothing to contribute. However, I had the pleasure
of meeting two scientists who have had a great influence on
my later career. One was Arthur Winfree and the other was

Otto E. Rössler. Back in Odense Degn informed me that some
unspent money could be used for a month visit to a lab of my
own choice. I asked Otto, if he would be willing to have me
around for a few weeks.

When I arrived Otto had just submitted his first paper on
chaos in a (bio)chemical system.3 My plan was to make
a model of the PO reaction that could unify its ability to
show both bistability and oscillatory behavior based on some
enzyme-kinetic measurements done in the lab. Otto helped
me with the model and in fact we did get it to work. The
equations are

ȧ = K(a0−a)−
V
(
a+κa2

)
b

λb+a+µa2

ḃ = σ −2
V
(
a+κa2

)
b

λb+a+µa2

(12)

where a represents O2 and b represents NADH. K is a con-
stant that determines the rate of diffusion into the reaction
mixture and a0 represents the O2 concentration at equilib-
rium. V , κ , λ and µ are enzyme kinetic paramaters and σ

is the inflow rate of NADH. The model showed coexistence
of steady state and limit cycle oscillations with an unstable
periodic orbit separating the steady state and the limit cycle.
It was never published in full, but the experimental data un-
derlying the model appeared in a later publication.122 When
discussing this model Otto was also telling me about an inter-
esting new kinetic model he had made which could show non-
periodic oscillations, sensitive to initial conditions, which he
referred to as chaos.

Following my short stay in Tübingen I started a new se-
ries of experiments with an open system where both sub-
strates NADH and O2 were supplied continuously to the re-
action mixture containing the enzyme. Much to our surprise,
the resulting oscillations were different and far more complex
than we had anticipated. We observed mixed-mode oscilla-
tions and bursting oscillations, none of which could be ex-
plained by my simple two-variable model. Sometimes we
also observed non-periodic oscillations as mixtures of small
and large-amplitude oscillations in a seemingly random order
(Fig. 9). Initially, Degn dismissed these oscillations as arte-
facts generated by small random fluctuations in the pumping
rate of NADH inflow, but they appeared consistently when re-
peating the experiments with the same experimental settings.
I had an idea that these non-periodic oscillations could be
chaos, and therefore I wrote a letter to Otto with an exten-
sive description of what I had done with free-hand drawings
of the data. Otto’s reply was: “Read Lorenz!.”10

I read Lorenz’s fascinating paper10 and more recent papers
by Robert May104 and Li and Yorke2 and suddenly I under-
stood. Following Lorenz’s instructions I constructed a return
map by plotting each amplitude from our irregular PO oscil-
lations against the preceding amplitude (Fig. 10) and applied
the Li and Yorke theorem.2 I showed the plot together with
the papers by Lorenz and Li and Yorke to Degn, who imme-
diately changed his opinion on the results. Within a week
we had written the manuscript and submitted it as a letter
to Nature by the end of October 1976. We also sent copies
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FIG. 9. Simple periodic (a), chaotic (b) and bursting (c) oscillations
of O2 in the peroxidase-oxidase reaction. Reproduced with permis-
sion from Nature 267, 177 (1977). Copyright 1977, Springer Nature.

of the manuscript to Otto and to Art Winfree, from whom
we received very enthusiastic responses.123 A few months
later the paper by Schmitz, Graziani and Hudson on chaos in
the Belousov-Zhabotinskii (BZ) reaction appeared.124 In 1978
Otto and Klaus Wegmann also published a paper on chaos in
the BZ reaction.125 It is important to note that in those days
Takens’ embedding method126 had not yet been published.

(a) On the amplitude (b) On the time-period

FIG. 10. a) Next-amplitude map of oscillations of O2 from Fig. 9(b);
b) same type of plot for the oscillation periods. Trajectories with
arrows were drawn to show that the transition function allow the pe-
riod 3. Reproduced with permission from Nature 267, 177 (1977).
Copyright 1977, Springer Nature.

X. FROM CHEMICAL CHAOS TO CHAOTIC BRAIN BY
ICHIRO TSUDA

As everyone does, I enthusiastically studied Otto E.
Rössler’s pioneering works on chaos5,6,82,84 in my gradu-
ate student days, in the late 1970s. I tried to understand
the mathematical structure of Lorenz chaos10 in relation to
Smale’s horseshoe map,20 the relationship between Lorenz
chaos and a strange attractor1 in a sense of mathematical
representation of hydrodynamic turbulence, and also the re-
lationship between such chaos and chaos in a sense of Li-
Yorke,2 while I kept thinking of “real” chaos observed in the
Belousov-Zhabotinsky (BZ) reaction system.124,127–130 Otto’s

contribution131 to real chaos in that system with Klaus Weg-
mann encouraged me to pursue this direction of research.

Here, let me add some more comments about my early re-
search with the late Kazuhisa Tomita, concerning chaos in
the BZ reaction. We noticed early reports of chaotic behav-
iors in this chemical reaction system. One report was pub-
lished by Wegmann and Rössler131 mentioned above, while
the other was by Schmitz, Graziani, and Hudson.124 Although
they reported “chaotic” behaviors in laboratory experiments,
it was not clarified that those behaviors can be characterized
by mathematical structure recognized as deterministic chaos
or strange attractors. We wanted to show definite evidence
for the presence of chaos in the BZ reaction. We thought that
finding evidence was easy. The reason was that Otto already
showed the presence of chaos in three-dimensional continuous
chemical reaction systems even with one quadratic nonlinear
term, and further the BZ reaction system should include more
than one quadratic nonlinear terms due to molecular collisions
of two different chemical substances.

FIG. 11. “Chaotic” orbits yielded by the analog computer at
Yoshisuke Ueda’s laboratory in 1978 by using the model (13). Pa-
rameter values: p ≈ 90, φ ≈ 0.048, and m ≈ 3.44. Figures repro-
duced from the Ichiro Tsuda’s Master thesis, Kyoto University, 1979.

For the first time, we made a three-dimensional continuous
model for the BZ reaction, based on an original Oregonator
proposed by Field and Noyes.132 In 1978, Kazuhisa Tomita
asked Yoshisuke Ueda to allow us to use analog computers
in his laboratory. I finally found “chaotic” behaviors in our
model 

ξ̇ = (1−φ)ξ +η−ξ η−ξ ζ

η̇ =−(1+φ)η +ζ −ξ η +m

pζ̇ = ξ − (1+ pφ)ζ −ξ ζ

(13)

using analog computers (Fig. 11).129 Christian Vidal’s Bor-
deaux group found very similar chaotic behaviors to our find-
ings in their laboratory experiment.128 We were excited by
this experimental finding. Unfortunately, however, I could
not find any chaotic behaviors by digital computations with
our model. The equations used in analog and digital compu-
tations were the same, but the computation results were dif-
ferent: one showed chaotic behaviors and the other showed
simply periodic ones. I guessed that the chaotic behaviors
found in the analog computer could be a kind of noise-induced
chaos caused by the weak stability of limit cycles. Our model
does not have either an additional geometric structure produc-
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ing chaos as in the Rössler’s system or an additional dynam-
ical rule for changing the bifurcation parameter. One more
variable was necessary for yielding deterministic BZ chaos.
Therefore, I guessed the findings to be noise-induced chaos.
Finally, I gave up making a continuous model for determinis-
tic chaos of the BZ reaction. Instead, I concentrated on finding
mathematical structures showing the existence of determinis-
tic chaos in the experimental data.130

XI. REMINISCIENCE OF CHAOS BY CELSO GREBOGI

In mid-seventies, while working on my Ph.D. thesis in ther-
monuclear fusion, I took a course in the qualitative theory of
differential equations with a visiting mathematician. It was
a cautious, abstract four-month long course on specific dif-
ferential equations. As I was about to discover soon after, in
that course there was none of the bold, intuitive philosophi-
cal generalisations that James Clerk Maxwell,133 a physicist,
and Henri Poincaré,134,135 a mathematician, felt to be justi-
fied. Both understood the importance of systems having sen-
sitive dependence on initial data, the kind of dynamics that is
vibrant, compelling and exciting.

In 1978-1981, I became a postdoc in Berkeley under Allan
Kaufman. During that time, a few markedly important events
occurred related to chaos. Still during the Soviet times, Boris
Chirikov came from Novosibirsk to visit Kaufman in the Au-
tumn of 1978. He brought and left with us a preprint copy of
his seminal work.47 With Chirikov preprint on hand, Kaufman
organised a discussion group, three hours every Thursday af-
ternoon, initially to study Chirikov’s paper, later to go over
V. I. Arnold’s recently published book.136 In the discussion
group, there were we — Kaufman’s group, his former stu-
dents, and some mathematicians. The latter ones were really
important because we learned from them the fundaments of
the theory of dynamical systems and ergodic theory, necessary
to embark in this new science. The learning of a new science,
chaotic dynamics, supported by both the ergodic theory and
the theory of dynamical systems, was the most exciting aspect
of the multiple-year discussions.

Motivated by the studying of the Chirikov preprint,
Kaufman asked the student Steven Mcdonald to solve the
Helmholtz equation in the chaotic Bunimovich stadium. Their
seminal work on quantum chaos.137 About the same time, Sir
Michael Berry, came to Berkeley to deliver the physics collo-
quium. He spoke about his work on the swimming pool hot
spots and on the twinkling of the stars,138 perhaps the two
most important examples that can be understood by employ-
ing the catastrophe theory of Thom.139 It was a fascinating
talk that stimulated me to read Thom’s catastrophe work. We
tried to apply the theory to particle and wave propagation but
without much success.

In the Autumn of 1981, I moved back to the University
of Maryland, where another chapter in chaotic dynamics was
about to take place. Upon arriving in Maryland, I delivered a
course on symplectic dynamics and Lie transforms at a Navy
lab. That invitation came from Robert Cawley, who felt that
the theory of dynamical systems was the way of the future.

There I met Louis Pecora. As part of that course, I invited
James Yorke to deliver a seminar as a guest. I have never
met him before, though I saw him walking on campus around
1977. I was slightly aware of his work while at Kaufman’s
group. After his talk, we sat on the stairs in front of the build-
ing, chatting about his mathematical work on dynamical sys-
tems, and about the naming of “chaos”.2

That initial conversation with Yorke was the beginning of a
two-decade long collaboration, involving the renowned physi-
cist, Edward Ott, resulting in well over one hundred papers
on the fundaments of chaotic dynamics in such a collabora-
tion. Our work, grounded on the theory of dynamical sys-
tems and ergodic theory, and often argued in terms of point set
topology, were developed with the use of mathematical maps
and differential equations. The latter, typically the pendulum
equation140

ẍ+ν ẋ+ω
2 sinx = f cos t (14)

was usually employed to argue that the phenomenon we were
addressing was not particular to a mathematical framework
but it was pervasive in science and technology. In fact, the
objective of the research was to establish basic mathematical
principles so that researchers could then apply those principles
to understand and analyse the systems they were investigating
in their own fields.

FIG. 12. Fractal basin boundary and the basins of attraction of the
forced damped pendulum equation (14). Parameter values: ν = 0.1,
ω = 1, and f = 2. Reproduced with permission from Science 238,
632 (1987). Copyright 1987, American Association for the Advance-
ment of Science.

Visualisation was a major component in the early scientific
developments of chaotic dynamics. It was essential to be able
to draw pictures of attractors, basins of attraction, and other
invariant sets on a sheet of paper or project them on a screen.
In the late seventies and early eighties, it was difficult, or often
not doable, to carry out more intricate calculations in order to
help visualisation and understanding, and to validate the the-
ories and predictions.141 We hired a technician from NASA
to programme and to deal with the idiosyncrasies of computer
array. Figure 12, showing the fractal basin boundary and the
basins of attraction of a forced damped pendulum equation,
is the result of such computations in that computer array.142

Our pictures were exhibited at the National Academy of Sci-
ences, in a museum in New York, and were part of a travelling
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exhibition throughout the United States. They were also the
covers of a dozen of mathematical, scientific, and technical
publications.

XII. HOW I BECAME A NONLINEAR DYNAMICIST BY
ULRICH PARLITZ

In 1978 I started studying physics at the University of Göt-
tingen and in 1982 I was looking for an interesting topic for
my diploma thesis. In those days I read popular science books
on synergertics, self-organization and evolution theory written
by H. Haken,143 I. Prigogine & I. Stengers144 and M. Eigen &
R. Winkler145,146 and I was fascinated by these new emerging
fields, because they addressed very fundamental questions of
human live and existence, on how structure comes into being,
how units of increasing complexity and functionality arise as
a consequence of natural dynamical laws, and in which sense
all these processes can be predicted (or not). When talking to
fellow students I got the hint that Werner Lauterborn works on
nonlinear dynamics and chaos and I should talk to him about
a diploma thesis in his group. I did so and soon after he sug-
gested me to investigate the dynamics of a periodically driven
Duffing oscillator

ẍ+dẋ+ x+ x3 = f cos(ωt) . (15)

Werner was primarily interested in nonlinear resonances he
found in his pioneering work on acoustically driven gas (cav-
itation) bubbles in a liquid in the 1970s147 and one of my first
tasks was to look for such phenomena in the parameter space
of the Duffing oscillator. Experimentally it was shown by him
and E. Cramer in 1981148 that bubble dynamics can exhibit
period-doubling cascades to chaos, in this context also called
acoustic cavitation noise. So searching for chaos was also on
my to-do list. It was known that chaotic attractors exist for
the Duffing equation with a double-well potential.149 For the
single well oscillator (15) such theoretical results did (to our
knowledge) not exist.

So I started to work, most of the time in the university com-
puter center filling the queue of their main computer, a Sperry
UNIVAC 1100/82, and using a VAX-11/780 for interactive
exploration of the Duffing oscillator to learn more about its
dynamics and how it changes when varying the driving fre-
quency ω or the driving amplitude f . A surprisingly rich,
complex but ordered structure of resonances, bifurcations and
coexisting periodic and chaotic attractors emerged which fas-
cinated both of us, Werner and me (Fig. 13).150 If this non-
linear system, which looks so simple, already produces such
a wide variety of dynamic behavior, what would happen with
more complex, higher dimensional systems?

This was also the time when I listened for the first time a
seminar talk given by Otto Rössler at the University of Göttin-
gen. It was so impressive that I still remember the situation in
the seminar room when Otto Rössler showed is slides with the
taffy puller to explain the mechanism of stretching and folding
underlying chaotic dynamics in state space.

After I had finished the diploma thesis I continued with
my Ph.D. studies in Werner’s group and delved deeper into

FIG. 13. Parameter space of the Duffing system (15). In the differ-
ently dotted domains there are symmetrical period-1 limit cycle (s1),
two coexisting symmetry-related period-1 limit cycle (as1), two pairs
of asymmetry related period-1 limit cycles (2as1), a pair of period-2
symmetry-related limit cycles (as2) and pairs of period-n symmetry-
related limit cycles (asn) with n = 4,8,16, .... Reproduced with per-
mission from Phys. Lett. A. 107, 351 (1985). Copyright 1985, Else-
vier.

the dynamics of periodically driven oscillators. How could
one characterize and label the nonlinear resonances and bifu-
cation curves seen in the Duffing equation (15), the period-
ically driven bubbles,147 and other nonlinear oscillators? We
knew the dynamics of the circle map and the theory of Arnold’
tongues but this was applicable only to self-sustained (or self-
excited) systems like the van der Pol oscillator. So the ques-
tion was, where can we find a second “rotational motion” in
addition to the periodic driving in order to compute and anal-
yse their frequency ratio? The solution was to consider the
winding of neighbouring trajectories around the periodic or-
bits and to quantify this motion by torsion numbers.151,152 The
(average) local torsion frequency Ω can also be used to define
a winding number w = Ω/ω that fulfills particular recursive
schemes in period-doubling cascades and is also defined for
chaotic attractors of this class of systems. This approach was
not only applied to the Duffing oscillator, a model for a period-
ically driven gas bubble,153 and many other passive nonlinear
oscillators154 but also to the periodically forced van der Pol
oscillator155

ẍ+d(x2−1)ẋ+ x = f cos(ωt). (16)

The main motivation for our study of the van der Pol oscilla-
tor was, however, the fact that it was known since the seminal
analytical work of M.-L. Cartwright and J. E. Littlewood156

that this system may exhibit aperiodic oscillations, but we
could not find in the literature any numerically computed ex-
ample of a chaotic attractor for Eq. (16). In fact, it took
some detailed numerical simulations until we found a com-
plete period-doubling cascade to chaos.155

XIII. A KNOTTED ROAD TO CHAOS BY ROBERT
GILMORE

My trajectory as a physicist was strongly perturbed by For-
tunato Tito Arecchi. He is a world-class laser physicist who
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visited M.I.T. for a year around 1970. Learning how the op-
erating state changed as the parameters changed was a bifur-
cation theory problem.157 We did a lot of useful work in this
field; besides it was fun. At this time a strong connection
between the laser physics community and the nonlinear dy-
namics community was established by Haken. He showed158

that there was a deep connection between one of the standard
laser physics models in a certain limit and the behavior of flu-
ids as described by the Lorenz equations.10 This connection
provoked a number of experimental searches for Lorenz-like
output behavior of various types of lasers.159,160

During this period I encountered a reference to ‘catastro-
phe theory’. Somebody pointed me to Thom’s book,32 not yet
translated into English. After reading it I understood nothing,
and put this down to my halting French. By perserverence and
luck I was directed to Tim Poston, then in the process of writ-
ing his book on the subject with Ian Stewart.161 Tim gave me
copies of several important draft chapters. They were so well-
written and straightforward that the concepts were easily as-
similable. Tim also directed me to a forthcoming work of Erik
Christopher Zeeman33 which put the subject to work through
many imaginative examples — many too imaginative for the
staid physics community. The important take-aways from this
diversion were:162 i) the most visible singularities are the sta-
ble nodes but the most important are the unstable saddles be-
cause their eigendirections help define basin boundaries; ii)
bifurcations on manifolds could have canonical forms; iii) all
the important ones were discretely classifiable, and iv) the
classification overlapped enormously with the classification of
simple Lie groups. This was my introduction to chaos, both
of maps and flows, and the Lorenz attractor.10

The study of chaos changed dramatically around this time.
The enormously powerful tools of renormalization group
theory163,164 were applied to iterative maps in the late 1970s
on both sides of the Atlantic.165–168 These results rapidly lead
to several new invariant quantities, such as the scaling ratio
δ = 4.669 . . . . Once ‘universality’ was claimed, a sea change
occurred. With the universality claim “It was a very happy
and shocking discovery that there were structures in nonlinear
systems that were always the same if you looked at them the
right way.”40 The community of experimental scientists took
this as a challenge, and the race was on. Some of the early
experimental tests of the universality prediction are reprinted
in the excellent collection by Cvitanović.169

One set of experiments was carried out by Arecchi and
Jorge R. Tredicce and colleagues.170 This experiment con-
firmed universality within experimental error. Tredicce moved
to Drexel University to work with Lorenzo M. Narducci in
1985. I moved to Drexel somewhat earlier (1981). My rea-
sons were in part: to continue working on laser problems with
Narducci.

In doing these experiments the Arecchi/Tredicce group had
collected a great deal of data, Tredicce wondered how he
could understand them. This was an exciting challenge that I
eventually turned my complete attention to. The data showed,
among other things, multiple coexisting basins of attraction
surrounding orbits of various low periods that sometimes
came into existence or winked out of existence with a small

change of parameter.170–172 Experience with catastrophes in-
dicated the presence of saddle-node bifurcations.

The observables were the periodic orbits, and the most im-
portant ones were the unstable periodic orbits — again, a les-
son from catastrophe theory. We defined the relative rotation
rate.173 The ensemble of these fractions for any pair of orbits
had very restrictive and informative properties. Furthermore,
they could be extracted from experimental data and compared
with models of the system. In this way we were able to show
that the dynamics of the periodically driven laser were those
of a suspension of the Smale horseshoe.20 Not surprisingly,
there was a simple relation between the linking numbers of
two orbits and the sum of their relative rotation rates. This
method was applied to other periodically driven systems.174

Then it was extended to autonomous three dimensional dy-
namical systems as the Rössler system3,5 with the standard
parameters.

At this point we became aware of the Birman-Williams
theorem.175,176 This became a key tool for us. We used it as
follows. We could extract a set of low-period unstable or-
bits from a chaotic attractor and then pairwise compute their
‘experimental’ linking numbers. Then we could propose a
branched manifold that might be the projected limit of the
attractor. A following comparison of the experimental link-
ing numbers with those derived from the branched manifold
would show either that we ‘nailed’ the analysis or had to go
back to the drawing board. The net result was that we were
able to classify the topological structure of chaotic attractors
by integers.177 We were then able to analyze chaotic time se-
ries and search for the integer representation of the dynamics
that generated these data.178–180

(d)
(c)

(a) (b)

0

1

FIG. 14. Branched manifolds describing (a) Rössler, (b) periodically
driven Duffing, (c) van der Pol attractors, and (d) Lorenz attractors
and for particular parameter values. Redrawn from The topology of
chaos, p. 133, (Wiley, 2003).

XIV. CHAOS RESEARCH AT THE NAVAL RESEARCH
LABORATORY BY LOU PECORA AND TOM CARROLL

Chaos research at the U.S. Naval Research Laboratory
(NRL) was started in the 1980s by Lou Pecora and Tom Car-
roll, physicists in the former Metals Physics Branch of the
Materials Science and Technology Division (MSTD) and by
Ira Schwartz originally in Optical Sciences division of NRL.
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Lou wanted to study nonlinear phenomena, especially
chaotic motion, in a real system, one that would have inter-
est to the Navy. The material yttrium iron garnet (YIG), a
ferrimagnetic compound used in many radiofrequency appli-
cations, appeared to be a good candidate material for exper-
imentation. Work by Prof. Carson Jeffries at the University
of California, Berkeley, showed that the magnetic spin waves
in YIG were a nonlinear dynamical system and could display
chaotic behavior.181 Lou got Fred Rachford, also in our Met-
als Physics Branch, interested in the experiments.

Because Rachford had the experiment ready to go, Tom
Carroll was able to jump right in and start taking data on chaos
in spin wave interactions in YIG spheres in 1987. The results
of the experiment did at first appear “chaotic,” but not in the
sense Tom was looking for. He did notice some strange tran-
sients, where the output from the experiment would at first
appear chaotic, but then suddenly become periodic. Lou and
Tom traveled to the University of Maryland to consult with
Celso Grebogi and Ed Ott, who showed them that these tran-
sients were something that Grebogi, Ott, and Jim Yorke had
actually predicted theoretically.182 Ott explained the scaling of
the transient times with applied power. Our data showed that
the average length of these chaotic transients as micro-wave
power was increased fit the predicted theoretical power law.
By March 1987, Rachford and Tom had accumulated enough
data to allow Lou to present the results at the American Phys-
ical Society that month.183,184

FIG. 15. Trajectory of a chaotic transient ending in a periodic attrac-
tor. Reproduced with permission from Phys. Rev. Lett. 59, 2891
(1987). Copyright 1987, American Physical Society.

Tom and Lou talked about synchronizing chaotic systems,
but they couldn’t come up with any clear way to do that. In
January 1988, Lou came home tired from the trip and after
dealing with his young daughter late at night he went to sleep
thinking that somehow, they could drive a chaotic system with
a signal from an identical system and maybe the two would
synchronize. He managed to remember that idea the next day
and in the next weeks some simple numerical experiments
with iterated maps seemed to confirm that chaotic driving of
identical nonlinear systems could cause them to synchronize.
But they needed more than just numerical examples featuring
simple maps.

Lou and Tom wanted an experimental example of syn-

chronous chaos. Tom remembered an analog computer circuit
that a professor had demonstrated when he was an undergrad-
uate. The circuit used operational amplifiers, capacitors, and
resistors to simulate the equations for a bouncing ball with
damping, and the circuit output was displayed on an oscillo-
scope. He wanted to build an analog computer circuit, and
chaotic synchronization gave me a reason. He found in the lit-
erature a report of a chaotic circuit developed by Prof. Robert
Newcomb of the University of Maryland.185 He built a pair of
similar circuits: a drive circuit to hide a chaotic signal, and
a response circuit which synchronized to the drive circuit in
order to extract a message signal that had been added to the
driving signal.186 He even used this pair of circuits, along with
a digital spectrum analyzer to demonstrate chaotic masking of
an information signal in front of NRL’s director of research,
Dr. Timothy Coffey.

The work on the synchronization of chaotic circuits was
still unpublished, but caught the interest of some people from
the Space and Naval Warfare Systems Command (SPAWAR)
through Dr. Mike Melich of the Naval Postgraduate School in
Monterey, California. Tom and Lou were given some funding
to pursue our idea of communicating with chaotic signals.

XV. DISCUSSION AND CONCLUSION BY CHRISTOPHE
LETELLIER

From the testimonies in the previous sections, it might
be relevant to ask whether the chaos program constitutes a
revolution,187 a new science,40 or a new paradigm in an al-
ready established science. A science commonly designates a
branch of science as astronomy, physics, chemistry, or math-
ematics. Chaos is a branch of mathematics with some over-
lapp with nearly all the other sciences: it is therefore not a
new science as supported by Holmes.188 A revolution, as it
is meant today, designates a radical and sudden change.189

Nevertheless, the sudden character is questioned,190 mostly
because a scientific revolution is the result of a process which
is developed over decades if not centuries. It took nearly 20
centuries to switch from the Aristotelician physics to what is
called today the classical mechanics. Chaos has clearly not
this stature.

More important is the concept of paradigm as promoted
by Kuhn189 and which is deliberately defined in an open
way. In applied science, a paradigm is based on i) some ac-
cepted principles, concepts and rules (invariant set, attractor,
Poincaré-Bendixson theorem, Takens theorem, Smale horse-
shoe, period-doubling cascade, bifurcation, sensitivity to ini-
tial conditions...) which provide some permanent solution to
a group of outstanding problems, ii) a shared methodology
(working in the state space, using numerical simulations, shar-
ing some markers...), and iii) a metaphysics (universality, rela-
tionships between mind and matter...). Although with a more
or less concious common ground, beliefs and sharing appli-
cations to some concrete natural phenomena, scientists work-
ing with the chaos paradigm can belong to different schools
(statistics versus topology, for instance). Indeed, chaos is a
paradigm with its “tacit knowledge” acquired through prac-
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tice and which is not debated. In their history, Aubin and
Dahan-Dalmedico oscillate between continuity and rupture
to describe the emergence of the nonlinear dynamical sys-
tems theory.11 To us “epistemological break” as introduced by
Bachelard191 — that we could define as a new way requiring a
new concept or approach to solve a given problem but which is
still mainly understood with old concepts — seems more ap-
propriate than “rupture” or revolution as promoted by Kuhn189

because all of the current contributors refer to a background,
to a scientific heritage; in fact they are quite sensitive to be cor-
rectly categorized regarding their academic background. For
instance, some of physicists expressed their exact field (radio-
physics for AP, condensed matter for LP and TC). All of the
contributors reveal that they are highly infuenced by someone
— either by his scientific corpus or by his way of thinking
(RA inspired by Smale and Thom, DS by Chirikov, RL by
Thom and Hénon, LG by Mackey, AP by Rabinovich, LO
by Degn and Rössler, CG by Kaufman and Chirikov, UP by
Lauterborn, RG by Thom, LP and TC by Grebogi, Yorke and
Ott) — or by a key contribution (Lorenz 1963, Ruelle-Takens
1971, among others). Most of them experienced a change
of categorization in their activity from a well-defined field
(plasma physics, chemistry, radiophysics, condensed matter,
engineering) to a field not so clearly identified and recognized
by the academic institutions, as already presented in Aubin
and Dahan-Dalmedico: nonlinear dynamical systems (NDS)
theory or chaos? Very often the two terms are combined, as if
it is necessary to clarify some implicit restriction.

Indeed, the NDS theory is characterized by the lack of ex-
istence of analytical solutions and, consequently, a qualitative
approach is required. This denotes a specific methodology
whose foundations date back to Poincaré’s works: stability
analysis, phase portrait, surface of section, Poincaré map, pe-
riodic orbits, etc. Poincaré, who was deeply immersed in the
history of his fields, would not deny to qualify his contribu-
tion as a epistemological break rather than a rupture or a rev-
olution. He was clearly one of those who are producing better
while standing on the shoulders of giants.

From this aspect, all the contributions from the pre-
computer ages worked within their original scientific disci-
pline: Poincaré, Birkhoff, Lefschetz, Chern, Spanier, and
Thom were mostly acting as mathematicians, and were rec-
ognized as such. Andronov was working in engineering (an-
ticipating control theory). Nevertheless, a few cases deserve
some specific comments. Poincaré is commonly recognized
as one of the last “universalists,” able to address various prob-
lems whose nature was very different.192 His epistemologi-
cal break was to switch from analytical investigations of ap-
proximated solutions to differential equations to the qualita-
tive properties of a set of solutions in the state space. René
Thom, once he received his Field Medal, felt free to promote
a holitistic approach of dynamical processes, evolving strong
influences from D’Arcy Thompson193 and Paul Dirac194 for
developing his catastrophe theory: it would be hard to cat-
egorize this contribution. Although clearly connected to the
NDS theory, as clearly testified in most of the recollections.
Edward Lorenz, who was a meteorologist with a strong back-
ground in mathematics (his former academic background),

switched from mathematics to meteorology during his mili-
tary service.195 Nevertheless, his 1963 contribution10 is nei-
ther a rupture with other meteorological papers nor in contin-
uation of them since he addressed an old problem — accuracy
in weather forecasting — which dates back to Bjerknes196

and Richardson,197 although the way he treated it was par-
ticularly new. It was a more important epistemological break
for the NDS theory than for meteorologist (its impact on the
field from where it is issued can be compared with Poincaré’s
méthodes nouvelles in celestial mechanics:8 strong in NDS
theory, and rather poor in astronomy). The epistemological
break is this new combination of mathematical analysis (sta-
bility analysis, boundedness, periodic and aperiodic orbits,
symbolic analysis of simple maps) with some numerical simu-
lations (state portraits, isopleths, first-return map to a Poincaré
section).10 The impact of the contributions by Poincaré and
Lorenz is more important at the intepretation level than for
constructing predictive models.

In our view, Lorenz’s 1963 contribution is a clear synthesis
of the so-called “chaos program” which complements Smale’s
program as mentioned by RA. Smale’s program belongs to the
field of mathematics where contributors most often did not use
numerical simulations: they propose theorems that they prove
analytically. Chaos program is built mostly on numerical data
for validating heuristic theory (based on some presupposed
assumptions) as experimentalists use their measurements for
validating a theory based on presupposed assumptions. Chaos
program still belongs to the NDS theory but cannot be con-
sidered, stricto sensu, as mathematics. It can also not be con-
sider as physics, engineering, or computer science. This au-
tomatically means that the chaos paradigm is part of the NDS
theory, issued from mathematics, but it is not recognized as
part of mathematics. This explains why, still today, more than
50 years after its birth, “chaos” is a field of scientific activ-
ity which is, most often, combined with a classical field (fluid
mechanics, radiophysics, plasma, optics, chemistry, ecology,
physiology, economy, etc.). As an example, a section in non-
linear Physics from the French Physical Society (SFP) was
established as late as in 2021 but, from its name, it is restricted
to physics; nonlinear dynamics would have been a far better
name.

The first wave of key contributors to the NDS theory —
from the pre-computer ages — are mostly from mathemat-
ics although some of them also contributed to other fields
(Poincaré, Thom, Lorenz, Ruelle), and they continued to con-
tribute in mathematics. In the second wave, here associ-
ated with those who introduced numerical simulations in their
methodology (identified by dashed-dotted lines in Fig. 16),
are from various fields (physics, chemistry, engineering, but
also mathematics) as shown in Fig. 17 and their works would
be more easily categorized in “chaos” rather than in the field
of their initial academic background. Some of them even
changed the field of their activities (IT from physics to chem-
istry, LG from chemistry to physiology, PH from engineering
to math). Most of them may eventually published time to time
outside from the scientific disciplines. This lack of specific
discipline is in fact another source of confusion: the tech-
niques developed can be applied to any system of differential
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equations: it is irrelevant to know from where are coming the
equations (until an interpretation is needed). A given scien-
tist can equally contribute to understand the dynamics of an
ecosystem and of a pulsating star.
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FIG. 16. Some influences between contributors based on some tes-
timonies from the previous sections. The graph is organized for a
sake of simplicity. The arrows (− ·−·) correspond to the introduc-
tion of numerical simualtions. The three bold arrows to Rössler are
influences — through direct meetings — before 1975.
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Among the contributors to the present paper, there is an
atypical case: Rössler. Graduated in medicine, he never be-
came a physician, and switched first to behavioral biology
(Konrad Lorenz), and to theoretical biology (Robert Rosen).65

With his background in electronics as a radio-amateur dur-
ing his teenage years, he started his career in teaching nu-
merical simulations in chemistry (Tübingen). Before 1976, in
the continuation of Rosen’s approach, he met Thom, Smale,
read Andronov’s book, and exchanged ideas with Art Win-
free and RA within the paradigm of the NDS theory. He
was already publishing in the “chaos” paradigm before 1976
since already using numerical simulations, even though the
behaviors investigated were exclusively periodic or quasi-
periodic.61,198 Earlier contributors did that too as, for in-
stance, Bonhöffer,199 FitzHugh,200, and Hayashi.201 Rössler
used only rarely his medical background during the comple-
tion of his chaos program between 1976 and 1983: it is thus

absent from his “book” written in the early 1980s and only re-
cently published.202 In that way, Rössler could be hardly asso-
ciated with one of the classical scientific disciplines. He was
influenced from different scientific disciplines and, in turn, he
influenced many peoples working in chemistry, biology and
physiology.

In conclusion, chaos is a branch of nonlinear dynamical
systems theory which relies on numerical simulations for val-
idating developed rationales (note that we do use neither “the-
orem” nor “proof”). This is an orphan branch of scientific
research in the sense that it can hardly be associated with any
classical field. This is eventually due to its abstract nature as
well illustrated by Pecora’s words:

Of course, this brings a problem at dinner parties
when people ask you what you do. Answering Nuclear
Physics, Plant Biology, Chemistry, Astronomy, Ecol-
ogy, will bring at least nods of (a dim) understanding
of what you do. But saying Nonlinear Dynamics or,
equally the exotic sounding Chaos Theory will bring
blank stares and a rush to have the others refresh their
drinks.

In spite of these humorous words, there is clearly a corpus
of contributions (Poincaré, Smale, Thom, Lorenz, Chirikov,
Ruelle-Takens...) from which it emerged. As clearly seen by
the different recollections provided, the path to be “initiated”
is not unique and, as for every scientific field, there are many
ways to contribute to the development of chaos and, more
widely, to the nonlinear dynamical systems theory. Each of
these paths is based on the interactions and influences of sci-
entists while drinking a coffee or a beer, eating a pizza, or
trekking in mountains. This is what web-mediated interac-
tions do not allow and why in-person conferences are abso-
lutely needed.
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