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PROOF OF CAYLEY-HAMILTON THEOREM
USING POLYNOMIALS OVER THE ALGEBRA

OF MODULE ENDOMORPHISMS

ALEXEY MURANOV

Abstract. If R is a commutative unital ring and M is a unital R-
module, then each element of EndR(M) determines a left EndR(M)[X]-
module structure on EndR(M), where EndR(M) is the R-algebra of
endomorphisms of M and EndR(M)[X] = EndR(M) ⊗R R[X]. These
structures provide a very short proof of the Cayley-Hamilton theorem,
which may be viewed as a reformulation of the proof in Algebra by
Serge Lang. Some generalisations of the Cayley-Hamilton theorem can
be easily proved using the proposed method.

1. Introduction

Theorem (Cayley-Hamilton theorem). Let R be a commutative unital ring
(i.e., with 1R) and M be a finite-rank free unital R-module (i.e., which
respects 1R). Let a : M → M be an endomorphism of M and χa ∈ R[X] be
the characteristic polynomial of a. Then χa(a) = 0 (in R[a] ⊂ EndR(M)).

The goal of this note is to show how basic properties of tensor products
provide a very short proof of this theorem and allow to generalise it.

The two main ingredients of the proof presented in this note are:
(1) the canonical isomorphism EndR(M)[X] ∼= EndR[X](M [X]),
(2) certain left actions of EndR(M)[X] on EndR(M) associated to ele-

ments of EndR(M).
The presented proof is essentially a reformulation of the one in Algebra by

Serge Lang1 [3], eliminating the need to work with bases or with matrices
explicitly. However, the author is unaware of the considered actions’ of
EndR(M)[X] on EndR(M) having been used in the literature before to prove
the Cayley-Hamilton theorem or generalisations thereof.

The proof by Bourbaki in Algèbre [1] is essentially different and more
involved. Not only they work with matrices explicitly, but they also need to
prove the identity ãa = aã.
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2. Basic definitions and properties

Necessary definitions and basic properties of modules, their tensor prod-
ucts, and their exterior powers may be found, for example, in expository
papers by Keith Conrad [2].

Let R be a commutative unital ring and M be a free unital R-module of
finite rank n.

The following usual notation shall be used: R[X] is the ring of polynomials
in X over R, M [X] = M ⊗R R[X], EndR(M)[X] = EndR(M)⊗R R[X].

Following a common practice, elements of R may be viewed as elements
of R[X] or as elements of EndR(M) (as scalar endomorphisms), elements of
M may be viewed as elements of M [X], etc.

Since M is free of finite rank, there is a canonical isomorphism
EndR(M)[X] ∼= EndR[X](M [X]).

Using this isomorphism, elements of EndR(M)[X] may be viewed as ele-
ments of EndR[X](M [X]) and vice versa.

For an endomorphism a of M , the determinant of a is defined by the
identity

ax1 ∧ · · · ∧ axn = (det a)(x1 ∧ · · · ∧ xn) (x1, . . . , xn ∈ M).

The adjugate endomorphism ã of a is defined by the identity
ax1 ∧ · · · ∧ axn−1 ∧ y = x1 ∧ · · · ∧ xn−1 ∧ ãy (x1, . . . , xn−1, y ∈ M).

Replacing y with axn in the last identity, it can be deduced that
ãa = (det a)idM = det a

(identifying scalar endomorphisms of M with elements of R).
The characteristic polynomial of a ∈ EndR(M) is the polynomial χa ∈

R[X] defined as2

χa = det(a−X)

(where a−X ∈ EndR[X](M [X]) ∼= EndR(M)[X]).
It is not hard to show that the degree of χa is n, and that its leading

coefficient is (−1)n. These facts shall not be used in this note however.
Denote

ta = a−X.

Then
χa = det ta = t̃ata.

3. Proof of Cayley-Hamilton theorem through an action
of EndR(M)[X] on EndR(M)

Given a ∈ EndR(M), consider the left action of EndR(M)[X] on the R-
module EndR(M) (forgetting its algebra structure) denoted by the binary
operator “◁a” and defined by the rules:

f ◁a g = fg for f ∈ EndR(M), and X ◁a g = ga,

2The term characteristic polynomial is alternatively (and possibly more commonly)
used to denote det(X − a).
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where g is an arbitrary element of EndR(M) acted upon. Thus, if
p = f0 + f1X + · · ·+ fkX

k ∈ EndR(M)[X] and g ∈ EndR(M),

then
p ◁a g = f0g + f1ga+ · · ·+ fkga

k ∈ EndR(M),

and, in particular,3

p ◁a idM = f0 + f1a+ · · ·+ fka
k ∈ EndR(M).

Thus,
(a−X) ◁a idM = a− a = 0 and χa ◁a idM = χa(a).

Proof of Cayley-Hamilton theorem.
χa(a) = χa ◁a idM = (t̃ata) ◁a idM = t̃a ◁a (ta ◁a idM ) = t̃a ◁a 0 = 0. □

4. Generalisation

The method used above to prove the Cayley-Hamilton theorem allows to
prove seemingly more general statements, such as the following one.

Proposition. Let R and M be as before. Let f1, . . . , fn, a1, . . . , an be en-
domorphisms of M such that:

(1) f1a1 + · · ·+ fnan = 0,
(2) a1, . . . , an commute pairwise.

Let
p = f1X1 + · · ·+ fnXn ∈ EndR[X1,...,Xn](M [X1, . . . , Xn])

and
P = det p ∈ R[X1, . . . , Xn].

Then
P (a1, . . . , an) = 0.

Example. Let a and b be two commuting endomorphisms of M , and let
p = bX − aY ∈ EndR[X,Y ](M [X,Y ]).

Then substituting a for X and b for Y in P = det p yields 0:
P (a, b) = 0.
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3Since EndR(M) in general is not commutative, the element f0 + f1a + · · · + fka
k of

EndR(M) should not be viewed as the result of “substitution” of a for X in p. It may be
viewed though as the result of right substitution, and f0 + af1 + · · ·+ akfk may be viewed
as the result of left substitution.
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