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Explaining Robust Additive Decision Models: Generation
of Mixed Preference-Swaps by Using MILP

Manuel Amoussou1, Khaled Belahcene2, Christophe Labreuche3,
Nicolas Maudet4, Vincent Mousseau1, Wassila Ouerdane1

Abstract. In this paper, we are interested in the question of expla-
nation in Multicriteria Decision Aiding (MCDA) in general, and the
explanation of the robust additive model in particular. To this end,
a previous work has laid the foundations for explaining the neces-
sary preference relation through a sequence of preference swaps. We
propose to extend this work by introducing the concept of “mixed ex-
planation” where the computation of its components is done through
the resolution of a Mixed-Integer Linear Program. With the help of
several examples, we motivate the interest of such an extension and
open a discussion toward several promising further questions.

Keywords : MCDA, Additive utility explanation, necessary prefer-
ence relation, mixed sequence of preference swaps, MILP.

1 Introduction
This work is concerned by generation of explanation patterns of the
outcomes of Multi-Criteria Decision Aiding (MCDA) models. Only a
few works deal with this question [9, 10, 11, 1, 3, 4]. The generation
of explanations in this context is not a straightforward task, because
different criteria are at stake, the user is not necessarily able to fully
assess their importance or to understand how they interact. Moreover,
once the user is confronted to the result and the explanation, she
may realize that it is not exactly what she expected. Thus, beyond
acceptance facility, presenting an explanation may have an impact on
the representation of the user’s mode of reasoning that is the basis of
building the recommendation.

To illustrate a MCDA situation let consider the following example.
In the context of the Covid pandemia, a corporation is willing to
secure the supply of masks for the protection of its employees. The
board of directors received 9 responses to the call for tender, and is
willing to select the 4 best mask suppliers, each of which will obtain
25% of the market. Each supplier is evaluated on the characteristics
of its product and also on his reputation. The analyst in collaboration
with the logistics manager (decision-maker) has defined the following
characteristics/criteria: (1) customizable: “yes” (+) or “no” (−), (2)
washable: “yes” (+) or “no” (−), (3) delivery time: “1 - 14 days” (+)
or “15 - 30 days” (−), (4) quality: “high” (+) or “good” (−), (5)
affordability: “acceptable” (+) or “expensive” (−), and (6) provider
reputation: “good” (+) or “fair” (−)

The performance table (see Table 1) describing the evaluations
of the 9 suppliers on the 6 criteria is provided in Table 1. Each of
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1 2 3 4 5 6
c + + − − + +
o + − + + + −
n − + + + + −
a + + + − − +
v + + + + − −
i + − + − + +
r − − + + + +
u + + − + + −
s − + + + − +

Table 1. Motivating example: Performance table

the 6 criteria is described on bi-levels scales, which facilitate the
symbolic representation of the 9 alternatives . Moreover, for each of
the 6 criteria, the value symbolized by + is more desirable than the
value symbolized by −.

After a thorough discussion with the logistics manager, the ana-
lyst felt that her preferences are representable by an additive value
model. In addition, these preferences will be expressed through holis-
tic subjective pairwise judgments on the set of alternatives, through a
preference elicitation process. As previously mentioned, the aim is to
select 4 best suppliers. The analyst will therefore potentially have to
justify, as he collects preferential information, why a specific supplier
(assume supplier z) should be chosen. To do so, he will have to justify
or explain why z is preferred over at least 5 other suppliers. It is obvi-
ous that an explanation is not required if the preference of z over any
other suppliers has been explicitly expressed by the logistics manager
or deduced by transitivity from his previous statements. Indeed, the
deductions (binary preference comparisons between suppliers) which
back up the recommendation and that are subject to explanation are
the ones derived from the DM statements but not easy to grasp. So,
what kind of explanation the analyst should give to the manager, under
the assumption that a robust additive value model is used and that the
manager has provided some preference information on the decision
situation?

A first work, by [4], has proposed explanation schemes for the
robust additive model under the form of a sequence of “preference-
swaps” (inspired by the even-swaps concept [8]). More precisely, the
robust additive utility model is a necessary preference relation [7],
[12] which makes minimal assumptions, while handling a collection
of compatible utility functions, which are impossible to exhibit to
the user. The proposed explanation engine presents an explanation
for a necessary preference as a sequence of pairwise comparisons
such that the compared alternatives may only differ at most two
criteria. However, such an explanation is not always easy to construct



and even in some situation does not exist. Therefore, in this paper
we propose to alleviate some of the preference-swaps explanation
engine constraints to arrive at what we will call a mixed explanation
composed of “elementary” elements belonging to both necessary and
possible preference relations.

The paper is organised as follows. Section 2 is dedicated to present
the additive value model, the necessary relation and the computation
engine of preference-swap sequences. Section 3 is devoted to high-
light the limitations of the preference swaps engine supporting the
extension proposed in this paper and to present the Mixed-Integer
Linear Programming (MILP) as a tool for computing the mixed prefer-
ence swaps. We end the paper by a conclusion and some perspectives
in Section 4.

2 Inferring and Explaining Necessary Preference
Relations

We are considering a decision situation in which a Decision Maker
(DM) and a Decision Analyst (DA) are engaged in an interaction
from which a recommendation should arise. This recommendation
whatever its kind (choosing, ranking or sorting) will be built upon a
finite and non-empty set of alternatives (actions) A = {a,b,c, . . . }
evaluated on a family of n discrete criteria. We denote by Xi the finite
set of possible levels for criterion i ∈ {1, . . . , n}. We assume that
the set Xi = {x1i , x2i , . . . , xri−1

i , xrii } is ordered and without loss of
generality, we consider that : xrii %i x

ri−1
i %i · · · %i x

2
i %i x

1
i for

all i ∈ {1, . . . , n}, with %i denoting the marginal preference order
on criteria i. Hence, each alternative in A is described by a tuple
x ∈ X =

∏n
i=1 Xi, and in general A ⊂ X.

Moreover, the DM’s preferences (expressed through holistic pair-
wise statements) denoted by % is assumed to be representable by an
additive multi-attribute value function. Under this assumption, there
exists a function U defined on X such that, for all a, b ∈ X:

a % b⇔ U(a) ≥ U(b) (1)

such that, U(x) =
∑n

i=1 ui(xi) and U(y) =
∑n

i=1 ui(yi) and ui is
a function mapping Xi into R for all i and xi (resp. yi) is the i−th
component of x (resp. y).

In the rest of this document, we will focus on the case where for
all i ∈ {1, . . . , n}, ri = 2 (as in our example, see Section1), and
without loss of generality, we will designate by + (resp. −) any i−th
component of any alternative x such that xi = x1i (resp. xi = x0i ).
The case of ri > 2 is left for further investigation in next work.

2.1 Inference of Necessary Preference Relations
The concept of necessary preference relation in the context of the
additive value model, given a set of pairwise holistic preference state-
ments (denoted by PI), refers to an idea of robustness according to
which during the preference learning process the derivation of rec-
ommendation should take all PI−compatible value functions into
account (see [6]). The necessary preference relation has been ad-
dressed in [7], where its fundamentals have been formalized and its
characterization with a linear program has been proposed. In what
follows the notations and the main results of [7] are adapted to our
case where n components are representable on discrete scales.

Definition 2.1 (Necessary preference relation [7]). Let x, y ∈ X,
PI ⊂ X× X. x is necessarily preferred to y (noted (x, y) ∈ NPI) if
U(x) =

∑n
i=1 ui(xi) ≥

∑n
i=1 ui(yi) = U(y) holds for every func-

tion U ∈ X→ R additively compatible with PI i.e for all (a, b) ∈ PI,
U(a) ≥ U(b).

Proposition 2.1 ([7]). Given PI ⊂ X × X and x, y ∈ X; (x, y) ∈
NPI if and only if, the following linear program has a non-negative
solution:

Min

n∑
i=1

ui(xi)−
n∑

i=1

ui(yi)

s.t.

{ ∑n
i=1 ui(ai) ≥

∑n
i=1 ui(bi) ∀(a, b) ∈ PI

ui(z
ri
i ) ≥ ui(z

ri−1
i ) ∀ i ∈ {1, . . . , n}, ∀ ri ≥ 2

We note that in the case where for each Xi, ri = 2 (i ∈ {1 . . . n}),
this model boils down defining weights wi = ui(+) − ui(−), i ∈
{1, . . . , n}.

Under the assumption that the DM preferences are representable
by an additive model, the inference of a necessary preference relation
between two alternatives x, y ∈ A ((x, y) ∈ NPI \PI) can be seen as
a consequence of the DM holistic statements. This element can be
used by the DA as a feedback to confront the DM with his or her
subjective judgements.

+ + + + - -
v

+ + - + + -
u

+ - + - + +
i

- - + + + +
r

- + + + - +
s

+ + - - + +
c

+ + + - - +
a

+ - + + + -
o

- + + + + -
n

Figure 1. Representation of PI and some elements ofNPI

Example 2.1. The decision aiding situation of our running example
implies an interaction between the analyst and the manager to try to
understand the problem and to collect preference information from the
latter. At the beginning, the manager (DM) provides three elements
PI = {r % i,v % i,u % s}, representing his subjective judgement
on a subset of the different alternatives.

Based on this PI, the Table 1, and the assumption that the manager
follows an additive model in his reasoning, the 4-necessary best
alternatives set (i.e. the recommendation) is empty. Indeed, the two
following additive models compatible with PI imply two different
rankings on the nine alternatives in which each of them does not
belong to the set of the 4-necessary best alternatives

Models (wi) Implied ranking
(0.20, 0.08, 0.25, 0.30, 0.12, 0.05) o, v, n, r, u, s, i, a, c
(0.13, 0.30, 0.02, 0.15, 0.15, 0.25) c, u, s, a, n, v, r, i, o

After a while during the interaction, the DM states that r is
preferred over u, updating PI = {r % i,v % i,u % s,r % u}.
As a consequence, the 4- necessary best alternatives set is no longer
empty. In fact, in addition to (r, i), (r, u) and (r, s) collected
directly from the DM, it is deduced the following : (r,a) ∈ NPI
and (r, c) ∈ NPI : Supplier r is then necessarily preferred over
5 other suppliers (i, u, s, a and c) as shown in Figure 1 where
the preference information (PI) provided by the DM are depicted



with solid arrows and the deductions made with dashes ones. Each
alternative is represented by its tuple of evaluation on each criterion.

Although a linear program formulation is well suited to the defini-
tion of the necessary preference relation, we believe that in a decision
aiding process and in situations where a proof (at least algebraic) is
required for each of the inferences made, this type of formulation is
not satisfying because it is mainly subordinated to the might of the
device equipped with an optimization engine. In order to circumvent
this impediment, [4] has proposed a toolbox for the inference of nec-
essary preferences where the concept of covector associated to a pair
of alternatives play a central role.

One of the main results indicates, among others, that the covector
representing each NPI element can be written as a conical5 combi-
nation of the covectors representing the preference information and
the covectors of the dual base that represent Pareto dominance [4]. In
our context we will rely only on convectors in the case of binary core
(i.e. the preference information only reference two levels according to
each point of view.) (see [2, 4]).

Definition 2.2 (Covector in the case of a binary core). Given a pair
of alternatives (x, y) ∈ X × X, the covector of (x, y) denoted by
(x, y)? is the n− component vector defined as follows :

(x, y)? = (λi)1≤i≤n

where :

λi =


−1 if yi � xi
0 if xi ∼ yi
1 if xi � yi

Example 2.2 (Ex.2.1 Cont.). In the following, by relaying on the
notion of covectors (see Def. 2.2) we show why the pairs (r,a) and
(r,c) are included inNPI. We already know that the following pairs
are part of the necessary preference relation.

(r,i)? = (−1 0 0 1 0 0)
(v,i)? = ( 0 1 0 1 −1 −1)
(u,s)? = ( 1 0 −1 0 1 −1)
(r,u)? = (−1 −1 1 0 0 1)

Therefore, we can write: (r,a)? = (r,i)? + (r,u)? + (u,s)?,
as we can see in the following:

(−1 0 0 1 0 0) = (r,i)?

+ (−1 −1 1 0 0 1) = (r,u)?

+ ( 1 0 −1 0 1 −1) = (u,s)?

(−1 −1 0 1 1 0) = (r,a)?

The same reasoning can be applied to (r,c)? = 2 × (r,u)? +
(u,s)? + (v,i)?.

(−2 −2 2 0 0 2) = 2 × (r, u)?

+ ( 1 0 −1 0 1 −1) = (u,s)?

+ ( 0 1 0 1 −1 −1) = (v,i)?

(−1 −1 1 1 0 0) = (r,c)?

In the previous example, we exploited a way of reasoning about
preferences based on cancelling out common values across statements.
As a result, any conclusion drawn by means of this approach comes
along with a justification. We refer the reader interested on how to
exploit this mechanism to [5]

5 A conical combination is a linear combination with non-negative coefficients.

2.2 Explanation with a Sequence of Preference
Swaps

Preference-swaps have been introduced as a tool for explaining bi-
nary relations of weak preferenceR ⊆ X× X satisfying the Pareto
dominance, transitivity and optionally, first-order cancellation [4].

Given (x, y) ∈ R, a preference-swap represents an elementary
component (e(j−1), e(j)) ∈ R (with j ≥ 1) of the sequence (of
length l) x := e(0) % e(1) % · · · % e(l) := y. One of its characteris-
tics is its order which can be briefly defined as the number of differing
criteria between the alternatives e(j−1) and e(j). Since each of them
is described on a set of n points of view, this number is noted k and
we have 1 ≤ k ≤ n. When k is equal to 1, it is a Pareto dominance.

In this paper, we will limit to values of k of the swap at most equal
to 2 as done in the even-swaps method [8]6. This restriction can be
justified by the fact that on the one hand it is easily scriptable i.e.
expressible in a natural language, and on the other hand it reduces
to a strict minimum the number of points of view to be confronted
and for which an explicit position of the DM is required. For these
reasons we think that a preference-swap of order at most 2 can be
used as a basic argument in the explanation of an element (x, y) of the
relationR. As a consequence, we consider that all 2-order elements
ofR are exempt from explanation. Moreover, as it was mentioned in
Section 1, the relationR that we consider in this paper is the necessary
preference relation (see Def. 2.1) under the assumption of additivity.

Definition 2.3 (Preference-swaps explanation [4]). Given PI on A,
let (x, y) ∈ A× A and (x, y) ∈ NPI, an explanation of (x, y) is a
sequence of swaps of length l (l > 1):

x := e(0) % e(1) % · · · % e(l) := y

where for all j ∈ J1; lK, (e(j−1), e(j)) ∈ NPI and is of order at
most 2.

In the remainder, we will designate such swap by necessary swaps
since they are inNPI. Therefore, a necessary explanation or simply
an explanation of (x, y) ∈ NPI will refer to a sequence of necessary
swaps linking x to y.

Example 2.3. We proved in Ex. 2.2 that: (r,a) ∈ NPI. Its order is
equal to 4 and it is one of the results that legitimize the selection of r
among the 4-necessary best suppliers.

Thus, in what follows we provide a necessary explanation to
(r,a) ∈ NPI, by using the two pairs of alternatives (r,s) and (s,a),
both belonging toNPI and of order 2.

Indeed, we recall that: PI = {r % i,v % i,u % s,r % u}, and ,
we have:

(r,i)? = (−1 0 0 1 0 0)
(v,i)? = ( 0 1 0 1 −1 −1)
(u,s)? = ( 1 0 −1 0 1 −1)
(r,u)? = (−1 −1 1 0 0 1)

On one hand, (r,s)? = (r,u)? + (u,s)?, as shown below:

(−1 −1 1 0 0 1) = (r,u)?

+ ( 1 0 −1 0 1 −1) = (u,s)?

( 0 −1 0 0 1 0) = (r,s)?

6 It is important to recall that one of its limitations is that it can be difficult
to apply the even-swaps method in the absence of criteria defined on con-
tinuous scales on which the property of solvability (essential to establish
indifference) naturally occurs. In this paper, each alternative is defined on a
set of discrete criteria.



On the other hand, we have :

(s, a)? = (−1 0 0 1 0 0) = (r,i)?

Therefore, as (r,s) ∈ NPI and (s,a) ∈ NPI, thanks to transitiv-
ity, we have (r,a) ∈ NPI. Consequently, the explanation could be
scripted as follows:

You prefer the supplier r over the supplier a because every thing
else being equal:

• you prefer an affordable mask to a washable one and
• you prefer a high quality mask to a customizable one.

As it was shown in the Example 2.3, the explanation involves
different pieces of information that belong to NPI. However, as it
will be illustrated in the following Example2.4, it exists situations
where it is not possible to build a necessary explanation to justify
necessary preference information. In other terms, there not always
exist a sequence involving only pairs of the necessary preference
relationNPI to build the explanation.

Example 2.4. We have seen that the pair (r, c) is in the necessary
preference relation. However, this deduction can not be explained
through a necessary explanation given PI. If it were the case, accord-
ing to [4, Theorem 6], at least we would have either (n,u) ∈ NPI or
(i,c) ∈ NPI. But this is not the case as it can be noticed through the
two following additive models compatible with PI and which imply 2
rankings of the 9 alternatives where the supplier u is ranked before
n and c is before i in the decreasing order of preference (see the
following Table).

Models (wi) Ranking implied
(0.23, 0.03, 0.22, 0.30, 0.12, 0.10) o,v,r,u,i,n,s,a,c
(0.04, 0.25, 0.24, 0.12, 0.29, 0.06) n,r,u,o,s,v,c,i,a

To overcome this difficulty to build a necessary explanation given
some preference information (PI) provided by the decision-maker,
we introduce the notion of possible swaps which are composed of
two alternatives z and z′ differing on exactly two criteria and such
that (z,z′) /∈ NPI and PI ∪ {(z,z′)} is representable by an additive
value function. We then propose the notion of mixed explanation (see
Def. 3.3). This latter is composed of a mix of necessary swap(s) and
possible swap(s). The next section is devoted to discuss the interests
and the challenges behind a mixed explanation. Moreover, we propose
a first tool to generate the components of a mixed explanation by using
a MILP.

3 Explanation with Sequence of Mixed Preference
Swaps

In [4], Belahcene et al. investigate the opportunity of providing tran-
sitive explanations. They highlight several challenges arising when
trying to implement this type of explanations:

• feasibility– is it possible to find a transitive explanation for a given
statement?

• intelligibility– what additional constraints should be put on the
explaining sequences in order to be actually accepted as explana-
tions? In particular, what order (i.e. upper bound on the Hamming
distance (see Def. 3.2)) and length are acceptable, knowing that
there are trade-offs between those parameters and the question of
feasibility;

• computation– how to efficiently build those sequences?

The question of feasibility sometimes admit a negative answer,
as illustrated in Ex. 2.4. We recall that a necessary preference re-
lation makes minimal assumptions, while handling a collection of
compatible utility functions. Consequently, the number of available
arguments –here, necessary preference statements of order 2–is small,
which greatly limits the feasibility of finding explanations. Thus, we
propose to relax the constraint of using only necessary swaps and to
support a statement by introducing in the reasoning possible swaps
( a subset of compatible additive utility functions compatible with
PI). By doing so, we expect to be able to explain more pairs of the
necessary relation. It is clear that providing a sequence composed of
solely necessary swaps guarantees that the recipient of the explanation
will accept and validate each swap without any doubt. However, using
possible swaps offers a way to collect more additional preference
information (valuable in a preference elicitation process) and thus
enrich both PI and NPI. Indeed, the decision-maker may accept or
refute the possible swaps engaging him in an interaction towards the
construction of a representation of its decision model (and thus the
recommendation) [6]. Finally, our explanations offer a way of rea-
soning about preferences based on a chain of “elementary” elements
(swaps) allowing the decision-maker to understand why an alternative
is preferred to another one. We believe that confronted with this rea-
soning during an interaction; the DM could appropriate it and apply
it by himself to a pair of alternatives, contributing to the preference
elicitation process. By using possible swaps, we augment the chance
to find an explanation and thus to enhance the contribution of the
decision-maker.

Before formally introducing the notion of mixed explanation, let
us consider the following example.

Example 3.1 (Ex.2.3 Cont.). In Ex. 2.4, we concluded that it was
not possible to explain (r,c) ∈ NPI via a necessary explanation
given PI. Thus, we propose to illustrate here two variants of expla-
nation allowing to justify this pair, by introducing elements that are
not belonging to the necessary preference relation, namely possible
swaps.

1. Explanation variant #1 for (r,c):
We have :
(r,c)? = (−1 − 1 1 1 0 0) = (0 − 1 1 0 0 0) + (−1 0 0 1 0 0).
The first term of the decomposition can be interpreted as that
everything else being equal the difference of utility between the
top level (+) and the lowest level (−) on the third component is
greater than the second one. The member at the left of the operator
+ suggests that : everything else being equal the difference of
utility between the top level (+) and the lowest level (−) on the
third dimension is greater than the second one. The corresponding
explanation sequence could then be :

r % z % c

where : r := (− − + + ++); c := (+ + − − ++) and z is a
fictitious alternative (6∈ A), with z := (−+−+ ++).
We note that in this sequence the swap z % c is such that (z, c) ∈
NPI, since the right term the of the decomposition of (r, c)? is
equal to (r, i)? and (r, i) ∈ PI. However, swap r % z is such
that (r, z) /∈ NPI (see Ex.2.4). Thus, the mixed explanation can
be scripted as follows : Every thing else being equal,

• you might prefer a quick delivery of non-washable masks to a
late delivery of washable masks and

• you prefer non-customizable masks of high quality to customiz-
able ones and of good quality.



2. Explanation variant #2 of (r,c):
By using the same reasoning based on the fact that :
(r,c)? = (−1 −1 1 1 0 0) = (−1 0 1 0 0 0) + (0 −1 0 1 0 0), we
derive the following sequence :

r % z’ % c

with : r := (− − + + ++), c := (+ + − − ++) and
z’ := (+−−+ ++) a fictitious alternative. Both swaps used in
this explanation are not necessary and the corresponding mixed
explanation could be scripted as follows: Every thing else being
equal,

• you might prefer a quick delivery of non-customized masks to a
late delivery of customized masks and

• you might prefer a non-washable mask of high quality to a
washable mask of good quality.

3.1 Towards a formal definition of Mixed
Explanations

We would like to define a mixed explanation in the same manner as
a fully necessary one, but instead of restricting ourselves to using
transitive links that are pairwise preference statements that hold in
every world compatible to the preference information, we simply
specify that all the links must hold in at least one of these worlds.
Nevertheless, this formal knowledge representation approach does
not lead to a compelling notion of explanation.

In order to circumvent this obstacle, we begin by recalling formal
definitions of concepts permitting to describe explanations.

Definition 3.1 (Pros and Cons of a Necessary Preference Statement
[4]). Given PI and (x, y) ∈ NPI, we define :

(x, y)+ := {i ∈ {1, . . . , n} : (x, y)?i = +1}

(x, y)− := {i ∈ {1, . . . , n} : (x, y)?i = −1}

In other words, (x, y)+ is the subset of criteria i on which xi = +
and yi = − and (x, y)−, the subset of criteria i on which xi = −
and yi = +.

Transitive explanations implement the divide and conquer
paradigm in order to break down the complexity of the explanadum
(what needs to be explained) into smaller chunks deemed more palat-
able for the explainee (the recipient of the explanation). In the case
of preference swaps, we assume that the Hamming distance between
alternatives somehow reflects the cognitive difficulty to assess the
trade-off of exchanging one against the other.

Definition 3.2 (Hamming distance between a pair of alternatives).
Given (x, y) ∈ X × X, the Hamming distance between x and y is
the function Φ defined as follows:

X× X −→ J0;nK
x, y 7−→ Φ(x, y) = |{i ∈ {1, . . . , n} : (x, y)?i 6= 0}|

where |E| designates the cardinality of the set E

The challenges concerning transitive explanations detailed in [4]
receive detailed answers in the specific case of the necessary relation
under the assumption of additive preferences, and when the preference
information is expressed using solely two values on each criterion. In

this particular case, the problem of finding a transitive explanation
of a necessary pairwise statement (x, y) ∈ NPI is shown to reduce,
without loss of generality, to the problem of finding a matching in the
graph induced by the preference relation NPI restricted to swaps of
order 2 on the cartesian product S := (x, y)+×(x, y)− – effectively
matching each con argument with a stronger pro argument.

When considering transitive chains consisting not only of links
that are necessary preference statements, but also possible ones, this
powerful result no longer applies directly. However, the facts that
explanations do not need to refer to neutral arguments, and that each
pro and con appear at most once have a normative appeal in terms of
what constitutes a good explanation. It remains to be proven that this
restriction can be made without loss of generality, i.e. that no necessary
preference statement can be explained by means of a transitive chain,
eventually with possible links, but not by one restricted to arguments
matching a con with a possibly stronger pro. Until then, we propose a
formal definition of mixed explanations based on these characteristics.

Definition 3.3 (Mixed explanation). Given PI, let x and y such that
(x, y) ∈ A×A, Φ(x, y) > 2 and (x, y) ∈ NPI. A mixed explanation
corresponds to a sequence:

x := e(0) %U e
(1) %U · · · %U e(l) := y (2)

where :

• %U is the binary relation induced by U on X, where U is an additive
multi-attribute value function U compatible with PI.

• all the alternatives of the set E = {e(0), . . . , e(l)} are identical on
the criteria of the set I = {i ∈ {1, . . . , n} : (x, y)?i = 0},

• for all m ∈ J1, lK, Φ(e(m−1), e(m)) ≤ 2,
• each advantage of alternative y over alternative x should be com-

pensated exactly once, i.e.

∀j ∈ (x, y)−,
∣∣∣{k ∈ J1, lK : (e(k−1), e(k))− = {j}

}∣∣∣ = 1; (3)

• any advantage of alternative x over alternative y with respect to
criterion i ∈ (x, y)+ can be used at most once in the compensation
of an advantage of alternative y over x with respect to another
criterion in (x, y)−, i.e.

∀i ∈ (x, y)+,
∣∣∣{k ∈ J1, lK : (e(k−1), e(k))+ = {i}

}∣∣∣ ≤ 1; (4)

and
• there is a (potentially empty) setM⊂ {1, ..., l} such that for all
m ∈M, we have (e(m−1), e(m)) ∈ NPI

3.2 Computing Mixed Explanations

Feasibility In this section, we will expose how a mixed explanation
of (x, y) ∈ NPI (with Φ(x, y) > 2) could be deduced from the
resolution of a Mixed-Integer Linear Program. As previously stated,
this program has to produce the swaps of order 2 which compose
the explanation sequence linking x to y (see Def.3.3). We recall that
such swaps can be represented as elements (i, j) of the set (x, y)+×
(x, y)− symbolizing a double switch of criteria i and j (from + to
− on criterion i and from − to + on criterion j) and ensuring that
[ui(+)− ui(−)] + [uj(+)− uj(−)] ≥ 0.

In the remainder, we will denote the swaps space (x, y)+×(x, y)−

by
S := (x, y)+ × (x, y)− (5)



3.2.1 Variables

The variables of this MILP are of two kinds :

• Two positive real variables ui(+) and ui(−), for each criterion
i ∈ {1 . . . n},

• A binary variable bs such that

bs =

{
1 iff s ∈ S
0 Otherwise.

3.2.2 Constraints

We will distinguish six kinds of constraints:

• In order to take into account the preference information provided,
we have :

n∑
i=1

ui(ai) ≥
n∑

i=1

ui(bi) for all (a, b) ∈ PI (6)

where ai is the i−th component of alternative a.
• Normalization of the marginal value functions:

ui(−) = 0 for all i ∈ {1, . . . , n}
n∑

i=1

ui(+) = 1
(7)

• Having assumed that each set Xi is ordered and considering that
the value + on each criteria i is more desirable than the value −,
we have :

ui(+)− ui(−) ≥ 0 for all i ∈ {1, . . . , n}. (8)

• The next constraint expresses the condition (3).∑
s=(i, j)∈S

bs = 1 ∀ j ∈ (x, y)− (9)

• The following constraint expresses the condition (4).∑
s=(i, j)∈S

bs ≤ 1 ∀ i ∈ (x, y)+ (10)

• With the last constraint we ensure the compatibility of the swaps
used with the PI and the representativeness of theDM preferences
by an additive model.

For all s = (i, j) ∈ S, [ui(+)−ui(−)]−[uj(+)−uj(−)] ≥ bs−1
(11)

This MILP is feasible if, and only if, there exists a mixed explanation
of (x, y) ∈ NPI, and any solution pinpoints a “bag” of swaps that can
be used as arguments in order to build a proper explanative sequence,
when correctly assembled. Adding a relevant objective function can
help to address the issues of intelligibility.

3.2.3 Objective functions

The normative conditions we chose to place on mixed explanations—
taking the form of a matching of cons by pros—should already guaran-
tee the optimality of the computed “bag of swaps” in terms of length.
Also, the intelligibility of individual links is enforced through the
definition of swaps as pairs of criteria. A powerful lever for ensuring
that an explanation is accepted by the explainee is to try to maximize

its plausibility. In a preliminary attempt, because we are (almost)
totally confident in the veracity of the necessary swaps, but only par-
tially convinced of the truthfulness of the others, we approximate this
plausibility as a decreasing function of the number of possible-but-
not-necessary swaps appearing in the explanation, or, equivalently,
an increasing function of the number of necessary swaps. Thus, we
consider using the following objective function:

maximize
∑

s∈SNPI

bs (12)

Here, we denote by SNPI the subset of necessary swaps in S. In a
more nuanced approach, we consider assessing the plausibility of
a given possible swap through the ratio of the hypervolume of the
set of worlds where the swap is true to the total hypervolume of
the worlds compatible to the PI, using the SMAA approach [12].
We would then aggregate the plausibilities of individual links into a
compound plausibility of an explanation, by multiplying those ratio
(with an implicit independence assumption). Therefore, we would
pre-compute those ratios for every possible swap, and maximize the
sum of their logarithms.

4 Concluding remarks
In this paper we investigated the question of providing explanations
to justify the necessary preference relation under the assumption of an
additive value model, by introducing the notion of mixed explanations.
For this purpose, we proposed a first tool based on a MILP allowing
to compute the components of this mixed explanation. However, as it
was mentioned, different assumptions were taken to provide this first
response. For instance, as it is illustrated through the following exam-
ple, a first assumption was to always seek to keep the explanation as
short as possible. Indeed, in Example 2.3, we provided an explanation
for (r, a) based on two necessary swaps. Another way to explain the
same pair is sketched in the following.

Example 4.1 (Ex. 2.3 Cont.). You prefer the supplier r over the
supplier a because :

• you told me that you prefer r over u.
• you also told me that you prefer u over s and,

every thing else being equal,
• you give more importance to a high quality but uncustomizable

mask to a customizable but of just good quality one.

At first sight, the main difference between the explanation of Ex.4.1
and the one in Ex.2.3 concerns the length (3 for the former and 2 for
the later). One might think that a decision-maker would prefer the
shorter one. However, if we take a look at the components of each
explanation, we can see that the second one uses elements (preference
information) provided by the decision-maker (DM) himself. Conse-
quently, we can assume that it would be difficult for theDM to reject
his proper declarations unless he is contradicting the decision model
under use, for instance. Thus, the compromise between the length of
an explanation and its content deserves to be investigated. Another
issue concerns the question of intelligibility of an explanation. In
particular, what order (i.e. upper bound on the Hamming distance (see
Def. 3.2)) and length are acceptable, knowing that there are trade-offs
between those parameters and the question of feasibility.
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