
HAL Id: hal-03230500
https://hal.science/hal-03230500

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multivariable evaluation of land surface processes in
forced and coupled modes reveals new error sources to
the simulated water cycle in the IPSL (Institute Pierre

Simon Laplace) climate model
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas,

Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin,
Fabienne Maignan, Nicolas Vuichard

To cite this version:
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, et al.. Mul-
tivariable evaluation of land surface processes in forced and coupled modes reveals new error sources
to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model. Hydrology
and Earth System Sciences, 2021, 25 (4), pp.2199-2221. �10.5194/hess-25-2199-2021�. �hal-03230500�

https://hal.science/hal-03230500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 25, 2199–2221, 2021
https://doi.org/10.5194/hess-25-2199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multivariable evaluation of land surface processes in forced and
coupled modes reveals new error sources to the simulated water
cycle in the IPSL (Institute Pierre Simon Laplace) climate model
Hiroki Mizuochi1,2, Agnès Ducharne2,3, Frédérique Cheruy3,4,5, Josefine Ghattas3, Amen Al-Yaari2,3,6,
Jean-Pierre Wigneron6, Vladislav Bastrikov7,a, Philippe Peylin3,7, Fabienne Maignan3,7, and Nicolas Vuichard3,7

1National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan,
Tsukuba 305-8567, Japan
2UMR METIS (Milieux environnementaux, transferts et interactions dans les hydrosystèmes et les sols),
Sorbonne Université, CNRS, EPHE, Paris, France
3IPSL (Institut Pierre Simon Laplace), Sorbonne Université, CNRS, Paris France
4LMD (Laboratoire de Météorologie Dynamique), Sorbonne Université, ENS, PSL Université, École polytechnique,
Institut Polytechnique de Paris, CNRS, Paris, France
5Institute of Marine Sciences – National Research Council (ISMAR-CNR), Via del Fosso del Cavaliere,
100 00133 Rome, Italy
6INRAE Bordeaux, UMR 1391 ISPA, Villenave d’Ornon, France
7LSCE (Laboratoire des Sciences du Climat et de l’Environnement), UMR 8212 CEA-CNRS-UVSQ,
91191 Gif-sur-Yvette CEDEX, France
anow at: Science Partners, Paris 75010, France

Correspondence: Hiroki Mizuochi (mizuochi.hiroki@aist.go.jp)

Received: 25 August 2020 – Discussion started: 13 October 2020
Revised: 9 February 2021 – Accepted: 9 March 2021 – Published: 22 April 2021

Abstract. Evaluating land surface models (LSMs) using
available observations is important for understanding the po-
tential and limitations of current Earth system models in sim-
ulating water- and carbon-related variables. To reveal the er-
ror sources of a LSM, five essential climate variables have
been evaluated in this paper (i.e., surface soil moisture, evap-
otranspiration, leaf area index, surface albedo, and precipi-
tation) via simulations with the IPSL (Institute Pierre Simon
Laplace) LSM ORCHIDEE (Organizing Carbon and Hydrol-
ogy in Dynamic Ecosystems) model, particularly focusing
on the difference between (i) forced simulations with atmo-
spheric forcing data (WATCH Forcing Data ERA-Interim
– WFDEI) and (ii) coupled simulations with the IPSL at-
mospheric general circulation model. Results from statisti-
cal evaluation, using satellite- and ground-based reference
data, show that ORCHIDEE is well equipped to represent
spatiotemporal patterns of all variables in general. How-
ever, further analysis against various landscape and mete-

orological factors (e.g., plant functional type, slope, pre-
cipitation, and irrigation) suggests potential uncertainty re-
lating to freezing and/or snowmelt, temperate plant phe-
nology, irrigation, and contrasted responses between forced
and coupled mode simulations. The biases in the simulated
variables are amplified in the coupled mode via surface–
atmosphere interactions, indicating a strong link between
irrigation–precipitation and a relatively complex link be-
tween precipitation–evapotranspiration that reflects the hy-
drometeorological regime of the region (energy limited or
water limited) and snow albedo feedback in mountainous and
boreal regions. The different results between forced and cou-
pled modes imply the importance of model evaluation under
both modes to isolate potential sources of uncertainty in the
model.
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1 Introduction

Land surface models (LSMs) are essential for understand-
ing the large-scale exchange of energy, water, and carbon be-
tween the land surface and the atmosphere. LSMs coupled
with atmospheric general circulation models (GCMs) have
been used to simulate global climate and climate change un-
der international frameworks, such as the Coupled Model In-
tercomparison Project (CMIP; Taylor et al., 2012; Eyring et
al., 2016a), contributing to Earth sciences and policymaking
for mitigating and adapting to climate change. To understand
the potential and limitations of climate change simulations,
evaluating outputs of LSMs with available observations is
important (Flato et al., 2013). Uncertainties associated with
LSMs can arise from a deficiency in model physics and pa-
rameterization (Liu et al., 2003), errors in atmospheric forc-
ing data (Guo et al., 2006; Nasonova et al., 2011; Yin et al.,
2018), boundary conditions, including vegetation and land
use changes (Guimberteau et al., 2017; Boisier et al., 2014),
and/or error propagation through land–atmosphere coupling
(so-called “climate drift”; Dirmeyer, 2001). Recently, conve-
nient tools for systematic model evaluation have been devel-
oped (e.g., Eyring et al., 2016c; Gleckler et al., 2016; Best
et al., 2015); however, further in-depth model evaluation is
required to reveal the underlying processes and sources that
lead to uncertainties in simulations (Eyring et al., 2016b).

Notably, focusing on the differences between LSM simu-
lations with and without GCM coupling would provide novel
knowledge about LSM evaluation (Liu et al., 2003; Zabel et
al., 2012; T. Wang et al., 2015). LSM simulations that are
without GCM coupling but are forced by an atmospheric data
set (also called “offline” or “stand-alone” mode) do not allow
feedback between the atmosphere and land surface. There-
fore, errors in the simulated values solely arise from defi-
ciency model structure/parameterization, uncertainty in the
forcing data (Yin et al., 2018), and mismatch in land cover
between model and forcing data (Zabel et al., 2012). The
foremost influential forcing factor on the water cycle is pre-
cipitation (Qian et al., 2006; Decharme and Douville 2006),
although radiation and land cover (i.e., vegetation) can also
affect hydrological variables (Dirmeyer, 2001; Guo et al.,
2006) such as surface soil moisture (SSM) or evapotranspira-
tion (ET), depending on the temporal scale (Guo et al., 2006)
and the hydrometeorological condition of the region (i.e., en-
ergy limited or water limited; Nasonova et al., 2011; Zabel et
al., 2012). Anthropogenic factors (e.g., irrigation) may also
cause errors in the simulated variables when not accounted
for by the LSM (Yin et al., 2018). On the other hand, coupled
LSM simulations are also affected by errors in atmospheric
simulation, which can be enhanced through land–atmosphere
interaction (Mahfouf et al., 1995; Liu et al., 2003; T. Wang et
al., 2015). Such errors occur at short timescales (i.e., several
days) up to seasonal timescales (Dirmeyer, 2001) via the in-
terlinkage of hydrological variables (e.g., rainfall, SSM, ET,

and infiltration) in the LSM scheme and thermal variables
(Cheruy et al., 2017; Ait-Mesbah et al., 2015).

Among the various LSMs, we focused on the Organiz-
ing Carbon and Hydrology in Dynamic Ecosystems (OR-
CHIDEE) LSM (e.g., Krinner et al., 2005; d’Orgeval et
al., 2008; Guimberteau et al., 2017), which enables the ex-
plicit representation of processes governing the water, car-
bon, and energy budgets with a highly flexible spatial res-
olution (Raoult et al., 2019). We used the ORCHIDEE (re-
vision 4783; tag 2.0) version, which is implemented in the
IPSL’s (Institute Pierre Simon Laplace) climate model (CM)
configurations used for CMIP6 (Eyring et al., 2016a), in-
cluding the Land Surface, Snow and Soil Moisture Model
Intercomparison Project (LS3MIP), with offline simulations
(van den Hurk et al., 2016). Through an in-depth assess-
ment of five simulated variables (i.e., SSM, ET, leaf area in-
dex (LAI), surface albedo, and precipitation) that should be
closely interlinked, and a special focus on the differences be-
tween forced and coupled simulations, the aim of this study
is to better understand which land surface processes deserve
further improvements in the studied LSM and to investigate
the land–atmosphere coupling role in diagnosed model un-
certainties.

The Global Climate Observing System (GCOS, 2010) des-
ignates the five selected variables as being essential climate
variables (ECVs), thereby allowing us to take advantage of
recent progress in their global-scale observation. Using satel-
lite data, researchers have developed various retrieval algo-
rithms to acquire SSM (Jackson et al., 1999; Wigneron et al.,
2007, 2017), ET (Zhang et al., 2010; Miralles et al., 2011;
Zeng et al., 2014), LAI (Zhu et al., 2013), albedo (Schaaf
et al., 2002; Qu et al., 2014), and precipitation (Adler et al.,
2003) which can be used as reference data for LSM evalu-
ation. Empirical upscaling products from global in situ ob-
servations (Jung et al., 2011, 2019) can also be used. The
selected variables are particularly interesting for land surface
processes; SSM is a recognized driver of surface–atmosphere
interactions (Seneviratne et al., 2010), constraining the par-
titioning of sensible/latent heat and plant activity and deter-
mining ET and vegetation dynamics (e.g., Gu et al., 2006).
ET affects atmospheric humidity (usually described by the
vapor pressure deficit) and cloud formation, creating feed-
back systems among SSM, ET, and precipitation (Yang et al.,
2018). Accounting for long-term vegetation dynamics, which
can be measured by LAI, interlinked with such hydrologi-
cal processes, is important in monitoring carbon cycle and
ecosystem services that are related to climate change (IPCC,
2014) and natural disasters (Adikari and Noro, 2010). An-
other important parameter in the surface energy exchange is
the surface albedo, which controls the reflection of incident
solar radiation and is interlinked with hydrological processes
(especially through surface snow cover) and vegetation dy-
namics (Bonan, 2008).

To investigate the potential sources of model uncertainty,
we considered various landscape factors (“factor analysis”)
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in addition to the traditional statistical evaluation. This work
aims at increasing knowledge about the features and limita-
tions of ORCHIDEE and is a practical example of in-depth
model evaluation focusing on the differences between forced
and coupled modes. The remainder of this paper is organized
as follows. Section 2 describes the simulation setting, the ref-
erence data sets, and the factor analysis. Section 3 presents
results for the spatiotemporal patterns of the model uncer-
tainties and factor analysis. Finally, Sects. 4 and 5 provide a
discussion and conclusions, respectively.

2 Materials and methods

2.1 Model and simulations

2.1.1 Description of the land surface model

ORCHIDEE (Organizing Carbon and Hydrology in Dynamic
Ecosystems) is the LSM used in the IPSL Earth System
Model (ESM). This global process-based model of the land
surface describes the complex links between the terrestrial
biosphere and the water and the energy and carbon exchanges
between the land surface and the atmosphere (Krinner et
al., 2005). The used version in the IPSL-CM6 ESM for the
CMIP6 simulations (Boucher et al., 2020), which is known
as tag 2.0, was previously described in many papers (Raoult
et al., 2019; Boucher et al., 2020; Cheruy et al., 2020; Tafasca
et al., 2020), and we only summarize its main features in this
paper, with some details on the related parameterizations to
the five studied ECVs.

The land cover is described with 15 plant functional types
(PFTs), including one for bare soil, as seen in the full list in
Table 2, and they can all coexist in each grid cell, where the
fractions used here are from the CMIP6 data sets (Boucher
et al., 2020). For each PFT, the transpiration serves as a cou-
pling flux between the water, energy budget, and photosyn-
thesis process, which drive the evolution of the biomass and
LAI owing to generic equations with PFT-specific parame-
ters (Krinner et al., 2005). Evapotranspiration (ET) is con-
trolled by the energy and water budget via a bulk aerody-
namic approach, where the following four parallel fluxes are
distinguished: sublimation, interception loss, soil evapora-
tion, and transpiration. In each grid cell, the first two fluxes
proceed at a potential rate from the grid cell fractions with
snow and canopy water, respectively. The soil evaporation
and transpiration originate from the complementary snow-
free fractions covered by bare soil and vegetation which de-
pend on LAI, as the effectively foliage-covered fraction ex-
ponentially increases with LAI. These two fluxes depend on
soil moisture; transpiration is limited by the stomatal resis-
tance, which increases when soil moisture drops from field
capacity to wilting point; soil evaporation is not limited by a
resistance but only by upward capillary fluxes, which control
the soil propensity to meet the evaporation demand.

The soil moisture (SM) dynamics are described over a soil
depth of 2 m and discretized into 11 soil layers to solve the
Richards equation. SM in the top 10 cm is regarded as SSM.
The hydraulic conductivity and retention properties depend
on the SM owing to the van Genuchten–Mulaem equations,
with parameters depending on the soil texture (Tafasca et al.,
2020), which is read from the map of Zobler (1986). The
infiltration is limited by the surface hydraulic conductivity,
and it is calculated with a time-splitting procedure inspired
by the Green–Ampt equation, where a sharp piston-like wet-
ting front is assumed (d’Orgeval et al., 2008; Vereecken et
al., 2019). The surface runoff is made of non-infiltrated wa-
ter (infiltration-excess runoff); however, ponding is allowed
in flat areas, and it can reinfiltrate at later time steps. This
so-called reinfiltration fraction linearly decreases from 1, in
totally flat grid cells, to 0, where the mean grid cell slope
exceeds 0.5 %. For CMIP6, the ORCHIDEE model does not
include the irrigation impact on the SM, ET, and vegetation
growth, although the model can simulate this anthropogenic
pressure (Xi et al., 2018).

The snow processes are described by a three-layer scheme
of intermediate complexity (Wang et al., 2013) in which the
snow albedo and insulating properties depend on the snow
density and age. The ORCHIDEE 2.0 also includes a revised
parameterization of the interplay between the vegetation and
the snow albedo, and the optimized parameters match the
remote sensing albedo data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor, distinguishing
the visible and near-infrared (NIR) bands (Boucher et al.,
2020). For the calculation of the heat diffusion, which in-
cludes the soil-freezing effects (permafrost), the soil is ex-
tended to 90 m, and the moisture content of the deepest hy-
drological layer is extrapolated to the entire profile between
2 and 90 m. The thermal soil properties depend on the soil
texture, moisture, and carbon content (Guimberteau et al.,
2018).

2.1.2 Forced and coupled simulations

To separate the errors caused by the ORCHIDEE model
structure/parameterization from the ones resulting from the
simulated climate through land–atmosphere coupling, we
compared a forced and a coupled simulation. In the cou-
pled simulation, the ORCHIDEE LSM is coupled to the
LMDZ6A atmospheric GCM (Hourdin et al., 2020), as em-
bedded in the IPSL-CM6 ESM for the CMIP6 simulations
(Boucher et al., 2020; Cheruy et al., 2020). The only dif-
ference between the atmospheric physics used in this paper
and the one used for CMIP6 concerns the parameterization
of deep and shallow convection and their interaction, mod-
ified to improve the description of the intertropical conver-
gence zone and the El Niño–Southern Oscillation. The de-
scription of these differences and their impact on precipita-
tion and other variables controlling the near-surface climate
can be found in Mignot et al. (2021).
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The coupled simulation was run over 1985–2014 (follow-
ing a 5-year spin up), using a “nudging” approach to con-
strain the large-scale atmosphere dynamics toward the syn-
optic atmospheric conditions (Cheruy et al., 2013). To this
end, the simulated wind fields (zonal and meridional wind
components) are relaxed toward the ERA-Interim winds
(Dee et al., 2011) by adding a correction term in the evolution
equation for the wind. By reducing the internal variability,
this method allows the direct comparison of the observations
and simulations, and it was successfully used for evaluating
the coupled land–atmosphere parameterizations (Cheruy et
al., 2013; Wang et al., 2016), including with the IPSL-CM6
ESM (Cheruy et al., 2020).

In the forced simulation, which covers 1979–2009, the re-
quired near-surface meteorological data by the ORCHIDEE
LSM (liquid and solid precipitation, incoming longwave and
shortwave radiation, 2 m air temperature and specific hu-
midity, 10 m wind speed, and surface pressure) are pre-
scribed from the downscaled and bias-corrected reanalysis
data (WATCH Forcing Data ERA-Interim – WFDEI), pro-
vided at the 0.5◦ resolution with a 3 h time step (Wee-
don et al., 2011, 2014). Precipitation is bias-corrected us-
ing monthly data from the Global Precipitation Climatology
Centre (GPCC version V6; Schneider et al., 2014), with a
specific correction of undercatch errors, following Adam and
Lettenmaier (2003).

The spatial resolution differs between the two simulations,
reflecting the grid of the atmospheric data; the coupled sim-
ulation has a coarser resolution (144× 142, corresponding
roughly to 2.5◦ in longitude and 1.25◦ in latitude) than that
of the forced simulation (0.5◦ grid). To make the evaluation
consistent and simple, we used the same spatial resolution for
our analyses, and we oversampled the LMDZ6A grid mesh
to the finer resolution (0.5◦) so as to keep as much spatial
information as possible from the high-resolution offline grid
mesh. To investigate variability patterns on seasonal to inter-
annual scales, all the data were aggregated into monthly time
steps. A total of five interlinked variables (SSM, ET, LAI,
albedo, and precipitation) were considered in this evaluation,
and the study region was 60◦ S–90◦ N, 180◦W–180◦ E (i.e.,
Antarctica and Greenland were excluded).

2.2 Reference data

2.2.1 Surface soil moisture

The SSM product provided by European Space Agency Cli-
mate Change Initiative (ESA CCI; Liu et al., 2012) was used
as a reference. It is a merged product comprising multiple
SSM data derived from various passive and active microwave
satellites (i.e., SMMR, SSM/I, TMI, AMSR-E, Windsat,
SMOS, AMSR2, AMI-WS, ASCAT-A, and ASCAT-B) pro-
viding a long-term (1978–2018) SSM data set with 0.25◦

resolution. The CCI-SSM product has been evaluated ex-
tensively against in situ observations (e.g., Al-Yaari et al.,

2019b), and their accuracy has been reported as being rela-
tively high compared to that of other existing products such
as SMOS-L3, LPRM, and AMSR2 (Ma et al., 2019).

Because it includes low-quality data flags for snow, dense
vegetation, and radio frequency interference (RFI; Oliva
et al., 2012), we applied data screening following Al-Yaari
et al. (2016). We screened out all the pixels where the pro-
vided uncertainty was larger than 0.06 m3/m3 (volumetric
water content). Next, any data records in which the SSM was
not in a valid range (either> 0.6 or< 0.0; Fernandez-Moran
et al., 2017; Dorigo et al., 2013) were excluded. Finally, to
exclude any areas covered by snow or dense vegetation and
other unreliable regions, we kept only those areas in which
the quality flag was zero (fine quality pixels). The screened
data set was then aggregated into 0.5◦× 0.5◦ and monthly
time steps. This screening process removed 3.6 % of all the
original pixels.

We performed an initial check on the time series of the
global average of CCI-SSM and found an artificial trend
therein that depended on the availability of the observation
data (Fig. S6 in the Supplement). As reported by other re-
searchers (e.g., Loew et al., 2013), this artificial trend could
lead to misinterpretation of long-term signals. To mitigate
such artificial trends and initialization errors of each data, we
selected a stable period (i.e., without a discontinuous jump
in time series) during 1993–1999 for comparison with both
the forced and coupled simulations. Because of the differing
natures of LSM-simulated and LSM observed SSM (e.g., de-
pendence on meteorological forcing data/atmospheric model
and model parameterization), their absolute SSM (m3/m3)
values (i.e., magnitudes) are not comparable (Reichle et al.,
2004). In addition, since the CCI-SSM product is scaled by
the comparison with a different LSM (GLDAS-Noah), a di-
rect comparison between CCI-SSM and ORCHIDEE may
lead to misleading results, as they have different soil repre-
sentation (Raoult et al., 2019). Given this issue, the LSM-
and satellite-based SSM were compared with statistically
normalized values rather than absolute values of SSM (e.g.,
Polcher et al., 2016). Therefore, a spatiotemporal normal-
ization (Eq. 1) was applied to each co-masked data set to
eliminate systematic biases among the data sets and make
the comparison reliable (Fig. S7B) as follows:

SSMnorm =
SSM−SSM

σSSM
, (1)

where SSMnorm is the normalized SSM, and SSM and σSSM
are the mean and standard deviation, respectively, of all the
available SSM sampled along spatial and temporal dimen-
sion during the period.

2.2.2 ET

In a preliminary study, we compared a ground-based ma-
chine learning ET product (Jung et al., 2011, 2019), three
remote-sensing-based physical model products (Miralles et

Hydrol. Earth Syst. Sci., 25, 2199–2221, 2021 https://doi.org/10.5194/hess-25-2199-2021



H. Mizuochi et al.: Evaluation of land processes in the IPSL model 2203

al., 2011; Zhang et al., 2010; Zeng et al., 2014), and their en-
semble (see Figs. S2 and S7). We found that they showed
similar spatiotemporal structures although they differed in
absolute values in some regions, and the ground-based prod-
uct was the most consistent with the ensemble. Therefore, we
decided to use the ground-based ET (millimeters per day) as
a representative from 1987 to 2009. It is also advantageous in
that it is derived from the upscaling of FLUXNET data (Jung
et al., 2011, 2019) and is independent from specific ET re-
trieval algorithms. The original spatial resolution (1◦) of the
data was resampled into 0.5◦ resolution to match that of the
forced simulation, and the original temporal resolution was
monthly time steps. A preliminary check of the time series
and spatial patterns of the reference data revealed no arti-
fact patterns (e.g., no abrupt jump in time series as found in
CCI-SSM), so we used them with no pixel screening or nor-
malization.

2.2.3 LAI

We used the global LAI data set of Zhu et al. (2013), re-
ferred to hereinafter as LAI3g, which is based on a neural
network algorithm in conjunction with the third-generation
Global Inventory Modeling and Mapping Studies (GIMMS
3g) and MODIS LAI product, with an original spatial reso-
lution of 0.5◦ and a half-monthly temporal resolution. Con-
sidering the common period among LAI3g and the coupled
and forced simulations, we selected 1987–2009 as the com-
parison period, and we resampled all data at 0.5◦ spatial res-
olution and aggregated them into monthly time steps.

2.2.4 Albedo

We used the MODIS albedo product (Qu et al., 2014) as ref-
erence data, which provided the bi-hemispherical reflectance
(white sky albedo) for the visible and NIR bands. The
original 500 m spatial resolution and 16 d temporal resolu-
tion were resampled (i.e., upscaled) into 0.5◦ resolution and
monthly time steps. The common period between simula-
tions and observation, 2003–2009, was used for evaluation.
The pixels with a retrieval failure of the albedo were ex-
cluded from the analysis.

2.2.5 Precipitation

We also evaluated the simulated precipitation because it is
the primary factor that influences the hydrological variables
(Qian et al., 2006; Decharme and Douville, 2006). To this
end, we used the GPCC data set version 6 (Schneider et
al., 2014), which was also used to bias correct the WFDEI
meteorological forcing of the offline ORCHIDEE simula-
tion (Sect. 2.1.2). This gridded product at 0.5◦ provides
monthly precipitation, derived from quality-controlled ob-
served precipitation from over 65 000 stations worldwide,
and accounts for a climatological correction of undercatch
based on Legates and Willmott (1990).

2.2.6 Data processing

For consistency between the observed and simulated data, we
subjected the former to aggregation or resampling toward the
0.5◦ spatial resolution and monthly time steps for each vari-
able, as described above. Due to the presence of data gaps
in the reference data sets, which are either because of the
acquisition issues or the quality control and data screening,
we masked the simulated data sets to match the spatiotempo-
ral data availability of the corresponding reference data. For
the SSM, the dense snow regions (with a snow water equiv-
alent exceeding 48 mm) in the simulated data were further
excluded so as to avoid unreliable comparisons with uncer-
tain references. Also, co-masking was performed after the
spatiotemporal resampling, followed by the statistical nor-
malization (only for the SSM). The resulting coverage of the
selected comparison period is summarized in Table 1 for each
variable.

After the abovementioned preprocessing, to compare the
spatial patterns of the observed and simulated data, we focus
on the following three accuracy criteria calculated at the 0.5◦

scale along monthly time steps: the bias, Pearson’s correla-
tion coefficient (CC), and root mean square error (RMSE).
The criteria were calculated along the temporal axis for each
pixel (i.e., the result was shown as one global map for a cri-
terion). The statistical significance of the bias (compared to
zero) and CC was assessed at each pixel with Student’s t test
and Pearson’s test, respectively, with a p value of 5 % in both
cases. Note that the evaluation periods were different among
SSM (1993–1999), ET, LAI and precipitation (1987–2009),
and albedo (2003–2009). However, the impact of the chosen
period on the evaluation is likely to be limited (see Table S1
in the Supplement).

2.3 Factor analysis

To reveal features of the simulations in detail, the
accuracy criteria were evaluated against various land-
scape/meteorological factors (Fig. 1), namely PFT, LAI, ir-
rigation, precipitation, slope, snow, and ET. For each fac-
tor, time series were averaged temporally to make only one
global map (i.e., the classification criteria were applied on
long-term basis). The value of each factor was classified into
a specific number of levels (classes), which were used as or-
dinal scales. Each factor was classified as given in Table 2,
and each factor is described in detail below:

1. For PFT, we used the input data set that is used in OR-
CHIDEE. This includes fractional coverages in each
pixel of 15 PFTs. We created a dominant PFT map by
picking up the PFT class that has maximum fractional
coverage for each pixel.

2. For LAI, we used the LAI3g data (Sect. 2.2.3), classi-
fying them into three levels (see Table 1 for the specific
class definitions).

https://doi.org/10.5194/hess-25-2199-2021 Hydrol. Earth Syst. Sci., 25, 2199–2221, 2021
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Table 1. Overview of the selected reference data sets and period of analysis. The last column gives the percent of land pixels, in the maps of
Figs. 2 and 3, with observed values. A smaller amount of SSM data is available compared to the others as a result of relatively strict quality
control. For ET and LAI, no data were available in extremely arid regions.

Variable Reference product Evaluation Observed fraction
period of land area (%)

SSM ESA CCI v4.4 (Liu et al., 2012) 1993–1999 44.1
ET Jung et al. (2019) 1987–2009 89.3
LAI LAI3g (Zhu et al., 2013) 1987–2009 87.8
Precipitation GPCC (Schneider et al., 2014) 1987–2009 98.5
Albedo MODIS (Qu et al., 2014) 2003–2009 87.4

3. For irrigation, we used a global map of irrigation ar-
eas (Siebert et al., 2010), which indicates the fractional
coverage (%) of an irrigated area with 5 arcmin spatial
resolution. It was classified into six levels.

4. For precipitation, we used the pluriannual mean of
GPCC during the same period as the investigated ECVs.
It was classified into five levels.

5. For slope, this classification was done by referring to
the ETOPO5 DEM (5 arcmin global relief model of
Earth’s surface; NOAA, 1988), which is also used in
ORCHIDEE to control reinfiltration of the water.

6. We used the pluriannual mean of the forced SWE for
the factor analysis of the forced simulation and that of
the coupled SWE for the coupled simulation. The SWE
was classified into five levels.

7. For ET, we used the pluriannual mean of Jung et
al. (2011, 2019) during the same period as the inves-
tigated ECVs.

Here, the dominant PFTs, irrigation, slope, and SWE were
only used for the factor analysis, while LAI, precipitation,
and ET were also used for validation and come from in-
dependent sources. The PFT fractions and SWE, however,
were not independent from our simulations, but we assumed
it was not problematic for factor analysis, which mostly aims
at suggesting process-based explanations to the main model
errors.

3 Results

3.1 Spatial and temporal patterns of model errors

Overall, the spatial structures of the ECVs simulated in both
modes were consistent with those of the reference products,
as shown by comparing the corresponding pluriannual mean
maps (Figs. S1–S5). To refine this comparison, Fig. 2 shows
the spatial bias patterns of the five variables (normalized
SSM, ET, LAI, albedo, and precipitation), in both forced
and coupled modes. Differences between forced and coupled

modes are also shown in Fig. S6. Spatiotemporal averages
of bias, RMSE, and correlation coefficients are summarized
in Table 3. The spatial patterns of the temporal CC are also
shown for SSM and albedo (Fig. 3) for further discussion.

The precipitation bias in forced mode is very small in most
regions since the simulation relies on bias-corrected precip-
itation (WFDEI), which relies on the GPCC data set used
here as reference data. Yet, it is not negligible everywhere
(Fig. 2a), and the forced ORCHIDEE precipitation (WFDEI)
is higher than GPCC in small tropical pockets, the US Great
Plains, and boreal zones, which are prone to precipitation un-
dercatch because of strong winds and/or a large fraction of
snowfall (Becker et al., 2013). The largest precipitation bi-
ases in coupled mode, i.e., in absolute value, are found in the
wettest areas (humid tropics) and mountain ranges (Fig. 2b),
which is consistent with the analysis of Cheruy et al. (2020)
in terms of bias sign and spatial pattern.

Figure 2c–d show that the spatial pattern of normalized
SSM bias in forced and coupled modes are consistent and
delineate the biased regions clearly. The strong negative bi-
ases in normalized SSM was observed over the boreal region
(except eastern Siberia) with high SWE values (Fig. 1j), sug-
gesting the relation to snow or permafrost. Note that satellite
observation uncertainties in such snowy regions could also be
a reason for the discrepancy. The farm belt of India and China
(with a lot of irrigation in Fig. 1h) exhibits a systematic lower
bias in SSM. Apart from those, arid (northern Africa, central
Australia, and northern China) and tropical (the Congo and
the Amazon basins) regions also showed lower correlation
(Fig. 3a–c), part of which can be attributed to the inherent
feature that CC tends to be low when the range in which the
sample varies is narrow. To better identify the error sources
in SSM, we plotted the mean seasonal cycles (i.e., monthly
climatology) separately for each latitude zone (Fig. 4). Sub-
stantial parts of the time series were consistent between sim-
ulation and observation (except the grayed-out period due to
insufficient sample size and low reliability of the reference
data). The underestimated simulated SSM values compared
to the CCI-SSM values in the summer season in 30–60◦ N
(Fig. 4b) may be attributed to anthropogenic water input due
to irrigation because this region includes large-scale agricul-

Hydrol. Earth Syst. Sci., 25, 2199–2221, 2021 https://doi.org/10.5194/hess-25-2199-2021



H. Mizuochi et al.: Evaluation of land processes in the IPSL model 2205

Figure 1. Spatial patterns of pluriannual mean reference data used for validation (marked with +) and/or factor analysis (marked with ×).
(a+) SSM from ESA CCI. (b+×) ET product of Jung et al. (2019). (c+×) LAI3g. (d+) MODIS NIR albedo. (e+) MODIS visible albedo.
(f+×) GPCC precipitation data. (g×) Dominant plant functional type used in ORCHIDEE (see Table 2 for the class definition). (h×)
Fractional area equipped with irrigation. (i×) Slope derived from ETOPO5. (j×) Snow water equivalent derived from the forced-mode
ORCHIDEE.
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Figure 2. Pluriannual average of bias (i.e., simulated values minus observed values) for the five evaluated variables simulated in forced mode
(left) and coupled mode (right). (a, b) Precipitation bias against GPCC. (c, d) SSM bias against CCI-SSM, in normalized volumetric water
(VWC) content during period 1 (1993–1999). (e, f) ET bias against upscaled FLUXNET data. (g, h) LAI bias against LAI3g data. (i, j) Total
albedo bias against MODIS albedo product. Gray areas are statistically insignificant pixels.
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Table 2. Correspondence between classification levels and values for each factor.

Factor Reference data How classified Fraction
of land
area (%)

PFT ORCHIDEE-defined plant
functional types

Class 1 – bare soil is dominant
Class 2 – tropical broadleaf evergreen forest is dominant
Class 3 – tropical broadleaf raingreen forest is dominant
Class 4 – temperate needleleaf evergreen forest is dominant
Class 5 – temperate broadleaf evergreen forest is dominant
Class 6 – temperate broadleaf summergreen forest is dominant
Class 7 – boreal needleleaf evergreen forest is dominant
Class 8 – boreal broadleaf summergreen forest is dominant
Class 9 – boreal needleleaf summergreen forest is dominant
Class 10 – temperate C3 grasses are dominant
Class 11 – C4 grasses are dominant
Class 12 – C3 crops are dominant
Class 13 – C4 crops are dominant
Class 14 – tropical C3 grasses are dominant
Class 15 – boreal C3 grasses are dominant

15.4
6.9
3.2
2.0
3.4
3.6
8.6
6.5
8.6
6.6
8.8
9.2
2.1
2.7
12.4

LAI Zhu et al. (2013) Class 1 (low LAI) – 0–1.0 m2/m2

Class 2 (middle LAI) – 1.0–3.0 m2/m2

Class 3 (high LAI) – more than 3.0 m2/m2

41.9
37.1
8.7

ET Jung et al. (2019) Class 1 – less than 1 mm per day
Class 2 – 1–2 mm per day
Class 3 – 2–3 mm per day
Class 4 – more than 3 mm per day

45.8
23.6
13.0
6.9

Precipitation GPCC, Schneider et al. (2014) Class 1 (extremely dry) – less than 1 mm per day
Class 2 (dry) – 1 to 2 mm per day
Class 3 (moderate) – 2 to 4 mm per day
Class 4 (wet) – 4 to 7 mm per day
Class 5 (extremely wet) – more than 7 mm per day

41.0
24.1
17.2
11.0
5.3

SWE ORCHIDEE-simulated SWE Class 1 – 0 mm
Class 2 – 0–16 mm
Class 3 – 16–32 mm
Class 4 – 32–48 mm
Class 5 – more than 48 mm

33.3
33.6
8.7
9.5
14.8

Irrigated area Siebert et al. (2010) Class 1 – 0 %
Class 2 – 0 %–5 %
Class 3 – 5 %–10 %
Class 4 – 10 %–20 %
Class 5 – 20 %–50 %
Class 6 – 50 %–100 %

56.6
34.7
3.6
2.6
1.9
0.5

Slope ETOPO5 (NOAA, 1988) Class 1 (flat) – 0–0.5◦

Class 2 (middle) – 0.5–2.0◦

Class 3 (steep) – more than 2.0◦

3.0
28.1
67.4

tural fields (Fig. 1h). In the low-latitude regions, the simu-
lated values tend to underestimate SSM in the dry season and
to show larger seasonal change (Fig. 4c, d). Most of the areas
exhibited small ET biases in absolute value (Fig. 2e, f), sug-
gesting that ORCHIDEE is highly capable of representing
global ET. The coupled simulation tended to simulate larger

ET values than the forced simulation did, which can be ex-
plained to some degree by the larger mean precipitation in the
coupled simulation than that in the forced one (as shown by
the larger positive bias for the coupled simulation in Table 3).
Regions with large ET biases were distributed in the tropical
(the Amazon and the Congo basins and the maritime con-
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Figure 3. Spatial patterns of the correlation coefficient along time series (with monthly time steps) per pixel for SSM and albedo. (a, b) Cor-
relation coefficient between simulated SSM and CCI-SSM in normalized VWC for forced and coupled mode, respectively. (c, d) Correlation
coefficient between simulated and observed (MODIS) albedo in NIR band for forced and coupled mode, respectively. (e, f) Those in visible
band. White areas are null pixels that were excluded by the quality control, and gray areas are statistically not significant pixels.

tinent), mountainous (the Rockies, Andes, and Himalayas),
and agricultural (especially in India) regions. Mountainous
regions tended to be characterized by a positively biased pre-
cipitation in the coupled simulation (Fig. 2b), which caused
a positive ET bias (especially in North and South America).
Tropical regions exhibited complex responses in ET between
the coupled and forced simulations. The maritime continent
(Indonesia and the other tropical Pacific islands) had nega-
tive ET biases for both simulations. The Congo basin and a
large part of the Amazon basin exhibited contrasting patterns
between the simulations (the uncoupled one had a negative
bias, whereas the coupled one had a positive bias). The link
between ET and precipitation in the coupled simulation was

only straightforward in the Congo basin, where the positively
biased precipitation (water input) led to a positive bias of ET.
In a part of the maritime continent, the coupled ET was neg-
atively biased despite a positive bias of precipitation. Con-
versely, the coupled ET was positively biased in the Amazon
basin despite a negative bias of precipitation.

Positive bias of LAI was observed in large areas globally
(Fig. 2g, h). Given the strong similarity between the forced
and the coupled bias maps, it is suggested that the bias comes
mostly from the surface component, such as PFT maps, or the
reference data. In fact, LAI retrievals by space-borne sensors
like MODIS may be saturated for large values of LAI (Zhao
et al., 2016), resulting in an underestimation of LAI in refer-
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Figure 4. Comparison of SSM seasonal variations among reference
(CCI-SSM) and simulations (forced and coupled) for each latitude
zone. The dashed black line is the fraction of available pixels to
all land pixels over each zone. Depending on the snow mask, the
number of available pixels varied along the season in high-latitude
regions. To avoid a misleading interpretation, a small number of
samples with unreliable SSM reference and periods of less pixel
availability (< 30 %) are grayed out.

Table 3. Land averages of the evaluation criteria (bias, RMSE, and
CC) for the selected variables and reference data sets. The same bias
on the average over land for all variables was observed between
forced and coupled simulations. Positive systematic bias was ob-
served for LAI, and a large uncertainty (i.e., RMSE) was observed
for SSM and ET. ET shows the best correlation coefficient. Overall,
the coupled simulation tends to behave more realistically, despite
the overestimation of precipitation.

Forced Coupled

Bias Precipitation (mm per day) 0.112 0.186
SSM (normalized) −0.072 −0.062
ET (mm per day) −0.231 −0.133
LAI (–) 0.325 0.220
Albedo (–) −0.000 0.009

RMSE Precipitation (mm per day) 1.057 1.680
SSM (normalized) 0.546 0.560
ET (mm per day) 0.513 0.540
LAI (–) 0.586 0.554
Albedo (–) 0.048 0.047

CC Precipitation (mm per day) 0.790 0.605
SSM (normalized) 0.581 0.551
ET (mm per day) 0.744 0.692
LAI (–) 0.328 0.340
Albedo (–) 0.395 0.426

ence. Despite such a positive bias tendency, the boreal region
in eastern Siberia, the shores of the Great Lakes in North
America, and the basin of the Mekong River all exhibited
negative bias of LAI. In addition, there were hot spots of neg-
atively biased LAI in such regions as the Zambezi River sys-
tem lying across Angola and Zambia. Contrasting biases be-
tween the simulations were observed around the Himalayas.

In most regions, the simulated bias for total albedo was
small, and the bias patterns were generally similar between
the forced and coupled modes (Fig. 2i, j). The largest biases
were the overestimation in the mountainous regions (espe-
cially the Himalayas in the coupled mode) and the under-
estimation in the boreal and polar regions, where snow af-
fects the albedo. In addition, simulated and observed albedo
were uncorrelated (or negatively correlated) in many regions
apart from the boreal one (Fig. 3c–f). Low correlation co-
efficients in the arid and tropical region can be attributed to
the temporal invariance of the land surface. However, even
in some temperate and semi-arid zones where temporal vari-
ance is likely to be high, low correlation was observed. In
such regions, seasonal changes in the land surface (caused
mainly by vegetation phenology and the snowfall/snowmelt
cycle) may not be described well in ORCHIDEE. In fact, the
global monthly climatology (Fig. 5a, f) showed that global
mean NIR albedo was overestimated all year long, except
in the spring when visible albedo was underestimated. The
main source of the NIR albedo overestimation seemed to
come from the temperate zone (30–60◦ N; Fig. 5c), suggest-
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Figure 5. Monthly climatological time series of global and zonal
mean albedo. The left column shows the NIR band (a – global av-
erage; b–e – zonal average for each 30◦ in latitude), while the right
column (f–j) shows the visible band (the vertical arrangement is the
same as that for NIR).

ing overestimated vegetation cover (having high reflectance
in NIR spectral region) there from summer to autumn. There
was a systematic overestimation of albedo in the tropical
band (Fig. 5d, e, i, j), and a small underestimation in the
snow-related season (winter to spring) of the boreal band
(Fig. 5b, g).

3.2 Factor analysis

The bivariate linear regressions between simulated ECV bias
and factors (Table 4) and the box plots against each factor
class (Figs. 6–8) firstly reveal a large bias variability within
each class, resulting in a large part from the spatial variabil-

ity of the simulated variables across the various climates and
biomes of the globe. However, some controls could be identi-
fied despite this variability. It is particularly the case for irri-
gation, which has an obvious impact on the simulated hydro-
logical variables (SSM, ET, LAI, and precipitation; Fig. 6a,
c, e, and g). Both the coupled and forced models show neg-
atively biased values in the largely irrigated areas (classes 5
and 6), except for the forced-mode SSM. This is understand-
able because the simulations overlook irrigation, which cre-
ates artificial water input to the soil, resulting in additional
ET and plant growth in reality. Interestingly, the coupled
simulation underestimates the observed values more than the
forced one does (Fig. 6a, c, e, and g), which probably re-
lates to a positive feedback driven by surface–atmosphere
coupling (Mahfouf et al., 1995; Liu et al., 2003; T. Wang
et al., 2015). Since the forcing WFDEI precipitation is based
on in situ rain gauges which integrate the impact of the real-
world irrigation, this factor has a relatively weak effect in the
forced mode.

The contrasting ET bias pattern between forced and cou-
pled modes in the Congo and the Amazon basins (Fig. 2e,
f) was also confirmed in the factor analysis of precipita-
tion (classes 4 and 5, which probably correspond to tropi-
cal regions; Fig. 6d), PFT (class 2 – broadleaf evergreen in
Fig. 7a), LAI (class 3 in Fig. 7b), and ET (class 3 in Fig. 8a).
This also explains the contrasting correlation sign of ET bias
with P , SSM, ET, and LAI in Table 4.

The factor analysis confirms the positive bias of LAI in
the tropical regions, which are characterized by high precip-
itation (classes 4 and 5 in Fig. 6f), broadleaf evergreen forest
(PFT 2 in Fig. 7c), high LAI (class 3 in Fig. 7d), and high
ET (class 4 in Fig. 8b). However, some of the positive bias in
such tropical regions might be compensated by the negative
bias of the simulated precipitation (especially in the Ama-
zon; Fig. 2b, also confirmed by class 3 in Fig. 7j), resulting
in a smaller bias of LAI in the coupled simulation than that
in the forced simulation. Negative LAI bias in the boreal re-
gion is also confirmed by the PFT factor analysis (classes 8,
9, and 15 in Fig. 7c). Eastern Siberia is the main place with
negative LAI biases (Fig. 2g, h). Possible explanations in-
clude persistent snowpack reducing the vegetation growing
season, underestimated maximum LAI in the model, and er-
rors in the reference LAI product, especially at high latitudes,
due to the less reliable assessment of solar reflectance from
space (Guimberteau et al., 2018).

For albedo, the effect appeared in the factor analysis
against slope (class 3 in Fig, 8c and d) and SWE (classes 4
and 5 in Fig. 8f and g) as a discrepancy between the cou-
pled and forced simulations. In the steep regions, the coupled
simulation tended to be positively biased because of the pre-
cipitation bias. In the high SWE region, the negative bias of
albedo was enhanced in the forced simulation. This is due to
the already mentioned compensation of the positive bias in
the mountainous region with the negative bias in the boreal
and polar regions (Fig. 2i, j). The NIR albedo in the tropi-
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Figure 6. Box plots of mean biases (simulated minus observed values) of SSM, ET, LAI (forced/coupled), and precipitation (coupled only)
against each class of irrigation and precipitation. The upper limit, middle line, and lower limit of the boxes correspond to 25, 50, and
75 percentile values, respectively. The upper and lower limits of whiskers are maximum and minimum values, respectively. The diamond
indicates the mean value of the class. (a, b) SSM bias. (c, d) ET bias. (e, f) LAI bias. (g, h) Precipitation bias vs. irrigation and precipitation
classes, respectively. Blue and pink boxes correspond to forced mode and coupled mode, respectively. The horizontal black line shows zero.
Each class of landscape factors (i.e., x axis) is defined in Table 1.
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Figure 7. Box plots of mean biases (simulated minus observed values) of ET, LAI, NIR/visible albedo (forced/coupled), and precipitation
(coupled only) against each class of PFT and LAI. (a, b) ET bias. (c, d) LAI bias. (e, f) NIR albedo bias. (g, h) Visible albedo bias.
(i, j) Precipitation bias vs. PFT and LAI classes, respectively. Legends and axes are the same as in Fig. 6, and each class of landscape factors
(i.e., x axis) is defined in Table 1.
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Table 4. Spatial correlation coefficients (SCCs) between biases (in forced and coupled modes) and potential explanatory factors. PFT was
excluded here because it is on a nominal scale. Statistically insignificant SCCs appear in italics. SSM tended to be underestimated in high
P , SSM, ET, and LAI regions for both forced and coupled modes. Between forced and coupled ET, an opposite association with P , ET,
and LAI was observed. LAI in both modes was positively biased in high P , ET, and SSM regions (probably corresponding to the tropical
region). Albedo and coupled P were strongly associated with slope. Irrigation is likely to bias SSM and ET negatively, and the effect was
more enhanced in the coupled mode.

Biases of forced simulations

Factors P SSM-CCI ET LAI Albedo

P 0.054 −0.203 −0.168 0.375 0.283
ET 0.064 −0.163 −0.277 0.357 0.344
LAI 0.068 −0.083 −0.127 0.263 0.275
SWE 0.096 0.024 −0.103 −0.090 0.181
Irrigated fraction −0.060 −0.066 −0.170 0.012 0.059
Slope −0.027 −0.068 −0.010 0.027 0.023

Biases of coupled simulations

Factors P SSM-CCI ET LAI Albedo

P −0.108 −0.234 0.200 0.258 0.130
ET 0.006 −0.164 0.163 0.245 0.139
LAI −0.004 −0.121 0.264 0.092 0.103
SWE 0.034 −0.009 −0.134 −0.060 0.073
Irrigated fraction −0.071 −0.118 −0.213 −0.012 0.030
Slope 0.267 0.085 −0.022 −0.031 0.249

cal region (classes 2 and 3 in Fig. 7e and class 3 in Fig. 7f)
tended to be slightly large for both simulations. This is con-
sistent with the positive bias of LAI in such regions (Fig. 2g,
h), although the range of bias was small.

4 Discussion

In general, the ORCHIDEE simulations show good spa-
tiotemporal consistency with the reference data, except for
issues related to external water addition/subtraction and
surface–atmosphere coupling. An example of the external
source of water input is irrigation. Largely irrigated areas ob-
viously lead to underestimated hydrology-related model pa-
rameters (i.e., SM, ET, and LAI). Although the impact of ir-
rigation on ORCHIDEE SSM simulation has been suggested
by Yin et al. (2018) over a specific region (China), our ex-
periment demonstrated explicitly that the effect on SSM in
the forced mode is relatively small on the global scale and
rather larger on ET and LAI (Fig. 6a, c, and e). Integrat-
ing the irrigation process in ORCHIDEE with an ancillary
agricultural map and data assimilation (Raoult et al., 2019)
may improve the accuracy (de Rosnay et al., 2003). Through
the land–atmosphere coupling (Al-Yaari et al., 2019a), the
impact of the irrigation is emphasized in the coupled simu-
lation (Fig. 6a, c, e, and g), where strong negative bias was
observed in not only ET, LAI, and precipitation but also SSM
over largely irrigated areas. Specifically, a lack of description
of the additional water input and artificial vegetation over ir-

rigated agricultural land led to lower SSM and LAI, which,
in turn, led to lower ET. In the coupled simulation, the lower
SSM also led to lower humidity and lower precipitation, re-
sulting in enhanced underestimation of SSM in the next time
step (i.e., positive feedback). The enhanced SSM underesti-
mation caused enhanced ET underestimation and enhanced
LAI underestimation through the parameterizations of car-
bon assimilation and vegetation phenology. The underesti-
mation of precipitation in the coupled simulation over irri-
gated areas (e.g., India in Fig. 2b; classes 5 and 6 in Fig. 6g)
supports the validity of this emphasizing effect in the cou-
pled model, which is consistent with other reports (Mahfouf
et al., 1995; Liu et al., 2003; T. Wang et al., 2015). The spatial
similarity between the bias maps of SSM, ET, and precipita-
tion (Fig. 2a–f) over central and southern Africa, Australia,
and a large part of southern and eastern Asia also suggests a
strong interlink between them in coupled mode. A potential
interpretation is that precipitation is the first-order control on
SSM and ET in the region (i.e., water-limited ET). It also can
be interpreted as a result from a positive feedback between
precipitation, SSM, and ET in such regions, as reported by
Yang et al. (2018).

However, other factors need to be considered regarding
land–atmosphere feedback and their influence on coupled
precipitation and ET. In particular, ET is not controlled solely
by precipitation but also by radiation (Cheruy et al., 2020),
and temperature determines the potential ET (Dirmeyer,
2001; Nasonova et al., 2011). The complex response of ET to
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Figure 8. Box plots of mean biases (simulated minus observed values) against each class of ET, slope, and SWE. (a, b) ET and LAI bias vs.
ET class. (c, d, e) NIR albedo, visible albedo, and precipitation bias vs. slope class. (f, g) NIR and visible albedo bias against SWE class,
respectively. Legends and axes are the same as in Fig. 6, and each class of landscape factors (i.e., x axis) is defined in Table 1.

precipitation in the present study suggests the importance of
those factors. For example, there may be a negative feedback
in the Amazon and the maritime continent between precip-
itation and ET because these areas are strongly energy lim-
ited (Seneviratne et al., 2010; McVicar et al., 2012). In the
maritime continent, positive precipitation bias meant more
cloud coverage than reality, which decreased the available
energy and ET. In contrast, the negative precipitation bias in
the Amazon meant less cloud coverage, larger available en-
ergy, and larger ET than in reality.

Although such feedback explains the overestimated ET in
the Congo and the Amazon basins in the coupled simulation,
it does not explain the underestimated ET in the forced sim-
ulation. Potential explanations are excessive water stress on
ET, insufficient soil-water-holding capacity, underestimated
precipitation or radiation in WFDEI, and/or an overestima-
tion of ET by the Jung product in the regions of high precip-
itation. Conversely, too weak water stress in dry areas (either
for transpiration or soil evaporation) can also explain the neg-
ative correlation between forced-mode ET bias and precipita-
tion (Table 4). A solution could be to activate a resistance to

soil evaporation, increasing with the top soil dryness (Cheruy
et al., 2020). Such contrasting results between the forced and
coupled modes imply the importance of model evaluation un-
der both modes to isolate the potential error sources.

Compared with the forced mode, the positively biased pre-
cipitation simulated by the coupled mode may positively bias
the albedo, particularly in the mountainous areas (high slope
class in Fig. 8c–e) via considerable snow cover. This prob-
ably arose from an incomplete atmospheric simulation of
the local climate (Cheruy et al., 2020), such as an updrift
along a mountain slope. Coarse spatial resolution of the at-
mospheric simulation in the coupled mode can also make it
difficult to represent the impact of mountainous topography
on local climate (Decharme and Douville, 2006). Theoreti-
cally, the overestimation of albedo should decrease the avail-
able energy at the surface, thereby decreasing ET and surface
temperature. The slight negative bias of ET in the Himalayas
(Fig. 2f), despite the positive bias of precipitation (Fig. 2b),
can be explained by the decrease in available energy due to
the increased albedo (Fig. 2j). Such an ice–albedo interac-
tion in the ORCHIDEE–LMDZ coupled mode has also been
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reported over the boreal region (T. Wang et al., 2015; particu-
larly pronounced in spring temperature over eastern Siberia).
Taking the ice–albedo feedback into consideration with the
secondary factors (i.e., radiation and temperature) that af-
fect ET, the link between precipitation and ET in the cou-
pled mode is rather complex in the mountainous and boreal
regions. Moreover, the deficit of available energy may re-
duce photosynthesis and, thus, vegetation growth, causing a
peaky underestimation of LAI in the Himalayas in the cou-
pled mode (Fig. 2h), which is not observed in the forced
mode (Fig. 2g).

Part of the positive biases in normalized SSM in the east-
ern Siberia and polar region (Fig. 2c, d) may be attributed
to freezing and snowmelt and related vegetation phenology,
as excessively large or fast snowmelt occurs in the spring
in ORCHIDEE (Fig. 5b, g). However, other control factors
are likely involved in SSM overestimation, such as wetlands,
permafrost, and albedo. The negative albedo bias found in the
boreal zone (Fig. 2i, j) in spite of the positive snowfall bias
(Fig. 2a, b) can also be explained by the excessive snowmelt.
This underestimation of albedo in many boreal areas, also
noted in Cheruy et al. (2020), was expected to lead to overes-
timated ET, but it did not lead to an obvious ET bias because
of the underestimated LAI (Fig. 2g, h). Given the spectral
features of land cover (Petty, 2006), the NIR albedo is related
largely to an abundance of vegetation, i.e., LAI. Therefore,
uncertainty in snow and LAI leads to uncertainty in the sur-
face albedo, which further propagates uncertainty in the en-
ergy balance and water cycles. Such a complicated relation-
ship should be treated in the special tuning of ORCHIDEE
for high latitudes (Druel et al., 2017; Guimberteau et al.,
2018). In addition to high-latitude regions, vegetation sea-
sonality in the temperate zones seemed uncertain. In the tem-
perate forests, the model is likely to simulate spring green-up
that is considerable and/or very fast (Fig. 5c), which causes
an overestimated NIR albedo and discrepancies in LAI and
albedo seasonality.

Regardless of the origin (i.e., satellite, reanalysis, or
in situ), observations inevitably contain inherent uncertainty,
which leads to uncertainty in the model assessment. SSM re-
trieval over substantially high/low vegetation, tropical/arid
regions, and highly heterogeneous and high-roughness re-
gions remains challenging (Ma et al., 2019). Therefore, some
part of the low SSM correlation in arid/tropical regions
(Fig. 3a, b) can be attributed to uncertainties in the satel-
lite products in addition to an inherent feature of CC. Snow
cover and RFI (Oliva et al., 2012) may also cause uncer-
tainties in satellite-based SSM estimation, although we at-
tempted to remove such uncertain pixels by means of a pre-
liminary quality check. Using multiple data sources (e.g., the
Soil Moisture Active Passive (SMAP) product; Entekhabi et
al., 2010) as references for model evaluation (Eyring et al.,
2016b) is a promising way to address such uncertainties. A
brief attempt with the SMOS-IC product (Fernandez-Moran
et al., 2017) is shown in Fig. S8. Inconsistency between the

model-simulated SSM depth (up to 10 cm) and the penetra-
tion depth of satellite sensors (several centimeters) may also
cause uncertainties in the assessment, although using nor-
malized SSM instead of absolute SSM is likely to mitigate
the effect to some extent.

The satellite-based LAI product (Zhu et al., 2013) may
be affected by the saturation issue of optical satellite data
(i.e., MODIS) in regions with high LAI. The snow albedo
of the MODIS product (MCD43) has a slightly larger uncer-
tainty (RMSE≈ 0.07; Stroeve et al., 2005, 2013) than that of
the snow-free daily mean albedo (RMSE= 0.034; D. Wang
et al., 2015). However, this does not alter our conclusion
about the ORCHIDEE albedo uncertainty in the snow region,
but some of the uncertainty might be attributed to the error in
satellite observation.

We depended largely on satellite-derived data for the
SSM, LAI, and albedo evaluations. By contrast, we used
a FLUXNET-based product (Jung et al., 2019) for the ET
evaluation, which has potential uncertainties arising from
(i) the statistical upscaling process (model tree ensemble;
Jung et al., 2009), (ii) the input data required in machine
learning prediction, and (iii) the heterogeneous distribution
of ground stations. Because the latter potential issue is par-
ticularly important for hardly accessible regions such as trop-
ical and mountainous areas, progress in the data coverage
of the FLUXNET network is desirable. Although ET prod-
ucts derived from satellite data (Miralles et al., 2011; Zhang
et al., 2010; Zeng et al., 2014) can also be used, unlike the
other variables (SSM, LAI, and albedo), the retrieval of ET is
not done directly from the satellite observations but depends
largely on the process-oriented models. Therefore, in addi-
tion to the uncertainties in the satellite observations them-
selves, such products have uncertainties that arise from an-
cillary data (e.g., atmospheric conditions and land cover) re-
quired in the model and from imperfections in the model
structure/parameterization (a preliminary comparison among
the different data sources can be found in Fig. S9).

The difference between the forced ORCHIDEE precipita-
tion (WFDEI) and GPCC (Fig. 2a) probably comes from the
undercatch correction based on Legates and Willmott (1990)
for GPCC and on Adam and Lettenmeier (2003) for WFDEI.
Schneider et al. (2014) acknowledge that, for the GPCC
product, “the biggest uncertainty issue is the correction of
the systematic gauge-measuring error (general undercatch of
the true precipitation)”, but this is very likely true for all pre-
cipitation products.

Note that the present study is based on a specific LSM
(i.e., ORCHIDEE 2.0), atmospheric model (i.e., LMDZ6A),
and forcing data (WFDEI). Future work should include ad-
dressing the uncertainties that arise from the LMDZ model
structure/parameterization and the resolution in the numeri-
cal simulation (Hourdin et al., 2013). Uncertainties that arise
from the atmospheric model have been analyzed for ET and
SSM by Cheruy et al. (2020). For China, forced ORCHIDEE
simulations with WFDEI have been shown to perform better
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than with other forcing data sets (Princeton Global Meteoro-
logical Forcing and Climatic Research Unit – National Cen-
ters for Environmental Prediction; Yin et al., 2018). More
generally, the uncertainty arising from atmospheric forcing
selection should be kept in mind as it is comparable to the one
of varying the LSM in forced simulations (Guo et al., 2006).
Other perspectives include factor analysis against other hy-
drometeorlogical parameters such as radiation, temperature,
and precipitation frequency (Qian et al., 2006; Yin et al.,
2018).

5 Conclusions

This paper has presented an in-depth evaluation of five inter-
linked essential climate variables (namely surface soil mois-
ture, evapotranspiration, leaf area index, albedo, and precip-
itation) simulated by ORCHIDEE land surface model un-
der different simulation modes (either forcing by WFDEI or
coupled with LMDZ). Statistical evaluation was conducted
using various reference data sources (ESA CCI, upscaled
FLUXNET, Global Inventory Modeling and Mapping Stud-
ies (GIMMS) 3g, MODIS products, and GPCC), and fac-
tor analysis was conducted against various landscape factors
(namely plant functional type, leaf area index, irrigation, pre-
cipitation, slope, snow water equivalent, and evapotranspi-
ration). Although ORCHIDEE consistently represented the
spatiotemporal patterns of each essential climate variable in
general, some issues were found relating to water cycles and
their different consequences between the forced and coupled
simulations. There were errors relating to freezing and/or
snowmelt, artificial water input, such as irrigation, and pre-
cipitation bias propagated through surface–atmosphere cou-
pling in the coupled mode. The factor analysis revealed a
strong link between irrigation and precipitation (that further
affected surface soil moisture, evapotranspiration, and leaf
area index, particularly in the coupled mode) and a relatively
complex link between precipitation and evapotranspiration
that reflected the hydrometeorological regime of the region
(energy limited or water limited) and the snow–albedo feed-
back in mountainous and boreal regions. In addition, the de-
scription of vegetation and snow seasonality seemed to be
an issue in ORCHIDEE. Excessive and/or too fast green-up
in temperate forest may lead an overestimation of leaf area
index and near infrared albedo. Excessive and/or too fast
snowmelt in spring in the boreal region may result in the un-
derestimation of albedo in such regions, which can affect the
energy balance and water cycles. The different results be-
tween the forced and coupled modes stress the importance of
model evaluation under both modes to determine each poten-
tial error source in model simulation.

Code availability. The version of the ORCHIDEE model used
for this study (revision 4783) is very close to tag 2.0 and is

freely available from http://forge.ipsl.jussieu.fr/orchidee/browser/
tags/ORCHIDEE_2_0/ORCHIDEE/ (Peylin et al., 2020). Tag 2.0
is based on revision 4783, with updates regarding the number and
format of output variables to comply with the CMIP6 requirements
and a few very minor bug corrections regarding the carbon cycle.
The code of revision 4783 can be obtained from the corresponding
author upon request.

Data availability. The ORCHIDEE simulation data used for
this study (revision 4783) have been provided by Ducharne
et al. (2021, https://doi.org/10.14768/d2569664-3578-4c8f-8a45-
25a927c8ed64).

The reference data are freely available from the following links.
All the links were confirmed to be accessible on 13 April 2021.

– The latest version of ESA CCI SM (https://www.
esa-soilmoisture-cci.org/node/145, European Space Agency,
2021). ESA also provides the previous version (version 4.4
was used in this study) upon request.

– The evapotranspiration product by Jung et al. (2019) (https:
//www.bgc-jena.mpg.de/geodb/projects/FileDetails.php;
FLUXCOM data portal on a CC4.0-BY license).

– The latest version of LAI3g (https://daac.ornl.gov/
VEGETATION/guides/Mean_Seasonal_LAI.html).
The original version used in this study (Zhu et
al., 2013) can be obtained upon request from
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html.

– The MODIS albedo product (MCD43C3, https://lpdaac.usgs.
gov/products/mcd43c3v006/, NASA LP DAAC, 2021).

– The latest version of GPCC (version 7) is avail-
able at https://psl.noaa.gov/data/gridded/data.gpcc.html
(NOAA Physical Sciences Laboratory, 2021). The ver-
sion used in this study (version 6; 0.5◦) is available at
https://opendata.dwd.de/climate_environment/GPCC/html/
fulldata_v6_doi_download.html (Deutscher Wetterdienst,
2021).

– The Global Map of Irrigation Areas (GMIA; Siebert et al.,
2010, http://www.fao.org/aquastat/en/geospatial-information/
global-maps-irrigated-areas/latest-version/).

– The ETOPO5 data (https://www.ngdc.noaa.gov/mgg/global/
etopo5.HTML, NOAA, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-2199-2021-supplement.
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