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The small and large size behavior of stationary solutions to the fragmentation equation with size diffusion is investigated. It is shown that these solutions behave like stretched exponentials for large sizes, the exponent in the exponential being solely given by the behavior of the overall fragmentation rate at infinity. In contrast, the small size behavior is partially governed by the daughter fragmentation distribution and is at most linear, with possibly non-algebraic behavior. Explicit solutions are also provided for particular fragmentation coefficients.

Introduction

In [START_REF] Ferkinghoff-Borg | Competition between diffusion and fragmentation: An important evolutionary process of nature[END_REF] the fragmentation equation with diffusion is proposed to predict the growth of ice crystals as the result of the interplay between diffusion and fragmentation. Triggered by the competition between these two mechanisms, the existence of stationary states satisfying the nonlocal equation

-f ′′ (x) + a(x)f (x) = ∞ x a(y)b(x, y)f (y) dy , x ∈ (0, ∞) , (1.1a) 
f (0) = 0 , (1.1b) 
is of particular interest, where f = f (x) denotes the (stationary) size distribution function of particles of size x ∈ (0, ∞), while a(x) ≥ 0 is the overall fragmentation rate of particles of size x and b(x, y) ≥ 0 is the daughter distribution function for particles of size y splitting into particles of size x < y. The second-order derivative in (1.1) reflects size diffusion (with diffusion rate scaled to 1). For the particular case a(x) = ax γ , b(x, y) = 2 y , 0 < x < y , with γ ≥ 0, the steady state can be computed explicitly and reveals a good agreement with experimental data when γ = 1 as shown in [START_REF] Ferkinghoff-Borg | Competition between diffusion and fragmentation: An important evolutionary process of nature[END_REF][START_REF] Mathiesen | Dynamics of crystal formation in the greenland NorthGRIP ice core[END_REF]. A comparison of the steady state with the length distribution of α-helices of proteins is also reported in [START_REF] Ferkinghoff-Borg | Competition between diffusion and fragmentation: An important evolutionary process of nature[END_REF]. The experimental curves exhibit a peak for small sizes with a power law behavior near zero and a fast decaying tail for large sizes. The above mentioned explicit steady state matches these two features.

Since the existence of (non-explicit) stationary solutions to the fragmentation equation with diffusion has been established for a rather large class of fragmentation coefficients [START_REF] Ph | Steady states for a fragmentation equation with size diffusion[END_REF][START_REF] Laurenc | The fragmentation equation with size diffusion: Well-posedness and longterm behavior[END_REF], a first question motivated by the findings in [START_REF] Ferkinghoff-Borg | Competition between diffusion and fragmentation: An important evolutionary process of nature[END_REF] is whether explicit solutions can be computed for a broader choice of fragmentation coefficients than the particular choice above. The next result shows that this is indeed the case. Owing to the linearity of (1.1), we use the total mass

M 1 (f ) := ∞ 0 xf (x) dx
as a normalization parameter.

Proposition 1.1. Assume that there are a > 0, γ ≥ 0 and ν ∈ (-2, 0] such that a(x) = ax γ , b(x, y) = (ν + 2)

x ν y ν+1 , 0 < x < y .

(

1.2)

There is a unique stationary solution f γ,ν to (1.1) such that M 1 (f γ,ν ) = 1. It is given by

f γ,ν (z) = c γ,ν √ az (ν+3)/2 K |ν+1|/(γ+2) 2 √ a γ + 2 z (γ+2)/2 , z ∈ (0, ∞) , (1.3) 
where c γ,ν is a scaling parameter guaranteeing that M 1 (f γ,ν ) = 1 and K ρ denotes the modified Bessel function of the second kind with parameter ρ ≥ 0.

As pointed out above, the solution f γ,0 is already computed in [START_REF] Ferkinghoff-Borg | Competition between diffusion and fragmentation: An important evolutionary process of nature[END_REF] for the case γ ≥ 0 and ν = 0. Note that, if γ = ν = 0, then f 0,0 (z) = ze -z , since K 1/2 (z) = π/(2z)e -z by [7,Equation 10.39.2].

In view of the known properties of modified Bessel functions, an interesting outcome of Proposition 1.1 is the identification of the behavior of the stationary solution f γ,ν for small and large sizes. Specifically, we infer from [7,Equation 10.25.3] that, as z → ∞,

f γ,ν (z) ∼ c γ,ν √ aπ(γ + 2) 2 z (4+2ν-γ)/4 e -2 √
az (γ+2)/2 /(γ+2) (1.4) and from [7, Equations 10.30.2 & 10.30.3] that, as z → 0,

f γ,ν (z) ∼ c γ,ν √ a 2 Γ ν + 1 γ + 2 γ + 2 √ a (ν+1)/(γ+2) z for ν ∈ (-1, 0] , f γ,-1 (z) ∼ -c γ,-1 √ a γ + 2 2 z ln z for ν = -1 , f γ,ν (z) ∼ c γ,ν √ a 2 Γ |ν + 1| γ + 2 γ + 2 √ a |ν+1|/(γ+2)
z ν+2 for ν ∈ (-2, -1) .

(1.5)

In particular, the leading order of the behavior of f γ,ν for large sizes is solely determined by the overall fragmentation rate a and features a stretched exponential tail when a is not constant. The influence of b is in fact only retained in the exponent (4 + 2ν -γ)/4 of the algebraic factor. In contrast, the small size behavior of f γ,ν is prescribed by the daughter distribution function b and reflects the singularity of the latter. Observe that, while f γ,ν may vanish at an arbitrary slower rate near zero, it cannot vanish faster than linearly. It is worth emphasizing here that such a dichotomy is already observed for self-similar solutions to the fragmentation equation without diffusion, see [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF][START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF][START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF].

The observations derived from Proposition 1.1 provide the guidelines and the impetus to investigate the small and large size behaviors of solutions to (1.1) for a broader class of fragmentation coefficients a and b, one aim being to figure out whether the behaviors reported in (1.4) and (1.5) have a generic character. We provide in this paper several results in that direction. Since their statements require specific assumptions on the fragmentation coefficients a and b, we illustrate our findings in the next result on the particular case when a obeys a power law as in Proposition 1.1, while b is of self-similar form. This specific choice allows us to have a concise and rather complete statement. We refer to the subsequent sections for more general results derived under more technical assumptions.

Theorem 1.2. Assume there are γ ≥ 0 and a > 0 such that the fragmentation rate a satisfies

a(x) = ax γ , x > 0 . (1.6) Moreover, assume that the daughter distribution function b is of self-similar form b(x, y) = 1 y h x y , 0 < x < y , (1.7a) 
where h ∈ L 1 ((0, 1), zdz) is a nonnegative function satisfying

1 0 zh(z) dz = 1 (1.7b) and 1 0 z m h(z) dz ≤ χ m , m ≥ m 0 , (1.8) 
for some m 0 ≥ 1 and χ > 0. Set α := (γ + 2)/2. There is a unique solution f to (1.1) with M 1 (f ) = 1, see Proposition 2.1 below, which satisfies:

(a) Large size behavior: For each µ > (α + χ -1)/2, there is κ µ > 0 such that

f (1)x -γ/4 e -√ ax α /α ≤ f (x) ≤ κ µ x 1+α+µ e -√ ax α /α , x ≥ 1 . 
(b) Small size behavior: Either h ∈ L 1 (0, 1) and there is ℓ 0 > 0 such that

f (z) ∼ ℓ 0 z as z → 0 . Or h ∈ L 1 (0, 1) and, if there is λ ∈ [-1, 0] such that H z y ∼ y λ H(z) as z → 0 for all y > 0 , H z y ≤ y λ (y + 1)H(z) , 0 < z < y , (1.9) 
where

H(z) := z 0 yh(y) dy , z ∈ [0, 1] , then f (z) ∼ Λ 0 z 1 z H(y) y 2 dy as z → 0 with Λ 0 := ∞ 0 y 1+λ a(y)f (y) dy .
Theorem 1.2 reveals that the leading order for large sizes is either an exponential for constant rates or a stretched exponential for non-constant power law rates a. It is generic as it does not depend on the daughter distribution function b. The latter might play a role in the algebraic factor which we cannot determine without a detailed knowledge thereof. As for the small size behavior we observe that f cannot vanish faster than linearly as z → 0 and that it is only determined by the behavior of the daughter distribution function for small sizes.

As we shall see below, some of these results extend to non-homogeneous fragmentation rates a and arbitrary daughter distribution functions b. More precisely, after recalling the existence and uniqueness of a solution f to (1.1) in Section 2 for a general class of coefficients a and b, we establish a handful of basic properties thereof including preliminary behaviors of f for small sizes. In Section 3 we deepen this analysis, first addressing the finiteness of negative moments of f under suitable assumptions for general daughter distribution functions b. We then identify precisely the small size behavior of f for self-similar daughter distribution functions b as in (1.7). This provides in particular a proof of Theorem 1.2 (b). We also give an example that f need not have an algebraic behavior near zero. We then turn to the large size behavior of f in Section 4, where we assume a power law for the fragmentation rate a. On the one hand, we derive a lower bound on f by the comparison principle. On the other hand, we use moment estimates and adapt some arguments from [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the selfsimilar fragmentation and growth-fragmentation equations[END_REF] in order to obtain the upper bound on f exhibiting the (stretched) exponential tail. This yields Theorem 1.2 (a). It is worth mentioning that the derivation of exponential bounds for solutions to kinetic equations is a very active field of research nowadays, in particular for Boltzmann equations, see [START_REF] Alonso | A new approach to the creation and propagation of exponential moments in the Boltzmann equation[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Gamba | On pointwise exponentially weighted estimates for the Boltzmann equation[END_REF][START_REF] Pavić-Čolić | Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules[END_REF][START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] and the references therein. Finally, we sketch in Section 5 the computations leading to the explicit solutions given in Proposition 1.1.

Preliminary Results

In this section we recall the existence and uniqueness of a solution to Equation (1.1) established in [START_REF] Laurenc | The fragmentation equation with size diffusion: Well-posedness and longterm behavior[END_REF] for rather general fragmentation coefficients a and b. Moreover, we shall derive some first qualitative properties for this solution under these general assumptions.

For a precise statement of the existence result we introduce the spaces

X m := L 1 ((0, ∞), x m dx) for m ∈ R. For f ∈ X m and m ∈ R, we define the moment M m (f ) of order m of f by M m (f ) := ∞ 0 x m f (x) dx .
Throughout the paper we assume that the overall fragmentation rate a satisfies

a ∈ L ∞,loc ([0, ∞)) , a > 0 a.e. in (0, ∞) , lim inf x→∞ a(x) ∈ (0, ∞] , (2.1) 
while the daughter distribution function b is a positive measurable function on (0, ∞) 2 satisfying

y 0 xb(x, y) dx = y , y ∈ (0, ∞) , (2.2) 
and

δ 2 := inf y>0 1 - 1 y 2 y 0 x 2 b(x, y) dx > 0 . (2.3)
These assumptions ensure in particular the existence and uniqueness of a solution to (1.1):

Proposition 2.1. Assume that the fragmentation coefficients a and b satisfy (2.1), (2.2), and

(2.3). Then Equation (1.1) has a unique nonnegative solution f ∈ C([0, ∞)) ∩ C ∞ ((0, ∞)) satisfying f ∈ m>-1 X m , af ∈ m>-1 X m , f ′′ ∈ m≥1 X m and M 1 (f ) = 1. Moreover, lim z→∞ f (z) = lim z→∞ zf ′ (z) = 0 . (2.4) 
Proof. The existence and uniqueness of a nonnegative solution 

f ∈ C([0, ∞)) ∩ C ∞ ((0, ∞)) to (1.1) such that f , f ′′
M m (af ) ≤ a L∞(0,1) M m (f ) + M 1 (af ) < ∞ ,
so that the function af also belongs to X m .

General assumption: Throughout the remainder of this paper, we assume that the fragmentation coefficients a and b satisfy (2.1), (2.2), (2.3) and f denotes the unique nonnegative solution

f ∈ C([0, ∞)) ∩ C ∞ ((0, ∞)) to Equation (1.1) with M 1 (f ) = 1 provided in Proposition 2.1.
We now derive from (1.1) an alternative differential equation satisfied by f which only involves the first derivative of f . The proof is based on a conservative formulation of the fragmentation operator as a first order derivative, see, e.g., [START_REF] Banasiak | Analytic methods for coagulation-fragmentation models[END_REF]Proposition 10

.1.2]. Proposition 2.2. For z ∈ (0, ∞), f (z) -zf ′ (z) = ∞ z a(y)f (y) z 0 xb(x, y) dxdy .
(2.5)

Equivalently, for z ∈ (0, ∞), d dz f (z) z = - 1 z 2 ∞ z a(y)f (y) z 0 xb(x, y) dxdy . (2.6)
Proof. We sketch the proof for the sake of completeness. Consider ϑ ∈ C ∞ c (0, ∞). We multiply (1.1a) by xϑ(x) and integrate the resulting identity over (0, ∞). Since af ∈ X 1 , we may apply Fubini's theorem to obtain

- ∞ 0 xϑ(x)f ′′ (x) dx = ∞ 0 a(y)f (y) y 0 x[ϑ(x) -ϑ(y)]b(x, y) dxdy .
(2.7)

On the one hand, integrating by parts the term on the left-hand side of (2.7), we find

- ∞ 0 xϑ(x)f ′′ (x) dx = ∞ 0 (xϑ ′ (x) + ϑ(x))f ′ (x) dx = ∞ 0 (xf ′ (x) -f (x))ϑ ′ (x) dx .
On the other hand, using Fubini's theorem again, along with (2.2), gives

∞ 0 a(y)f (y) y 0 x[ϑ(x) -ϑ(y)]b(x, y) dxdy = - ∞ 0 a(y)f (y) y 0 xb(x, y) y x ϑ ′ (z) dzdxdy = - ∞ 0 ϑ ′ (z) ∞ z a(y)f (y) z 0 xb(x, y) dxdydz .
Collecting the above identities leads us to the formula

∞ 0 (zf ′ (z) -f (z))ϑ ′ (z) dz = - ∞ 0 ϑ ′ (z) ∞ z a(y)f (y) z 0 xb(x, y) dxdydz ,
from which we deduce that there is Recalling (2.4) we may then take the limit z → ∞ in (2.8) and deduce that J = 0, thereby completing the proof of (2.5). Finally, (2.6) is a straightforward consequence of (2.5).

J ∈ R such that zf ′ (z) -f (z) + ∞ z a(y)f (y) z 0 xb(x, y) dxdy = J , z ∈ (0, ∞) . ( 2 
We next turn to some monotonicity and positivity properties of f .

Proposition 2.3. The function f is positive in (0, ∞) and z → f (z)/z is decreasing on (0, ∞).
Proof. Set z 0 := inf{z ∈ (0, ∞) : f (z) = 0} and assume for contradiction that z 0 > 0. Then the continuity of f implies that f (z 0 ) = 0 and we infer from (2.6) that f (z) = 0 for z ≥ z 0 . On the one hand, since f ∈ C 1 (0, ∞), we deduce that f ′ (z 0 ) = 0. On the other hand,

u := -f ∈ C([0, z 0 ]) satisfies u ′′ -au ≥ 0 in (0, z 0 ) , u(0) = u(z 0 ) = 0 , u(z 0 ) > u(z) , z ∈ (0, z 0 ) .
Hopf's boundary lemma, see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Lemma 3.4], then implies the contradiction -f ′ (z 0 ) = u ′ (z 0 ) > 0.

Consequently, f > 0 in (0, ∞), from which the strict monotonicity of z → f (z)/z follows due to (2.6).

Bearing in mind that Proposition 2.2 ensures that f belongs to X m for all m > -1, we next investigate more precisely the small size behavior of f and first report the following identities.

Lemma 2.4. Let θ ∈ [0, 1]. For ξ > 0, define I θ (ξ) := ∞ ξ a(y)f (y) y 0 max{x, ξ} θ-1 -y θ-1 1 -θ xb(x, y) dxdy ≥ 0 for θ ∈ [0, 1) , I 1 (ξ) := ∞ ξ a(y)f (y) y 0 ln y max{x, ξ} xb(x, y) dxdy ≥ 0 .
Then I θ is non-increasing on (0, ∞) and

ξ θ-1 f (ξ) + θ ∞ ξ z θ-2 f (z) dz = I θ (ξ) , ξ > 0 . (2.9) 
Proof. On the one hand, it follows from (2.4) that

- ∞ ξ z θ d dz f (z) z dz = -z θ-1 f (z) z=∞ z=ξ + θ ∞ ξ z θ-2 f (z) dz = ξ θ-1 f (ξ) + θ ∞ ξ z θ-2 f (z) dz .
On the other hand, by Fubini-Tonelli's theorem,

∞ ξ z θ-2 ∞ z a(y)f (y) z 0 xb(x, y) dxdydz = ∞ ξ a(y)f (y) y ξ z θ-2 z 0 xb(x, y) dxdzdy = ∞ ξ a(y)f (y) y 0 xb(x, y) y max{x,ξ} z θ-2 dzdxdy = I θ (ξ) .
Identity (2.9) is now a straightforward consequence of (2.6) and the above two formulas. We finally note for y ≥ ξ 2 > ξ 1 > 0 and θ ∈ [0, 1) that

y 0 max{x, ξ 1 } θ-1 -y θ-1 1 -θ xb(x, y) dx ≥ y 0 max{x, ξ 2 } θ-1 -y θ-1 1 -θ xb(x, y) dx ≥ 0
since b is nonnegative. Hence, after integrating the above inequality with respect to y over (ξ 2 , ∞) and using the nonnegativity of a and f ,

I θ (ξ 1 ) ≥ ∞ ξ 2 a(y)f (y) y 0 max{x, ξ 1 } θ-1 -y θ-1 1 -θ xb(x, y) dxdy ≥ I θ (ξ 2 ) ≥ 0 ,
as claimed. A similar argument gives the monotonicity of I 1 .

A first consequence of Lemma 2.4 is that the integrability properties of f near zero stated in Proposition 2.1 cannot be improved in general and that f does not necessarily belong to X -1 . We actually derive a necessary and sufficient condition for f to belong to X -1 . A similar result is available for self-similar solutions to the fragmentation equation without size diffusion, see [START_REF] Biedrzycka | Self-similar solutions of fragmentation equations revisited[END_REF] and [START_REF] Banasiak | Analytic methods for coagulation-fragmentation models[END_REF]Proposition 10.1.3].

Lemma 2.5. The function f belongs to X -1 if and only if

(x, y) → a(y)f (y)xb(x, y)[ln (y/x)] + ∈ L 1 ((0, ∞) 2 ) .
(2.10)

More precisely,

M -1 (f ) = ∞ 0 a(y)f (y) y 0 xb(x, y) ln y x dxdy .
Proof. Let ξ > 0. According to (2.9) (with θ = 1), Recalling the boundary condition (1.1b), we are then in a position to take the limit ξ → 0 in (2.11) and conclude that f ∈ X -1 and satisfies the identity stated in Lemma 2.5. Conversely, assuming that f ∈ X -1 , we infer from (1.1b), (2.11), and the monotonicity of

f (ξ) + ∞ ξ f (z) z dz = I 1 (ξ) = ∞ ξ a(y)f (y) 
I 1 that sup ξ>0 I 1 (ξ) = M -1 (f ) < ∞ .
Fatou's lemma then entails that

∞ 0 a(y)f (y) y 0 xb(x, y) ln y x dxdy ≤ lim inf ξ→0 I 1 (ξ) ≤ M -1 (f ) ,
from which (2.10) follows.

In particular, Lemma 2.5 implies that f cannot vanish algebraically at zero when (2.10) is not satisfied, see Example 3.7 below where this is made explicit.

Another consequence of Lemma 2.4 is that f cannot vanish faster than linearly at zero, so that f ∈ X -2 .

Lemma 2.6. The function f does not belong to X -2 . More precisely,

lim z→0 f (z) z = sup ξ>0 I 0 (ξ) ∈ (0, ∞] .
Proof. Let ξ > 0. In view of Lemma 2.4 (with θ = 0),

f (ξ) ξ = I 0 (ξ) = ∞ ξ a(y)f (y) y 0 1 max{x, ξ} - 1 y xb(x, y) dxdy , so that lim ξ→0 f (ξ) ξ = sup ξ>0 I 0 (ξ) ∈ (0, ∞] ,
thanks to the monotonicity of I 0 and the positivity of a, b, and f , the latter being due to Proposition 2.3.

Small Size Behavior

We next investigate in more detail the qualitative behavior of the solution f to Equation (1.1) for small sizes. It turns out to be determined predominantly by the daughter distribution function b and requires no further qualitative properties of the fragmentation rate a. In the first part we consider a general distribution function b and subsequently assume a distribution function of self-similar form (1.7).

3.1. Small Size Behavior: General Daughter Distribution Functions. Building upon the outcome of Lemma 2.6, we first provide a sufficient condition on b, stating that fragmentation produces a finite number of daughter particles, which guarantees that f behaves linearly at zero. Proof. By Proposition 2.1, the function af belongs to X 0 = L 1 (0, ∞) and we infer from (3.1) that ℓ 0 is finite. Moreover, Lebesgue's convergence theorem ensures that

ℓ 0 = lim ξ→0 I 0 (ξ) = sup ξ>0 I 0 (ξ) .
Proposition 3.1 then readily follows from Lemma 2.6.

Due to the fact that the left-hand side of (2.9) involves two positive terms when θ ∈ (0, 1), it is less obvious to derive properties on f from Lemma 2.4 for such exponents. Nevertheless, an assumption in the spirit of (3.1) allows us to get the following information on the small size behavior of f : Proposition 3.2. Assume that there is m ∈ (0, 1) such that

N m := sup y>0 1 y m y 0 x m b(x, y) dx < ∞ . (3.2) Then f ∈ X m-2 with m(1 -m)M m-2 (f ) = ∞ 0 a(y)f (y) y 0 x x m-1 -y m-1 b(x, y) dxdy and lim z→0 z m-1 f (z) = 0 .
Proof. Recall first that af ∈ X m by Proposition 2.1. Therefore, owing to (3.2), the monotonicity of I m established in Lemma 2.4, and Lebesgue's dominated convergence theorem, we obtain that

ℓ m := ∞ 0 a(y)f (y) y 0 x x m-1 -y m-1 b(x, y) dxdy < ∞ and lim ξ→0 I m (ξ) = sup ξ>0 I m (ξ) = ℓ m 1 -m . (3.3) 
We now deduce from (2.9) (with θ = m) and (3.3) that

0 ≤ ξ m-1 f (ξ) + m ∞ ξ z m-2 f (z) dz ≤ ℓ m 1 -m (3.4a) and lim ξ→0 ξ m-1 f (ξ) + m ∞ ξ z m-2 f (z) dz = ℓ m 1 -m . ( 3 

.4b)

A first consequence of (3.4) and

f ≥ 0 is that f ∈ X m-2 with m(1 -m)M m-2 (f ) ≤ ℓ m and that lim ξ→0 ξ m-1 f (ξ) = ℓ m 1 -m -mM m-2 (f ) ∈ [0, ∞) .
We then observe that the above small size behavior of f only complies with the integrability property f ∈ X m-2 when this limit is zero. This completes the proof.

We supplement Proposition 3.2 with a sufficient condition on b preventing f to lie in X m-2 .

Proposition 3.3. Assume that there is m ∈ (0, 1) such that the set

S := y ∈ (0, ∞) : y 0 x m b(x, y) dx = ∞ (3.5) has positive measure. Then f ∈ X m-2 .
Proof. Let n ≥ 1 and j ≥ 1 be integers and define S(n, j) := y ∈ (1/j, ∞) :

y 1/j
x m b(x, y) dx ≥ n .

On the one hand, S(n, j) ⊂ S(n, j + 1) , j ≥ 1 , and S ⊂ S(n

) := ∞ j=1 S(n, j) . (3.6) 
On the other hand, for n ≥ 1 and j ≥ 1, it follows from (2.2), Proposition 2.1, and the definition of S(n, j) that

(1 -m)I m (1/j) = ∞ 1/j a(y)f (y) y 0 max{x, 1/j} m-1 -y m-1 xb(x, y) dxdy ≥ ∞ 1/j a(y)f (y) y 1/j x m b(x, y) dxdy - ∞ 1/j y m a(y)f (y)dy ≥ S(n,j) a(y)f (y) y 1/j x m b(x, y) dxdy -M m (af ) ≥ n S(n,j) a(y)f (y)dy -M m (af ) .
Therefore, in view of (3.6) and Proposition 2.1,

(1 -m) sup ξ>0 I m (ξ) ≥ n lim j→∞ S(n,j) a(y)f (y)dy -M m (af ) = n S(n) a(y)f (y)dy -M m (af ) ≥ n S a(y)f (y)dy -M m (af ) .
Since a and f are positive in (0, ∞) and S has positive measure, we may let n → ∞ in the above inequality to conclude that sup

ξ>0 I m (ξ) = ∞ .
It then follows from (2.9) (with θ = m) and the monotonicity of

I m that lim ξ→0 ξ m-1 f (ξ) + m ∞ ξ z m-2 f (z) dz = ∞ . (3.7)
Observing that the monotonicity of z → f (z)/z established in Proposition 2.3 implies that

ξ m - ξ m 2 m f (ξ) ξ ≤ m ξ ξ/2 z m-1 f (z) z dz ≤ m ∞ ξ/2 z m-2 f (z) dz ,
we infer from (3.7) and the above inequality that

m 1 + 2 m 2 m -1 lim ξ→0 ∞ ξ/2 z m-2 f (z) dz ≥ lim ξ→0 ξ m-1 f (ξ) + m ∞ ξ z m-2 f (z) dz = ∞ .
Hence, f ∈ X m-2 and the proof is complete.

3.2. Small Size Behavior: Self-Similar Daughter Distribution Functions. We next aim at a more precise identification of the small size behavior of f and focus in this section on self-similar daughter distribution functions b in the sense that b satisfies (1.7). Since the case h ∈ L 1 (0, 1) is already studied in Proposition 3.1, we consider the complementary case h ∈ L 1 (0, 1).

Proposition 3.4. Suppose that h ∈ L 1 (0, 1) . (3.8) Define H(z) := z 0 yh(y) dy , z ∈ [0, 1],
and assume that there are two positive and measurable functions L ≥ L 0 on (0, ∞) such that

H z y ≤ L(y)H(z) , y ∈ (z, ∞) , z ∈ (0, 1) , (3.9a) 
H z y ∼ L 0 (y)H(z) as z → 0 for all y > 0 .

(3.9b)

If ∞ 0 ya(y)L(y)f (y) dy < ∞ , (3.10) then f (z) ∼ Λ 0 z 1 z H(y) y 2 dy as z → 0 , (3.11) 
where

Λ 0 := ∞ 0 ya(y)L 0 (y)f (y) dy < ∞ .
Remark 3.5. It actually follows from (3.9b) and [5, Theorem 1.4.1] that there is λ ∈ R such that L 0 (y) = y λ for y > 0. Furthermore, since H(z/y) ≤ H(z) for y > 1 > z > 0, we readily deduce from (3.9b) that L 0 (y) ≤ 1 for y > 1. Thus, λ ≤ 0.

Proof. Owing to (1.7), we infer from (2.6) that, for z > 0, d dz

f (z) z = - 1 z 2 ∞ z a(y)f (y) z 0 x y h x y dxdy = - 1 z 2 ∞ z ya(y)f (y) z/y 0 xh(x) dxdy = - 1 z 2 ∞ z ya(y)f (y)H z y dy . (3.12)
Note that (3.9), (3.10), and Lebesgue's convergence theorem imply

lim z→0 1 H(z) ∞ z ya(y)f (y)H z y dy = Λ 0 .
Combining this property with (3.12) gives d dz

f (z) z ∼ -Λ 0 H(z) z 2 = Λ 0 d dz 1 z H(y) y 2 dy as z → 0 . (3.13) Since 1 ξ H(y) y 2 dy = ξ 0 zh(z) 1 ξ dy y 2 dz + 1 ξ zh(z) 1 z dy y 2 dz = H(ξ) ξ + 1 ξ h(z) dz -1 ≥ 1 ξ h(z) dz -1
by (1.7) and Fubini-Tonelli's theorem, it follows from (3.8) that H ∈ L 1 ((0, 1), z -2 dz). This property, along with (3.13), implies (3.11) after integration.

To illustrate the somewhat abstract outcome of Proposition 3.4, we now provide a couple of examples. We begin with the classical case of a non-integrable negative power law [START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF][START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF].

Example 3.6. Assume that there is ν ∈ (-2, -1] such that h(z) = (ν + 2)z ν , z ∈ (0, 1) .
According to the selected range of ν, h obviously satisfies (3.9) with L 0 (y) = L(y) = y -(ν+2) . Since -ν -1 ≥ 0, Proposition 2.1 guarantees that af ∈ X -ν-1 and thus that (3.10) is satisfied. We may then apply Proposition 3.4 to conclude that, for ν = -1,

f (z) ∼ Λ 0 z| ln z| as z → 0 while, for ν ∈ (-2, -1), f (z) ∼ Λ 0 |ν + 1| z ν+2 as z → 0 .
The previous example shows in particular that the small size behavior (1.5) of the explicit solutions derived in Proposition 1.1 is generic in the sense that it is valid for arbitrary fragmentation rates a.

We next turn to a particular case which we believe to be of interest as it features a higher singularity at zero than the previous examples as well as a non-algebraic behavior of f at zero. Example 3.7. Let θ ∈ (0, 1) be fixed and set

h(z) = θ(1 -ln z) -θ-1 z -2 , z > 0 . (3.14) 
In particular,

1 0 zh(z) dz = 1 , 1 0 z |lnz| h(z) dz = ∞ ,
so that f ∈ X -1 in this case according to Lemma 2.5. Moreover,

H(z) = (1 -ln z) -θ , z > 0 ,
and (3.9) is satisfied with L 0 ≡ 1 and L(y) = max{y, 1}/y, y > 0, the latter being a consequence of the inequality

y 1 + ln y 1 + | ln z| -θ ≤ max{y, 1} , y ∈ (z, ∞) , z ∈ (0, 1) .
Since af ∈ X 0 ∩ X 1 by Proposition 2.1, assumption (3.10) is satisfied and Proposition 3.4 implies that

f (z) ∼ Λ 0 z 1 z (1 -ln y) -θ y 2 dy ∼ Λ 0 (1 -ln z) -θ as z → 0 ,
the second equivalence being derived by L'Hospital's rule.

We finish off this section with the proof of Theorem 1.2 (b).

Proof of Theorem 1.2 (b). If h ∈ L 1 (0, 1), then Theorem 1.2 (b) readily follows from Proposition 3.1.

If h / ∈ L 1 (0, 1), then we infer from (1.9) that h satisfies (3.9a) with L(y) = y λ (y + 1) and (3.9b) with L 0 (y) = y λ . Since af belongs to X 1+λ by Proposition 2.1, the assumption (3.10) is also satisfied. We may then apply Proposition 3.4 to complete the proof.

Large Size Behavior

We now turn to the large size behavior of f . In contrast to the small size behavior which is dominated by the properties of the daughter distribution function b, the behavior of f for large sizes is determined by the fragmentation rate a. For a fragmentation rate satisfying (1.6), we summarize the outcome in the following proposition, which is in accordance with the special case (1.4). For its statement we introduce, for m ∈ (1, ∞),

δ m := inf y>0 1 - 1 y m y 0 x m b(x, y) dx (4.1)
and recall that δ 2 > 0 by assumption (2.3).

Proposition 4.1. Assume that there are γ ≥ 0 and a > 0 such that a(x) = ax γ and set α := (γ+2)/2. Assume further that there are χ ≥ 0 and m 0 ≥ 1 such that

1 - χ m ≤ δ m ≤ 1 , m ≥ m 0 .
Given µ > (α + χ -1)/2, there is κ µ > 0 such that Actually, the derivation of the lower bound on f provided in Proposition 4.1 requires only an upper bound on a, while the upper bound on f only depends on a lower bound on a, provided a grows at most algebraically. We thus distinguish these cases in the following. 4.1. Lower Bound. We first derive the stated lower bound on f in Proposition 4.1 under slightly more general assumptions. Lemma 4.2. Assume that there are γ ≥ 0 and a * > 0 such that

f (1)x -γ/4 e - √ ax α /α ≤ f (x) ≤ κ µ x 1+α+µ e - √ ax α /α , x ≥ 1 .
a(x) ≤ a * x γ , x ≥ 1 . (4.2) 
Then, setting α = (γ + 2)/2,

f (x) ≥ f (1)x -γ/4 e √ a * x α /α , x ≥ 1 .
Proof. Set η := √ a * /α and

σ ε (x) := f (1)x -γ/4 e -ηx α -ε , x ≥ 1 ,
for ε ∈ (0, 1). We note that the choice of η and α guarantees that, for x ≥ 1,

-σ ′′ ε (x) + a * x γ σ ε (x) = f (1) - γ(γ + 4) 16 x -(γ+8)/4 + αη α - γ 2 -1 x (γ-4)/4 e -ηx α + f (1) a * -α 2 η 2 x 3γ/4 e -ηx α -εa * x γ = - f (1)γ(γ + 4) 16 x -(γ+8)/4 e -ηx α -εa * x γ , so that -σ ′′ ε (x) + a * x γ σ ε (x) ≤ 0 , x ∈ (1, ∞) . Now, let X ε > 1/ε be such that f (1)X -γ/4 ε e -ηX α ε ≤ ε . Then σ ε (X ε ) ≤ 0 ≤ f (X ε ), while σ ε (1) = f (1)e -η -ε ≤ f (1). Consequently, since -f ′′ (x) + a * x γ f (x) ≥ -f ′′ (x) + a(x)f (x) ≥ 0 , x ∈ (0, ∞) ,
in view of (1.1a), (4.2), and the non-negativity of f , we may apply the comparison principle on (1, X ε ) to obtain f (x) ≥ σ ε (x) , x ∈ [1, X ε ] . We then let ε → 0 in the above inequality to complete the proof. .

Consequently, 1 -δ m ≤ (1 -δ 2 ) m-1 < 1.
The monotonicity of δ m is then a direct consequence of that of m → z m on (1, ∞) for any z ∈ (0, 1).

Lemma 4.4. Assume that there are γ ≥ 0, a * > 0, χ > 0, and m 0 ≥ 1 such that a(x) ≥ a * x γ , x > 0 , (4.3)

and 1 - χ m ≤ δ m ≤ 1 , m ≥ m 0 . (4.4) 
Setting α = (γ + 2)/2, assume further that there are ξ ≥ γ and K > 0 such that

a(x) ≤ Kx ξ , x ≥ 1 . (4.5) 
Then, for any µ > (α + χ -1)/2, there is

κ µ > 0 such that f (x) ≤ κ µ x 1+α+µ+ξ-γ e -√ a * x α /α , x ≥ 1 . Proof. Let µ > (α + χ -1)/2 and set ε µ := (2µ + 1 -α -χ)/4 > 0. Consider m µ ≥ 2 such that m µ α ≥ µ + 1 + χ , max χ(µ + α) m µ α -µ , µ(µ + 1) m µ α ≤ ε µ . (4.6) 
For m ≥ m µ , we multiply (1.1a) by x mα-µ and integrate over (0, ∞) to obtain, thanks to Proposition 2.1 and Fubini's theorem,

(mα -µ) ∞ 0 x mα-µ-1 f ′ (x) dx + ∞ 0 x mα-µ a(x)f (x) dx = ∞ 0 a(y)f (y) y 0
x mα-µ b(x, y) dxdy .

Integrating once more by parts, we further obtain

-(mα -µ)(mα -µ -1) ∞ 0 x mα-µ-2 f (x) dx + ∞ 0 x mα-µ a(x)f (x) dx ≤ (1 -δ mα-µ ) ∞ 0 y mα-µ a(y)f (y)dy .
Hence,

δ mα-µ ∞ 0 x mα-µ a(x)f (x) dx ≤ (mα -µ)(mα -µ -1) ∞ 0 x mα-µ-2 f (x) dx ,
which gives, together with (4.3) and the property mα

-2 = (m -2)α + γ, a * δ mα-µ M m ≤ (mα -µ)(mα -µ -1)M m-2 , m ≥ m µ , (4.7) 
where

M m := ∞ 0 x mα+γ-µ f (x) dx .
Now, set η := √ a * /α and consider N ≥ max{m µ + 2, (χ + ε µ )/α}. On the one hand, we infer from

(4.6) that (mα -µ)(mα -µ -1) m(m -1)α 2 = 1 - 2µ + 1 -α (m -1)α + µ(µ + 1) m(m -1)α 2 ≤ 1 - 2µ + 1 -α -ε µ (m -1)α for m ≥ m µ , so that R := N m=mµ (mα -µ)(mα -µ -1) m! η m M m-2 = a * N m=mµ (mα -µ)(mα -µ -1) m(m -1)α 2 η m-2 (m -2)! M m-2 ≤ a * N m=mµ η m-2 (m -2)! M m-2 -a * N m=mµ 2µ + 1 -α -ε µ (m -1)α η m-2 (m -2)! M m-2 .
Hence,

R ≤ a * N -2 m=mµ-2 η m m! M m -a * 2µ + 1 -α -ε µ α N -2 m=mµ-2 η m (m + 1)! M m ≤ a * N -2 m=mµ-2 η m m! M m -a * 2µ + 1 -α -ε µ α N -2 m=mµ η m (m + 1)! M m . (4.8)
On the other hand, by (4.4) and (4.6),

δ mα-µ ≥ 1 - χ mα -µ = 1 - χ (m + 1)α - χ(µ + α) (m + 1)(mα -µ)α ≥ 1 - χ + ε µ (m + 1)α
for m ≥ m µ , and

L := a * N m=mµ δ mα-µ η m m! M m ≥ a * N m=mµ η m m! M m -a * χ + ε µ α N m=mµ η m (m + 1)! M m ≥ a * N -2 m=mµ η m m! M m -a * χ + ε µ α N -2 m=mµ η m (m + 1)! M m + a * N m=N -1 η m m! 1 - χ + ε µ α(m + 1) M m .
Thus, noticing that the last term is nonnegative due to the choice of N,

L ≥ a * N -2 m=mµ η m m! M m -a * χ + ε µ α N -2 m=mµ η m (m + 1)! M m . (4.9) 
Since L ≤ R by (4.7), it follows from (4.8) and (4.9) that

a * 2µ + 1 -α -χ -2ε µ α N -2 m=mµ η m (m + 1)! M m ≤ 2a * α C 1 (µ) ,
where

C 1 (µ) := α 2 mµ-1 m=mµ-2 η m m! M m .
Observe that C 1 (µ) is finite due to the integrability properties of f , see Proposition 2.1. Owing to the choice of ε µ , we end up with

ε µ N -2 m=mµ η m (m + 1)! ∞ 0 x mα+γ-µ f (x) dx ≤ C 1 (µ) , from which we deduce that N -1 m=mµ+1 η m m! ∞ 0 x mα+γ-µ-α f (x) dx ≤ ηC 1 (µ) ε µ . Therefore, ∞ 1 N -1 m=0 η m m! x mα+γ-µ-α f (x) dx ≤ ∞ 1 mµ m=0 η m m! x mα+γ-µ-α f (x) dx + ηC 1 (µ) ε µ =: C 2 (µ) ,
and the right-hand side of the above inequality is finite by Proposition 2.1 and does not depend on N. We may then take the limit N → ∞ and deduce from Fatou's lemma that We integrate the above inequality over (y, ∞) for y ≥ z µ and use once more the monotonicity of y → y 1+ξ+α-µ-γ e -ηy α on (z µ , ∞) to obtain f (y) y ≤ KC 2 (µ) ∞ y z 1+ξ+α-µ-γ e -ηz α z 2 dz ≤ KC 2 (µ)y 1+ξ+α-µ-γ e -ηy α y , and thereby complete the proof.

Explicit Solutions

We finally sketch the proof of Proposition 1.1 and recall that we consider the case where a and b are explicitly given by a(x) = ax γ , b(x, y) = (ν + 2)

x ν y ν+1 , 0 < x < y , for some a > 0, γ ≥ 0 and ν ∈ (-2, 0]. With this specific choice of a and b, it follows from (2.5) that f solves That is, Q is a bounded solution to the modified Bessel equation [7, Equation 10.25], from which we deduce that there is a positive constant c > 0 such that Q(y) = cK β/α (y) for y > 0, where K ρ denotes the modified Bessel function of the second kind with parameter ρ ≥ 0. Coming back to P and using (5.3), we end up with 

f (z) -zf ′ (z) = az ν+2
P (z) = cz β K β/α √ az α α = c α √ a β/α √ az α α β/α K β/α √ az α α , z > 0 .

  , and af all belong to X m for any m ≥ 1 and satisfying M 1 (f ) = 1 and (2.4) follow from [14, Theorem 1.5, Proposition 1.6 & Lemma 2.1].Consider next m ∈ (-1, 1). The property f ∈ X m is a consequence of the already known integrability properties of f and f ′′ according to[START_REF] Laurenc | The fragmentation equation with size diffusion: Well-posedness and longterm behavior[END_REF] Lemma 2.1]. Moreover, owing to (2.1),

. 8 )

 8 It now follows from (2.2) and the property af ∈ X 1 that 0 ≤ lim z→∞ ∞ z a(y)f (y) z 0 xb(x, y) dxdy ≤ lim z→∞ ∞ z ya(y)f (y)dy = 0 .

I 0

 0 (ξ) < ∞ and f (z) ∼ ℓ 0 z as z → 0.

Theorem 1 . 2

 12 (a) is then a direct consequence of Proposition 4.1, the latter readily following from Lemma 4.2 (with a * = a) and Lemma 4.4 (with a * = K = a and ξ = γ) below.

4. 2 .Lemma 4 . 3 .x 2

 2432 Upper Bound. We next establish the upper bound stated in Proposition 4.1. To this end, we first provide more information on δ m defined in (4.1). The mapping m → δ m is non-decreasing from (1, ∞) onto (0, 1).Proof. Let us first observe that, if m ≥ 2 and y > 0b(x, y) dx , so that 1 -δ m ≤ 1 -δ 2 < 1 by (2.3). Next, for m ∈ (1, 2), we infer from (2.2) and Jensen's inequality that

∞ 1 ey

 1 ηx α x γ-µ-α f (x) dx ≤ C 2 (µ) . (4.10)To transfer the weighted L 1 -estimate (4.10) to a pointwise estimate, we invoke (2.6) which gives, together with (2.2) and (4.5), 1+ξ+α-µ-γ e -ηy α y γ-µ-α e ηy α f (y) dy for z ≥ 1. We then infer from (4.10) and the monotonicity of y → y 1+ξ+α-µ-γ e -ηy α on (z µ , ∞) thatd dz f (z) z ≤ KC 2 (µ)z ξ+α-µ-γ-1 e -ηz α , z ≥ z µ ,where z α µ := max 1, (1 + ξ + α -µ -γ) + ηα .

2 Q

 2 the above equation and the integrability properties of f that P solves zP ′′ (z) -(γ -ν)P ′ (z)az γ+1 P (z) into (5.2) to obtain that Q solvesy 2 Q ′′ (y) + yQ ′ (y) -y 2 + β α (y) = 0 , y > 0 , lim y→∞ Q(y) = 0 .(5.5)

K

  K ρ (z)) = -z ρ K ρ-1 (z) , (ρ, z) ∈ [0, ∞) 2 ,by[7, Equation 10.29.4], it follows from the explicit formula for P and the chain rule thatP ′ (z) = -c √ (β-α)/α √ az α α z α-1 = -c √ az α+β-1 K (β-α)/α √ az α αfor z > 0. Recalling that f (z) = -z 1+ν-γ P ′ (z) by (5.1), we conclude thatf (z) = c √ az (ν+3)/2 K |ν+1|/(γ+2) √ az α α , z ∈ (0, ∞) ,as claimed in Proposition 1.1.
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