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DEFORMATIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

MERCEDES HAIECH

ABSTRACT. As in algebraic geometry where the formal neighborhood of a point
of a scheme contains informations about the singularities of the object, we ex-
tend this study to schemes where a point represents a solution of an algebraic
differential equation. The obtained geometric object being of infinite dimension,
a first step is to show that the formal neighborhood of a point not canceling the
separant is noetherian, using considerations on the embedding dimension. We
show that, in the neighborhood of points making the separant invertible, the em-
bedding dimension is exactly the order of the considered differential equation. In
a second step, we relate, for a certain type of differential equations of order two,
the existence of essential singular components to the decrease of the embedding
dimension, in the neighborhood of certain points.

INTRODUCTION

The study of the deformations of solutions of differentials equations can be seen
as a natural generalization of the local study of the arc scheme. The arc scheme
is an object introduced by J. NASH in the 60’s in an article published later. It is
constructed as the arcs drawn on a given scheme. More precisely, if X is a scheme
over a field K -in this article K is assumed to be of characteristic zero-, and if A is a
K -algebra, then an A-point of the arc scheme of X correspond to an A[[T']]-point
of X.

On the other hand the arc scheme has a natural definition thanks to differential
algebra. Let K{yi,---,yn} = Klyij | 1 < ¢ < n,j € N] be the ring of
differential polynomials endowed with the derivation A such that A(y; ;) = ¥ j+1-
Then if X = Spec(K[y1, - ,yn]/I) where I is some ideal of K[y1, -+ ,Yn],
then the arc scheme of X, denoted by %, (X), can be described by the K -scheme
Spec(K{yi1, -+ ,yn}/[I]), where [I] stands for the differential ideal generated by
1.

In the case of X = Spec(K|[y1, - ,yn]/I), the ideal that defines the arc
scheme is -differentially- generated by elements of order 0. This idea can be
generalized by studying geometrical objects like Spec(K{y1,- - ,yn}/J) with J
a differential ideal of K{y1,--- ,yn} (not necessarily generated by differentials
polynomials of order 0).

In addition to be some natural generalization of the arc scheme, it has also a
meaning regarding differential algebra. The scheme Spec(K{y1,- - ,yn}/J) can
be understood as the the solutions -which are formal series- of the elements of J
seen as differential equations. In order to underline the link between this object
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and the arc scheme, and since its related to differential equations, we are going to
refer to schemes like Spec(K{y1,--- ,yn}/J) as differential arc schemes.

Motivated by a result about the local structure of the arc scheme at the neigh-
borhood of a rational point by M. GRINBERG & D. KAZHDAN and V. DRINFELD
(see [GKOO] and [Dri02]]) D. BOURQUI & J. SEBAG began the study of the local
structure of differential arc scheme.

Theorem 0.1 (Drinfeld, Grinberg-Kazhdan). Let X be a scheme of finite type over

a field K, let v: Spec K[[T]] — X be a non-degenerated rational arc, i.e an el-

ement of (Lo (X)\ Lo (nSm(X))) (k). We denote by £ (X )., the formal neigh-

borhood of 7y in £ (X). Assume that dim. ) (X) > 1. There exists a K-scheme

S of finite type, a point s € S(k) and an isomorphism of formal K -scheme
Loo(X)y = Sy xp, SpE(K[[(Th)ien]])-

The local structure theorem of the arc scheme states that all the informations
about the formal neighborhood of a rational arc are encoded by a scheme of finite
type although the arc scheme is, in general, not of finite type. The result of D.
BOURQUI & J. SEBAG (see [BS16]) states that for differential arc schemes defined

by a differential equation F’ of order 1 the formal neighborhood of non degenerated
points is a formal disk of dimension 1. More precisely:

Theorem 0.2 (Bourqui-Sebag). Let K be a field of characteristic zero. Let F' €
K{y} be a nonconstant differential polynomial of order 1. Let X° = Spec(K {y}/[F]).
Letve X a(k) be a nonconstant differential arc. Assume that v does not conceal

the separant of F'. Then the formal neighborhood of v, denoted sz, is isomorphic

to Spf(K[[T]]).

A natural question is to ask if this theorem remains true for differential poly-
nomials of order greater than 1. By looking at several examples, it turns out that
it is not simple (see section [6.2). If, in general, for F' a differential polynomial,
the formal neighborhood of a solution of F' = 0 is not easy to compute, we can
show that, as in theorem [0.2] it remains noetherian by looking at the embedding
dimension of the ring.

This article is organized as follow : the first section recalls some facts and theo-
rems about differential algebra. In particular we will states the Low power theorem
due to J. F. RITT with gives a effective way, given F' a differential polynomial, to
decide if a differential polynomial A gives rise to a a essential component of F'. In
the second and third sections we recall the definitions of the functor of deforma-
tions (definition [2.10) and embedding dimension (definition [3.1)) and some useful
properties to deal with it. Along the way, we prove the following theorem

Theorem A. Let (A, M 4) be a local ring. The following assertions are equivalent:
(1) The embedding dimension of the local ring A, denoted emb.dim(A) is
finite.
(2) The completion A= (h_mn A/ of A is noetherian.
(3) The embedding dimension of the local ring ﬁ, denoted emb.dim(/?) is

finite.
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Furthermore, if one of this equivalent conditions is verified, then emb.dim(A) =
emb.dim(A) and the ring A is complete for the M 4 pre-adic topology.

Note that the equivalence (1) < (2) can already be found in [dFD, Lemma
10.12]. The rest is, up to my knowledge, new. Moreover, even if it is well known
that for A a noetherian ring the topology on A is the 93/22 pre-adic topology, this
statement is, in general, false when A is not noetherian (see for example [Yek11]]
or [Hai20]).

In the 4th part, given F' a differential polynomial and v a solution of F' = 0 that
does not conceal the separant of F', we show that the problem of deciding if the
formal neighborhood of F' at -y is noetherian can be reduced to a problem of linear
algebra, and we state that the embedding dimension of the formal neighborhood is
smaller than the order of F'.

Theorem B. Let K be a field of characteristic zero. Let F' € K{y} be a non
constant differential polynomial of order n. Let v € K|[T]]| be a solution of the
ODE F = 0 which does not cancel the separant Sp. Let X° = K{y}/[F). So the

—_

formal neighborhood £,,(X?)., is noetherian and its embedding dimension is less
or equal to n.

This result gives a upper bound for the embedding dimension, but we can have
a more precise result when the embedding dimension is at most one.

Theorem C. Let K be a field of characteritic zero. Let F € K{y} be a non
constant irreducible differential polynomial and X° := Spec(K {y}/[F]) the as-
sociated differential scheme. Let v € K[[T']] be a non constant solution of the
differential equation F = 0. Assume that the embedding dimension of X at ~

is at most 1. Then the formal neighborhood gﬁa ) s isomorphic, as formal
K -scheme, to the formal disk D = Spf(K|[[T']]) of dimension 1.

This statement applies for non constant F' of any order, in particular it allows us
to recover the statement of theorem

Last section investigates the case of particular differentials equations of order
two. For equations F' € K {y} of the form x{—ax}x§ with 7; € {yo, y1, y2 }\{¥jr, ¥ja }
for j1, j2 # 1, called binomomial, the embedding dimension seems to be linked to
the existence of essential singular component. More precisely we have:

Theorem D. Let K be a field of characteristic zero. Let F' € K|yo,y1,y2] an
irreductible polynomial. Assume that the ODE F(y,y',y") = 0 is a bimonomial
equation of order two with constant coefficients. Let d = 2 be an integer such that
Y(T) = T? is a solution of the F = 0 and X° = Spec(K{y}/[F]). If the perfect
differential ideal { F'} has a essential singular component, then edim (O »;0:()(\3),’7) =
1.

However the converse is false, there exist bimonomial equations without essen-
tial singular components such that the embedding dimension in the neighborhood
of a solution is 1.

To conclude, we present, at the end of the last section, various examples of
equations and computations of embedding dimensions.
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1. RECOLLECTION ON THE LOW POWER THEOREM

Let K be a field of characteristic 0. Recall that if (R, +,-) is a ring, a deriva-
tion A on R is a linear application for + and which satisfies the Leibniz Rule
A(ab) = aA(b) + A(a)b. A ring endowed with one, or many derivations is called
a differential ring. An ideal of a differential ring is called differential if it is stable
under the action of the derivations. A differential ideal I of a differential ring R is
say to be perfect of for every a € R, the fact that @™ € I implies a € I.

The notation K {y} will stand for the differential ring (K [y; | i € N|, A), where
the derivation sends an element of K to 0 and satisfies A(y;) = y;+1. If I is an
ideal of K {y}, then {I} will denote the intersection of perfect differential ideals of
K{y} containing I. If F' is an element of K {y} of order ¢, the separant Sr of F'is
oF

Tye.
1.1. Decomposition of perfect differential ideals. Let ' € K{y} be a non-

constant differential polynomial. We will study the decomposition of the ideal
{F'} as intersection of prime differential ideals.

We know that any perfect differential ideal I decomposes into an intersection of
prime differential ideals (see [Rit50, Chapter 1, 16] or [Kap76, Chapter VII, Thm
7.5 & Thm 7.6]). Since {F, S} is a perfect ideal of K {y} there exists irredundant
differential prime ideals P31, . . . , R such that

{F, S} = i B

Furthermore, the 3; are unique up to reordering.

Define ({F'} : SF) as the set of elements A in K{y} such that ASp € {F}.
A classical result of differential algebra can be stated as (see [Kap76, Theorem
7.10]):

Proposition 1.1. Let K be a field of characteristic 0. Let F' € K{y} be an ir-
reducible differential polynomial. Then {F'} have the following decomposition as
intersection of perfect ideals

{F} = ({F}: Sp) 0 {F, Sk}

Moreover ({F} : Sp) is a prime differential ideal. If we denote {F,Sr} =
N3_1Bi, there exists a subset J < {1,...,s} such that the non-redundant irre-
ducible decomposition of the perfect differential ideal J < {1, ..., s} is given by

{F} = ({F}: Sk) 0 (njesFi) -
Definition 1.2. The prime differential ideal ({£'} : Sr) is called component of the

general solution of F EI ; the B, intervening in the formula, the components of the
essential singular solutions of F'

Remark 1.3. Thanks to proposition [I.T| we can deal with cases where the polyno-
mial F' is not irreducible. The irreducible decomposition of the differential ideal

ISometimes we also say general component.
ZWe sometimes also say essential singular components.
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{F} will, indeed, be obtained from this proposition applied to the irreducible fac-
tors of F'.

Let’s illustrate proposition [I.T|by an example from [Kap76, chap VII, 31].

Example 1.4. Let F = y? — 4yy € K{y}. Thanks to proposition we can
decompose the perfect differential ideal {F'} under the form

{F} = ({F}: Sp) 0 {F, Sk}

But S = 2y, hence {F, Sr} = {yo}. Since the ideal {yo} is prime, we have the
decomposition of {F, Sr} as an intersection of prime differential ideal. It remains
to identify the ideal ({F'} : SF), but we already know that it is prime.

The derivative of F' factors: A(F) = 2y;(y2 — 2). We will prove that y; ¢
({F} : Sp). Assume that y; € ({F'} : Sp). Since y; € {F,Sp} and that {F'} is
the intersection of these two ideals we should have y; € {F'}. In particular, this
implies Solx (F') < Solk (y1) = K. But the set

Solg (F) = {z(t) € K[[t]] | F(x(t)) = 0}

contains z(t) = t? which is not an element of Solx (y1). Hence y; ¢ ({F} : Sr),
but since this ideal is prime and contain A(F'), we deduce that (y2 — 2) € ({F} :
Sr). We denote Q = {y? — 4yo,y> — 2}. This ideal is contained in ({F} : Sr)
and is prime because the morphism

K{y}{F,y2 =2} — Klyo,]/<F)

Yo = Yo
Y1 g U1
Y2 — 2
Yi — 0 foriv >3

is a ring isomorphism. But (y? — 40) is a prime ideal of K [yo,y1], hence the ideal
@ is prime. Since {F'} < @, we have

{F}={F}:Sr)n{F,Sr} nQ.
But @ < ({F'} : Sr), then the decomposition of F' as prime ideals is the following:

{F} = {yi — 490,92 — 2} 0 {vo}
and we deduce that {y? — 4yo,y2 — 2} = ({F} : SF).

1.2. Low power theorem. Ritt’s low power theorem is one of the great success of
the Rittian approach to differential algebra. This theorem is a simple algorithmic
statement which fits into the problem of determining the irreducible decomposition
of a perfect ideal {F'} of K{y,...,ys}. Introduced in [Rit50, II] in the case of
one-derivative differential fields, this theorem also finds a presentation in [Kol73,
13,15] in the case of arbitrary finite sets of derivations. In this section, we will
limit ourselves to the case of a differential field K, equipped with a derivation A
possibly trivial as proposed by Ritt.

This theorem exploits an algorithmic preparation procedure, which can be in-
terpreted as a kind of pseudo-division. Here is how the algorithmic preparation

procedure is expressed (see [Rit50, II, 17]).
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Proposition 1.5 (Preparation process). Let A and F' be two differential polynomi-
als of K{y1,...,yn} of the same class h. We note | the order of A and m the order
of F with respect to yy. One notes S 4 the separant of A. There exists two integers
t € N and r € \{0} such that S4F is of the form

SZF — Z CjAPiA(A)iLjAQ(A)ig,j . Am—l(A)im—z,j
j=1

with
(1) the p; and iy, ; are positive integers;
(2) the (m — l)-uplets (i1, - - ,im—1;) are all distinct
(3) the order of the C; is smaller than l in yj, and are not divisible by A.

Example 1.6. (1) Let F' = y% — 4yg and A = yp, then I is already in "pre-
pared" form with¢ = 0,7 = 2, Cy = 1, p1 = 0,411 = 2, Cy = —4,
p2 = 1, and all other integers are 0.
(2) Similarly, if F' = 32 — 4yp and A = gy, then F is already in "prepared"
form witht = 0, r = 2, C7 = 1, p1 = 2 and Cy = —4yq, and all other
integers are zero.

The low power theorem can then be stated as follows (see [Rit50l IT, 20]).

Theorem 1.7 (Low power theorem). Let K be a field of characteristic zero. Let
A, F € K{y} two irreducible differential polynomials.
Let

(1.1) SWF = ) CiAP(A)9 52 (A)29 .. 5™ (A)im-ti
j=1

be a preparation of F with respect to A. So the prime ideal differential {A} : Sy
is an irreducible component of { F'} if and only if

(1) the right part of equation contain a term Cy APx free of proper deriva-
tion of A
(2) for every integer j # k, we have py, < pj + i1 + -+ + bpm—yj- EI

Example 1.8. Let’s go back to the previous examples

(1) Let F = y% — 4y and A = yp, then there is a term of the form —4yy,
where the derivative of A does not appear. And py = 1 < p1 + 111 = 2.
So yy is an irreducible component of {F'}.

(2) If F = y? — 4yo and A = vy, then the first hypothesis of the lower power
theorem is verified, but not the second, so y; isn’t an irreducible component
of {F}.

Let F' € K{y}. If we want to test if {yo} is an essential singular component
of {F'}, the low power theorem takes the following simpler form: the differential
ideal {yo} is a component of { F'} if and only if the expression of F' contains a term

Mtm =1 andcontains a single term of the form Cj, AP¥, the condition will also be regarded
as fulfilled.
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of the form ayg - with a € K- of -total- degree strictly inferior to the degree of any
other (non-zero) monomial appearing in the expression of F'.

2. DEFORMATIONS OF A POINT

This section is a recollection about the space of deformations of a point. Nota-
tions and definitions are introduced in order recall the proof that the functor that
describes the space of deformation (definition [2.10) is representable.

2.1. Notations. In the following K will refer to an arbitrary field. We will define
three categories:

(1) The category Algloc; whose objects are local K -algebras whose residual
field is K-isomorphic to K and whose morphisms are morphisms of local
rings.

(2) The category AlgLC - whose objects are topological and local K -algebras
which are a completion of an object of Alglocy and whose morphisms are
the continuous morphisms of K-algebras.

(3) The category QArt -, which is a full subcategory of AlgL.C-, whose the
objects are the objects of AlgL.C; whose maximal ideal is nilpotent.

Definition 2.1. An object of the category QArt - will be called a quasi-artinian
ring.

Remark 2.2. Let (A, m4) be an object of Alglocy which is noetherian. Then it
is known (see [Mat80, 23.L, Corollary 4]) that the completion of A with respect to
its maximal ideal is complete for the m 4 (pre)adic topology. However this turn out
to be false if A is not noetherian (see [Hai20]).

Remark 2.3. Let (A, 4) an object of Alglocy and B = Jim | A/ its comple-
tion. In addition to the preceding remark let us insist on the fact that the maximum
ideal of B is described by Mp = ?J)/I:;. The natural topology on B (resulting
from its construction as projective limit) is described by the family (S)J/T\Z‘)%N. In
general, the family (m/@)neN does not coincide with the family of powers of the
maximum ideal of B (unless A is Noetherian). If A is not Noetherian, usually
9@ # 93/1:;”. So we’ll take special care to distinguish these two topologies.

Remark 2.4. The category of quasi-Artinian rings is referred to in some references
as test rings (see for example [Dri02} BS17]).

Proposition 2.5. Let (A, m,), (B, mp) be two objects of Alglocy. Let A =
(@HA/IHZ, and B = (liﬂnB/m%. By construction A and B are objects of
AlgLCy,.
Let p: A— Bbea ring morphism.
(1) If the morphism o is continuous, then it’s local;
(2) If the morphism  is local and if the family of ideals (m/t}")neN forms a
base for the topology of A then ( is continuous.
7



Proof. (1) Let’s assume that ¢ is continuous, and let’s show that ! (Mp) = My.
Since ¢ is continuous, then ¢~ (M z) is an open subset of 91 4. In particular, since
0 € ¢~ 1(Mp), there is an integer j such as

My < My < 1 (Mp).
Now since <p*1(93/173) is a prime ideal of A, the previous inclusions imply that

My go_l(i)J/TE). So ¢ is local.
(2) Assume that ¢ is local. Let U be an open B. Let x € o *(U). Since

@(x) € U, there exists an integer j such that ¢(x) + E)ﬁgg < U. Furthermore
Mp’ < ML, So p(z + MA”) < p(z) + Mp’ < U. So o }(U) is an open

subset, thus ¢ is continuous. U
Proposition 2.6. Let (A, m4), (B,mp) be two objects of Alglocy . Let A=
lim A/m", and B = lim B/m%. By construction A and B are objects of
AlgLCy.

Let ¢: A — B be a local ring morphism. So the morphism induced by A—
B is continuous.

Proof. Since the morphism ¢ is local then, for any integer n € IN, the morphism ¢
satisfies Q(IM7) < M.

Let U be an open subset of B. Let z € $~'(U). Since $(x) € U, there exists
an integer j such that ¢(x) + SDZ{B c U. Thus ¢(x + Em]A) c p(x) + 93?% cU.
So $~1(U) is an open subset, hence @ is continuous. O

Proposition 2.7. Let (A,my), (B, mg) be two objets of Alglocy. Let A =
lim A/m", and B = lim B/m%}. Let ¢: A — B be a morphism of local rings.
Then there exists an unique continuous morphism of local rings such that the fol-
lowing diagram is commutative.

ALE
| 4
A.

Proof. Let j be an integer. Since the morphism ¢ is local and that QJ/T;] c im%,
then  induces a morphism of local rings.

pj: A/, — B/, = B/,
Let @ = (ap)neN € A. We note ¢(a) = (¢n(an))nen. Since the morphism ¢ is
local, then ¢(a) € B is well defined. And since every ¢; is local, then ¢ is local.
By constructing of the morphism @, we also have (91 ) < 9%, which implies

that the morphism ¢ is continuous (see previous proof for details).

Uniqueness is verified because A is dense in A and ¢ is continuous. (|
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Remark 2.8. In particular, the proposition[2.7]proves that, if (A, m4), (B, mp) are
two objects of Alglocy, then

Hom ajgloc, (4, B) = Homajgrc, (A, B).
In particular, if B is a quasi-Artinian ring (an object of QArt ), then we have

Homajgloc, (A, B) = HomalgLc, (A, B)

because, in this case, B = B.

2.2. Functor of points. According to the Yoneda’s lemma, we have a fully faith-
ful functor defined on the objects by :
a: AlgLCy, — Func(AlgLCy, Set)
B . hB : Alg]i‘CK i Set o
A = HomAlchK (B, A)

Let BB and C be two objects of AlgL.C . This fully faithful functor is described by
the existence of an isomorphism between Homajgr.c,. (C, B) and Hom(hg, hp).

In other words, a morphism ¢ € Homagrc, (C’ B ) is the same as considering a
collection of morphisms

Hom C, A) — Hom B, A } .

{ AlgLc, (C, A) AlgLc, (B, A) AcALgLC

functorials in A.
This functor « can be restricted to the sub-category QArt .

AlgLC ;. —*= Func(AlgLC/, Set)

T

Func(QArt, Set)

where o/ (B) = hg Ae QArty — HomAlgLCK(E, A).
The following proposition was used in [Dri02]], but the reader can refer to [BS17,
Section 2.1] for more details.

Proposition 2.9. The functor o : A1gLCy — Func(QArt ., Set) is fully faith-
ful.

2.3. Infinitesimal deformations of a rational point. This section is a recollec-
tion of an important description of the deformation space of a rational point, which
is the core of proposition [2.12] The same considerations can be found in [BS17,
Section 2.2].

If X is a K-scheme and x be a K -point of X, we denote Ox ; the stalk of X at
x.

Definition 2.10. Let X be a K-scheme and x be a K-point of X. The space of
deformations of X at x is the functor from the category QArt to Set

A—{zxpe X(A)| T4 =z}

where 74 is the reduction of x4 via the map X (A) — X (k).
9



Lemma 2.11. Let K be a field and R a K-algebra. Given two morphisms of
K-algebras f,g: R — K such that Ker(f) = Ker(g), then f = g.

Proof. Since f and g are morphisms of K -algebras, note that f and g are neces-
sarily surjectives. Thus, the morphism deduced from the universal property of the
quotient R/Ker(f) — K is bijective. Since Ker(f) = Ker(g), we deduce the
following commutative diagram by the universal property of the quotient.

R—1 =K
R/Ker(f)
Now the only morphism of K -algebra between K and K is the identity. So § = id,
and g = 7y. In the same way we show that f = 7, hence f = g. O

Proposition 2.12. If X is a K-affine scheme, x € X (k) a rational point and A a
quasi-Artinian ring, then

HomAlchK((’m,A) = Homalgloc, (Ox,e) A) = {za€ X(A) |74 =z}
where T 4 is the reduction of x 5 via the map X (A) — X (k).

Remark 2.13. If X is a general scheme a proposition like the previous is also true,
up to working with an affine open neighborhood of z.

Proof. Remark 2.8|already proves the equality
Homaigrc, (Ox,e, A) = Homaigloc, (Ox.z; A4).

We aim to define a bijective map from {z4 € X (A) | z4 = z} to Homajgloc, (Ox 2, 4).
Let’s consider x4 € X (A), which corresponds to a morphism of K-algebraz4: Ox —
A such that 4 = x. Let’s denote Ker(z) = p,.
By universal property of the localization, = 4 factorizes by Ox . if and only if
for y ¢ p, then 2 4(y) is invertible in A. Since y ¢ p,, then ZTa(y) = z(y) # 0. So
x 4 factorizes uniquely :

(’)Xi>A

| A

OX,I
This defines an injective morphism
a: {LL’A € X(A) | T = :L’} - HomAlglocK<OX,xa A)
TA — P g-

It remains to show that o is surjective. Let ¢ € Homajgloc, (Ox 2, A) be a mor-
phism. We denote [,: Ox — Ox , the canonical morphism of localization. We
denote again Ker(z) = p,.

We set 4 = ¢ o l,. By definition of ¢, if y ¢ p,, then x4 (y) is invertible in
A, in other words Z4(y) # 0 (in K). We deduce that y ¢ Ker(z) implies that

y ¢ Ker(z4). In other words Ker(z4) < Ker(x).
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But, we also know that Ker(x) and Ker(z4) are maximum ideals of Ox since
Ox /Ker(z) and Ox /Ker(z4) are K-isomorphic to K. Hence Ker(z4) = Ker(z).

Thanks to lemma[2.T1] this implies that Z4 = x. This proves that « is surjective
and thus the equality

HomAlglocK (OX,xa A) = {wA € X(A> | TA= l’}

3. TANGENT SPACE AND EMBEDDING DIMENSION

In this section, we will present and gather essentially known results on the notion
of tangent space and embedding dimension for general schemes. The material
in this chapter constitutes the key ingredients of the results we will obtain in the
next chapters. Given the role that the statements will play in the following, we
have chosen to present the most important proofs for the ease of reading. Even if
most of the results presented in this chapter are known however, to our knowledge,
corollary [3.9]and proposition [3.10]are new.

3.1. Definition.

Definition 3.1. Let (A, 01 4) be a local ring. The embedding dimension of A is the
dimension of the A/90 4-vector space M 4/9M? and is denoted emb.dim(A).

The tangent space of A is the dual of the K -vector space 014/ 9)1?4 that is de-
noted (M 4/9M%) V.

Remark 3.2. Let (A,9%4) be a local ring and n € N an integer. The A-module
M7, /M7 is endowed with a structure of A/90 4-vector space. If a € A and
be MY then (a + M4) (b + MG = ab + MG

Let (A,9Mt4) be a local K -algebra which residual field is K isomorphic to K.
We denote A/9t4 = K to mean that the structural morphism of K -algebra K —
A/ 4 is an ismorphism. Let 7: A — A/, = K be the quotient morphism.
Let a € A. We denote ap = m(a) € K. Then m(a — ag) = w(a) — ap = 0. Thus
a — ag € M 4. In other words, for every a € A, there exists ap € K and a; € 9y
such that @ = ag + a;. We also observe that this decomposition is unique.

Hence the set Hom g 1gioc, (4, K[€]/(€)?) can be endow with a structure of K-
vector space defined by:

(1) If 1 and g9 are two elements of Hom ajgloc, (4, Kle]/(e)?) and ) € K,
we define
Y1 + Apa: A — K[e]/(e)?
a=ap+a — ag+pi(ar)+ Ap2(ar).

(2) The identity element is given by

OHom A - K[ﬁ]/(6)2
a=ay+a +— agp
11



Moreover, this structure of K -vector space is fonctorial in A, i.e. if¢p: A - B
is a morphism of K-algebras, then the induced morphism

HOIHW’) : HomAlglocK (A7 K[E]/(E)Z) - HomAlglocK (B7 K[E]/(€>2)
¢ = Yoy

is a morphism of K-vector spaces.
Within this framework, we can therefore propose an equivalent definition of the
embedding dimension.

Proposition 3.3. Let (A,9M4) be a local K-algebra whose residual field is K-
isomorphic to K. Then the vector space Hom aigioc . (4, K[€]/(€)?) is isomor-
phic, as K -vector space, to (M 4/ 9)?124) v,

Proof. Let ¢ € Homjgloc,. (4, K[€]/(€)?) and a € A. Then a can be written in a
unique way as a = ag + ay avec ag € K and a; € My. Then p(a) = ag + p(ay),
where p(a1) = epi(ar). The application 1: M4 — K send M? to zero, so
we can quotient. We still note 7 : 94/ 932124 — K the quotient application. This
application is K -linear. So it is a morphism of K-vector spaces.

Let’s define

¢: Homalgloc, (4, K[e]/(6)?) — (Ma/M3)"
¥ = P1-

Let’s check that v is bijective.

Let (ba pE HomAlglocK (A7 K[G]/(G)z), Verifying ¢(¢) = ¢(90) Leta € A.
We write, as before, a in the form a = ag + a1. Then

P(a) = ag + ed1(a1) = ao + ep1(a1) = ¢(a).

Hence ¢ is injective.

Letf € (M4/M?)Y and a = ap + a; € A We define p(a) = ag + €f(ay). Let
a,be A. Since 6 is K-linear, we verify that ¢(a +b) = ¢(a) + ¢(b). Furthermore,
with the notations a = ag+ a1 and b = by + by, since 0 sends 9ﬁ2A to zero, we have

w(ab) = p(apbp+apby +bpai +ai1b1) = apbg+e€(apd(b1)+bof(a1)) = p(a)p(b).

Hence ) is surjective.
We also check that ¢ is a K-linear application. U

Proposition 3.4. Let (A, M 4) be a local K -algebra which residual field K -isomorphic
to K. Then emb.dim(A) the embedding dimension of A is finite if and only if the
dimension of the K -vector space Hom agioc . (A, K [€]/(€)?) is finite. In this case,
these two dimensions are the same.

Proof. According to proposition [3.3] there exists an isomorphism of K-vector

space between Homalgloc,. (4, K [€]/(€)?) and the dual of 94/9M%. We con-

clude since M 4 /MY is of finite dimension if and only if its dual is of finite dimen-

sion. ]
12



3.2. Properties and Characterizations.

Lemma 3.5. Let (A,9M4) be a local ring and A = <h_mnA/i)ﬁﬁ its comple-
tion. Let n € N* be an integer. A/sgtme that there exists an integer d such that
dim 4 o , (M4 /E)JIZH) = d, then M} is an A-module of finite type generated by
at most d elements. - R

In particular, with n = 1, if emb.dim(A) = d then M 4 is a A-module of finite
type generated by at most d elements.

Proof. Since dim 4 o , (91} / M) = d, there exists elements
ap, - aademz

which form a basis of the A/94-vector space M7 /IM4T!. Let’s consider the
morphism of A-modules ¢): A — 9N, e; — a;, where ¢; = (0,---,1,---,0)
with the unique 1 is at the ¢-th position.

According to [Sta, Tag 0315 (1)] if Risaring, I < Ranidealand ¢: M — N
a morphism of R-modules then, if M /IM — N/IN is surjective, then M- N
is also surjective.

By applying this proposition with R = A, [ = M4, M = A4 N = 9" and
= 1, we deduce that the morphism

O U

is surjective (because lim A4/ = lim  AT/ON). O
The following lemma is an adaptation of the lemma [Sta, Tag 05SGH], which

does not apply directly in our context because, in general, if the local ring (A, 01 4)

is not noetherian, then, A = lim A/ and A= Jim | ﬁ/ﬂﬁn are not isomor-
phic (see remark [2.2)). However the proof of the lemma can t be adjusted for our
statement by noticing that if a sequence is Cauchy for the M4 4 pre-adic topology
on A, then this sequence is also Cauchy for the topology that makes A complete.

Lemma 3.6. Let (A, 4) be a local ring and A = lim A/ its completion.
<
Assume that I 4 is an ideal of finite type. Then A is noetherian.

Proof. Let’s denote f1, -+, f: € SD/I:; a generating family of 93/174. Consider the

direct sum B = ®p>0MN An /M An in the category of A-modules. This direct

sum has an additional ring structure. Let’s consider the morphism of rings
A/MQ[Ty, - T — B

which send 7); on f] This morphism is surjective, so B is a noetherian ring.

~ — —~n+1
Let J be an ideal of A. Consider the ideal Jp = @,>0J M zmA”/J N E)ﬁAn+

de B. Since B is noetherian, there exists a finite family g1, - - - g, of elements

of B generating Jp. Up to increasing the family size, we can assume that, for

. _ —d —d;+1 . :
every j, wehave g; € J "My ' /J n My’ for some integer d;. There exists
13
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gji € J NNy ? which maps to g; in the quotient. We will show that the family

g1, ,gm generates J.
. . N ——n+1
Letx € J. There exists an integer n such thatz € Jn9M 4 andx ¢ JnMy

. _ . ; —n —n+1
If we consider z the image of x in J n My /J n M4, we deduce that there
——max(0,n—d;)

exists a family a; € My such that z = 27;1 ajg; since the family
—n+1 o
of the g; generate Jg. Thus x — Z;”Zl ajg; € J n My . By iterating this
process, for every integer N, we can find a family (aj ¢, -+, Gm)n<e<n With
——max(0,{—d;)

ajo € My such that

N m —~N

T = Z Z ajeg; mod My
£=0j=1

We set A; = >,,-aj¢. The sequence (Zévzo aje)NeN is a Cauchy sequence
(for the topology for which A is complete) because, for every integer £ € N,
we have 97{746 c 93/1?4 hence A; is well defined in A. Thus we can write =
2o Ajgjs since N NGNS)J/TTX = 0 (because A is complete -and separate- for the

filtration (9Y)) yen ) which proves that J is of finite type. O

Lemma 3.7. Let (A, 4) be a local ring. The following assertions are equivalent:

(1) The embedding dimension of the local ring (A, 4) is finite.
(2) The completion A of A, with respect to its maximal ideal, is noetherian.

Proof. Assume that dim 4 ox , (M4 /M%) < oo, the by applying 1emma we
6

deduce that 93/2:1 is an ideal of finite type, and then, by appliying lemma |3.
deduce that the ring A is noetherian.

, WC

~ _—9 —
Conversely, if the ring A is noetherian, the inclusion M4 < 9.72124 implies that

— 2
the morphism M 4 /M4~ — M 4/M? is surjective. Hence the embedding dimen-

~

sion of A is finite and emb.dim(A) < emb.dim(A). O

The previous lemma is a result that can be found in [dED, Lemma 10.12] in the
following form.

Remark 3.8. The previous statement can be reformulating as follow from the point
of view of schemes. Let K be a field. Let X be a K-scheme. Let x € X. The
following assertions are equivalent:

(1) The embedding dimension of the local ring Ox , is finite.

(2) The completion Ox ,; of the local ring in z is noetherian.

Corollary 3.9. Let (A,9M4) be a local ring. We denote A = lim A/ the

completion of A. Then emb.dim(A) is finite if and only if emb.dim(A) is finite,
and in this case emb.dim(A) = emb.dim(A).
14



Proof. The fact that emb.dim(A) is finite if and only if emb.dim(ﬁ) is finite, can
be deduced from lemma[3.7]
Let’s assume that these embedding dimensions are finite. Thanks to the inclu-

—9 —
sion My < E)JIQA, we have a surjective morphism of A /9t 4-vector spaces
—_— 9 —_—
Ma/Ma — Ma/IMY = M4/,
Hence emb.dim(A) < emb.dim(ﬁ).

Furthermore, we know thanks to 1emma that 901 4 is generated as A-module
by at most d := emb.dim(A) elements. Denote by uq,--- ,uq € M4 a generat-
ing family of 9t4. Let 2 € M4, then there exists (a1, -- ,aq) € A? such that
T = 2?21 aju;. Letm: A — A/My = A/IM 4 the canonical morphism of pro-

— 2
jection. Since M4 /M4 is endowed with a structure of A/ 4-vector space, we
— 2
can consider the element y = Z?:O m(a;)uw; of M4 /My . Hence z —y = 0 in

My/My . Thus the A/ 4-vector space M4 /M4 is of dimension at most d.
Hence emb.dim(A) < emb.dim(A). O

The above propositions allow us to prove the following statement about ring
completion:

Proposition 3.10. Let (A, 90 4) be a local ring. Let’s denote A = lim A/ the

completion of A. If A is a noetherian ring then Ais complete for the 93/1:; pre-adic
topology.

—n
Proof. We are going to show by induction, that for every n € N, we have 4 =
mry.

For n = 1 there is nothlng to prove.

N . . .
Assume now that T4 9)?” for some integer n. Thanks to the inclusion
——n+1 L. .
Ma < M, we deduce a surjective morphism

on: Ma /" Hzm/smn+1 M

Since A is noetherian, then the A/ 4-vector space mn n/ 93?"“ is of finite dimen-

sion and so 91717}‘ / S)JTZH is also of finite dimension.
We set d = dim 4 9p,, ( m /9N, then, thanks to lemma | we deduce that

/:‘ is an A-module generated by at most d elements. But, by hypothes1s im” =
M A . Denote uy,--- ,uq € M4 A a generating family of M A Letz e My A , then
there exists (aq, - - - ,ad) € A% such that z = Z?zl au;. Let m: A — A/DJTA =
A/9M 4 be the canonical morphism of projection. Since DJ/T;n / SJ/T:XTLH is endowed
with a structure of A/ 4-vector space, we consider the element y = Zf:o m(a;)u;
of Eﬁan/@nﬂ. Hence z —y = 0O in D@n/ﬁ/ﬁ;mrl. Thus the A/ 4-vector

—~n ——n+1 . . .
space M4 /My is of dimension at most d.
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We deduce that ,, is a surjective morphism between two A/ 4-vector spaces

. . e e . ——ntl 1 .
of same dimension, so it is bijective. Hence 91 4 = zmg“. This concludes the
induction. U

Remark 3.11. Proposition is false in general if the ring A is not noetherian as
underlined in remark

Proposition 3.12. Let (A, 4) be a local K-algebra which residuel field is K-
isomorphic to K such that emb.dim(A), the embedding dimension of A, is fi-
nite and equal to d. Zhen there exists a surjective morphism of local K-algebras
K[[.I‘l, s ,.%'d]] — A.

Proof. According to corollary we know that emb.dim(ﬁ) = d. Let’s consider

— — 9 ~

(uy,- -+ ,uq) € My abasis of the K -vector space M 4 /M4 . Let u € A, we will
show by induction that, for every ¢ € IN, there exists an homogeneous polynomial
P,; € K[x1,--- , 4] of total degree ¢ such that, for every n € IN, we have

—~n+1

n
w— Y Pyi(ug,- - uq) € My
i-1

For n = 0, we note that ﬁ/ﬁ)/t:; = K, then if P, o € K denotes the image of u
through the morphism A — A/t 4, we have u — P, o € M 4.

o~ —_— 2
If u € My, then, since the K -vector space M 4 /M 4 is generated by (uy, - -, ug),

there exists P, 1 an homogeneous polynomial of total degree 1 such that u —

—2
Pu,l(ulv' c ,Ud) € S:RA .

—n+1 . .
Now, let u € 9t4 . We will prove that there exists an homogeneous polyno-
. —~n+2
mial P, 41 € K[x1,--- ,24] of total degree n+1 such that u— P, , 11 € M4
: —nt1 . . : ~
Sinceu € My, there exists a finite set J, a family o; € A and (bj;) jes1<i<n+1

a family of elements of 93/171 such that

n+1
u = Z Oéj H bj,i-
jedJ i=1

Without loss of generality, we can assume that, for every j € J, we have o ¢ @.
Then there exists F,; o an homogeneous polynomial of degree O (i.e. an element of
K) such that o — Py, o € M 4. Furthermore, there exists Py, 1 € K[x1,- -+, 24]
homogeneous polynomials of total degree 1 such that, forevery j € Jand 1 < ¢ <
n + 1, we have

2
bjyi — Pbm,l(ulv s ,ud) S gﬁA .
We check that « and
n+1
Punii(ur, - uq) = Z Pu; 0 H Py a(ut, - 5 uq)
jeJ i=1
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. . —ntl  —~—n+42 . .
have the same image in M4 /M4 . To do so, it is sufficient to note that

n+1
——n+2
Z(aj — Paj,O) H(bj’i - ij,i’l(ul, e ,ud)) =0 mod DﬁA
jed i=1

and that by developing the left member, we obtain

——n+2

0=u—Pyni1(ur, - ,uqg) mod My

Ifue ﬁ, this shows the existence, for every ¢ € N, of an homogeneous polyno-
mial P, ; € K[z1,--- ,x4] of total degree i such that, for every integer n € N, we
have

——n+l1

n
w— Y Pui(ur, - uq) € My
i=1

If weset P := ), Py, then P € K[[x1,--- ,x4]] because all of the polynomi-

als P, ; are homogeneous of total degree 7. Furthermore u — P(uq, - ,uq) €
NNeNI4 , and the intersection NMyenIM4 1S zero because NyenIM4 <

mNeng = {0} R
Finally this shows that there is a sujection of K[[z1, - ,x4]] — A, defined by
Ty — Uy;. O

4. A PROPERTY OF NOETHERIANITY OF THE FORMAL NEIGHBORHOODS OF
THE DIFFERENTIAL ARC SCHEME.

Let K be a field of characteristic zero. Let F' € K{y} be a differential polyno-
mial and X? = Spec(K {y}/[F]) be the associated differential arc scheme.

The differential arc scheme X is a scheme of infinite dimension. When we
consider Spec(K{y}/[F]) we forget the differential structure on the K-algebra
K{y}/[F]. Moreover, a K-point of X? is the data of a morphism of K -algebras
~v: K{y}/[F] — K. This data also corresponds to an unique morphism of differ-
ential K -algebras

v(T): K{y}/[F] — KI[[T]]
e . ZV(N(G))Tz‘
7!

1=0

More generally, if A is a K -algebra, we have a bijection

Homaug, (K{y}/[F], A) = Homaigaisr . (K {y}/[F], A[[T]])

functorial in A. In the following, when we are going to consider a solution y(7') €
K|[[T1]] of the differential polynomial F', it will be the same as considering a K-

point y of Spec(K{y}/[F]).
4T e

Remark 4.1. 1If F' € K{y} is a differential polynomial and v(7') = > ;- %
K|[[T]] a solution of F, then the morphism of K-algebras v: K{y}/[F] — K
17



associated to v(7) is defined by
v K{y}/[F] - K

Yi = a;.

Note that Ker(7) is, in general, not a differential ideal of K{y}/[F']. In particular
the stalk of X at ~, denoted by O x2,» Will refer to the ring (K{y}/[F])ker()-
However, if p refers to the ideal (7)) ' ((T")), the stalk of X at ~ this is the same
as considering the ring (K{y}/[F]),.

We denote by )/(\,? the formal neighborhood of v, which is defined by Spf ((’)/Xo\v)
The main point of this chapter is to prove the following result:

Theorem 4.2. Let K be a field of characteristic zero. Let F' € K{y} a differential
polynomial of order n. Let v € K|[[T]]| be a solution of the ODE F = 0 which

does not cancel the separant Sr. So the formal neighborhood X$ is noetherian
and its embedding dimension is less or equal to n.

Remark 4.3. 1f v is a solution of F' = 0. The condition "the separant does not

cancel" can be easily replaced by "there exists i € [0, n], such that 0,, F'(y) # 0".
If, for every integer ¢ € [0,n], we have 0y, F'(y) = 0, then the embedding

dimension is infinite since the linearization (see definition [4.12)) is zero .

The proof will follow the strategy of theorem [0.1] of [GKOO] and [Dri02], by
using the functor of point of theses objects. Our differential problem has the par-
ticularity that it can be "linearized" (see section4.2)), which will reduce the noethe-
rianity problem to a question of linear algebra.

It is important to point out that this property of noetherianity that we obtain is a
substantial difference with the usual algebraic framework and with the statement in
[GKOO] and [Dri02]], where the formal neighborhood is not noetherian even if it is
described by a noetherian scheme. In the study of the formal neighborhoods of the
arc schemes of algebraic varieties this statement is closer to the structural results
of the type obtained in [Reg09, ldED].

4.1. Deformation functor. In the section 2| we have developed the notion of de-
formation in the algebraic framework. In this section, we are going to introduce
the differential deformation functor on the model of the construction of the section
We will also establish similar properties.

Let K be a field of characteristic zero. Recall that a local K -algebra (A, M) is
called quasi-Artinian if its residual field is K -isomorphic to K and if its maximal
ideal is nilpotent. Let ' € K{y}. We denote X° = Spec(K{y}/[F]). Let
v(T) € X(K).

Definition 4.4. The functor of differential deformations of X? at ~ is the functor
A Def (X% A) := {ra e X(A) |ya— € Ma[[T]]}

for every quasi-artinian K-algebra A. Every element v4(T) € Def, (X7, A) is

called differential deformation of ~y.
18



Notation. If X? = Spec(K{y}/[F]), we will denote sometimes Def.,(X?, A) =
Def.,([F], A). And to study the deformations of X%.q = Spec(K{y}/{F}), we
will denote

Def,({F}, 4) == {74 € X{ea(A) | 74 — v € MA[[T]]} .
As in the algebraic framework, we have the following result:

Proposition 4.5. Let K be a field of characteristic zero. Let F € K{y} a non
zero polynomial and v(T) € X°(K) a solution of the associated ODE. For every
quasi-artinian K-algebra A we have a natural bijection

Homajgrc, (CI)/XO\,W, A) ~ Defy(Xa, A).

In other words, the completion of the local ring of X° at ~ represent the functor of
the differential deformations of .

Proof. This proposition follows from proposition O

Remark 4.6. By combining this proposition with proposition [3.3] and remark [2.8]
note that the study of the deformations for A = K[e]/(¢?) is equivalent to the study
of the tangent space of X°.

Example 4.7. Let X? = Spec(K{y}/[y1 — vo]). In other words X? is defined
by the differential equation 3y’ = y. A solution of this equation is of the form
v(T) = CeT with C' € K. Such a solution corresponds to a K -point of X°. Let
C € K and v(T') = Ce” be a solution. We will compute Def. ([y1 — yo], 4).

Defy ([y1 — o, A) := {74 € X(A) | 74 — v € MA[[T]]}
Let’s denote y4 = v + D5 aiT ‘. By definition, 74 must verify the equation
Ya(T) — va(T) = 0. We deduce that
Vi=0, (i+1)ajt1 —a; =0.
In particular, the data of ag € 9t 4 set all the a;. We deduce that Def., ([y1 —yo], A)

is naturally in bijection with 2t 4, and hence that O/X(’\y is isomorphic a K[[T]] in
the category of AlgL.C,.

Let F' € K{y} be an irreducible polynomial. We have seen (proposition
that {F} = {F} :SEN {F, SF}
Lemma 4.8. Let F' € K{y} be an irreducible polynomial, then

{F}c [F]:SF < {F}:Sp.

In particular, we deduce that [F] : S§ = {F} : Sp.
Proof. The inclusion [F] : S < {F} : Sp is clear.

For the inclusion {F'} < [F] : S¥ we have that, for every element G € K{y},
there exists an element G; € K({y} of order less or equal that the order of F
and m € N such that SP'G = G mod [F] (for this result see [Rit50, Section

Reduction]).
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If G € {F}, then the element G} is also in {F'}. Hence there exists n € N
such that G} € [F'] (since Q < K, see [Kap76L Lemma 1.8]). Since the order of
G is lesser of equal to the order of F, then F' divided G7 (see [Kap76, Lemma
7.8]). Finally, since F' is assumed to be irreducible, then F' divide G; and hence
G € [F]. Thus SPG € [F. O

Proposition 4.9. Let F € K{y} be a irreducible differential polynomial. Let
Y(T) € X°(K) be a solution of the associated ODE, which does not cancel the
separant Sp. Then ~y is a solution of [F| : SE. Furthermore, if A is a quasi-
artinian ring, then

Def,([F'], A) = Def([F] : Sz, A) = Def,({F'}, A).
Proof. The following inclusion are clear (thanks to lemma@.8):
Def,([F] : SF,A) < Def,({F}, A) c Def,([F], A).

Let’s consider 4 € Def. ([F], A). Let G € [F] : S¥, we will prove that G(y +
v4) = 0. There exists m € N such that SPG € [F]. In particular S7'(y +
v4)G(vy +v4) = 0. Since ST (~y) # 0 then ST (y + v4) is not a zero divisor in A
(since it is non zero modulo 9 4), hence G( + v4) = 0.

We obtain the equalities

Def., ([F], A) = Def,([F] : S%, A).
O

Example 4.10. Let K be a field of characteristic zero. Let F' = (yo — y1)? —
(y1 — yo) € K{y} be a differential polynomial. Its separant is Sp = 0F /0y, =
2(y2 — y1). In particular {F, Sp} = {y1 — yo}. Thanks to the low power theorem,
it can be checked that A = y; — yg is a singular essential component of F'. Since
A(F) = (y2 —y1)(2(y3 — y2) — 1), then 2(y3 — y2) — 1 € [F] : SF. However
y(T) = e is a solution of [F] but not a solution of [F] : S%, so proposition
does not apply if the solution canceals the separant.

Note that in general, similarly to the algebraic framework, the differential de-
formations of a differential polynomial do not correspond to those of the associ-
ated reduced differential polynomial : the functors Def, ([F'], A) et Def, ({F'}, A)
do not usually coincide. If we consider, for example, ' = z4* and A a quasi-
artinian K-algebra which nilpotency index of its maximal ideal is m, then, for
every a € MM 4, the deformation v4 = T + aT? de T is in Defr([25], A) but not
in Defp({z5'}, A) since it does not cancel 5.

The most interesting deformations to consider are those that do not make the
separant invertible. Next proposition will prove that in the neighborhood of a so-
lution that makes the separant invertible, the deformation space is described as a
formal disk.

Proposition 4.11. Let K be a field of characteristic zero. Let F' € K{y} be a
differential polynomial of order n. Let v € K|[[T]] be a solution of F which does

not conceal the separant Sg. Let X° = Spec(K {y}/[F]) Then the neighborhood
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Q X l:S a noetherian ring and the formal neighborhood O ., is a formal disk of
dimension n.

Proof. Let’s denote v(T') = ¥, a;/i! T*. We consider the associated morphism

v K{y}/[F] - K

Yi = Q5.

Since Sp(v(T)) is invertible, then v(Sr) is non zero. In particular, Sp ¢ Ker(7).
The Leibiz’s formula applied to F' in the differential K -algebra (K{y}, A) pro-
duce the following formula:

= Z Oy, (F)Yi+1.
i=0

Consequently, since d,,, = S, the differential ideal [F'] seen in the localization
K{y}Ker() contains the element

Yn+1 = Z d

Yi+1

and all of its derivatives. Let’s denote

ﬁ: K[yOavyn]/<F(y0a7yn)> - K
Yi = a;.

The result is an isomorphism of K -algebras

(9)(577 = (K[yo, .- 7yn]/<F>)Ker(’~Y)

Now since (ag, - - -, apn) € K™ is a smooth point of the variety K[yo, ..., yn]/{F
(since it does not conceal 0y, (F)), then Oxo , = K[[T4,- -+, Ty]]. O

4.2. The linearized differential equation. Let F' € K{y} be a differential poly-
nomial of order n. > 1, v(T') € K[[T]] asolution of F'and X¢ = Spec(K {y}/[F]).
Let K[e] = K[X]/(X?), where the symbol ¢ refer to the class of the element
X in the quotient. Note that there is an obvious isomorphism of K-algebras
K[e][[T]] = KI[[T]][e]- As a result, any deformation of ~ in K|[e], i.e. every
solution v + v, € K[e][[T]] of F, can uniquely be rewriten as an element of
K|[[T1]][e]- More precisely

Defy (X%, K[e])) = {7(T) e ([[T]]]| F(v+ ) =0}
= {n(T) e K[[T]] | F(vy + en) = 0}

Let v(T) + en(T) € Def, (X, K[e])). By the Taylor’s formula and the property
€2 = 0 in the ring K[e], we deduce

@ Fo@+en(l) = FH(T) 6( izo 1) (0y, f)(4(T)))
' e (2 077’ (T)(0y, /)(v(T))) -
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Thanks to the formula (@.1), we deduce that F'(y(T) + en(T")) = 0 is equivalent to
the condition

(42) i T)(2y, f)((T)) = 0.

Definition 4.12. Let K be a field of characteristic zero. Let F' € K{y} be a
differential polynomial of order n > 1, v(T') € KJ[[T]] a solution of F. We
call linearized differential equation of F' at ~ the linear differential polynomial

Y00y, ) (V(T))y: € K{y}. We will denote it L(f,7).

It is important to note that the linearized differential equation will not have con-
stant coefficients in general.

Proposition 4.13. The embedding dimension of the completion of the local ring of
X at v coincide with the dimension of the K -vector space

Sol(L(f, Y(KI[T]) = {n e K[[T]] [ £(f,7)(n) = 0},

Proof. According to the above considerations, this proposition is a consequence of
proposition 3.4|applied to A = K{y}/[F],. O

4.3. Proof of theorem 4.2, The key argument of the proof of theorem [.2]lies in
the computation of this embedding dimension. By using the above remark and the
following lemma due to RITT, we will be able to provide an upper bound of this
dimension, which will be sufficient for our purpose.

Definition 4.14. Ansetofelements 7, - ,ns € K[[T]] is said linearly dependent
if there exists elements ¢y, - - - , ¢s € K, not all zero, such that

S
Z cin; = 0.
i=1

Lemma 4.15. An set of elements 11, - ,ns € K[[T]] is linearly dependent if and
only if the Wronskian

771 DY ’)78
m s -0
7753—1) o 77gs—l)
Proof. See [Rit50, Chapter 2, The resolvant, p34]. |

Corollary 4.16. Let K be a field of characteristic zero. Let F' € K{y} be a
differential polynomial of order n > 1, v(T) € K[[T]] a solution of F, which
does not cancel the separant of F, and X° = Spec(K{y}/[F]). Then, we have

emb.dim(@) <n.

For the definition of the embedding dimension and its properties see section
2



Proof. For simplicity, we will denote (0y, f)(v(T)) = a;(T") and
(4.3) Y aiT)yi =0
i=0

the linearized equation L(f,~y). Let 1 (7'), - - - ,ns(T") be an independant family of
solutions in Def~ (X7, K[e]/(€?)), i.e. aindependant familly of solution in K[[7]]
of the differential polynomial (4.3). In particular the n;(7T’) are linearly indepen-
dent. Thanks to lemma4.T5] we deduce that the Wronskian

m s
mooce g
ngsfl) o ngsfl)
must be equal to zero. Assume that s > n, then the n-th row of the Wron-
skian is equal to (n%n) ngn)). We can multiply the Wronskian by a,(T")
which is non zero (since it is the separant of F' evaluated <), and thus the row

an(T)y@ e an(T)ygn) is a linear combination of the other’s. Thus the Wron-
skien is zero, which is the desired contradiction. So s < n. O

The statement of theorem [4.2]is then directly deduced from corollary .16 and
lemmal[3.71

5. DIFFERENTIAL ARC SCHEME WHICH EMBEDDING DIMENSION IS AT MOST
1

Let K be a field of characteritic zero. In this chapter we will clarify theorem[4.2]
in the particular case of a differential polynomial which embedding dimension at
most 1. In particular, this covers the case of differential polynomials of order 1.

In this particular case, we will show the following result:

Theorem 5.1. Let K be a field of characteritic zero. Let F := F(y,--- ,y™) e
K{y} be an irreducible differential polynomial and X° := Spec(K{y}/[F]). Let
v € KI[[T]] be a non constant solution of the equation F' = 0. Assume that the
eﬁbedding dimension of X at ~ is at most 1. Then the formal neighborhood
X7, is isomorphic, as formal K-scheme, to a formal disk Dz = Spf(K[[T]) of
dimension 1.

According to theorem[d.2] if F is a differential equation of order 1 and ~ a non-
constant solution of F' = 0, then the embedding dimension of X at ~y is exactly 1.
We deduce the following corollary:

Corollary 5.2. Let K be a field of characteritic zero. Let F' := F(yo,y1) €
K{y} be an irreducible differential polynomial and X° := Spec(K{y}/[F]). Let
v € K[[T]] be a non constant solution of the equation F' = 0. Then the formal

neighborhood X 57 is isomorphic, as formal K-scheme, to a formal disk D =
Spf(K|[[T1]]) of dimension 1.
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Remark 5.3. This corollary is also a result of BOURQUI & SEBAG in [BS16, The-
orem 1.2].

5.1. Preliminary propositions.

Proposition 5.4. Let K be a field of characteritic zero. Let F' € K{y} be an ir-
reducible polynomial of order n and X° := Spec(K{y}/[F]). Let v € K[[T]]
be a non constant solution of the equation F' = 0. Let A be an object of the cate-
gory AlgLCy of the local K -algebras which are completion of local K-algebras.
Then there is an application

—_

ta: Homagrc, (K[[T]], A) — Homajgrc, (Oxa 4, 4)
injective and functorial in A.
Proof. We know from proposition [2.12] that
Homajgrc, (Oxo ,, A) = {ya € Ma[[T] | f(v +v4) = 0}.

But, for every a € M 4, we have that v(7" + a) is solution of F'. In particular, if ~
is not constant, we get an application

Ma — {yaeMA[[T] | f(y+va) =0}

a - VT +a) =~(T)
injective and functorial in A. Yet we have a functorial bijection in A between 9 4
and Hom ajgr.c,. (K[[T]], A). This gives the required result. O

Remark 5.5. In particular, the statement also shows that the embedding dimension
of X at a non-constant y cannot be 0 (by considering A = K[e]/(¢)?).

Lemma 5.6. Let C be a category and B and C' be objects of this category. Assume
that, for every object A of the category C, we have an application

ta: Home(B, A) — Home(C, A)
injective and functorial in A. Then, there exists an epimorphism ¢: C — B.

Proof. Let’s take A = B, and denote ¢ = ¢p(id). We have to check that ¢: C' —
B is an epimorphism.

Let D a object of the category C and ¢1, g2 € Hom¢ (B, D) such that g; o ¢ =
go o . The functoriality of the inclusion in A gives us the following commutative
diagram (for g1):

Home (B, B) —2> Home (C, B)

Qlo—i \Lglo_

Home (B, D) —2> Home(C, D)

We consider the image of id € Hom¢ (B, B) in the above diagram and we deduce

that g1 o tp(id) = tp(g1), or, in other words, that g1 o ¢ = tp(g1). But g1 0 ¢ =

920 ¢, 80 tp(g1) = tp(g2). Since ¢p is injective, we deduce that g; = g, S0 @ is

an epimorphism. (|
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Proposition 5.7. Let A be an object of the category AlgLC .. Let d be a non neg-
ative integer. Assume that there exists an epimorphism ¢ of the category AlgL.C,
from Ato K|[[T1,--- ,Ty]]. Then ¢ is surjective.

Proof. Assume that the morphism ¢: A — K|[[T1,---,Ty]] is not surjective.
Then, there exists an integer ig € {1,--- ,d} such that, for every a € A, we have
o(a) # T;,. We denote I the ideal generated by (9 4) in K[[11,--- ,Ty4]] and
m the maximal ideal of K'[[T1,- - ,Ty]]. Then I < m because T;, ¢ I and I < m.
We consider the K-algebra B = K|[[T1,---,Ty|]/I. It’s a local K-algebra
which is complete (in particular B is the completion of B for the pre-adic topology
defined by its maximal ideal). We consider 7: K[[T1,--- ,Ty]] — K[[T1, -+, Tq]]/T
the quotient morphism. This morphism is local and continuous. We also consider

evr—o: K[[Tl, ,Td]] — K[[Tl,- s ,Td]]/f

where evy—_g is the morphism of K'-algebra which sends 7; to 0, for every integer
i€ {l,---,d}. Itis also a local and continuous morphism of K -algebras.

Leta € A, then ¢(a) = P(Th,--- ,T,) for a certain polynomial P. We denote
ap = P(0,---,0) € K. Then p(a — ag) = P(Ty,---,Ty) — P(0,---,0) €
m. Since ¢ is a local morphism, this implies that a — ag € 914 and hence that
w(a —ap) € I. Hence m o p(a — ag) = 0 et evp—g o p(a — ag) = 0. We can see
that m o ¢ = evy,—g 0 .

Since ¢ is an epimorphism, we should have m = evy_g, which is not the case
because I < m. So ¢ is surjective. U

The following proposition is an immediate consequence of the propositions and

lemmas [5.4} [5.6] and

Proposition 5.8. Let K be a field of characteristic zero. Let F' € K{y} be an
irreducible polynomial of order n. and X° := Spec(K{y}/[F]). Let v € K[[T]]
be a non-constant solution of the equation F' = 0. Hence, there exists a surjective
morphism of K-algebras Oxa ., — KI[T]]. In other words, there exists a closed

immersion D — Spf((?);Y).

Lemma 5.9. Let R be a noetherian ring and ¢: R — R be a surjective morphism.
Then ¢ is bijective.

Remark 5.10. Let d > 0 be a non negative integer. We will use the previous
lemma only in the case where R = K[[11,--- ,Ty]]. In particular if there exists a
surjective morphism of local K -algebras ¢: K[[T1,--- ,Tq]] — K[[T1,--- ,T4]]-
Then ¢ is a bijection.

Proof. The statement of this lemma is well-known, we remind here the proof.
The kernels of the iterates of ¢ form an accending chain of ideals of R

Ker(¢) < Ker(¢?) c --- < Ker(¢") < - - -

which becomes stable since R is noetherian. In particular, there exists m € N such
that Ker(¢™) = Ker(¢™*!). Let z € Ker(¢). Since ¢ is surjective, then so is
@™, there exists y € R such that z = ¢™(y). Hence 0 = ¢(x) = ¢™F!(y). In
particular 3y € Ker(¢™*!) = Ker(¢™). So x = ¢(y) = 0.
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5.2. Proof of theorem We now have the elements to prove theorem we
only need the following result:

Theorem 5.11. Let K be a field of characteristic zero. Let F' € K{y} be an
irreducible differential polynomial of order n and X° := Spec(K{y}/[F]). Let
v € K[[T]] be a non-constant solution of the equation F' = 0. Let A be an object
of the category AIgLC . Assume that the embedding dimension of X° at v is at
most d and that there exists an application

L —

va: Homagre, (K[[T1, -+, Tul], A) < Homajgrc, (Oxa , A)

injective and functorial in A.

Then the formal neighborhood )/(\‘97 is isomorphic, as a formal K-scheme, to a
formal disk D = Spf (K [[T4,--- ,T4]]) of dimension d.

Proof. From ¢4, we deduce from lemma(5.6]and proposition [5.7] that there exists a
surjective morphism of local K -algebras ¢: (5; — K|[[Th,- - ,T4]]. Further-
more, as an upper bound of the embedding dimension is d, there exists a surjective
morphsim 7: K[[T},---,Ty]] — (Q/XC\7 (according to proposition . In par-
ticular, thanks to lemma([5.9] we deduce that ¢ o 7 is bijective./\ We deduce that 7
et p are bijective, and hence that the formal neighborhood of X?., is isomorphic,
as formal K -scheme, to a formal disk D% = Spf(K[[T1,-- ,Ty]]) of dimension
d. O

Thanks to theorem [5.11] we deduce theorem 5.1} using proposition [5.4]

5.3. Remark. Let F' € K{y} a differential polynomial of order 2. Assume that
there is no term in g in F. Then F' € K{y} is a differential polynomial of order
2 but without term in yo. Let’s define G := F'(0,yo,y1). Let v be a solution of
F which does not cancel the separant, then +' is a solution of G which does not
cancel its separant. Let A be an object of AlgLC .

Def([F], A) {va e MA[[T]] | f(7 +va) = O}
{va e MA[[T]] | G(v' +v4) = 0}
= Ma x {ya € MA[[T]] | G(¥' + v4) = 0}

Since G is of order 1, we have seen in theorem |5.1|that the ring (K {y/}TG])W/ is
isomorphic to K [[T']] in the category of AlgLC. Hence {y4 € MA[[T]] | G(+'+

Pt

va) = 0} is naturally in bijection with 9t 4, and so the ring (K {y}/[F1]), is iso-
morphic to K[[T'1,T5]] in the category AlgLC.
We can generalize the previous considerations and make the following remark:

Remark 5.12. Let F' € K{y} be a differential polynomial of order n where the
only terms that appears effectively in it are ¢, and yn./LE ~ be a solution of F'
which does not cancel the separant. Hence the ring (K {y}/[F]). is isomorphic to
K[|Th, T, - ,T,]] in the category AlgLC.
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6. DIFFERENTIAL ARC SCHEME OF DIFFERENTIAL EQUATIONS OF ORDER 2

In this chapter, we will link theorem .2 and the notion of essential singularity
introduced in section [I.1]for specific differential polynomials of order 2.

Definition 6.1. Let F' € K{y} of order n. We say that F' = 0 is a bimonomial
equation if there exists two monomials M, N € K{y} of order n such that F' =
M — N.

Specifically, in the case of bimonomial differential polynomials of order 2, we
will prove the following theorem:

Theorem 6.2. Let K be a field of characteristic zero. Let F' € K{y} be an ir-
reducible bimonomial differential polynomial of order 2. Let d > 2 be an in-
teger such that v(T) = T% is a solution of the differential polynomial F and
X% = Spec(K{y}/[F]). If the perfect differential ideal {F} has a essential sin-
gular component, then edim(@) =1

6.1. Singular solutions of bimonomial ordinary differential polynomials of or-
der 2 and tangent space. Assume that I’ € K{y} is an irreducible bimonomial
differential polynomial of order 2. Such bimonomial equations are of one of the
three following forms:

vh — ouiys

Yy — ayiys

v5 — ayiys
with a,b € N, c € N* and o € K*. Note that v(T) = T does not cancel the
separant of the differential polynomial F'. Moreover, since v(T") = T is a solution
of F' = 0 the coefficient « is forced to be in Q.

Assume that there exists 7(T) = T a solution of the differential equation
F(y0,y1,y2) = 0. The general idea is to show that, in this particular case, we
can calculate independently, and then link, the fact that the perfect differential
ideal {F'} has a essential singular solution and the embedding dimension of the
completion of the local ring of the differential arc scheme at +.

Following the strategy of section 4 we consider the linear equation associated
with F' given by :

2
6.1) L(F,7) ==, 0y, (F)(4(T))y; = 0.
j=0
Proposition allows us to conclude that the embedding dimension of F' at y is
given by the dimension of the solution’s space of the linearization.

The relation o7 (F(y(T),~'(T),+"(T)) = 0 allows to conclude that v'(T")/(d —
1) = 791 is a solution £(F,~). We want to find a criterion to understand when
the dimension of the K-vector space Sol(L(F,~))(K[[T]]) is I or 2.

Let us make some preliminary observations. For every j € {0, 1, 2}, there exists
m; € N and 3; € K such that d,,(F)(y(T)) = B;1™7. Thus, since T 1isa
solution of L(F,~) = 0 we know that

(6.2)  BoT™ T + (d— 1) T™ T2 + By(d — 1)(d — 2)T™ T3 = 0.
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For equality (6.2)) to be true, it is necessary that
mo+d—1=mi+d—2=mo+d—3,

which is equivalent to have mg+2 = mj+1 = my. Thus, if ' = 0 is bimonomial,
to compute the dimension of the solutions’ space in K [[T]] of the equation (6.1))
is the same as compute the dimension of the solutions’ space in K[[T]] of the
equation

(6.3) a2T2y2 +a1Ty1 + apyg =0

(with a; € K and as # 0). We recognize here an Euler’s equation (or Cauchy-
Euler’s equation), which resolution is well-known. The solutions are parameterized
by the associated characteristic equation which is, here, equal to:

(6.4) agr(r — 1) + a1z + ap = ag(x2 + (% -1z + @) =0
2

a2

Since y(T) = T% is assumed to be a solution of F, then 7/(T’) is a solution of the
differential polynomial (6.1). Then = d — 1 is solution of the equation [6.4] and
we want to find the second solution, that we denote by s and which can a priori be
in C. Note that

1— al
(6.5) o 2

az

d—1+s
(d—1)s.

Remark 6.3. If d = 2 we have to be a little bit more careful with the previous
arguments, but with small adjustments everything works, and we actually get an
Euler equation with ag = 0.

The next step in the strategy is to study each of the three cases.

The case y5 = ayll’yg Given a,b € N and ¢ € N*, we consider the differential
polynomial y§ — aybyd € K{y}, with @ € Q. Assume y(T) = T%, with d > 3,
is a solution. In particular this implies

6.6) (d—2)c="b(d—1) + ad
Since T¢ is a solution of y§ = ay}yd, we have:
O (F)(y) = e(d(d—1))c 72D
Oy (F)(y) = —abdv=1T=1(b-1)+da
Oy (F)(7) = —aadtT(@Dbt+da=1)
Thus az = ¢(d(d —1))*"", a1 = —abd’~" et ag = —aad” hence, we know that
_ [dd-1)
= =
So o = 0. Furthermore
—aad®

D

In particular



If a = 0, the equation can be written y§ = ay?, so s = 0. In this case, we note
thanks to theorem [I.7] that the differential polynomial has an essential singular
solution if and only if b > ¢, but the condition (6.6), here (d — 2)c = b(d — 1),
is incompatible. Hence the embedding dimension is equal to 2, and there is no
essential singular solution.

If @ # 0, we deduce that s < 0 and the embedding dimension is equal to
1. In this case, the only possible essential singular component is {y;} and it is a
component if and only if b < ¢. But, if b > ¢, the equality (d—2)c = b(d—1)+ad is
not possible, so the { F'} always has an essential singular component, and theorem
[6.2]is true in this case.

The case y§ — aylfyg Given a,b € N and ¢ € N*, we consider the differential
polynomial ¢ — aybys € K{y}, with @ € Q. Assume that v(7') = T, with
d = 3, is a solution. In particular this implies:

da =b(d—1)+c(d—2)

Oy (F)(y) = —ac(d(d— 1)) dbT(d=2)(e=1)+(d=1)b

0 (F)(y) = —abd=lT(@-1b-D+(d-2)e

dyo(F)(7) = aTde")
Thus as = —ac(d(d—1))*"*d’, a; = —abd’! and ag = a. Since T is a solution
of y& = aybys, we know that

1
“T Pld-1)
Hence o > 0. Furthermore
(d—1)s = a

—ac(d(d —1))e1db
In particular
ad

o

If a = 0, the equation becomes 1 = a%yS and s = 0. Hence, the low power
theorem ensures that the perfect differential ideal {F'} has no essential singular
component. In this case the embedding dimension is equal to 2 ans {F'} has no
essential singular solution.

If @ # 0, we have s < 0 and the embedding dimension of the equation is 1. The
only component possible for the singular solution is {yo}, and that’s the case if and
only if a < b + c. If we assume that a > b + ¢, we deduce, thanks to the equation
da = b(d—1) + c(d — 2), that —b — 2c > 0 which is absurd. Hence {yo} is always
an irreducible component.

S =

The case yll’ — ayiys This case is the most diverse. Given a,b € N and c € N*,
we consider the differential polynomial 3/} —aydys € K {y}, witha € Q. Assume
that v(T") = T¢, with d > 3, is a solution. In particular, this implies:

(d—1)b=ad+ (d—2)c
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Oy (F)(7) —ac(d(d — 1))~ 1T (e=1)+ad
Oy (F)(y) = bdb~tT@=D-1)
o (F)(v) —aa(d(d — 1))CT(d—2)c+d(a—1)

Hence ay = —ac(d(d —1))¢7%, a1 = bd*~! and a9 = —aa(d(d — 1))¢. Since T¢
is a solution of ¥} = aydys, we know that

o =

(d(d —1))°

Thus o > 0. Furthermomre (d — 1)s > 0 and

d—1)s = =
( )s ac(d(d—1))e1 c
Hence
ad
§=—
c

We will show that theorem [4.2]1s still true in this case.

Lemma 6.4. Let (a,b,c,d) € N? be integer. Assume that d > 2 and that b < c.
Assume, furthermore, that the equality (d — 1)b = ad + (d — 2)c holds. Then ad/c
is not an integer.

Proof. The integer d verifies the equality (d — 1)b = ad + (d — 2)¢, which can be
written as

(d—1)b—c)=ad—c
If we assume that b < ¢ then ad — ¢ < 0 because d — 1 = 1. Thus ad/c < 1, so
ad/c is not an integer. O

If the perfect differential ideal {F'} has an essential singular component, then it
is {y1}. And {y1} is an essential singular component of {F'} if and only if b < ¢
according to theorem [I.7]

Proposition 6.5. Let F' = 3% — aygys and let d = 2 verifying the equation (d —
)b = ad + (d — 2)c. Assume that ¥(T) = T? is a solution of F. If {y1} is a
component of I then the embedding dimension of the completion of the local ring
of the differential arc scheme associated to F to y(T) = T%is 1.

Proof. If {y; } is an irreducible component of { F'} then, according to the low power
theorem (see , we have that b < ¢ and thanks to lemma we have that ad/c
is not an integer. Hence the embedding dimension is equal to 1. (]

Remark 6.6. In general, the converse of theorem[@] is false. In other words, there
exists bimonomial differential polynomials which embedding dimension is 1, but
that have no essential singular component. The following examples highlight this
observation:

(1) F =y} —3/16y3y3 and (T) = T3, then ad/c = 3/2

() F =yl —32/2%y3y3 and v(T) = T then ad/c = 9/5

(3) F = y§ — 2%y3y3 and v(T) = T? then ad/c = 8/3
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4) F = yl9 — 2645y3 and v(T') = T? then ad/c = 5/2

Remark 6.7. The following code can be used to compute examples of equations
for which the embedding dimension is 1 but such that /' has no essential singular
component.

#Compute the list of [a,b,c,d,ad/c] and return it if the embedding
dimension is 1 but f has no components.
def Liste(n):
L=[]
for a in range (1,n):
for b in range (1,n):
for ¢ in range (l,n):
if a+c—b!=0:
d=(2xc—b) /(a+c—b)
if int(d)==d and d>1 and mod(axd,c)!=0 and b>=
c:
f=axd/c
L=L+[[a,b,c,d,f]]
return L

Remark 6.8. An interesting sub-case of the case 3 — aygy$ is this where the
equation is homogeneous, that is if it is of the form yf* — aydy$. In this case, the
deformations can be fully described.

Let d > 2 be an integer. Then v(T) = T is solution of the equation F' =
Y — Wyﬁyg. Let A be a ring in the category AlgLC,.. Let 81, 82 € Ma4.
Then 5, 5, = (1 + B1)(T + B2)? is a deformation of Def.,([F'], A). This implies
the existence of an application

o —_

LA: HomAlchk (K[[Tl, TQ]], A) - HomAlgLCk (K{y}/[F]’Y’ A)

injective and unctorial in A. Furthermore, thanks to theorem[4.2] we know that the
embedding dimension of the ring K {y}/[F'], is at most 2.

—_

Hence thanks to theorem , we deduce that the ring K{y}/[F], is isomor-
phic, in the category AlgL.C,, a K[[T1,T>]].

6.2. Examples.

Example 6.9. Examples in the case y5 = ayll’yg.

(1) Let F' = y3—63yo. According to the low power theorem|[1.7] This equation
has an essential singular component {yo}. According to theorem 6.2} we
deduce that in the neighborhood of (T') = T?, we have O gs v, =~
K{[TT]].

(2) Let F' = 3y3 — 6%yoy1. This equation has an essential singular component
{y1}. According to theorem we deduce that in the neighborhood of
y(T) = T3, we have Oy (), = K[[T]].

31



(3) Let F' = 25y2 — yiyo. This equation has an essential singular component
{yo}. According to theorem we deduce that in the neighborhood of
(T = T2, we have Ogs (x),, = K[[T1]]-

(4) Let F = 1600yoy1 — 3. This equation has an essential singular component
{y1}. According to theorem we deduce that in the neighborhood of
y(T) = T3, we have O g5 (x), =~ K[[T]]-

(5) F =3°x 26y0y% — 3. This equation has an essential singular component
{y1}. According to theorem we deduce that in the neighborhood of
y(T) = T*, we have Ogs (x), = K[[T1]]-

Example 6.10. Examples in the case y§ = abys.

(1) Let F' = 18yo — y1y2. En vertu du low power theorem[I.7] This equation
has an essential singular component {yo}. According to theorem we
deduce that in the neighborhood of v(T) = T3, we have O 25 (X)y
K{[T]].

(2) Let F' = yoy? — 43 x 3y2. This equation has an essential singular compo-
nent {yo}. According to theorem [6.2] we deduce that in the neighborhood
of y(T) = T*, we have O‘;é(;m ~ K[[T]].

(3) Let F' = 8yg — y%yQ. This equation has an essential singular component
{yo}. According to theorem we deduce that in the neighborhood of
Y(T) = T2 we have O g (v, ~ K[[T]].

Example 6.11. Examples in the case y? — aygys.

(1) Let F' = 2y? — 3yoy2. Thanks to the low power theorem , we know that
this equation has no essential singular component. We want to study the
deformation of F' at neighborhood of (T = T3.

6y0(F) = —3y2 = —18T
Op(F) = 4y = 1277
Op(F) = —3yo = -—3T°

The linearization of F' is given by
—3T2%y, + 12Ty; — 18y.
The associated characteristic equation is
~32% + 150 — 18 =0

This equation has two solutions which are 2 et 3. Furthermore, it can
be seen that, given an object A of the category AlgLC, then, for ev-
ery 1,82 € My, the deformation 75, 5, = (1 + B1)(T + B2)? is in

Def ([F], A). We deduce, thanks to the theorems (4.2{and [5.11|that @;Z/
is isomorphic to K[[T}, T3]] in the category AlgLC,..
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(@)

3)

C))

[BS16]
[BS17]

[dFD]

Let F' = yj — 23y2y>. This equation has no essential singular component.
We want to study the deformation of F' at neighborhood of v(7') = T2.

Oy(F) = —2%oyy = —2°77
Oy, (F) = 223/% = 2°T°
0p(F) = 2% = —2°T

The linearization of F' is given by
T2y — 4Ty + 4yo.
The associated characteristic equation is
22 —5r+4=0

This equation has two solutions which are 1 et 4. We deduce that the
embedding dimension of the ring Oxo ., is equal to 2. Furthermore, the

ring O ., is isomorphic to K[[T%,73]]/I, for a certain ideal I, in the
category AlgL.C,. Furthermore, a computation can show that I # 0 since,
if we study the solutions of the linearization in K [¢](e®), we can show that
TTS e I/18.

Let I = 2y? — 3%y3yo. This equation has no essential singular component.
We want to study the deformation of F at neighborhood ofe v(T') = T3.

Oy (F) = —3ygyp = —3°x2T7
Oy (F) = 2xbyl = 2x3"x5T8
0n(F) = =34 = 3T

The linearization of F' is given by
T?yy — 10Ty; + 18yp.
The associated characteristic equation is
2 — 11z +18 =0

This equation has two solutions which are 2 et 9. We deduce that the
embedding dimension of the ring Oy , is equal to 2. Furthermore, the

—_—

ring Oy ., is isomorphic to K[[T1,T2]]/1, for a certain ideal I, in the
category AlgL.C,. Furthermore, a computation can show that I # 0 since,
if we study the solutions of the linearization K [e](€°), we can show that
T2 € 1/1°.

Let F' = 234932 — ydy3e This equation has an essential singular compo-
nent {y; }. According to theorem we deduce that in the neighborhood

of Y(T) = T% ona O ys (), ~ K[[T]].
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