

Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality

Zuoqiang Yuan, Arshad Ali, Michel Loreau, Fang Ding, Shufang Liu, Anvar Sanaei, Wangming Zhou, Ji Ye, Fei Lin, Shuai Fang, et al.

▶ To cite this version:

Zuoqiang Yuan, Arshad Ali, Michel Loreau, Fang Ding, Shufang Liu, et al.. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology, 2021, 27 (12), pp.2883-2894. 10.1111/gcb.15606 . hal-03230448

HAL Id: hal-03230448 https://hal.science/hal-03230448

Submitted on 19 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality

Journal:	Global Change Biology
Manuscript ID	GCB-21-0185
Wiley - Manuscript type:	Primary Research Articles
Date Submitted by the Author:	28-Jan-2021
Complete List of Authors:	Yuan, Zuoqiang Ali, Arshad; Nanjing Forestry University, College of Forestry Loreau, Mivhel; Station d'Ecologie Théorique et Expérimentale, CNRS Ding, Fan; Shenyang Agricultural University, College of Land and Environment; Dr Liu, Shufang; Institute of Applied Ecology, Chinese Academy of Sciences, CAS Key Laboratory of Forest Ecology and Management Sanaei, Anvar ; Institute of Applied Ecology, Chinese Academy of Sciences, CAS Key Laboratory of Forest Ecology and Management Zhou, Wangming; Institute of Applied Ecology, Chinese Academy of Sciences, CAS Key Laboratory of Forest Ecology and Management Ye, Ji; CAS Key Laboratory of Forest Ecology and Management Ye, Ji; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences Lin, Fei; Institute of Applied Ecology,Chinese Academy of Sciences, Center for Forest Ecology Fang, Shuai; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences Hao, Zhanqiang; Northernwest Polytechnical University, School of Ecology and Environment Wang, Xugao; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences Hao, Zhanqiang; Northernwest Polytechnical University, School of Ecology and Environment Wang, Xugao; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences Le Bagousse-Pinguet, Yoann; Aix-Marseille Universite
Keywords:	biodiversity, ecosystem functioning, functional traits, disturbance, natural forests, soil microbes
Abstract:	Biodiversity plays a fundamental role in provisioning and regulating forest ecosystem functions and services. Above-ground (plants) and below-ground (soil microbes) biodiversity could have asynchronous change paces to human-driven land-use impacts. Yet we know very little how they affect the provision of multiple forest functions related to carbon accumulation, water retention capacity and nutrient cycling simultaneously (i.e., ecosystem multifunctionality; EMF). We used a dataset of 22,000 temperate forest trees from 260 plots within 11 permanent forest sites in Northeastern China, which are recovering from three post-logging disturbances. We assessed the mediating effects of multiple attributes of plant biodiversity (taxonomic, phylogenetic, functional, and stand structural) and soil biodiversity (bacteria and fungi)

on EMF under the three disturbance levels. We found the highest EMF to occur in highly disturbed plots. Biodiversity had a tremendous effect on EMF that overpassed those of both climate and disturbance. However, above- and below-ground biodiversity provided divergent pathways to mediate human disturbance impacts on EMF. The mediating effect of above-ground atrributes of plant diversity to post-logging disturbances on EMF was inconsistent, and shifted from negative to positive depending on how the forest ecosystems were performing, while soil microbial diversity exhibited a consistent and positive mediating response pattern. Our study sheds light on the need for integrative frameworks simulatenously considering above and below-ground attributes to grasp the global picture of biodiversity effects on ecosystem functioning and services. Suitable management interventions could maintain both plant diversity and soil microbial diversity, and thus guarantee a long-term functioning and provisioning of ecosystem services in an increasing disturbance frequency world.

SCHOLARONE[™] Manuscripts

1	Divergent above- and below-ground biodiversity pathways mediate
2	disturbance impacts on temperate forest multifunctionality
3	
4	Zuoqiang Yuan ^{1*} , Arshad Ali ^{2,3} , Michel Loreau ⁴ , Fang Ding ⁵ , Shufang Liu ¹ , Anvar
5	Sanaei ¹ , Wangming Zhou ¹ , Ji Ye ¹ , Fei Lin ¹ , Shuai Fang ¹ , Zhanqing Hao ⁷ , Xugao
6	Wang ¹ , Yoann Le Bagousse-Pinguet ⁸
7	¹ CAS Key Laboratory of Forest Ecology and Management, Institute of Applied
8	Ecology, Chinese Academy of Sciences, Shenyang 110164 China
9	² Department of Forest Resources Management, College of Forestry, Nanjing Forestry
10	University, Nanjing 210037, Jiangsu, China
11	³ Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry
12	University, Nanjing 210037, Jiangsu, China
13	⁴ Centre for Biodiversity Theory and Modelling, Theoretical and Experimental
14	Ecology Station, CNRS and Paul Sabatier University, Moulis, France
15	⁵ College of Land and Environment, Shenyang Agriculture University, Shenyang,
16	China
17	⁶ School of Ecology and Environment, Northernwest Polytechnical University, China
18	⁷ Aix Marseille Univ, CNRS, Avignon Université, IRD, IMBE, Technopôle
19	Arbois-Méditerranée Bât. Villemin – BP 80, F-13545 Aix-en-Provence cedex 04,
20	France.
21	*Corresponding author: Zuoqiang Yuan (Email: <u>zqyuan@iae.ac.cn;</u>)
22	Running title : Disturbance drives diversity and functions

23	Statement of authorship:
24	ZY, ML and YL conceived the idea; ZY, FD, SL, AS, WZ, JY, FL, SF, ZH and XW
25	conducted the study and collected the data. ZY analysed the data and wrote the first
26	draft with great support from AS and YL, after which all authors contributed
27	substantially to revision.
28	We confirm that, should the manuscript be accepted, the data supporting the results
29	will be archived in an appropriate public repository (e.g. Dryad) and the data DOI will
30	be included at the end of the article.
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

45 Abstract

46	Biodiversity plays a fundamental role in provisioning and regulating forest ecosystem
47	functions and services. Above-ground (plants) and below-ground (soil microbes)
48	biodiversity could have asynchronous change paces to human-driven land-use
49	impacts. Yet we know very little how they affect the provision of multiple forest
50	functions related to carbon accumulation, water retention capacity and nutrient
51	cycling simultaneously (i.e., ecosystem multifunctionality; EMF). We used a dataset
52	of 22,000 temperate forest trees from 260 plots within 11 permanent forest sites in
53	Northeastern China, which are recovering from three post-logging disturbances. We
54	assessed the mediating effects of multiple attributes of plant biodiversity (taxonomic,
55	phylogenetic, functional, and stand structural) and soil biodiversity (bacteria and
56	fungi) on EMF under the three disturbance levels. We found the highest EMF to occur
57	in highly disturbed plots. Biodiversity had a tremendous effect on EMF that
58	overpassed those of both climate and disturbance. However, above- and below-ground
59	biodiversity provided divergent pathways to mediate human disturbance impacts on
60	EMF. The mediating effect of above-ground attributes of plant diversity to
61	post-logging disturbances on EMF was inconsistent, and shifted from negative to
62	positive depending on how the forest ecosystems were performing, while soil
63	microbial diversity exhibited a consistent and positive mediating response pattern.
64	Our study sheds light on the need for integrative frameworks simulatenously
65	considering above and below-ground attributes to grasp the global picture of
66	biodiversity effects on ecosystem functioning and services. Suitable management

- interventions could maintain both plant diversity and soil microbial diversity, and thus 67
- guarantee a long-term functioning and provisioning of ecosystem services in an 68
- increasing disturbance frequency world. 69
- 70
- *Keywords:* biodiversity; ecosystem functioning; functional traits; disturbance; natural 71
- forests; soil microbes 72
- 73

۶st

74 Introduction

75	Forests harbour much of the terrestrial biodiversity, and provide fundamental
76	functions and services, such as biomass production, nutrient cycling and water
77	retention (Gamfeldt et al., 2013; Pan, Birdsey, Phillips, & Jackson, 2013). However,
78	human-driven disturbances, such as habitat destruction and resource overexploitation,
79	can cause drastic terrestrial biodiversity loss and ecosystem changes (Newbold et al.
80	2016, Isbell et al. 2011, Le Provost et al. 2020). For example, selective logging, as a
81	widespread anthropogenic disturbance in natural forest ecosystems, not only exerts
82	critical direct effects on the aboveground biomass stock (Dai et al., 2004), but also on
83	forest biodiversity which includes both above-ground plant diversity and
84	below-ground soil diversity (McGuire et al., 2015), resulting in potentially
85	far-reaching effects on forest multifunctionality (Seidl et al., 2017; Sommerfeld et al.,
86	2018).
87	As the forest recovery proceeds from the post-logging disturbance, subsequent
88	forest biomass recovers when emerging trees grow to occupy the gaps created by the
89	felled trees, and hence, the loss of forest biomass can be compensated if the forests
90	are left to recover, primarily depending on the magnitude of disturbance intensity
91	(Piponiot et al., 2016). Existing theories have mixed predictions for how the whole
92	functions of a community changes during secondary succession. For instance,
93	MacArthur's minimisation principle suggests that more mature and late-stages
94	communities should become more efficient by minimizing energy wastage, thereby
05	maximizing ecosystem functions (MacArthur 1984) However, a recent study

96	demonstrated that mid-stage communities could be more effective at utilizing
97	resources (Ghedini, Loreau, White, & Marshall, 2018).
98	Meanwhile, most of the current studies investigated a lens of human-driven
99	disturbance impacts to focus on either a single or narrow set of biodiversity attributes
100	and ecosystem functions (Le Provost et al., 2020; Newbold et al., 2016). Ample
101	previous work showed that higher species richness could support multiple forest
102	ecosystem functions simultaneously (multifunctionality hereafter; EMF)(Felipe-Lucia
103	et al., 2018; Gamfeldt et al., 2013). However, the diversity of phenotypes (functional
104	trait diversity) and evolutionary lineages (phylogenetic diversity), rather than the
105	number and abundance of species, could also best predict EMF (Gross et al., 2017; Le
106	Bagousse-Pinguet et al., 2019; Yuan et al., 2020), either because functionally distinct
107	species promote the overall resource use efficiency (i.e. the niche complementarity
108	effect) or by including species that strongly influence ecosystem functioning (i.e. the
109	selection effect) (Loreau & Hector, 2001; Tilman, 1997). Besides, stand structural
110	attributes, such as individual tree size (diameter and/or height) inequality among and
111	within species, could have key implication for the functioning of forest ecosystems
112	(Ali, 2019), by enhancing above-ground light interception and utilization and
113	promoting production efficiency (Gough, Atkins, Fahey, & Hardiman, 2019). In
114	contrast, the functional identity of dominant species, rather than the diversity per se, is
115	often viewed as the main driver of ecosystem functioning (Prado-Junior et al., 2016;
116	Tobner et al., 2016), following the mass ratio hypothesis (Grime, 1998). Ultimately,

below-ground organisms, such as soil microbes, represent a large fraction of

Page 8 of 33

118	terrestrial diversity regulating key biogeochemical processes such as nutrient cycling
119	and litter decomposition (Van Der Heijden, Bardgett, & Van Straalen, 2008), and
120	hence, sustaining EMF (Manuel Delgado-Baquerizo et al., 2020; Wagg, Bender,
121	Widmer, & van der Heijden, 2014; Yuan et al., 2020). Yet, we still lack an integrative
122	framework aimed at better understanding how multiple attributes of biodiversity, - the
123	richness and abundance of species (taxonomic diversity), the presence of different
124	evolutionary lineages (phylogenetic diversity), the variety of growth forms and
125	resource-use strategies (functional diversity), and the inclusion of above- and
126	below-ground compartments -, and multiple ecosystem functions (J. E. K. Byrnes et
127	al., 2014) are impacted by human disturbances. This largely hampers our ability to
128	improve the scientific understanding of the relationships between biodiversity and
129	ecosystem functioning to formulate sustainable conservation and management
130	policies in the context of global anthropogenic change (Balvanera et al., 2006;
131	Soliveres et al., 2016).
132	Here, we used a unique dataset of over 22,000 temperate forest trees belonging
133	to 81 species from 260 plots within 11 permanent plots (i.e. sites) to investigate how
134	multiple attributes of above- (i.e. taxonomic, phylogenetic and functional diversities,
135	and stand structure) and below-ground (i.e. soil bacteria and soil fungi) biodiversity
136	simultaneously influence forest EMF under post-logging disturbances. We also
137	considered multiple climate factors as potential drivers of biodiversity and EMF. We
138	address the following questions: 1) Do nearly undisturbed mature forests exhibit the
139	highest EMF compared with the other disturbed forests, following the MacArthur's

140	(1984) minimisation principle? 2) Do the multiple attributes of biodiversity have
141	differential effects on EMF? and 3) Are the effects of post-logging disturbance on
142	forest EMF equally mediated by above- and below-ground biodiversity pathways?
143	
144	Materials and Methods
145	Study sites and field inventories
146	The study was conducted in temperate forests from the Changbai Mountain (40°54' to
147	44°03'N, 124°47' to 130°09'E), located in Liaoning and Jilin Provinces in
148	Northeastern China (Fig. S1A in Appendix A). The region is characterized by a
149	temperate continental climate with long cold winters and warm summers. Mean
150	annual temperature and precipitation are 2.8 °C and 700 mm, respectively. The
151	dominant vegetation type is a mixed forest dominated by the broad-leaved Korean
152	pine (Pinus koraiensis), with high productivity compared to other forests from the
153	same latitude (Stone, 2006). These forests are also hotspots of diversity and home
154	numerous emblematic, but endangered species such as the Siberian tiger (Pantha
155	tigris longipilis L.) and ginseng (Panax ginseng C.A. May) (Shao, Schall, &
156	Weishampel, 1994). The soils are classified as the Alfisol according to the US soil
157	taxonomy (Yang & Li, 1985). All studied sites have been protected from intensive
158	human disturbance since 1998, as a result of the implementation of a Natural Forest
159	protection. Thus, forests recovering from disturbances include stands with different
160	successional stages in the study area (Chen et al., 2014).
161	Eleven forest permanent plots (> 0.8 ha in size) were established in 2012 and

Eleven forest permanent plots (> 0.8 ha in size) were established in 2012 and

162	2013 (see Table S1 for details), and have been re-inventoried after five years
163	following a standard field protocol (Yuan et al., 2018). The elevation ranged between
164	653 and 1020 m.a.s.l Soil pH ranged between 5.4 and 7.1 (Table S1). Within each
165	plot (Fig. 1B in Appendix A), all individual trees with a $DBH \ge 1$ cm in contiguous
166	20×20 subplots were tagged, identified, and measured following a standard field
167	protocol (Hao, Zhang, Song, Ye, & Li, 2007). Their geographical coordinates of all
168	individual trees were also recorded. A total of 22,766 individuals belonging to 81
169	species, 46 genera, and 26 families were recorded (Yuan et al., 2018).
170	

Quantifying disturbance intensity and climate variables 171

The disturbance intensity of each plot was evaluated by counting the number of tree 172 stumps that had been removed in the field using a chainsaw in the 1990s (Kahl & 173 Bauhus, 2014). In addition, the official records of the Local Forestry Bureau, Jilin and 174 Liaoning Provinces were examined to collect the relevant selective logging data. 175 Collectively, plots were primarily classified into three disturbance intensity levels, 176 according to the partial harvesting (e.g., thinning, selective harvesting): relatively low 177 (<10%), medium (10-20%), and high $(20\sim30\%)$ disturbance. Plots with a low 178 disturbance level were distributed in the core zone of the Changbai Mountain Nature 179 Reserve (Fig. 1), which was established in 1960 and is part of the World Biosphere 180 Reserve Network under the Man and the Biosphere Project in 1980 (Shao et al., 1994). 181 Plots with medium and high disturbance levels were primarily located around the 182 residential area. 183

Page 11 of 33

Global Change Biology

184	We also considered 19 climate variables as potential drivers of EMF, i.e., annual
185	mean temperature, mean diurnal range, isothermality, temperature seasonality,
186	maximum temperature of the warmest month, minimum temperature of the coldest
187	month, temperature annual range, mean temperature of wettest quarter, mean
188	temperature of driest quarter, mean temperature of warmest quarter, mean temperature
189	of coldest quarter, annual precipitation, precipitation of wettest month, precipitation
190	of driest month, precipitation seasonality (coefficient of variation), precipitation of
191	wettest quarter, precipitation of driest quarter, precipitation of warmest quarter, and
192	precipitation of coldest quarter. These climate variables were collectively extracted
193	from the WorldClim database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), with
194	records from 1970 to 2000 at a 30-arc second spatial resolution (~1 km ²).
195	
195 196	Quantifying above- and below-ground biodiversities
195 196 197	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the
195 196 197 198	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _s). We
195 196 197 198 199	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic
195 196 197 198 199 200	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic (http://www.phylodiversity.net) which includes updated time-calibrated branch length
195 196 197 198 199 200 201	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic (http://www.phylodiversity.net) which includes updated time-calibrated branch length of seed plants combining multigene molecular and fossil data (Zanne et al., 2014).
195 196 197 198 199 200 201 202	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic (http://www.phylodiversity.net) which includes updated time-calibrated branch length of seed plants combining multigene molecular and fossil data (Zanne et al., 2014). Based on the obtained phylogenetic tree, we calculated 1) the Faith's phylogenetic
195 196 197 198 199 200 201 202 203	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic (http://www.phylodiversity.net) which includes updated time-calibrated branch length of seed plants combining multigene molecular and fossil data (Zanne et al., 2014). Based on the obtained phylogenetic tree, we calculated 1) the Faith's phylogenetic diversity index (PD _F), which quantifies the total length of all branches connecting
195 196 197 198 199 200 201 202 203 203	<i>Quantifying above- and below-ground biodiversities</i> We quantified the taxonomic attributes of aboveground forest diversity using the species richness (S) and Shannon-Wiener diversity indices of tree species (H _S). We built up a supertree for all the trees occurred using online software of Phylomatic (http://www.phylodiversity.net) which includes updated time-calibrated branch length of seed plants combining multigene molecular and fossil data (Zanne et al., 2014). Based on the obtained phylogenetic tree, we calculated 1) the Faith's phylogenetic diversity index (PD _F), which quantifies the total length of all branches connecting trees in a given subplot (Faith, 1992), and 2) the phylogenetic species variability (PSV)

reflecting how phylogenetic relatedness decreases the variance of a hypothetical

206	neutral trait (Helmus, Bland, Williams, & Ives, 2007). We also investigated the role of
207	functional identity and diversity on EMF by computing the community-weighted
208	mean (CWM) of trait values and the functional dispersion index (FD), respectively.
209	The two indices were weighted by the species' relative basal area within a subplot.
210	Functional traits included maximum tree height, wood density, leaf phosphorus
211	content (LPC), leaf nitrogen content (LNC), specific leaf area (SLA) and leaf area
212	(LA), which are related to life-history and nutrient and water-use efficiencies
213	(Pérez-Harguindeguy et al., 2013) (Appendix B). We also quantified the stand
214	structural diversity (H_D) , using the Shannon-Wiener diversity indices of tree size
215	variations (i.e., tree DBHs) using 2 cm DBH as a discrete class (Ali et al., 2016).
216	Meanwhile, individual size inequality (CV_D) was quantified as the coefficient of
217	variation for tree DBH within each subplot, as a proxy for variation in overall tree
218	size. The variability in DBH within natural forests captures the degree of complexity
219	in multilayered stand structure in terms of light capture and use by component species
220	and interacting individuals (reviewed by Ali, 2019).
221	To evaluate the soil fungal and bacterial diversities, we randomly selected two
222	sampling points from the four midpoints between central point and corners in each 20
223	\times 20m subplot in August 2018 (Fig. S1C). Five soil cores (3.8 cm diameter, 10 m
224	deep) at each sampling point were collected, pooled and brought to the laboratory for
225	analyses. Each soil sample was further divided into two parts: one for soil microbial

- diversity measurements (i.e. bacteria and fungi), and the other for soil nutrient
- analyses after removing roots and stones and air-dried for 24 h. All obtained values

228	were averaged to represent mean soil microbial diversity per subplot. For the
229	calculations of Shannon-Wiener diversity indices of soil fungi and bacteria, samples
230	were rarified to 3,000 sequences for bacteria and 2,200 sequences for fungi per soil
231	sample. Summary of diversity variables is provided in Table S1 in Appendix A. More
232	details about the measurements of plant functional traits and soil microbes are
233	provided in Appendix B.
234	
235	Quantifying ecosystem multifunctionality (EMF)
236	We quantified the EMF of the studied forests using nine key functions, i.e., (1) coarse
237	woody productivity (CWP), (2) aboveground biomass of wild edible plants (AGB _W),
238	(3) soil organic carbon density (SOD), (4) litter layer biomass (B_L) , (5) water holding
239	capacity of litter layer (WHC _L), (6) water holding capacity of the soil (WHC _S), (7)
240	soil available nitrogen (AN), (8) soil available phosphorus (AP), and (9) soil available
241	potassium (AK) (Table S1 in Appendix A).
242	Coarse woody productivity (Mg ha-1 yr-1) was estimated by summing biomass
243	growth and recruitment rates, which were calculated as the increment of stems alive in
244	the last and first inventories, and the biomass of stems recruited into $DBH \ge 1$ cm
245	between the first and last forest inventories, respectively (Yuan et al., 2019). For the
246	quantification of the aboveground biomass of wild edible plants, we first recognized
247	medicinal and edible shrub species according to the Flora Reipublicae Popularis
248	Sinicae (Hong & Blackmore, 2015), and then the mean aboveground biomass stock

249 (Mg ha⁻¹) of wild edible plants was quantified using specific species allometric

250	models (He, Kang, Fan, Gao, & Feng, 2011). Soil organic carbon density (kg m ⁻²) of
251	the 0-10 cm layer was calculated based on the formula $C_d = (1 - \theta_i) \times \rho_i \times 0.58 \times$
252	c_i , where θ_i is gravel (>2 mm) content at sample location <i>i</i> (%), ρ_i is soil bulk density
253	in the surface layer (g cm ³), and c_i is organic matter content in the <i>i</i> th soil sample (g
254	kg ⁻¹).
255	Litter biomass (Mg hm ⁻²) was determined through the collection of the intact
256	litter layer above soil mineral horizons with a hand spade, after removing the surface
257	dried twigs and herbs. The water-holding capacity (WHC, Mg hm ⁻²) of litters and
258	soils were determined using full drainage methods (Naeth, Bailey, Chanasyk, & Pluth,
259	1991). Soil N (g kg ⁻¹) was determined following the Kjeldahl method. Soil P (g kg ⁻¹)
260	was measured by molybdate colorimetry, after digestion in H_2SO_4 -HClO ₄ . Total K (g
261	kg ⁻¹) was derived using atomic absorption spectrometry. Available N was alkali
262	digested and was detected using hydrochloric acid titration method, whereas available
263	P was extracted following the method of Mehlich 1(Nelson, Mehlich, & Winters,
264	1953). Soil available K was obtained with detection by atomic absorption
265	spectrometry (AAS). Please see detailed measurement approaches in Appendix B.
266	All individual functions were z-scored (standardized deviates) and averaged to
267	calculate the forest ecosystem multifunctionality index (EMF_A) (J. E. K. Byrnes et al.,
268	2014). We also evaluated whether multiple functions are simultaneously performing
269	at a high level using the multiple threshold approach, which calculates the number of
270	functions that reach a given threshold (i.e. the percent of the maximum value of each
271	of the functions measured in the dataset). This maximum is defined as the mean of the

272	five highest values for each function observed across all study plots. We used
273	multifunctionality-threshold values of 25% (EMF $_{T25}$), 50% (EMF $_{T50}$) and 75%
274	(EMF _{T75}).
275	
276	Statistical analyses
277	We first conducted a principal component analysis (PCA) to reduce the
278	multicollinearity in CWM indices and climate variables, separately. The result
279	indicated that the first axis of PCA on CWM indices (CWM_{PC1}) explained 56.9% of
280	the total variation in CWM variables, mainly reflecting taller trees (high CWM of
281	height) but lower CWM of SLA and LNC (i.e., conservative strategy). The first axis
282	of PCA on climate variables ($Clim_{PC1}$) accounted for 67.1% of the variation
283	representing increasing temperature and precipitation gradients (Table S2).
284	We tested the effects of disturbance on EMF and individual functions separately,
285	as well as on above- (i.e. taxonomic, phylogenetic, functional and stand structure) and
286	below-ground (i.e. soil bacterial and fungal diversity) diversity indices using two-way
287	ANOVA models. A Post-hoc Tukey's test was used to assess the significant
288	differences among disturbance levels.
289	We used multiple linear regression models to evaluate the effects of the multiple
290	predictors considered on EMF. However, before conducting regression analysis, we
291	removed the highly correlated predictors (i.e., $r > 0.7$), such as H _S and PD, H _D and
292	CV _D , to avoid multicollinearity issues (see Fig. S2). Hence, nine variables including
293	five above-ground diversity indices (H_S , PD_F , FD , CV_D , and CWM_{PC1}), two

294	below-ground diversity indices (H_B and H_F), one composite climate variable ($Clim_{PC1}$),
295	and disturbance levels were included into the multiple regression models for
296	predicting EMF. The disturbance levels were treated as an ordinal categorical variable
297	(i.e. a regular numeric variable) and were coded as 1 (low), 2 (medium), and 3 (high).
298	Since all predictors and response variables were standardized after min-max
299	normalization, an analogue of the variance decomposition analysis was applied to
300	obtain the relative importance of each predictor on a comparable scale, which can be
301	simply calculated as the ratio between its standardized regression coefficient and the
302	sum of all coefficients, and expressed in % (Le Bagousse-Pinguet et al., 2019). The
303	obtained relative importance of predictors was grouped into five identifiable variance
304	fractions: (i) above-ground diversity, (ii) below-ground diversity, (iii) climate, (iv)
305	disturbance levels and (v) unexplained variance.
306	Finally, we used a piecewise structural equation modeling (pSEM) to investigate
307	direct and biodiversity-mediated effects of disturbance intensities on the averaged
308	EMF-index, EMF-thresholds and individuals ecosystem functions. We used site (i.e.
309	11 plots) as a random factor in pSEM. Since we had multiple candidate variables to
310	use in pSEM, we included those variables of above- and below-ground diversity
311	which had the highest standardized effect on EMF in multiple linear regression
312	
	models. The model fit of pSEM was assessed using the Fisher's C statistic, i.e., the
313	models. The model fit of pSEM was assessed using the Fisher's C statistic, i.e., the model was considered to have adequate fit to the data when the model had a Fisher's
313 314	models. The model fit of pSEM was assessed using the Fisher's C statistic, i.e., the model was considered to have adequate fit to the data when the model had a Fisher's C statistic with $P > 0.05$ (Shipley, 2009). The conditional (R^2_c) and marginal R^2 (R^2_m)
313 314 315	models. The model fit of pSEM was assessed using the Fisher's C statistic, i.e., the model was considered to have adequate fit to the data when the model had a Fisher's C statistic with $P > 0.05$ (Shipley, 2009). The conditional (R^2_c) and marginal R^2 (R^2_m) were calculated for each of the dependent variables (Nakagawa & Schielzeth, 2013).

316	We computed the <i>Pearson</i> correlations between pairs of individuals functions
317	and their relationships with EMF_A , aiming to assess the synergies (positive) or
318	trade-offs (negative) between forest functions. All data analyses were conducted in R
319	3.6.0 (R Development Core Team, 2019). Phylogenetic and functional diversity
320	indices were calculated using the <i>picante</i> (Kembel et al., 2010) and FD packages
321	(Laliberte & Legendre, 2010), respectively. EMF indices were calculated using the
322	multifunc package (J. Byrnes, 2014). Multiple linear mixed models and pSEM
323	analyses were performed in <i>nlme</i> (Pinheiro et al., 2017) and <i>piecewise SEM</i>
324	(Lefcheck, 2016) packages, respectively.
325	
326	Results
327	Highly disturbed plots exhibited the highest EMF, even at higher thresholds (Fig. 1A).
328	In addition, five of the nine individual functions (i.e., SOD, WHC _S , AN, AP, and AK)
329	measured in highly disturbed plots were significantly higher than in low disturbed
330	plots. In contrast, AGB_W was higher in low disturbed plots, whereas CWP, B_{L_1} and
331	WHC _L did not show significant differences among the three levels of disturbance
332	(Fig. S3). As such, plant species richness (S), Shannon-Wiener diversity (H_S), Faith's
333	phylogenetic diversity (PD _F), and soil microbe diversity ($H_B \& H_F$) were higher in
334	highly disturbed plots, whereas functional trait diversity (FD) and identity (CWM_{PC1})
335	and stand structural attributes (H_D and CV_D) were higher in low disturbed plots (Fig.
336	1B).
337	The multiple linear regressions models explained 68%, 56%, 58% and 26% of

338	the variations in EMF_{A} , EMF_{T25} , EMF_{T50} and EMF_{T75} , respectively (Fig.2). The
339	biodiversity indices explained 45% on average [26-58%] of the variations in EMF,
340	while climate and disturbance together explained on average 7% [0.4—15%]. The
341	cumulative above-and below-ground diversity accounted for about 26.0%
342	[17.5—39.4%] and 18.9% [8.1—28.8%] of the variations in EMF, respectively.
343	Individual tree size variation (CV_D) and soil bacterial diversity (H_B) were selected as
344	the best predictors of above- and below-ground diversity, explaining up to 11.3%
345	[4.6-19.7%] and $6.0%$ $[2.0-9.9%]$ of the accounted variance, respectively (Fig.2).
346	Since there was no significant relationship between composite climate factors
347	(Clim _{PC1}) and EMF, and hence, we did not include $Clim_{PC1}$ in the pSEM analysis
348	(Fig.2).
349	The tested pSEM models showed that disturbance had significant positive direct
350	effects on EMF, irrespective of the EMF threshold considered (Fig. 3). However, our
351	models also showed opposite indirect effects of disturbances on EMF, highlighting
352	the occurrence of contrasting biodiversity-mediated pathways. While both above- and

belowground diversity attributes had direct positive effects on EMF, their mediating effects were in partial contrast, i.e., negative for aboveground diversity and positive for belowground diversity. Furthermore, the negative mediating effect of aboveground diversity on EMF increased with higher thresholds ($\beta = 0.02$ to 0.19), highlighting a stronger negative pathway occurring when functions performed at higher rates (Fig. 3). In order to complement the results from main pSEMs (Fig. 3), the correlation between forest functions is provided in Fig. S4, whereas pSEMs for tested single forest functions are provided in Fig. S5.

361 **Discussion**

362	Our study offers an integrative framework aimed at exploring how multiple attributes
363	of above-ground (taxonomic, phylogenetic, functional, and stand structure) and
364	below-ground (soil bacterial and fungal diversities) biodiversities simultaneously
365	influence the EMF of temperate forests recovering from post-logging disturbances.
366	The effects of biodiversity on EMF were two-fold higher than those of both climate
367	and disturbances together, expanding to previous findings on individual function such
368	as productivity to EMF (Duffy et al. 2017). However, our results also show evidence
369	for divergent above- and below-ground biodiversity pathways in mediating
370	disturbance impacts on EMF. Hence, this study highlights the necessity of considering
371	the multi-dimensional role of biodiversity to better grasp its complex effects on the
372	functioning of terrestrial ecosystems in a changing world.
373	Maximum EMF was found in disturbed forests rather than relatively undisturbed
374	mature forests. Our result thus departs from the MacArthur's (1970) minimisation
375	principle, suggesting that more mature and late-stage communities should become
376	more efficient by minimising energy wastage and thus maximizing ecosystem
377	functioning. Rather, our result reminds the recent study of (Ghedini et al., 2018) who
378	observed that mid-stage communities could be more efficient at utilizing resources.
379	Specifically, forest canopy removal by sawlogs and timber harvesting indeed could
380	result in tree density and forest biomass decline (Yuan et al., 2018), but our finding

382	carbon storage, nutrient availability, and water retention capability, and hence,
383	supporting the notion that suitable forest practice such as thining could achieve the
384	best combination of high wood yield and nutrients reserves (Gong, Tan, Liu, & Xu,
385	2021; Schwaiger, Poschenrieder, Biber, & Pretzsch, 2019; Thornley & Cannell,
386	2000). One possible mechanistic explanation is that timber harvest will lead to more
387	plant residues entering the soil, and more light and precipitation to reach the floor,
388	which in turn may increase the litter decomposition rate and nutrient cycling (Huang,
389	Li, & Su, 2020; Simonin, Kolb, Montes-Helu, & Koch, 2007). However, there was no
390	significant difference in woody production among the three levels of disturbance,
391	implying that subsequent forest biomass recovers when emerging trees grow to
392	occupy the gaps created by the falled trees, and hence, the loss of forest biomass can
393	be compensated if the forests are left to recover, primarily depending on the
394	magnitude of disturbance intensity (Piponiot et al., 2016). Collectively, compared
395	with the relative pristine or unmanaged stands, the soil physicochemical properties,
396	such as organic matter and available nitrogen, maximal water retention, and total
397	porosity, of natural mixed stands with low and medium management intensities were
398	significantly increased after 10 years restoration (WU et al., 2008).
399	Stand structural diversity was the main above-ground biodiversity attribute to
400	promote EMF, particularly at higher multifunctionality-thresholds. This result
401	confirms the key role of stand structure for forest EMF, as previosuly shown for
402	individual functions (e.g. productivity) (Ali et al., 2016; Gough, Atkins, Fahey,
403	Hardiman, & LaRue, 2020). Forests with complex stand structure attribute such as

404	higher tree size variations, mainly reflecting the degree of heterogeneity in vegetation
405	density, could sustain higher EMF likely through optimizing space, resources and
406	understory microclimatic conditions (Hardiman et al., 2013; Jucker, Bouriaud,
407	Coomes, & Baltzer, 2015). For instance, higher individual size inequality (CV_D)
408	could promote heterogeneity in branch and leaf density and morphology, resulting in
409	higher light use efficiency (Ali, 2019; Yachi & Loreau, 2007). For instance, our
410	analysis also indicates that more complex communities could lead to faster shrub
411	species growth and biomass accumulation (Fig.S5B).
412	Considering multiple above-ground biodiversity attributes showed contrasted
413	responses to post-logging disturbance, ultimately leading to positive, neutral and
414	negative effects on EMF (Le Bagousse-Pinguet et al., 2019). Although timber
415	harvesting could cause a reduction in stand structural diversity due to large stems
416	removal, it could promote species diversity by creating forest gaps in which higher
417	light resources might be available for saplings or colonizing seedlings (Molino &
418	Sabatier, 2001). Gaps could promote higher tree species diversity through the niche
419	partitioning of more greatly contrasting and frequently created resources and/or
420	density effect (Sipe & Bazzaz, 1995). These gaps are expected to be occupied by
421	early-successional, light-demanding species (Poorter & Bongers, 2006). Generally,
422	forest gaps are also expected to be primarily filled by the inclusion of by chance
423	species rather than by best-adapted species because of the stochastic availability of
424	gaps and limited recruitment of juveniles leading to slow competitive exclusion and
425	enable the coexistence of more plant species (Brokaw & Busing, 2000). Interestingly,

426	our results show that the disturbance-induced increase in species richness does not
427	lead to higher functional trait diversity, implying the high functional redundancy in
428	the above-ground species composition. Therefore, ignoring the contrasting effects of
429	land-use impacts on a variety of biodiversity attributes, such as taxonomic,
430	phylogenetic, functional, and stand structural diversity, will likely bias our ability to
431	predict the functional consequences of biodiversity decline (Le Bagousse-Pinguet et
432	al., 2019).In contrast of the above-groung biodiversity attributes considered, high soil
433	bacterial diversity consistently promoted EMF irrespective of the
434	multifunctionlaity-threshold considered, while soil diversity is often viewed to drive
435	EMF mainly at low thresholds (M. Delgado-Baquerizo et al., 2016; Wagg et al.,
436	2014). Soil bacteria diversity is a main driver for maintaining EMF in many terrestrial
437	ecosystems (M. Delgado-Baquerizo et al., 2016; Wagg et al., 2014; Wang et al., 2019;
438	Yuan et al., 2020) through maintaining key ecological processes such as nutrient
439	cycling and decomposition (Manuel Delgado-Baquerizo et al., 2020; Van Der Heijden
440	et al., 2008). A recent global survey and microcosm experiment revealed that the
441	positive impact of soil biodiversity on EMF can be maintained across biomes after
442	accounting for important ecosystem factors such as climate and plant attributes
443	(Manuel Delgado-Baquerizo et al., 2020). Higher diversity of soil organisms, such as
444	bacteria and fungi, are the major controllers of EMF by fine-tuning nutrient supply
445	and the distribution of resources, thereby promoting high rates of material processing
446	in terrestrial ecosystems which supplies substrate to other important soil organisms
447	involved in nutrient cycling and releases soil nutrients to above-ground communities

448	(Maron et al., 2018; Wardle et al., 2004). One of the important findings of this study
449	is that the relative contribution of stand structural attributes on EMF increased with
450	the increasing thresholds levels of EMF, which can be viewed as a superior predictor
451	of ecosystem functioning, as has been shown for individual functions (e.g.
452	productivity) (Ali et al., 2016; Gough et al., 2020). Forests with complex stand
453	structure attribute such as higher tree size variations, mainly reflecting the degree of
454	heterogeneity in vegetation density, sustaining higher EMF likely through optimizing
455	space and understory microclimatic conditions (Hardiman et al., 2013; Jucker et al.,
456	2015). As the individual size inequality (CV_D) increases, niche differentiation among
457	and plasticity within trees probably augment heterogeneity in branch and leaf density
458	and morphology, resulting in more efficient light intercept and utilize across a range
459	of light conditions (Ali, 2019; Yachi & Loreau, 2007). For instance, our analysis also
460	indicates that more complex communities could lead to faster shrub species growth
461	and biomass accumulation (Fig.S5B).
462	Our study provides observational evidence that post-logging disturbances (from
463	low to high level) could enhance forest multifunctionality and below-ground
464	biodiversity, while simultaneously declining above-ground biodiversity. While certain
465	attributes of above-ground plant diversity can impede EMF, above-ground stand
466	structural and soil microbial diversity attributes appears as important biodiversity
467	facets to promote forest ecosystem multifunctionality. Hence, managing forest
468	ecosystems to maximize above-ground biodiversity, such as higher species richness,
469	may not necessarily maximize a particular subset of functions. In other words,

470	ecosystem service provisioning cannot be solely replaced by the protection of a high
471	above-ground stand diversity (Felipe-Lucia et al., 2018; Meyer et al., 2018). This
472	study underlines that maintaining multifunctional forests through a suitable level of
473	management or disturbance intensity may allow for higher biodiversity and ecosystem
474	services on which human beings are dependent. Hence, we argue that the inclusion of
475	soil biodiversity and disturbance levels should be considered as decisive components
476	of the management decision-making policies (Manuel Delgado-Baquerizo et al.,
477	2020; Huang et al., 2020).
478	

479

480 Acknowledgements

This work was supported by Strategic Priority Research Program of the Chinese 481 Academy of Sciences (XDA23080302 & XDB 31030000), Key Research Program of 482 Frontier Sciences (ZDBS-LY-DQC019) of the Chinese Academy of Sciences, the 483 National Natural Science Foundation of China (31730015, 31961133027 and 484 41671050) and Youth Innovation Promotion Association CAS (2017241). A. Ali is 485 supported by Special Project for Introducing Foreign Talents - Jiangsu "Foreign 486 Expert Hundred People Program" (Grant No. BX2019084), and Metasequoia Faculty 487 Research Startup Funding at Nanjing Forestry University (Grant No. 163010230). 488 M.L. was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41). 489 The authors have no conflict of interest to declare. YLB-P was supported by a Marie 490 Sklodowska-Curie Actions Individual Fellowship (MSCA-IF) within the European 491

492	Program	Horizon	2020	(DRYFUN	Project	656035).	We	are	grateful	to	the	Dr.

- 493 Manuel Delgado-Baquerizo and Tommaso Jucker for valuable comments on earlier
- 494 versions. The authors have no conflict of interest to declare.
- 495
- 496

497 **References**

- Ali, A. (2019). Forest stand structure and functioning: Current knowledge and future challenges.
 Ecological Indicators, 98, 665-677.
- Ali, A., Yan, E.-R., Chen, H. Y. H., Chang, S. X., Zhao, Y.-T., Yang, X.-D., & Xu, M.-S. (2016). Stand
 structural diversity rather than species diversity enhances aboveground carbon storage in
 secondary subtropical forests in Eastern China. *Biogeosciences*, *13*(16), 4627-4635.
 doi:10.5194/bg-13-4627-2016
- Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B.
 (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and
 services. *Ecol Lett*, *9*(10), 1146-1156.
- Brokaw, N., & Busing, R. T. (2000). Niche versus chance and tree diversity in forest gaps. *Trends in ecology & evolution, 15*(5), 183-188.
- Byrnes, J. (2014). multifunc: Analysis of Ecological Drivers on Ecosystem Multifunctionality R Package
 Version 0.6.2 *R Foundation for Statistical Computing, Vienna,*.
- Byrnes, J. E. K., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N., Hector, A., . . . Freckleton, R. (2014).
 Investigating the relationship between biodiversity and ecosystem multifunctionality:
 challenges and solutions. *Methods in Ecology and Evolution*, 5(2), 111-124.

514 doi:10.1111/2041-210x.12143

- 515 Chen, L., Wang, L., Baiketuerhan, Y., Zhang, C., Zhao, X., & von Gadow, K. (2014). Seed dispersal and
 516 seedling recruitment of trees at different successional stages in a temperate forest in
 517 northeastern China. *Journal of Plant Ecology*, 7(4), 337-346. doi:10.1093/jpe/rtt024
- Dai, L., Chen, G., Deng, H., Ji, L., Hao, Z., & Wang, Q. (2004). Structure characteristics and health
 distance assessment of various disturbed communities of Korean pine and broadleaved
 mixed forest in Changbai Mountains. *Chinese Journal of Applied Ecology*, *10*(15), 1750-1754.
- 521 Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., . . . Singh, B.
 522 K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. *Nat*
- 523 *Commun, 7,* 10541. doi:10.1038/ncomms10541
- 524 Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., . . . Singh, B. K.
 525 (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes.
- 526 Nature Ecology & Evolution, 4(2), 210-220. doi:10.1038/s41559-019-1084-y
- Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. *Biological conservation*, *61*(1),
 1-10.
- 529 Felipe-Lucia, M. R., Soliveres, S., Penone, C., Manning, P., van der Plas, F., Boch, S., . . . Allan, E. (2018).

530	Multiple forest attributes underpin the supply of multiple ecosystem services. Nat Commun,
531	<i>9</i> (1), 4839. doi:10.1038/s41467-018-07082-4
532	Gamfeldt, L., Snall, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Bengtsson, J. (2013).
533	Higher levels of multiple ecosystem services are found in forests with more tree species. Nat
534	Commun, 4, 1340. doi:10.1038/ncomms2328
535	Ghedini, G., Loreau, M., White, C. R., & Marshall, D. J. (2018). Testing MacArthur's minimisation
536	principle: do communities minimise energy wastage during succession? Ecol Lett, 21(8),
537	1182-1190.
538	Gong, C., Tan, Q., Liu, G., & Xu, M. (2021). Forest thinning increases soil carbon stocks in China. Forest
539	Ecology and Management, 482, 118812.
540	Gough, C. M., Atkins, J. W., Fahey, R. T., & Hardiman, B. S. (2019). High rates of primary production in
541	structurally complex forests. Ecology.
542	Gough, C. M., Atkins, J. W., Fahey, R. T., Hardiman, B. S., & LaRue, E. A. (2020). Community and
543	structural constraints on the complexity of eastern North American forests. Global Ecology
544	and Biogeography.
545	Grime, J. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects.
546	Journal of Ecology, 86(6), 902-910.
547	Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N. J., & Maestre, F. T. (2017).
548	Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology &
549	Evolution, 1(5), 1-9.
550	Hao, Z., Zhang, J., Song, B., Ye, J., & Li, B. (2007). Vertical structure and spatial associations of
551	dominant tree species in an old-growth temperate forest. Forest Ecology and Management,
552	252(1-3), 1-11.
553	Hardiman, B. S., Gough, C. M., Halperin, A., Hofmeister, K. L., Nave, L. E., Bohrer, G., & Curtis, P. S.
554	(2013). Maintaining high rates of carbon storage in old forests: a mechanism linking canopy
555	structure to forest function. Forest Ecology and Management, 298, 111-119.
556	He, L., Kang, X., Fan, X., Gao, Y., & Feng, Q. (2011). Estimation and analysis of understory shrub
557	biomass in Changbai Mountains. Journal of Nanjing Forestry University (Natural Sciences
558	Edition), 35(5), 45-50.
559	Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007). Phylogenetic measures of biodiversity.
560	The American Naturalist, 169(3), E68-E83.
561	Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution
562	interpolated climate surfaces for global land areas. International Journal of Climatology: A
563	Journal of the Royal Meteorological Society, 25(15), 1965-1978.
564	Hong, DY., & Blackmore, S. (2015). Plants of China: A companion to the Flora of China: Cambridge
565	University Press.
566	Huang, X., Li, S., & Su, J. (2020). Thinning enhances ecosystem multifunctionality via increase of
567	functional diversity in a Pinus yunnanensis natural secondary forest.
568	Jucker, T., Bouriaud, O., Coomes, D. A., & Baltzer, J. (2015). Crown plasticity enables trees to optimize
569	canopy packing in mixed-species forests. Functional Ecology, 29(8), 1078-1086.
570	doi:10.1111/1365-2435.12428
571	Kahl, T., & Bauhus, J. (2014). An index of forest management intensity based on assessment of
572	harvested tree volume, tree species composition and dead wood origin. Nature
573	Conservation, 7. doi:10.3897/natureconservation.7.7281

574	Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Webb, C.
575	O. (2010). Picante: R tools for integrating phylogenies and ecology. <i>Bioinformatics, 26</i> (11),
576	1463-1464. doi:10.1093/bioinformatics/btq166
577	Laliberte, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity
578	from multiple traits. <i>Ecology, 91</i> (1), 299-305. doi:Doi 10.1890/08-2244.1
579	Le Bagousse-Pinguet, Y., Soliveres, S., Gross, N., Torices, R., Berdugo, M., & Maestre, F. T. (2019).
580	Phylogenetic, functional, and taxonomic richness have both positive and negative effects on
581	ecosystem multifunctionality. Proc Natl Acad Sci U S A, 116(17), 8419-8424.
582	doi:10.1073/pnas.1815727116
583	Le Provost, G., Badenhausser, I., Le Bagousse-Pinguet, Y., Clough, Y., Henckel, L., Violle, C., Gross,
584	N. (2020). Land-use history impacts functional diversity across multiple trophic groups.
585	Proceedings of the National Academy of Sciences, 117(3), 1573-1579.
586	Lefcheck, J. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution,
587	and systematics. Methods in Ecology and Evolution, 7, 573-579.
588	Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity
589	experiments. <i>Nature, 412</i> (6842), 72-76. doi:10.1038/35083573
590	MacArthur, R. H. (1984). Geographical ecology: patterns in the distribution of species: Princeton
591	University Press.
592	Maron, P. A., Sarr, A., Kaisermann, A., Leveque, J., Mathieu, O., Guigue, J., Ranjard, L. (2018). High
593	Microbial Diversity Promotes Soil Ecosystem Functioning. Appl Environ Microbiol, 84(9).
594	doi:10.1128/AEM.02738-17
595	McGuire, K. L., D'Angelo, H., Brearley, F. Q., Gedallovich, S. M., Babar, N., Yang, N., Fierer, N.
596	(2015). Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical
597	forests. <i>Microb Ecol, 69</i> (4), 733-747. doi:10.1007/s00248-014-0468-4
598	Meyer, S. T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A., Weisser, W. W.
599	(2018). Biodiversity-multifunctionality relationships depend on identity and number of
600	measured functions. <i>Nat Ecol Evol, 2</i> (1), 44-49. doi:10.1038/s41559-017-0391-4
601	Molino, JF., & Sabatier, D. (2001). Tree diversity in tropical rain forests: a validation of the
602	intermediate disturbance hypothesis. Science, 294(5547), 1702-1704.
603	Naeth, M., Bailey, A., Chanasyk, D., & Pluth, D. (1991). Water holding capacity of litter and soil organic
604	matter in mixed prairie and fescue grassland ecosystems of Alberta. Journal of Range
605	management, 13-17.
606	Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized
607	linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142.
608	doi:10.1111/j.2041-210x.2012.00261.x
609	Nelson, W., Mehlich, A., & Winters, E. (1953). The development, evaluation, and use of soil tests for
610	phosphorus availability. Agronomy, 4(2), 153-188.
611	Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., Phillips, H. R. (2016).
612	Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global
613	assessment. Science, 353(6296), 288-291.
614	Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass
615	of the world's forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622.
616	Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Gurvich, D.
617	(2013). New handbook for standardised measurement of plant functional traits worldwide.

618	Australian Journal of botany, 61(3), 167-234.
619	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., & Maintainer, R.
620	(2017). Package 'nIme'. Linear and nonlinear mixed effects models, version, 3(1).
621	Piponiot, C., Sist, P., Mazzei, L., Peña-Claros, M., Putz, F. E., Rutishauser, E., Baraloto, C. (2016).
622	Carbon recovery dynamics following disturbance by selective logging in Amazonian forests.
623	<i>Elife, 5,</i> e21394.
624	Poorter, L., & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain
625	forest species. <i>Ecology, 87</i> (7), 1733-1743.
626	Prado-Junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., van der Sande, M. T., Lohbeck, M.,
627	Nardoto, G. B. (2016). Conservative species drive biomass productivity in tropical dry forests.
628	Journal of Ecology, 104(3), 817-827. doi:10.1111/1365-2745.12543
629	R Development Core Team. (2019). R version 3.6.0. Vienna, Austria: R Foundation for Statistical
630	Computing. Retrieved from http://cran.r-project.org/
631	Schwaiger, F., Poschenrieder, W., Biber, P., & Pretzsch, H. (2019). Ecosystem service trade-offs for
632	adaptive forest management. Ecosystem Services, 39, 100993.
633	Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Honkaniemi, J.
634	(2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402.
635	Shao, G., Schall, P., & Weishampel, J. F. (1994). Dynamic simulations of mixed broadleaved-Pinus
636	koraiensis forests in the Changbaishan Biosphere Reserve of China. Forest Ecology and
637	Management, 70(1-3), 169-181.
638	Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. <i>Ecology, 90</i> (2),
639	363-368.
640	Simonin, K., Kolb, T. E., Montes-Helu, M., & Koch, G. W. (2007). The influence of thinning on
641	components of stand water balance in a ponderosa pine forest stand during and after
642	extreme drought. Agricultural and Forest Meteorology, 143(3-4), 266-276.
643	Sipe, T., & Bazzaz, F. (1995). Gap partitioning among maples (Acer) in central New England: survival
644	and growth. <i>Ecology, 76</i> (5), 1587-1602.
645	Soliveres, S., Van Der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., Binkenstein, J.
646	(2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.
647	Nature, 536(7617), 456-459.
648	Sommerfeld, A., Senf, C., Buma, B., D'Amato, A. W., Despres, T., Diaz-Hormazabal, I., Seidl, R.
649	(2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nat
650	<i>Commun, 9</i> (1), 4355. doi:10.1038/s41467-018-06788-9
651	Stone, R. (2006). A threatened nature reserve breaks down Asian borders. In: American Association
652	for the Advancement of Science.
653	Thornley, J., & Cannell, M. (2000). Managing forests for wood yield and carbon storage: a theoretical
654	study. Tree physiology, 20(7), 477-484.
655	Tilman, D. (1997). The Influence of Functional Diversity and Composition on Ecosystem Processes.
656	Science, 277(5330), 1300-1302. doi:10.1126/science.277.5330.1300
657	Tobner, C. M., Paquette, A., Gravel, D., Reich, P. B., Williams, L. J., & Messier, C. (2016). Functional
658	identity is the main driver of diversity effects in young tree communities. Ecology Letters,
659	<i>19</i> (6), 638-647. doi:10.1111/ele.12600
660	Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil
661	microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett,

662	11(3), 296-310.
663	Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. (2014). Soil biodiversity and soil
664	community composition determine ecosystem multifunctionality. Proceedings of the
665	National Academy of Sciences, 111(14), 5266-5270.
666	Wang, L., Delgado-Baquerizo, M., Wang, D., Isbell, F., Liu, J., Feng, C., Liu, C. (2019). Diversifying
667	livestock promotes multidiversity and multifunctionality in managed grasslands. Proc Natl
668	Acad Sci U S A, 116(13), 6187-6192. doi:10.1073/pnas.1807354116
669	Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., & Wall, D. H. (2004).
670	Ecological linkages between aboveground and belowground biota. Science, 304(5677),
671	1629-1633.
672	WU, Z., ZHOU, X., ZHENG, L., GAO, S., LUO, J., CAI, R., WANG, X. (2008). Study on Soil
673	Physic-chemical Properties in Natural Forest Selective Cutting Area after 10 years [J]. Journal
674	of Mountain Science, 2.
675	Yachi, S., & Loreau, M. (2007). Does complementary resource use enhance ecosystem functioning? A
676	model of light competition in plant communities. <i>Ecology Letters, 10</i> (1), 54-62.
677	Yang, H., & Li, F. (1985). Distribution patterns of dominant tree species on northern slope of Changbai
678	Mountain. Research Forest Ecosystem, 5, 1-14.
679	Yuan, Z., Ali, A., Jucker, T., Ruiz-Benito, P., Wang, S., Jiang, L., Loreau, M. (2019). Multiple abiotic
680	and biotic pathways shape biomass demographic processes in temperate forests. Ecology,
681	e02650. doi:10.1002/ecy.2650
682	Yuan, Z., Ali, A., Ruiz - Benito, P., Jucker, T., Mori, A., Wang, S., Wang, X. (2020). Above - and
683	below - ground biodiversity jointly regulate temperate forest multifunctionality along a local
684	- scale environmental gradient. Journal of Ecology.
685	Yuan, Z., Wang, S., Ali, A., Gazol, A., Ruiz-Benito, P., Wang, X., Loreau, M. (2018). Aboveground
686	carbon storage is driven by functional trait composition and stand structural attributes rather
687	than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest
688	Science, 75(3), 67.
689	Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., Beaulieu, J.
690	M. (2014). Three keys to the radiation of angiosperms into freezing environments. <i>Nature,</i>
691	506(7486), 89-92. doi:10.1038/nature12872
692	

693

694 Figures captions

695	Fig 1. The effect of disturbance intensity on forest ecosystem multifunctionality (A)
696	and above-and below-ground biodiversity (B). Ecosystem multifunctionality includes
697	averaged (FEM _A), 25% (FEM _{T25}), 50% (EFM _{T50}) and 75% threshold levels (FEM _{T75}).
698	Above-ground diversity includes species richness (S), Shannon-Wiener diversity of
699	tree species (H _S), Faith's phylogenetic diversity (PD _F), phylogenetic species
700	variability (PSV), functional dispersion of functional traits (FD), the first PCA axis of
701	the community-weighted mean of six functional traits (CWM_{PC1}), Shannon-Wiener
702	diversity of tree size variation (H_D) , and the coefficient of variation for tree DBH
703	(CV _D); the below-ground diversity includes, Shannon-Wiener diversity of soil
704	bacteria (H _B), and Shannon-Wiener diversity of fungi (H _F). Different lowercase letters
705	within each panel indicate significant ($P < 0.5$) differences between treatment means,
706	after using Tukey's method to correct for multiple comparisons. Error bars represent
707	±1SE.
708	Fig. 2. Effects of post-logging disturbances, climate, and above- and below-ground
709	biodiversity on averaged ecosystem multifunctionality (A), 25% threshold-based (B),
710	50% threshold-based (C), and 75% threshold-based ecosystem multifunctionality (D).
711	Standardized regression coefficients of model predictors, the associated 95%
712	confidence intervals, and the relative importance of each factor (expressed as the
713	percentage of explained variance) are shown. The adj.R ² of the models and the
714	<i>P</i> -value of each predictor are given as: $*P < 0.05$, $**P < 0.01$. Dist, the disturbance
715	levels; Clim _{PC1} , the first axis of 19 climate variables, whereas other abbreviations are

	1 . 1	•
716	evoluted in High	
10	CAPIAINCU III I'Ig.	ı.

717	Fig.3 Results from the piece-wise structural equation models (pSEMs) exploring the
718	direct and indirect effects of disturbance levels on forest multifunctionality at
719	averaged (A) and three threshold levels (B-D) via above-ground diversity and
720	below-ground diversity. Numbers adjacent to arrows are indicative of the effect size
721	of the relationship. Continuous and dashed arrows indicate positive and negative
722	relationships, respectively. For all relations, standardized regression coefficients and
723	significance are given (*<0.05, **<0.01). The width of the arrows is proportional to
724	the strength of path coefficients. R ² denotes the proportion of variance explained and
725	model-fit statistics for each pSEM are given.
726	

731 Fig. 2

