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ABSTRACT
A port-Hamiltonian formulation for general linear coupled thermoelasticity
and for the thermoelastic bending of thin structures is presented. The con-
struction exploits the intrinsic modularity of port-Hamiltonian systems to
obtain a formulation of linear thermoelasticity as an interconnection of the
elastodynamics and heat equations. The derived model can be readily dis-
cretized by using mixed finite elements. The discretization is structure-pre-
serving, since the main features of the system are retained at a discrete
level. The proposed model and discretization strategy are validated against
a benchmark problem of thermoelasticity, the Danilovskaya problem.

KEYWORDS
Linear coupled
thermoelasticity; mixed
finite elements;
Port-Hamiltonian systems;
structure preserving
discretization

1. Introduction

Thermoelasticity is the study of elastic bodies undergoing thermal excitation. It is a clear example of
a multiphysics phenomenon since the heat transfer and elastic vibrations within the body mutually
interact. Over the last twenty years, distributed port-Hamiltonian (pH) systems have attracted the
attention of different research communities [1]. An important peculiarity of port-Hamiltonian sys-
tems (pHs) is that they are naturally modular [2]. This feature is particularly appealing in the case of
multiphysics phenomena like thermoelasticity, since each physical domain can be modeled independ-
ently from the others and subsequently interconnected to the rest in a physically motivated way.

Flexible structures have been largely investigated into the pH framework as well as the heat
equation (consult for instance [3] for the Timoshenko beam, [4] for the Euler-Bernoulli beam, [5,
6] for thick and thin plates and [7, 8] for the heat equation). More complicated models arising
from fluid dynamics have also been considered [9–12]. The development of new models within
the pH framework has been accompanied with an increased interest in numerical discretization
methods, capable of retaining the main features of the distributed system in its finite-dimensional
counterpart. Recently, it has become evident that there is a strict link between discretization of
port-Hamiltonian systems and mixed finite elements [13]. An example of this connection is given
in [14], where a velocity-stress formulation for the wave dynamics is shown to be Hamiltonian
and its mixed discretization preserves such a structure.

Two main contributions are presented in this article. First, a linear model of thermoelasticity is
obtained in the pH formalism. Each physics is described separately and the final system is obtained
considering a power-preserving interconnection of the heat equation and linear elastodynamics for-
mulated as port-Hamiltonian systems. The construction applies to both general linear thermoelastic-
ity and bending of thin structures. For the latter case, the elastic vibrations take place in a reduced
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domain (uni-dimensional for beams and bi-dimensional for plates), whereas the thermal diffusion
occurs in the three-dimensional domain. This generalizes models in which the heat diffusion is
reduced to the same domain of the elastic vibrations (cf. [15] for plates and [16] for beams). The
second contribution is a mixed finite elements discretization method which is structure-preserving.
Two different mixed formulations are presented. One allows incorporating Neumann boundary
conditions directly into the weak form as natural conditions. The other incorporates Dirichlet condi-
tions as natural boundary conditions. The proposed discretization is then applied to the
Danilovskaya problem, assessing the validity of both the model and the associated discretization.

The paper is organized as follows. In Section 2 linear thermoelasticity is constructed as the inter-
connection of the heat equation and linear elastodynamics. First, the heat equation is formulated as a
pH system. Then, the same procedure is applied to the elastodynamics. This methodology is then
applied to the thermoelastic bending of thin structures, i.e. beams and plates in Section 3. The discret-
ization strategy is discussed in §4. By careful application of the integration by parts, two discretiza-
tions, sharing the same structure and properties of the infinite-dimensional system, are obtained. In
Section 5, the proposed model and discretization are tested using the Danilovskaya problem. This
problem has been frequently used, since an analytical solution in the Laplace domain is known.

2. Port-Hamiltonian linear coupled thermoelasticity

In this section, the classical model of thermoelasticity is reformulated in a pH fashion by inter-
connecting the heat equation and the linear elastodynamics problem both seen as pHs. The con-
struction makes use of the intrinsic modularity of pHs [2]. It is shown that the interconnection
preserves a quadratic functional that plays the role of a fictitious energy. The resulting system is
dissipative with respect to this functional.

2.1. Classical thermoelasticity

Consider a bounded connected set X � R
d, d 2 f1, 2, 3g: The classical equations for linear fully-

coupled thermoelasticity for an isotropic thermoelastic material are [17, 18]

q
@2u
@t2

¼ DivðRETÞ,

qc�
@T
@t

¼ �divðjQÞ � Cb :
@e

@t
,

RET ¼ RE þ RT ,

RE ¼ DðeÞ,
RT ¼ �Cbh, h :¼ ðT � T0Þ=T0,

e ¼ Grad ðuÞ,
jQ ¼ �k grad T:

(1)

where q, c�, k, T0 are the mass density, the specific heat density at constant strain, the thermal
conductivity and the reference temperature. The vector field u 2 R

d is the displacement, the sca-
lar field T is the temperature, e 2 R

d�d
sym is the infinitesimal strain tensor, RE 2 R

d�d
sym is the sym-

metric stress tensor contribution due to mechanical deformation, RT 2 R
d�d
sym the symmetric stress

tensor contribution due to a thermal field, and jQ 2 R
d is the heat flux. Tensor D is the stiffness

tensor. For an isotropic homogeneous material, it takes the form

Dð�Þ ¼ 2lð�Þ þ k Tr ð�ÞId�d, (2)

where coefficients k, l are the Lam�e parameters. Coefficient k is the thermal conductivity. The
coupling term is expressed as:



Cb :¼ T0bð2lþ 3kÞId�d, (3)

where b is the thermal expansion coefficient. The operator Div is the divergence of a tensor field

Div Rðx, tÞ ¼
Xd
i¼1

@Rij

@xi

 !
1�j�d

:

The linearized strain tensor (also called infinitesimal strain tensor) is the symmetric gradient of
the displacement

e :¼ Grad u, where Grad u ¼ 1
2

ruþ ðruÞ>
h i

: (4)

Operator grad is the gradient of a scalar field, while div is the divergence of a vector field. The
notation A : B ¼ Tr ðA>BÞ ¼Pi, j AijBij denotes the tensor contraction. The reader may consult
[19, Chapter 1] or [20, Chapter 8] for a detailed derivation on these equations.

Given a partition of the boundary @X ¼ CE
D [ CE

N ¼ CT
D [ CT

N for the elastic and thermal
domain, the general boundary conditions read (see Figure 1)

Dirichletb:c: :
Neumannb:c: :

u known on CE
D � ð0, þ1Þ,

RET � n known on CE
N � ð0, þ1Þ,

T known on CT
D � ð0, þ1Þ,

jQ � n known on CT
N � ð0, þ1Þ,

(5)

where n is the outgoing normal vector at the boundary. Note that there are 4 different cases of
boundary conditions all together, since at each point of the boundary both a vectorial b.c. on the
elastic part and a scalar b.c. on the thermal part must be taken into account. In the following sec-
tions, the pHs formulation of the heat equation and elastodynamics are given. Then, an equiva-
lent coupled system is constructed by interconnecting these two systems in a structured manner.

2.2. The heat equation as a port-Hamiltonian descriptor system

Consider the heat equation in a bounded connected set X � R
d, d 2 f1, 2, 3g, describing the

evolution of the temperature field Tðx, tÞ

qc�
@T
@t

¼ div ðk grad TÞ þ uT , x 2 X, (6)

where q, c�, k have the same meaning as in (1) and uT is a distributed heat source. This model
can be put in pH form by means of a canonical interconnection structure. To model the Fourier

Figure 1. Boundary conditions for the thermoelastic problem, with 4 cases.



law, an algebraic relationship has to be incorporated to obtain a pH system (cf. [8, Chapter 2]).
Here, in the same manner, a differential-algebraic formulation is exploited.

Let T0 be a constant reference temperature (the introduction of this variable is instrumental
for coupled thermoelasticity). The functional

HT ¼ 1
2

ð
X
qc�T0

T � T0

T0

� �2

dX

has the physical dimension of an energy and represents a Lyapunov functional of this system.
Even though it does not represent the internal energy, which is classically used in thermodynam-
ics, it has some important and useful properties. Select as energy variable

aT :¼ qc�ðT � T0Þ:
The corresponding co-energy is

eT :¼ dHT

daT
¼ aT

qc�T0
¼ T � T0

T0
¼: h:

Introducing the heat flux jQ :¼ �k grad T as additional variable, the heat equation (6) is equiva-
lently reformulated as

1 0

0 0

" #
@

@t

aT
jQ

 !
¼ 0 �div

�grad �ðT0kÞ�1

" #
eT
jQ

 !
þ 1

0

" #
uT ,

yT ¼ 1 0
� � eT

jQ

 !
,

(7)

where yT represents the distributed output, which is power-conjugated to the distributed heat
source input uT. In matrix notation, it is obtained

ET@taT ¼ J T �RTð ÞeT þ BT uT ,
yT ¼ B�

T eT
(8)

where aT ¼ ðaT , jQÞ, eT ¼ ðeT , jQÞ and

ET ¼ 1 0
0 0

� �
, J T ¼ 0 �div

�grad 0

� �
, RT ¼ 0 0

0 ðT0kÞ�1

� �
, BT ¼ 1

0

� �
:

This system is an example of pH descriptor system (cf. [21, 22] for the finite-dimensional case).
The Hamiltonian reads

HT ¼ 1
2

ð
X

a2T
q�eT0

dX: (9)

The power rate is then deduced

_HT ¼ ÐX dHT

daT

@aT
@t

dX ¼
ð
X
eT@taTdX,

¼
ð
X
eT � ET @taTdX,

¼
ð
X
eT � ðJ T �RTÞeT þ BTuT

� 	
dX,

¼
ð
X
uT yTdX�

ð
X

eT div jQ þ jQ � grad eT þ jjjQjj2
kT0

 !
dX,

¼
ð
X
uT yTdX�

ð
X

jjjQjj2
kT0

dX�
ð
@X
eTjQ � ndS,

�
ð
X
uT yTdX�

ð
@X
eTjQ � ndS:

(10)



This choice of Hamiltonian allows retrieving the classical boundary conditions (i.e. temperature,
or inward heat flux) and leads to a dissipative system. Other formulations, based on the entropy
or the internal energy as Hamiltonian functionals, are possible for the heat equation [23, 24].
These provide either an accrescent or a lossless system. Unfortunately these formulations are non
linear and their discretization is a difficult task [25].

2.3. Port-Hamiltonian linear elastodynamics

Consider the linearized equation of elastodynamics [20, Chapter 4]

q
@2u
@t2

ðx, tÞ � Div ðD Grad uÞ ¼ f , x 2 X, (11)

where u and D have the same meaning as in (1). The term f represents an external force. To
derive a pH formulation, the total energy, that includes the kinetic and deformation energy, is
used

HE ¼ 1
2

ð
X

qjj@tujj2 þ R : e
� 	

dX: (12)

Recall that e ¼ Grad u and R ¼ De:
The energy variables are then the linear momentum and the deformation field

av ¼ qv, Ae ¼ e,

where v :¼ @tu: The Hamiltonian can be rewritten as a quadratic functional in the energy varia-
bles

HE ¼ 1
2

ð
X

1
q
jjavjj2 þ ðDAeÞ : Ae


 �
dX: (13)

The co-energy variables are given by

ev :¼ dH
dav

¼ v, Ee :¼ dH
dAe

¼ R: (14)

The tensor-valued co-energy variable Ee is obtained by taking the variational derivative with
respect to a tensor (cf. [26, Chapter 3] and [5]).

The equivalent port-Hamiltonian reformulation of system (11) is then given by (cf. [26,
Chapter 3])

@

@t
av
Ae

� �
¼ 0 Div

Grad 0

� �
ev
Ee

� �
þ Id�d

0

� �
uE,

yE ¼ Id�d 0
� � ev

Ee

� �
,

(15)

where the distributed input uE :¼ f plays the role of the previously introduced forcing. The
energy rate verifies the following

_HE ¼
ð
X
fev � @tav þ Ee : @tAegdX,

¼
ð
X
uE � yEdXþ

ð
@X
ev � ðEe � nÞdS:

(16)
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2.4. Thermoelasticity as two coupled Port-Hamiltonian systems

Given the pHDAE formulation of the heat equation (7) and the pH formulation of elasticity (15),
linear thermoelasticity can be expressed as a coupled port-Hamiltonian system by considering the
following interconnection

uE ¼ �Div ðCb yTÞ, uT ¼ �Cb : Grad ðyEÞ: (17)

The interconnection is power preserving, since it can be compactly written as

uE ¼ AbðyTÞ, uT ¼ �A�
bðyEÞ, where Abð�Þ ¼ �Div ðCb �Þ, (18)

where A�
b denotes the formal adjoint (cf. Figure 2). The assertion is justified by the following

proposition.

Proposition 1. Let C1
0 ðXÞ,C1

0 ðX,RdÞ be the space of smooth scalar functions and vector-valued
functions with compact support in X. Given yT 2 C1

0 ðXÞ, yE 2 C1
0 ðX,RdÞ, the coupling operator

Ab : C1
0 ðXÞ ! C1

0 ðX,RdÞ,
yT ! �Div ðCbyTÞ (19)

has formal adjoint

A�
b : C1

0 ðX,RdÞ ! C1
0 ðXÞ

yE ! þCb : Grad ðyEÞ
(20)

Proof. It is necessary to show

hyE , AbyTiL2ðX,RdÞ ¼ hA�
byE , yTiL2ðXÞ, (21)

where for uE, yE 2 C1
0 ðXÞ, uT , yT 2 C1

0 ðXÞ

huE, yEiL2ðX,RdÞ ¼
ð
XE

uE � yEdX, huT , yTiL2ðXÞ ¼
ð
XT

uTyTdX: (22)

Figure 2. Schematic interconnection block diagram for linear thermoelasticity.
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By applying the integration by parts, the proof is readily obtained

hyE , AbyTiL2ðX,RdÞ ¼ �
ð
X
yE � Div ðCbyTÞdX,

¼
ð
X
Grad ðyEÞ : CbyTdX,

¼
ð
X
A�

bðyEÞyTdX,
¼ hA�

byE, yTiL2ðXÞ:

(23)

If the compact support assumption is removed, it is obtained

huT , yTiL2ðXÞ þ huE , yEiL2ðX,R3Þ ¼ �
ð
X

ðCb : Grad evÞeT þ Div ðCbeTÞ � ev
� 	

dX,

¼ �
ð
X
div ðeT Cb � evÞdX,

¼ �
ð
@X
ðeT Cb � nÞ � evdS:

(24)

Using the expression of yT , yE, considering that T0 is constant and applying Schwarz theorem for
smooth function, the inputs are equal to

uE ¼ Div ðRTÞ, uT ¼ �Cb : Grad ðvÞ ¼ �Cb :
@e

@t
:

The coupled thermoelastic problem can now be written as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775 @

@t

av
Ae

aT
jQ

0
BBB@

1
CCCA ¼

0 Div Ab 0
Grad 0 0 0
�A�

b 0 0 �div

0 0 � grad �ðT0kÞ�1

2
6664

3
7775

ev
Ee

eT
jQ

0
BBB@

1
CCCA, (25)

with total energy given by H ¼ HE þHT : The power balance for each subsystem is given by

_HE ¼
ð
X
uE � yEdXþ

ð
@X
ev � ðEe � nÞdS, (26)

_HT �
ð
X
uTyTdX�

ð
@X
hjQ � ndS, (27)

The overall power balance is easily computed considering Eqs. (26), (27) and (24).

_H ¼ _HE þ _HT � Ð@X Ee � eTCb½ � � n� 	 � evdS� Ð@XeTjQ � ndS: (28)

This result is the same as the one stated in [18, p. 332]. From the power balance the classical
boundary conditions are retrieved. This allows defining appropriate boundary operators for the
thermoelastic problem

u@ ¼
c
CE
D

0 0 0 0

0 c
CE
N

? �c
CE
N

? ðCb �Þ 0

0 0 cC
T
D

0 0

0 0 0 c
CT
N

?

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B@

ev
Ee

eT
jQ

0
BBB@

1
CCCA, y@ ¼

0 c
CE
D

? �c
CE
D

? ðCb �Þ 0

c
CE
N

0 0 0 0

0 0 0 c
CT
D

?
0 0 cC

T
N

0 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C@

ev
Ee

eT
jQ

0
BBB@

1
CCCA: (29)

The notation c
C
	
�

0 (with � ¼ fD,Ng and 	 ¼ fE,Tg) indicates the Dirichlet trace over the set C
	
�,

namely c
C
	
�

0 a ¼ ajC	
�
, and c

C
	
�

? indicates the normal trace along C
	
�, namely c

C
	
�

? a ¼ a � njC	
�
:
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System (25) together with (29) is a pH system with collocated boundary control and observa-
tion. Indeed, it shows that the classical thermoelastic problem can be modeled as two coupled
subsystems, demonstrating the modularity of the pH paradigm.

Remark 1. Notice that the boundary operators in Eq. (29) contain a coupling between the ther-
mal and mechanical variables. This is due to the fact that the coupling operator Ab is of differen-
tial nature; otherwise, the coupling would only appear in the domain, but not on the boundary.

3. Thermoelastic Port-Hamiltonian bending

In this section, the thermoelastic bending of thin beam and plate structures is described as a pH
system. Starting from classical coupled thermoelastic models, suitable pH formulations are
obtained. These couple a mechanical system defined on a reduced domain (uni-dimensional for
beams, bi-dimensional for plates) to the thermal diffusion defined in the three-dimensional space.

Here, instead of detailing each physics (thermal and elastic) and the interconnection between
the two, the pH system is derived from the coupled equations. It is shown that the final pH sys-
tem possesses the same structure as Eq. (25).

3.1. Thermoelastic Euler-Bernoulli beam

The model for the linear thermoelastic vibrations of an isotropic thin rod is detailed in [27, 28].
The domain of the beam is uni-dimensional XE ¼ f0, Lg, while the thermal domain is three-
dimensional XT ¼ f0, Lg � S, where S is the set representing the beam cross section. For simpli-
city, the set S is assumed to be constant along the x-axis. The ruling equations are

qA
@2w
@t2

¼ �EI
@4w
@x4

� bET0
@2

@x2

ð
S
zhdydz, x 2 f0, Lg ¼ XE,

qc�,BT0
@h
@t

¼ div ðkT0 grad hÞ þ bT0Ez
@3w
@x2@t

, ðx, y, zÞ 2 XE � S ¼ XT ,
(30)

where w(x, t) is the vertical displacement of the beam, I ¼ ÐSz2dydz the second moment of area,
E the Young modulus and A the area of the surface S. The constant c�,B is due to the thermoelas-
tic coupling (cf. [27, 28] for a detailed explanation). The other terms have the same meaning as
in §2. The normalized temperature hðx, y, z, tÞ depends on all spatial coordinates. For simplicity,
the physical parameters are assumed to be constant.

The coupling operator is defined as

Ab,BðyTÞ :¼ �bET0@xx

ð
S
zyTdydz

� �
: (31)

To unveil an interconnection that is power preserving with respect to a certain function, the for-
mal adjoint of the coupling operator is needed.

Proposition 2. Let C1
0 ðXTÞ,C1

0 ðXEÞ be the space of smooth functions with compact support
defined in XT and XE, respectively. Given yT 2 C1

0 ðXTÞ, yE 2 C1
0 ðXEÞ the formal adjoint of the

coupling operator is

A�
b,BðyEÞ ¼ �bET0z @xxyE: (32)

Proof. The formal adjoint is defined by the relation

hyE , Ab,ByTiL2ðXEÞ ¼ hA�
b,ByE , yTiL2ðXTÞ, (33)

650 A. BRUGNOLI ET AL.



where for uE, yE 2 C1
0 ðXEÞ, uT , yT 2 C1

0 ðXTÞ

huE , yEiL2ðXEÞ ¼
ð
XE

uEyEdx, huT , yTiL2ðXTÞ ¼
ð
XT

uTyTdxdydz: (34)

Using Def. (31) and integration by parts, one finds

hyE , Ab,ByTiL2ðXEÞ ¼
ð
XE

yEAb,ByTdx,

¼ �
ð
XE

yEbET0@xx

ð
S
zyTdydz

� �
dx,

¼ �
ð
XE

ð@xxyEÞbET0

ð
S
zyTdydz

� �
dx,

(35)

Since XT ¼ XE � S and thanks to Fubini theorem, it is found

�
ð
XE

@xxðyEÞbET0

ð
S
z yTdydz

� �
dx ¼ �

ð
XE

ð
S
ð@xxyEÞbET0z yTdxdydz,

¼ �
ð
XT

ð@xxyEÞbET0z yTdxdydz,

¼ hA�
b,ByE , yTiL2ðXTÞ:

(36)

This concludes the proof. w

Using Eqs. (31) and (32), system (30) is rewritten as

qA
@2w
@t2

¼ �EI
@4w
@x4

þAb,Bh,

qc�,BT0
@h
@t

¼ div ðkT0 grad hÞ � A�
b,B

@w
@t

:
(37)

Consider the Hamiltonian functional

H ¼ HE þHT ¼ 1
2

ð
XE

qA
@w
@t

� �2

þ EI
@2w
@x2

� �2
( )

dxþ 1
2

ð
XT

qc�,BT0h
2dxdydz: (38)

The energy variables are chosen as follows

aw ¼ qA@tw, aj ¼ @2
xxw, aT ¼ qc�,B T0 h: (39)

The corresponding co-energy variables read

ew :¼ dH
daw

¼ @tw, ej :¼ dH
daj

¼ EI@2
xxw, eT :¼ dH

daT
¼ h: (40)

System (37) can now be rewritten as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775 @

@t

aw
aj
aT
jQ

0
BBB@

1
CCCA ¼

0 �@2
xx Ab,B 0

@2
xx 0 0 0

�A�
b,B 0 0 �div

0 0 � grad �ðkT0Þ�1

2
6664

3
7775

ew
ej
eT
jQ

0
BBB@

1
CCCA, (41)

This system is the equivalent of (25) for the bending of beams. Hence, following the same reason-
ing, it can be obtained starting from each subsystem in pH form by means of an appropriate
interconnection.
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3.2. Thermoelastic Kirchhoff plate

For the bending of thin plate, several models have been proposed [27, 29–31]. Here, the

Chadwick model [27] is considered. The thin plate occupies the open connected set XE �
� h

2 ,
h
2

n o
, where h is the plate thickness. The system of equations describes the midplane vertical

displacement and the evolution of the temperature in the 3D domain

qh
@2w
@t2

¼ �div Div2DðDbHess2DwÞ � bT0E
1� �

D2D

ðh=2
�h=2

zhdz

 !
, ðx, yÞ 2 XE,

qc�, PT0
@h
@t

¼ div3DðkT0 grad 3DhÞ þ bT0Ez
1� �

D2D
@w
@t

� �
, ðx, y, zÞ 2 XE � � h

2
,
h
2


 �
¼ XT ,

(42)

where wðx, y, tÞ is the vertical deflection, E is the Young modulus, � the Poisson modulus and
c�, P a constant (depending on the heat capacity at constant strain and other coupling parameters,
cf. [27]). Symbols D2D ¼ @2

xx þ @2
yy stands for the two-dimensional Laplacian. The notation Hess

denotes the Hessian operator. This operator can be decomposed as Hess ¼ Grad	 grad [6]. The
subscript 2D, 3D refers to the spatial dependency of the operators. Tensor Db is the bending
stiffness tensor, defined by

Dbð�Þ :¼ Eh3

12ð1� �2Þ ð1� �Þð�Þ þ � Tr ð�ÞI2�2½ �: (43)

The coupling operator is here defined as

Ab, PðyTÞ :¼ � bT0E
1� �

D2D

ðh=2
�h=2

zyTdz

 !
: (44)

Analogously to the case of the Euler-Bernoulli beam, its formal adjoint is sought for.

Proposition 3. Let C1
0 ðXTÞ,C1

0 ðXEÞ be the space of smooth functions with compact support
defined in XT and XE respectively. Given yT 2 C1

0 ðXTÞ, yE 2 C1
0 ðXEÞ the formal adjoint of the

coupling operator is

A�
b,BðyEÞ ¼ � bT0Ez

1� �
D2DyE: (45)

Proof. The proof is completely identical to that of Prop. 2. w

System (42) is rewritten as

qh
@2w
@t2

¼ �div Div2DðDb Hess2DwÞ þ Ab,Ph,

qc�, PT0
@h
@t

¼ div3DðkT0 grad 3DhÞ � A�
b,P

@w
@t

� �
,

(46)

The Hamiltonian functional equals

H ¼ HE þHT ¼ 1
2

ð
XE

qh
@w
@t

� �2

þ ðDbHess2DwÞ : Hess2Dw

( )
dxdy

þ 1
2

ð
XT

qc�,PT0h
2dxdydz:

(47)
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The energy and co-energy variables are

aw ¼ qh@tw,
ew ¼ @tw,

Aj ¼ Hess2Dw,
Ej ¼ Db Hess2Dw,

aT ¼ qc�, PT0h,
eT ¼ h:

(48)

System (46) is rewritten as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775 @

@t

aw
Aj

aT
jQ

0
BBB@

1
CCCA ¼

0 �div Div2D Ab, P 0
Hess2D 0 0 0
�A�

b, P 0 0 �div3D
0 0 � grad 3D �ðkT0Þ�1

2
6664

3
7775

ew
Ej

eT
jQ

0
BBB@

1
CCCA, (49)

where div Div2D and Hess2D are formally adjoint operators [6]. The final system reproduces the
same structured coupling already observed for (25) and (41) before.

Remark 2. The choice can be made to reduce the thermoelastic bending to two problems defined
on the same spatial domain (cf. [16] for beams in 1D, and [15] for plates in 2D) by introducing
the following approximation of the temperature field

hðx, y, zÞ ¼ h0 þ z h1, (50)

where h0 ¼ h0ðxÞ, h1 ¼ h1ðxÞ for beams, and h0 ¼ h0ðx, yÞ, h1 ¼ h1ðx, yÞ for plates. This introduces
a strong simplification, since the thermal phenomena typically occur in the whole three-dimen-
sional space, and not only in 1D or 2D as this approach implies.

Remark 3 (Lagnese [29] and Nowacki [32] models in pH form). The models by Lagnese and
Nowacki consider the thermal evolution equation in the variable

Hðx, y, tÞ ¼ 1
I

ðh=2
�h=2

zhðx, y, z, tÞdz, where I ¼ h3

12
,

corresponding to the first moment of the temperature. In their formulation, a linear term appears
in the evolution equation for the temperature. This term arises from the second derivative with
respect to z in the Laplacianðh=2

�h=2
z
@2

@z2
hðx, y, z, tÞdz ¼ ðz@zh� hÞjh=2�h=2 ¼ �hjh=2�h=2:

The term @zhjh=2�h=2 is zero because of an assumed zero flux condition on the plate faces (cf. [31]).
For the second term, Lagnese and Nowacki assume that hðx, y, z, tÞ is linear in z [31]. This means
that

hðx, y, z, tÞ 
 zHðx, y, tÞ:
Then, it holds

hðx, y, z, tÞjh=2�h=2 ¼ hHðx, y, tÞ,
so that ðh=2

�h=2
z
@2

@z2
hðx, y, z, tÞdz ¼ �hHðx, y, tÞ:

This obviously introduces an inconsistency, as the term in the integral should be zero. However,
it allows to retrieve the damping due the term @zzhðx, y, z, tÞ in the reduced model. After this
clarification, it is possible to state the port-Hamiltonian realization of the Nowacki and Lagnese
model
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775 @

@t

aw
Aj

aT
jQ

0
BBB@

1
CCCA ¼

0 �div Div2D AL
b, P 0

Hess2D 0 0 0
�AL�

b,P 0 �T0kh �div2D
0 0 � grad 2D �ðkT0IÞ�1

2
6664

3
7775

ew
Ej

eT
jQ

0
BBB@

1
CCCA,

where the underlying variables are defined as

aw ¼ qh@tw,
ew ¼ @tw,

Aj ¼ Hess2Dw,
Ej ¼ Db Hess2Dw,

aT ¼ qc�, PT0IH,
eT ¼ H:

Here the coupling operators AL
b,P,AL�

b,P are given by

AL
b, Pð�Þ ¼ � bT0EI

1� �
D2Dð�Þ, AL�

b, Pð�Þ ¼ � bT0EI
1� �

D2Dð�Þ:

4. Mixed finite element discretization

The numerical discretization is illustrated considering the linear thermoelasticity system (25). By
using the expression of the coupling operator (3), and using a pure co-energy formulation, system
(25) takes the form

q 0 0 0
0 D�1 0 0
0 0 qc�T0 0
0 0 0 0

2
664

3
775 @

@t

ev
Ee

eT
jQ

0
BBB@

1
CCCA ¼

0 Div �Cb grad 0
Grad 0 0 0

�Cb div 0 0 �div
0 0 � grad �ðT0kÞ�1

2
6664

3
7775

ev
Ee

eT
jQ

0
BBB@

1
CCCA, (51)

where Cb ¼ T0bð2lþ 3kÞ: To obtain a suitable mixed formulation, the system is first put into
weak form by considering the test functions vv 2 C1ðX,RdÞ,Ve 2 C1ðX,Rd�d

sym Þ,
vT 2 C1ðXÞ, vQ 2 C1ðX,RdÞ :

hvv , q@teviX ¼ hvv , DivEeiX � hvv , Cb grad eTiX, (52a)

hVe , D�1@tEeiX ¼ hVe , Grad eviX, (52b)

hvT , qc�T0@teTiX ¼ �hvT , Cb div eviX � hvT , div jQiX, (52c)

0 ¼ �hvQ , grad eTiX � hvQ , ðT0kÞ�1jQiX: (52d)

The notation h�, �iX indicates a suitable L2 inner product over the domain, depending on the
nature (scalar, vectorial or tensorial) of the considered variables. Two different mixed formula-
tions can be obtained, depending on which lines undergo the integration by parts.

4.1. First mixed formulation

The first mixed formulation is obtained by integrating by parts the Div and grad operators in
line (52a) and the second div operator in (52c). The following system is then obtained

hvv , q@teviX ¼ �hGrad vv , EeiX þ hdiv vv , CbeTiX þ hvv , ðEe � CbeTÞ � ni@X,
hVe , D�1@tEeiX ¼ hVe , Grad eviX,

hvT , qc�T0@teTiX ¼ �hvT , Cb div eviX þ hgrad vT , jQiX þ hvT , jQ � ni@X,
0 ¼ �hvQ , grad eTiX � hvQ , ðT0kÞ�1jQiX:

(53)

where h�, �i@X indicates a suitable L2 inner product over the boundary. In this formulation
Neumann boundary conditions are natural ones. Introducing a Galerkin approximation
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vv ¼
Xnv
i¼1

/i
vv

i
v, Ve ¼

Xne
i¼1

Ui
ev

i
e, vT ¼

XnT
i¼1

/i
Tv

i
T , vQ ¼

XnQ
i¼1

/i
Qv

i
Q,

ev ¼
Xnv
i¼1

/i
ve

i
v, Ee ¼

Xne
i¼1

Ui
ee

i
e, eT ¼

XnT
i¼1

/i
Te

i
T , jQ ¼

XnQ
i¼1

/i
Qj

i
Q,

(54)

the following system is obtained

Mq 0 0 0
0 M@@D�1 0 0
0 0 Mqc�T0 0
0 0 0 0

2
664

3
775

e:v
e:e
e:T
j:Q

0
BBB@

1
CCCA ¼

0 �D>
Grad D>

A�
b

0
DGrad 0 0 0
�DA�

b
0 0 D>

grad
0 0 �Dgrad �RQ

2
6664

3
7775

ev
ee
eT
jQ

0
BBB@

1
CCCA, (55)

where, for simplicity, homogeneous boundary conditions have been assumed:

ðEe � CbeTÞ � nj@X ¼ 0, jQ � nj@X ¼ 0:

The mass matrices are defined as follows

Mij
q ¼ h/i

v , q/j
viX, i, j 2 f1, nvg,

Mij
@@D�1 ¼ hUi

e , D�1Uj
eiX, i, j 2 f1, neg,

Mij
qc�T0

¼ h/i
T , qc�T0/

j
viX, i, j 2 f1, nTg,

The matrices DGrad,Dgrad are given by

Dij
Grad ¼ hUi

e , Grad /j
viX, i 2 f1, neg, j 2 f1, nvg,

Dij
grad ¼ h/i

Q , grad/j
TiX, i 2 f1, nQg, j 2 f1, nTg,

The coupling matrix DA�
b
arises from the discretization of the coupling operator A�

b

Dij
A�

b
¼ h/i

T , A�
b/

j
viX ¼ h/i

T , Cbdiv /j
viX, i 2 f1, nTg, j 2 f1, nvg:

The dissipation matrix reads

Rij
Q ¼ h/i

Q , ðT0kÞ�1/j
QiX, i, j 2 f1, nQg:

Suitable mixed finite elements for elastodynamics and heat equations that prove compatible
with this discretization are detailed in [33, 34], respectively.

4.2. Second mixed formulation

The second mixed formulation is obtained by integrating by parts the Grad operator in line
(52 b), the first div operator in (52c) and the grad operator in (52d). The following system is then
obtained

hvv , q@teviX ¼ hvv , Div EeiX � hvv , Cb grad eTiX,
hVe , D�1@tEeiX ¼ �hDiv Ve , eviX þ hVe � n, evi@X,
hvT , qc�T0@teTiX ¼ hgrad vT , CbeviX � hvT , div jQiX � hvTCb � n, evi@X,

0 ¼ hdiv vQ , eTiX � hvQ , ðT0kÞ�1jQiX � hvQ � n, eTi@X:
(56)

where h�, �i@X indicates a suitable L2 inner product over the boundary. In this formulation
Dirichlet boundary conditions are natural:

evj@X :¼ Velocity, eT ¼ T � T0

T0 @X
:¼ DimensionlessTemperature:
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Introducing the Galerkin approximation (54), the following system is obtained

Mq 0 0 0
0 MD�1 0 0
0 0 Mqc�T0 0
0 0 0 0

2
664

3
775

e:v
e:e
e:T
j:Q

0
BBB@

1
CCCA ¼

0 DDiv DAb 0
�D>

Div 0 0 0
�D>

Ab
0 0 �Ddiv

0 0 D>
div �RQ

2
6664

3
7775

ev
ee
eT
jQ

0
BBB@

1
CCCA: (57)

The matrices DDiv,Ddiv,DAb are given by

Dij
Div ¼ h/i

v , Div Uj
eiX, i 2 f1, nvg, j 2 f1, neg,

Dij
div ¼ h/i

T , div /j
QiX, i 2 f1, nTg, j 2 f1, nQg,

Dij
Ab

¼ h/i
v , Ab/

j
TiX ¼ h/i

v , � Cb grad /j
TiX, i 2 f1, nvg, j 2 f1, nTg:

(58)

For this discretization, stable mixed elements for elastodynamics can be found in [35], and for
the heat equation in [36].

5. Validation of the model: The Danilovskaya problem

In this section the pH discretization of the Danilovskaya problem [37] is performed. For this
problem an analytical solution in the Laplace domain is available [38]. First the pH formulation
is illustrated, second the discretization strategy is briefly discussed. Numerical results are
then presented.

5.1. The Danilovskaya problem

The Danilovskaya problem is a one-dimensional thermoelastic model in the infinite half-space
x � 0: The initial conditions for this problem are all null. The system is excited by a sudden ther-
mal heating at x¼ 0. Furthermore, the variables vanish at 1: Consequently, the following bound-
ary conditions apply

Tð0, tÞ ¼ T1HðtÞ,
limx!1 Tðx, tÞ ¼ 0,

rETð0, tÞ ¼ 0,
limx!1 uðx, tÞ ¼ 0,

where H(t) is the Heaviside function. Since the effect of the elastic vibration on the thermal field
is weak, a dimensionless constant cd is usually introduced to strengthen the coupling from the
mechanical to the thermal domain [39]. This dimensionless constant reads

cd ¼ d
qc�ð2lþ kÞ

b2ð3kþ 2lÞ2T0
, (59)

where d 2 f0, 1g is a variable for switching on and off the strong coupling from the mechanical
to the thermal domain. The problem can now be recast as a pH system in co-energy variables

q 0 0 0
0 ð2lþ kÞ�1 0 0
0 0 qc�T0 0
0 0 0 0

2
664

3
775 @

@t

ev
ee
eT
jQ

0
BB@

1
CCA ¼

0 @x Ab 0
@x 0 0 0

�cdA�
b 0 0 �@x

0 0 �@x �ðT0kÞ�1

2
6664

3
7775

ev
ee
eT
jQ

0
BB@

1
CCA, (60)

where Abð�Þ :¼ �@xðCb �Þ (cf. Eq. (18)). Notice that the coupling parameter cd breaks the
Hamiltonian structure. The boundary conditions in the pH variables read

eTð0, tÞ ¼ T1 � T0

T0
HðtÞ, ðee � CbevÞð0, tÞ ¼ 0, (61)
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lim
x!1 eTðx, tÞ ¼ 0, lim

x!1 evðx, tÞ ¼ 0: (62)

Remark 4 (Boundary conditions for the numerical simulation). In the numerical simulation, the
vanishing conditions at 1 (62) are replaced by Neumann conditions at the extremity of the
simulation domain X ¼ f0, Lg [39]

ðee � CbevÞðL, tÞ ¼ 0, jQðL, tÞ ¼ 0: (63)

5.2. Discretization of the thermoelastic system

The first mixed formulation, detailed in §4.1, is employed here. This choice leads to the following
weak form for the numerical domain X ¼ f0, Lg

hvv , q@teviX ¼ �h@xvv , eeiX þ hA�
bvv , eTiX þ hc0vv , cnðee � CbeTÞi@X,

hve , ð2lþ kÞ�1@teeiX ¼ þhve , @xeviX,
hvT , qc�T0@teTiX ¼ �hvT , cdA�

beviX þ h@xvT , jQiX � hc0vT , cnjQi@X,
0 ¼ �hvj, @xeTiX � hvj, ðT0kÞ�1ejiX,

(64)

where vv, ve, vT , vj are the test functions. For this discretization the boundary condition

eTð0, tÞ ¼ T1 � T0

T0
HðtÞ,

is imposed strongly as an essential condition. The other boundary terms disappear because of
(63). The following system is obtained

Mq 0 0 0
0 Mð2lþkÞ�1 0 0
0 0 Mqc�T0 0
0 0 0 0

2
664

3
775

e:v
e:e
e:T
e:Q

0
BB@

1
CCA ¼

0 �D>
Grad D>

A�
b

0
DGrad 0 0 0
�cdDA�

b
0 0 D>

grad
0 0 �Dgrad �RQ

2
6664

3
7775

ev
ee
eT
eQ

0
BB@

1
CCA: (65)

5.3. Numerical results

To assess the validity of the solution, the numerical results are compared with the analytical solu-
tion in the Laplace domain. The dimensionless displacement field û and temperature h are intro-
duced

û ¼ ðkþ 2lÞ
CxCb

u, T̂ ¼ T � T0

T0
:

In Table 1 the parameters for the simulation are reported. The constant Cx, Cv are the charac-
teristic length and velocity of the problem [39]. The dimensionless constant L̂, t̂end are the dimen-
sionless length and time of the problem. The solution in the Laplace domain for the
dimensionless variable is given by [38]

T̂ðsÞ ¼ 1
sðC2

1 � C2
2Þ

ðC2
1 � s2Þ exp ð�C1x̂Þ � ðC2

2 � s2Þ exp ð�C2x̂Þ
� �

,

ûðsÞ ¼ � 1
sðC2

1 � C2
2Þ

C1 exp ð�C1x̂Þ � C2 exp ð�C2x̂Þ½ �,
(66)

where x̂ ¼ x=Cx is the dimensionless space variable and C1,C2 are given by
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C1ðsÞ ¼ s
2 ð1þ dþ sÞ þ ð1þ dþ sÞ2 � 4s

� �1
2

h ih i1
2

,

C2ðsÞ ¼ s
2 ð1þ dþ sÞ � ð1þ dþ sÞ2 � 4s

� �1
2

h ih i1
2

:

(67)

For the semi-discretization in space, Continous Galerkin elements of order 1 (CG1) are
employed for ev, eT, while Discontinous Galerkin of order 0 (DG0) are used for ee, jQ: This choice
is in accordance with the Finite Elements constructed in [33, 34]. Given the differential-algebraic
nature of the problem, an implicit method is required to perform the time integration. For this
reason, the Crank-Nicholson scheme is used. The matrices are constructed using the FIREDRAKE
finite element library [40].

In Figure 3 the analytical and numerical displacement and temperature at x̂ ¼ 1 are compared
for weak d¼ 0 and strong coupling d¼ 1. The inverse of the Laplace transform is computed using
the de Hoog method [41] (available through the invertlaplace function of the mpmath Python
library). The displacement is retrieved from the velocity field using the trapezoidal rule. The
numerical solution matches the analytical one, thus assessing the validity of the model (60) and
its discretization (65). In Figures 4 and 5 the numerical solutions for the dimensionless displace-
ment and temperature are reported for weak d¼ 0 and strong coupling d¼ 1.

Figure 3. Dimensionless displacement and temperature at x̂ ¼ 1:

Table 1. Settings and parameters for the thermoelastic problem.

Physical parameters

k 0:85109½kg=ðcm � s2Þ�
l 0:56109½kg=ðcm � s2Þ�
q 7:8210�3½kg=cm3�
c� 4:61106½cm2=ðK � s2Þ�
k 1:7103½kg � cm=ðK � s3Þ�
b 9:0310�6½K�1�
T0 300½K�
L Cx L̂
Cx k=ðqc�CvÞ
L̂ 10

Integrator Crank-Nicholson
tend Cv=Cx t̂end
Cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 2lÞ=qp
t̂end 4
Dt 10�3tend
FE spaces CG1 � DG0 � CG1 � DG0
N

	
FE 200
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6. Conclusion

It has been shown that classical linear thermoelastic problems are equivalent to two coupled port-
Hamiltonian systems. This is especially interesting for the simulation of thermoelastic phenom-
ena: each subsystem can be discretized separately and then coupled to the other using the discre-
tized coupling operator. This allows to easily track how the energy flows between the two
physics. Two different discretization has been proposed, depending on which kind of boundary
conditions are to be weakly enforced. The best strategy is of course problem dependent. This new
model of thermoelasticity may be of interest for control theorists and practitioners, given the
increasing importance of port-Hamiltonian systems in control theory.

Finally, this contribution also discusses the results of discretization on a model problem only
in the uni-dimensional case, where all the differential operators reduce to the same. An important
point that deserves additional attention is the construction of stable mixed finite elements for the
general three-dimensional problem. Reliable numerical models can then be employed for generat-
ing model-based control actions. Important future developments may include the reformulation
of thermoelastic linear shells as well as non-linear thermoelasticity within the pH framework.

Figure 4. Displacement solution for the Danilovskaya problem.

Figure 5. Temperature solution for the Danilovskaya problem.
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