
HAL Id: hal-03230392
https://hal.science/hal-03230392

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical cryptanalysis with WDSat
Monika Trimoska, Gilles Dequen, Sorina Ionica

To cite this version:
Monika Trimoska, Gilles Dequen, Sorina Ionica. Logical cryptanalysis with WDSat. Proceedings of
SAT 2021, Jul 2021, Barcelona, Spain. �10.1007/978-3-030-80223-3
37.hal − 03230392

https://hal.science/hal-03230392
https://hal.archives-ouvertes.fr

Logical cryptanalysis with WDSat

Monika Trimoska and Gilles Dequen and Sorina Ionica

Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France ⋆

Abstract. Over the last decade, there have been significant efforts in
developing efficient XOR-enabled SAT solvers for cryptographic applica-
tions. In [22] we proposed a solver specialised to cryptographic problems,
and more precisely to instances arising from the index calculus attack on
the discrete logarithm problem for elliptic curve-based cryptosystems.
Its most prominent feature is the module that performs an enhanced
version of Gaussian Elimination. [22] is concentrated on the theoretical
aspects of the new tool, but the running time-per-conflict results suggest
that this module uses efficient implementation techniques as well. Thus,
the first goal of this paper is to give a comprehensive exposition of the
implementation details of WDSat. In addition, we show that the WDSat
approach can be extended to other cryptographic applications, mainly
all attacks that involve solving dense Boolean polynomial systems. We
give complexity analysis for such systems and we compare different state-
of-the-art SAT solvers experimentally, concluding that WDSat gives the
best results. As a second contribution, we provide an original and eco-
nomical implementation of a module for handling OR-clauses of any size,
as WDSat currently handles OR-clauses comprised of up to four literals.
We finally provide experimental results showing that this new approach
does not impair the performance of the solver.

1 Introduction

Due to the significant number of improvements in sat-based parity reasoning
over the last decade, sat solvers are gaining popularity in cryptographic ap-
plications. More specifically, they are often used to tackle the solving phase in
algebraic cryptanalysis of stream ciphers [18,14,11,21,19], and more recently, of
public-key cryptosystems [10,23]. Algebraic cryptanalysis includes all attacks
where the underlying problem of a cryptographic system is reduced to the prob-
lem of solving a multivariate polynomial system of equations. The resulting sys-
tem is solved using algebraic techniques, such as Gröbner basis algorithms [9],
exhaustive search [5], hybrid methods [2] or algorithms in the XL family [6].
Finding a solution to the polynomial system constitutes a successful attack and
results in recovering (a part of) the secret key or the plaintext. Boolean poly-
nomial systems may be easily re-written as sat formulas, which are then solved
using a sat solver. This technique is referred to as logical cryptanalysis [17].

⋆ We acknowledge financial support from the European Union under the 2014/2020
European Regional Development Fund (FEDER) and from the Agence Nationale de
Recherche under project ANR20-ASTR-0011.

2 M. Trimoska et al.

The transformation of a Boolean polynomial system into a cnf formula is
done in three steps, each resulting in a propositional formula in different form.
First, we obtain an Algebraic Normal Form (anf) by replacing all multiplications
over the binary field by a logical and and all sums by the xor operator. The
next step is to eliminate all conjunctions through a linearization-like process that
consists in replacing all occurrences of (x1 ∧ . . .∧ xk) by a newly added variable
x1,...,k and adding the constraint x1,...,k ⇔ (x1 ∧ . . . ∧ xk) to the model in its
cnf equivalence (¬x1,...,k ∨x1)∧ . . .∧ (¬x1,...,k ∨xk)∧ (¬x1 ∨ . . .∨¬xk ∨x1,...,k).
This step results in a so-called cnf-xor formula which is a conjunction of both
or-clauses and xor-clauses. Classically, a xor-clause of size k can be rewritten
either as a conjunction of 2k−1 k-or-clauses or as a conjunction of 3-or-clauses,
if the xor-clause is first cut up into 3-xor-clauses.

Since the xor operator is at the core of reasoning models obtained from cryp-
tographic attacks, significant effort has been put into developing xor-enabled
sat solvers that read formulas in cnf-xor form and are adapted to reason di-
rectly on xor constraints. In this paper, we give implementation details of one
such solver, named WDSat, proposed in [22]. WDSat is a built-from-scratch
dpll-based sat solver that is specifically designed for solving ANF instances de-
rived from cryptographic attacks on public-key cryptosystems. These formulas
have few variables, but are highly dense, i.e. they have very long xor-clauses.
The original proposal of WDSat shows experimental results on formulas de-
rived from an attack on elliptic curve-based cryptosystems. In contrast, in this
paper, we experiment with WDSat and other state-of-the-art sat solvers using
instances derived from the Multivariate Quadratic (mq) problem, which is the
problem of finding all common zeros of a multivariate quadratic system of poly-
nomials. The following toy example shows an mq system with 4 equations in 3
variables over the binary field.

x1x2 + x1x3 + x1 + x2 + x3 + 1 = 0

x1x2 + x2x3 + x1 + x3 = 0

x1x2 + x3 + 1 = 0.

In addition, we propose an original technique with reduced amount of mem-
ory, which allows to handle large size clauses and thus, solve multivariate poly-
nomial systems of any degree. We report experimental results with WDSat on
multivariate polynomial systems of degree three and four. Solving the multi-
variate polynomial problem is at the core of algebraic cryptanalysis, as many
cryptographic attacks can be reduced to the problem of solving a multivariate
polynomial system of equations.

2 Background

WDSat was proposed at CP 2020 [22] as an xor-enabled sat solver dedi-
cated to solving instances derived from a Weil Descent. A Weil descent is a
technique, commonly used in cryptanalysis, for reducing the problem of finding

Logical cryptanalysis with WDSat 3

roots of a polynomial defined over an extension field to the problem of solving
a multivariate polynomial system of equations defined over the base field. The
WDSat solver was particularly designed for the Weil descent steps performed in
an attack on elliptic curve-based cryptosystems. The solver is built-from-scratch
and based on the dpll algorithm [7]. It is comprised of three reasoning modules
that communicate with each other. One is used for reasoning on the cnf part of
the formula and the other two are used for xor reasoning. When an assumption
of a truth value is made, the literal is first set in the cnf module. Then, all
propagated literals are recovered and are set, together with the initial assump-
tion, in the second module, called xorset. Finally, all literals propagated by the
cnf and xorset modules are set in the third module, called xorgauss. If the
xorgauss module results in more propagated literals, the process is repeated,
until all modules can no longer propagate. Each module is equipped with a cor-
responding propagation, conflict detection and backtracking technique. The cnf
and xorset modules use classic techniques for unit propagation on or and xor-
clauses respectively. Handling the xor-clauses instead of breaking them down
into a cnf is beneficial for sat solving, as it allows us to use powerful tech-
niques inspired from algebraic solving tools, such as the Gaussian Elimination
(ge). Performing ge generally results in fewer conflicts, but is computationally
expensive. Thus, the purpose of the xorgauss module is to perform (ge) on the
xor part of the formula efficiently. In this module, xor-clauses are represented
as Equivalence Classes (ec). A representative is chosen for each class and the
ge technique consists in assigning a truth value to a variable while applying
defined rules that ensure that the so-called unicity-of-representatives property
is maintained. This property states that a representative of an ec will never be
present in another ec. Thus, the notion of representative of an ec is analogous
to the notion of pivot in linear algebra.

In addition, starting from the observation that existing sat-based implemen-
tations of the ge are not as efficient as ge in algebraic tools, we proposed in [22]
an extended version of the xorgauss module (xg-ext). Indeed, in a Gröbner-
basis based approach [13], when a variable xi is set to 1, all occurrences of a
monomial xixj are replaced by xj and can be canceled out with other occur-
rences of xj . Recall that a monomial xixj from the initial Boolean polynomial
system becomes xi ∧ xj in the equivalent propositional formula and is replaced
by a newly added variable xi,j . The cnf block that we obtain from this substi-
tution is (xi ∨¬xi,j)∧ (xj ∨¬xi,j)∧ (¬xi ∨¬xj ∨ xi,j). When we set xi to true

and apply the unit propagation rules, we are left with the following or-clauses:

(xj ∨ ¬xi,j)∧ (1)

(¬xj ∨ xi,j).

In the xor part of the cnf-xor formula, xj and xi,j are two different vari-
ables and a possible cancellation of terms can be overseen. To fix this oversight,
the following rule is added to WDSat . When xi,j ⇔ (xi ∧ xj) and we set
xi to true, xi,j is replaced by xj . To perform the substitution of xi,j by xj ,
propagation rules, similar to the ones for truth value assignment, are defined for

4 M. Trimoska et al.

maintaining the unicity-of-representatives property. This constitutes the xg-ext
module.

Since this oversight is due to the cnf-xor input form, it is common for
all xor-enabled sat solvers that perform ge. However, the newest version of
CryptoMiniSat (5.8.0) implements a technique called BIRD [20] that seems
to fix the issue as well. The BIRD technique consists in (i) transforming xor

clauses into cnf, (ii) inprocess over cnf clauses, (iii) recover simplified xor-
clauses and (iv) perform cdcl coupled with ge on the cnf-xor formula. Since
this technique is performed during resolution, the recovery process in the third
step should be able to recover the xor-clause (xj ⊕ xi,j ⊕⊤) from the two or-
clauses in Equation (1). Adding the recovered clause to the xor system and
performing ge should have a similar result as replacing xi,j by xj .

3 Implementation details

Input forms The WDSat solver can read formulas in both anf and cnf-xor
form. Reading a formula in anf comes with two advantages. The first one is
linked to branching rules and the second is that this form allows us to use the
extension of the xg module. Since the direct encoding is shorter, in number of
clauses, than in cnf-xor modeling, the use of anf comes more advantageous
within the context of cryptographic problems.

Branching rules Reading a formula in anf, the solver can store the information
of which variables comprise the initial system, as opposed to variables that are
added to substitute a conjunction. We can thus, distinguish unary variables
from substitution variables. The truth value of a substitution variable is equal
to the conjunction of the truth values of the corresponding unary variables. As
a result, assigning truth values to all unary variables will necessarily propagate
all other variables (see, for instance, Proposition 1 in [23]). In WDSat, only
unary variables are considered in the binary search. Conflict-driven branching
heuristics can not be used in WDSat, as the solver does not perform conflict
analysis. In addition, there is a heuristic branching technique specific to sat

instances derived from Boolean polynomial systems developed for WDSat. This
technique, inspired by the Minimal Vertex Cover problem from graph theory,
determines the minimal subset of variables that need to be assigned to obtain a
formula comprised only of xor-clauses. This formula is then solved in polynomial
time using ge. The technique is currently used only during preprocessing to
provide a predetermined branching order that is optimal. Thus, the solver does
not use heuristics to decide on the order of branching variables dynamically, but
the order can be specified by the user. This feature is to be used if the user has
more information on the system or if the preprocessing technique was applied.

3.1 Three reasoning modules

In this section, we give a description and implementation details of the three
modules that make up the WDSat solver and we propose a novel cnf module

Logical cryptanalysis with WDSat 5

that can handle longer clauses. Each module has its own propagation stack,
called the CNF propagation stack, the XORSET propagation stack and the
XG propagation stack, as well as a respective set in function that sets a literal
to true in the corresponding module. These stacks are used for communication
between the modules. For simplicity, we consider that these stacks and all other
data structures relative to the modules are included in a structure F , simply
referred to as the propositional formula.

CNF module In this module, responsible for unit propagation on or-clauses,
the or-clauses are treated as lists of implications, following an idea of Heule et

al. [12] for handling 3-or-clauses, implemented in the March sat solver. In
addition, the method is extended to handle 4-or-clauses. Hence, WDSat is
able to solve instances derived from Boolean polynomial systems of degree three
at most.

Compressed CNF reasoning In this section, we propose an original method
for handling or-clauses, using a compact data structure and simple bitwise op-
erations. Our module serves as an addition to the WDSat solver, as it allows
us to handle or-clauses of any size. In this module, or-clauses are stored as
bit-vectors comprised of the following three parts: the value of the clause is the
arithmetic sum of its literals in their dimacs representation, the weight of the
clause is the number of unassigned literals left in the clause and the final part,
referred to as the sat assessment is composed of only one bit that is set to 1
when the clause is already satisfied by one of its assigned literals, and to 0 oth-
erwise. The value and the weight bit-vectors have a predetermined static length.
The first two lines in Table 1 show an example of the representation of two or-
clauses. As an illustration, the value of ¬x1 ∨ x4 ∨ ¬x2 is (−1) + 4 + (−2) = 1,
and the weight equals 3.

Let k be the number of variables in a cnf, and let W be the length of the
longest or-clause. The length of a bit-vector representing a clause in this manner
is given by the formula:

⌈log2(2Wk)⌉+ ⌈log2(W)⌉+ 1. (2)

Since the increase is asymptotically logarithmic, a 64-bit integer can easily repre-
sent very long clauses. Hence, a formula is an array of integers, denoted clauses,
where each entry represents a clause. In the remainder of this section, we will
use |W | to denote the length (in bits) of the maximal weight.

To perform unit propagation, we need to have efficient access to the oc-
currences of each literal. More specifically, we allocate an array occ in clause
indexed by signed literals. Each entry in the array holds a list of clauses in
which the corresponding literal occurs. When we set a literal l to true, we per-
form the following operations. As per the first rule of unit propagation, the sat

assessment is set to 1 in all clauses from the list occ in clause[l]. As per the
second unit propagation rule, −l is subtracted from the value of all clauses from
the list occ in clause[−l], and the weight of these clauses is decremented.

6 M. Trimoska et al.

Table 1: Example of two clauses in a cnf with 4 variables and maximum clause
length 4.

or-clause
Bit-vector

Decimal
value weight sat

¬x1 ∨ x4 ∨ ¬x2 00001 011 0 22

x1 ∨ x3 00100 010 0 68

Set x1 to false.

¬x1 ∨ x4 ∨ ¬x2 00001 011 1 23

x3 00011 001 0 50

Propagation: x3 is set to true.

With our compact representation, clauses are managed using only bitwise
operations. More specifically, we use the following functions, where, as per the C
syntax, ≪ and ≫ denote the left and right bitwise shift, & denotes the bitwise
and , and | denotes the bitwise or. These functions are used in the set in cnf

function, given in Algorithm 1.

– get clause value(cl) : clauses[cl]≫ (|W |+ 1);
– get clause weight(cl) : (clauses[cl]≫ 1) & (2|W | − 1);
– literal to clause(l) : (l ≪ (|W |+ 1)) | 2;
– is clause sat(cl) : clauses[cl] & 1;
– set clause to sat(cl) : clauses[cl]← clauses[cl] | 1;

As we can see in Algorithm 1, a propagation is detected when the weight of
a clause is equal to 1. In this case, the value of the clause is equal to the dimacs

representation of the only remaining literal that can satisfy the clause, and thus,
the literal is directly propagated. A conflict occurs when we try to assign a
variable that is already assigned to the opposite truth value. The second part of
Table 1 shows an example of the changes that are made in the clauses structure
from the execution of Algorithm 1.

This economical structure is adapted for the requirements of WDSat and
the classic dpll algorithm. In this paradigm, it is never required to get all literals
from a specific clause, or to check which literals are unassigned, unless there is
only one unassigned literal left. Thus, it is not concerning that these operations
can not be done efficiently in our cnf module.

XORSET module xorset is a simple module for parity reasoning. In other
words, this module performs unit propagation on xor-clauses. The unit propa-
gation rule can be informally defined as follows. When all except one literal in an
xor-clause are assigned, the remaining literal is given a truth value according to
parity reasoning. Recall that an xor-clause is satisfied if there is an odd number
of literals that are set to true.

During the solving process, the solver counts the number of literals in a clause
that are set to true, and respectively the ones that are set to false. In order to
do this efficiently, the solver needs to have quick access to the occurrences of each

Logical cryptanalysis with WDSat 7

Algorithm 1 Function set in cnf(to set, F) : Function that sets a list of
literals to true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: false if unsatisfiability is detected with unit propagation, true otherwise.

1: CNF propagation stack ← to set.
2: while CNF propagation stack is not empty do

3: l← top element from CNF propagation stack.
4: if assignment[l] 6= true then

5: if assignment[l] = false then

6: return false.
7: end if

8: assignment[l]← true.
9: for each cl in occ in clause[l] do
10: set clause to sat(cl).
11: end for

12: for each cl in occ in clause[−l] do
13: if not is clause sat(cl) then
14: clauses[cl]← clauses[cl]− literal to clause(−l).
15: if get clause weight(cl) = 1 then

16: l prop← get clause value(cl).
17: add l prop to CNF propagation stack.
18: end if

19: end if

20: end for

21: end if

22: end while

23: return true.

literal. At the implementation level, the structure that keeps this information
is an array indexed by both positive and negative literals that contains lists of
clauses in which a literal appears. This is a classical technique for implementing
basic xor reasoning in a sat solver.

XORGAUSS module As explained in Section 2, in this module, xor-clauses
are represented as equivalence classes. To obtain this representation, the first
step is to normalise all clauses so that they contain only positive literals and
do not contain more than one occurrence of each literal. To eliminate negative
literals, normalised clauses may contain a ⊤ constant. All variables in a clause
are considered to belong to the same equivalence class (ec), and one literal from
the ec is chosen to be the representative. An xor-clause (x1⊕x2⊕...⊕xn) ⇔ ⊤
rewrites as x1 ⇔ (x2 ⊕ x3 ⊕ ...⊕ xn ⊕⊤). The initialization process of the xg

module consists in performing the following steps for each xor-clause : (i) put
the clause in normal form, (ii) transform the clause into an ec and (iii) replace
all occurrences of its representative in the system with the right side of the
equivalence. Applying this transformation, we obtain a simplified system having
the unicity-of-representatives property.

8 M. Trimoska et al.

Example 1. Let us consider the following set of three xor-clauses.

x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ ¬x4

x2 ⊕ x3 ⊕ ¬x6

The steps of the initialization process of this formula are shown in Table 2.
The left column shows the set of equivalence classes that grows with each step.
The right column shows the set of remaining xor-clauses. We consider that all
clauses are already put in normal form. This set becomes smaller as each clause
is transformed into an equivalence class.

Table 2: Equivalence classes initialization steps.
Set of equivalence classes Set of xor-clauses

∅ x1 ⊕ x4 ⊕ x5 ⊕ x6

x1 ⊕ x2 ⊕ x4 ⊕⊤
x2 ⊕ x3 ⊕ x6 ⊕⊤

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕⊤
x2 ⊕ x5 ⊕ x6

x2 ⊕ x3 ⊕ x6 ⊕⊤

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕⊤
x3 ⊕ x5

x2 ⇔ x5 ⊕ x6 ⊕⊤

x1 ⇔ x4 ⊕ x5 ⊕ x6 ⊕⊤ ∅x2 ⇔ x5 ⊕ x6 ⊕⊤
x3 ⇔ x5 ⊕⊤

At the implementation level, xor-clauses are represented as bit-vectors. If a
variable is present in the clause, the corresponding bit is set to 1, otherwise it
is set to 0. Plus, the first bit in the vector is used for the ⊤/⊥ constant. For a
compact representation, bit-vectors are stored in an array of 64-bit integers. For
instance, to store a k-bit vector, an array of ⌈(k + 1)/64⌉ integers is allocated.
Finally, the clauses represented in this manner are stored in an array indexed
by the representatives. This array is the core structure of the xg module and
it will be referred to as the EC structure. For an example of the EC struc-
ture, see Figure 1 that illustrates the set of equivalence classes that we obtain
through the transformation in Table 2. In this illustration, each line represents
one equivalency and is labeled with the representative. The columns are colored
in gray if and only if the corresponding variable belongs to the right side of the
equivalency. The constant is referenced in the first column.

To explain the implementation choices, in Table 3 we recall the inference
rules from [22] for performing ge in the xg module of WDSat. In this table,
R denotes the set of representatives and C denotes the set of clauses. Cx is an
xor-clause in C that is represented by an ec with representative x. Finally,
var(Cx) denotes the set of literals (plus a ⊤/⊥ constant) in the clause Cx and

Logical cryptanalysis with WDSat 9

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

Fig. 1: The EC structure.

the notation C[x1/φ] is used when the literal x1 is replaced by φ in all clauses,
where φ may be a clause, a variable or a constant.

Table 3: Inference rules for the substitution of x1 by a true/false constant.

Premises Conclusions on C Updates on R

x1, C
C[x1/⊤] N/A

x1✚∈R

x1, C Cx2
← Cx1

⊕ x2 ⊕⊤ R← R \ {x1}

x1 ∈ R
C[x2/Cx2

] R← R ∪ {x2}
x2 ∈ var(Cx1

)

This representation of equivalence classes allows for an efficient implemen-
tation of the inference rules, where the main operations are xor-ing bit-vectors
and flipping the clause constant. The first rule, for whose application we give
pseudo-code in Algorithm 2, corresponds to the case where x1 is not a represen-
tative. In a bit-vector from the EC structure, individual bits can be set to 0, set
to 1 or their value can be checked. We distinguish variable bits from the constant
bit. Other operations that modify the EC structure are flip constant, used
simply to inverse the value of the constant bit, and the operator ⊕ that denotes
the xor-ing of two bit-vectors. Lines in Algorithm 2 that contain operations
that modify the EC structure are in bold. For a better understanding of the
infer algorithm, we provide an execution example in Figure 2. In this example,
we show the contents of the EC structure after the execution of each line in
bold. The infer function corresponding to the second inference rule, where x1

is in the set of representatives, is detailed in Algorithm 3. In this algorithm, a
reset vector function is used that simply sets all the bits in a given bit-vector
to 0. The execution example for this algorithm is given in Figure 3.

Finally, everything is linked together in the set in function of the xg module,
detailed in Algorithm 4. In this algorithm, the get propositional variable

function extracts the propositional variable from a literal and the get truth value

function checks whether l is a positive or a negative literal. For instance, calling
get propositional variable(¬x1) would return x1 and get truth value(¬x1)
would return false.

10 M. Trimoska et al.

Algorithm 2 Function infer non representative(ul, tv, F) : Function that
applies the first inference rule to the EC structure.

Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: add ul to R.
2: if tv =true then

3: flip constant(EC[ul]).
4: end if

5: set ul to 1 in EC[ul].
6: for each r in R do

7: if ul is set to 1 in EC[r] then
8: EC[r]← EC[r]⊕ EC[ul].
9: if all variable bits in EC[r] are set to 0 then

10: if the constant bit in EC[r] is set to 1 then

11: add r to XG propagation stack.
12: else

13: add ¬r to XG propagation stack.
14: end if

15: end if

16: end if

17: end for

18: set ul to 0 in EC[ul].

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

(a) Before execution.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(b) After line 3.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(c) After line 5.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(d) After line 8.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(e) After line 8.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x6

(f) After line 18.

Fig. 2: Setting x6 to true. Stream of changes on the EC structure after execution
of the respective lines of Algorithm 2.

4 Applications in cryptanalysis

At the core of algebraic cryptanalysis, as well as multivariate public-key cryp-
tography is the problem of solving a multivariate polynomial system, which is

Logical cryptanalysis with WDSat 11

Algorithm 3 Function infer representative(ul, tv, F) : Function that ap-
plies the second inference rule to the EC structure.

Input: Propositional variable ul, truth value tv, the propositional formula F
Output: The EC structure and the XG propagation stack are modified.

1: new r ← choose new representative(EC[ul]).
2: add new r to R.
3: EC[new r]← EC[new r]⊕EC[ul].
4: reset vector(EC[ul]).
5: if tv = ⊤ then

6: flip constant(EC[ul]).
7: flip constant(EC[new r]).
8: end if

9: for each r in R do

10: if new r is set to 1 in EC[r] then
11: EC[r]← EC[r]⊕ EC[new r].
12: if all variable bits in EC[r] are set to 0 then

13: if the constant bit in EC[r] is set to 1 then

14: add r to XG propagation stack.
15: else

16: add ¬r to XG propagation stack.
17: end if

18: end if

19: end if

20: end for

21: set new r to 0 in EC[new r].
22: if all variable bits in EC[new r] are set to 0 then

23: if the constant bit in EC[new r] is set to 1 then

24: add new r to XG propagation stack.
25: else

26: add ¬new r to XG propagation stack.
27: end if

28: end if

considered to be NP-hard. The crucial parameters in evaluating the hardness
of a multivariate polynomial system are the number of variables, denoted by
n, the number of equations, denoted by m and their ratio. The case of m = n
is considered to be the hardest, whereas overdetermined systems are easier to
solve.

For our experimental work, we generate instances with parameters m = 2n
and with (pseudo)random solutions, where all coefficients are randomly gener-
ated following the uniform distribution. The process of generating one random
instance follows these steps: (i) Fix parameters m and n. (ii) Choose randomly
an n-bit solution vector. (iii) For each equation, choose randomly all coefficients
except the 0/1 constant, and then compute the constant according to the so-
lution vector chosen in the previous step. This generation approach results in
dense polynomial systems, as each monomial has probability 1/2 to appear in
each equation. Heuristically, we expect most instances obtained in this way to

12 M. Trimoska et al.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

(a) Before execution.

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(b) After line 3

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(c) After line 4

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(d) After line 6

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(e) After line 7

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(f) After line 11

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(g) After line 11

⊤/⊥ x1 x2 x3 x4 x5 x6

x1

x2

x3

x5

(h) After line 21

Fig. 3: Setting x1 to true (x5 is chosen as the new representative). Stream of
changes on the EC structure after execution of the respective lines of Algo-
rithm 3.

be hard and to have no underlying structure. For mq systems, currently the best
solving tools are algebraic tools, such as the Joux-Vitse hybrid algorithm [13]
and the libFes library [4] based on Bouillaguet et al ’s algorithm [5]. According
to experimental results reported in [13], WDSat does not outperform algebraic
solving tools for mq instances.

Complexity analysis The complexity analysis in this section concerns mq

systems, but it can be extended for systems of higher degree. Let v denote
the number of variables in a sat instance. Since WDSat is dpll-based, we
consider that the worst-case time complexity is, in general, O(2v). However, as
explained in Section 3, WDSat has an advantage over generic sat solvers when
it reads a formula in anf, as it decides to branch only on variables that are
present in the initial Boolean polynomial system. Thus, the complexity is O(2n)
where n ≤ v (with equality only in the case where the initial Boolean system
is linear). Moreover, for instances derived from the mq problem, we can make a
more precise estimation. The following analysis concerns the WDSat xg-ext

variant, as this variant was found to be the most efficient for mq systems. Our

Logical cryptanalysis with WDSat 13

Algorithm 4 Function set in xg(to set, F) : Function that sets a list of literals
to true.
Input: A list of literals that need to be set to true, the propositional formula F
Output: false if unsatisfiability is detected with unit propagation, true otherwise.

1: XG propagation stack← to set.
2: while XG propagation stack is not empty do

3: l← top element from XG propagation stack.
4: if assignment[l] 6= true then

5: if assignment[l] = false then

6: return false.
7: end if

8: assignment[l]← true.
9: ul ← get propositional variable(l).
10: tv ← get truth value(l).
11: if x1 ∈ R then

12: infer representative(ul, tv, F).
13: else

14: infer non representative(ul, tv, F).
15: end if

16: end if

17: end while

18: return true.

complexity analysis is based on estimating the dpll-tree level on which conflicts
are found.

Recall that the EC structure in the xorgauss module of the WDSat solver
can be viewed as a matrix whose columns are all monomials and unary variables
in the system, and the lines are linear xor-clauses, similar to the Macaulay
matrix [16]. Thus, this matrix holds a linearized system that will have a unique
solution when the number of lines is equal to the number of columns. This is
true because the ge that is performed on each step ensures that all remaining
xor-clauses represent linearly independent equations. For an mq system, the
number of columns in the EC structure, supposing that all monomials have at
least one occurrence, is n(n+1)/2. It is well-known that overdetermined systems
where m ≥ n(n+1)/2 are solvable in polynomial time. Let n′ be the number of
remaining variables in the system after the solving process has started. Then, at
level h of the binary search tree, we have that n′ = n − h. As per our previous
analysis, the system is solved or a conflict is met when m ≈ n′(n′ + 1)/2, i.e. at
level h ≈ n−

√
2m. We conclude that the complexity of WDSat with xg-ext

for solving instances derived from the mq problem is

O(2n−
√
2m). (3)

Even though this analysis is strongly linked to the ge, it does not necessarily
hold for other sat solvers that perform ge, such as CryptoMiniSat. If a solver
does not apply the xg-ext technique, it can not be guaranteed that the number

14 M. Trimoska et al.

of remaining columns in the EC matrix with entries different from 0 will be
n′(n′ + 1)/2 on level h.

Experimental results Table 4 shows a comparison between different ap-
proaches for solving mq systems. These experiments were performed on a 2.40GHz
Intel Xeon E5-2640 processor, all results are an average of 100 runs and running
times are in seconds. The first four entries show the performance of non xor-

Table 4: Comparing different approaches for solving the mq problem.
n m Input form #Vars #Clauses Solver Runtime #Conflicts

25 50

cnf 8301 33006

MiniSat 11525.24 40718489
Glucose 2384.99 10982657
Kissat 2118.52 6622284

Relaxed 3014.22 10353009

cnf-xor 325 920

CryptoMiniSat 5.6.5 2598.66 9806242
CryptoMiniSat 5.6.5 + ge 383.06 2007847

CryptoMiniSat 5.8.0 2870.81 9197978
CryptoMiniSat 5.8.0 + ge 594.48 2407635

WDSat 57.85 14177200
WDSat + ge 23.77 1046328

anf 25 50 WDSat + xg-ext 0.82 21140

30 60
cnf-xor 465 1365

CryptoMiniSat 5.6.5 + ge 28954.14 116013784
WDSat 2774.44 483437900

WDSat + ge 1223.16 34718415
anf 30 60 WDSat + xg-ext 17.71 379346

enabled sat solvers, namely MiniSat [8], Glucose [1], Kissat [3], which is
the winner in the main track of the latest sat competition [15] in 2020, and
Relaxed LCMDCBDL newTech [24], the winner in the main track on satis-
fiable instances. These solvers take as input a cnf and the number of variables
and clauses shown in the table are an average of the 100 instances for the cho-
sen parameters. We note that, for these specific instances, Kissat has the best
performance among the non xor-enabled solvers.

For the xor-enabled solvers,CryptoMiniSat andWDSat, we tested differ-
ent versions, specifically to see whether performing ge results in better running
times for solving instances derived from the mq problem. First, we conclude that
the best version of WDSat is the one with the xg-ext technique. Then, we can
see that CryptoMiniSat gives better results when the ge is turned on, how-
ever, CryptoMiniSat 5.8.0, which is the most recent version seems slower for
these instances than CryptoMiniSat 5.6.5. For this reason, we report results
for both versions. Note that in CryptoMiniSat 5.8.0 ge is used by default
and it is automatically disabled if the solver detects that it performs badly. This
version is denoted CryptoMiniSat 5.8.0 in Table 4, whereas CryptoMiniSat

5.8.0 + ge denotes experiments where CryptoMiniSat 5.8.0 is executed with

Logical cryptanalysis with WDSat 15

the option –autodisablegauss 0, which ensures that ge is used throughout the
entire solving process.

For versions of the solvers that have good performances (namely approaches
with ge, plus the simplest version of WDSat) we were able to increase the
parameters and results are shown at the end of Table 4. We conclude that WD-

Sat outperforms all other solvers for these instances. Finally, to confirm our
complexity analysis for the xg-ext version of WDSat, we checked the level at
which conflicts occur, and found that it is either ⌊n−

√
2m⌋ or ⌈n−

√
2m⌉, with

no exceptions.
Table 5 shows running time comparisons between WDSat xg-ext using the

original cnf module and WDSat xg-ext using the compressed cnf module
that we propose in Section 3.1. We conclude that running times are comparable
and that replacing the cnf module in WDSat by our proposed cnf module
does not impair the performance of the solver, while allowing us to solve higher
degree polynomial systems. For instance, we used the compressed cnf module to
solve systems of degree (d) four and the results are shown at the end of Table 5.

Table 5: Comparing WDSat’s original cnf module with our compressed cnf

module for solving multivariate polynomial systems.
d or-clause size n m #Vars cnf #Clauses cnf cnf module Runtime #Conflicts

2 3
25 50 325 920

original 0.82
21140

compressed 0.98

30 60 465 1365
original 17.71

379346
compressed 21.26

3 4
20 40 1350 5130

original 30.65
57597

compressed 30.54

25 50 2625 10100
original 3413.09

2095437
compressed 3529.71

4 5
15 30 1940 8960 compressed 4.86 4333
18 36 4047 19023 compressed 180.52 39204

5 Conclusion

In this paper, we gave implementation details of the WDSat solver and showed
that it has a broader range of cryptographic applications than the one it was
initially designed for. Several cryptographic attacks can be reduced to the prob-
lem of solving a Boolean multivariate polynomial system, and when the derived
systems are dense, experimental results suggest that WDSat gives the best per-
formance among state-of-the-art sat solvers. In addition, our novel cnf module
completes WDSat, so that it can tackle Boolean polynomial systems of any de-
gree. This paper does not alter the overall state-of-the-art, as for mq instances,
algebraic tools are still faster than XOR-enabled SAT solvers.

16 M. Trimoska et al.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009. pp. 399–404 (2009)

2. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate sys-
tems over finite fields. J. Mathematical Cryptology 3(3), 177–197 (2009)

3. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

4. Bouillaguet, C.: LibFES-lite. https://github.com/cbouilla/libfes-lite (2016)

5. Bouillaguet, C., Cheng, C., Chou, T., Niederhagen, R., Yang, B.: Fast exhaustive
search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.E., Lisonek,
P. (eds.) Selected Areas in Cryptography - SAC 2013 - 20th International Confer-
ence, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8282, pp. 205–222. Springer (2013)

6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
Advances in Cryptology - EUROCRYPT 2000, International Conference on the
Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-
18, 2000, Proceeding. Lecture Notes in Computer Science, vol. 1807, pp. 392–407.
Springer (2000)

7. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of
Satisfiability Testing. pp. 502–518. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner basis (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

10. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic
curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) Progress in
Cryptology - INDOCRYPT 2014 - 15th International Conference on Cryptology
in India, New Delhi, India, December 14-17, 2014, Proceedings. Lecture Notes in
Computer Science, vol. 8885, pp. 409–427. Springer (2014)

11. Han, C.S., Jiang, J.H.R.: When Boolean Satisfiability Meets Gaussian Elimina-
tion in a Simplex Way. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided
Verification. pp. 410–426. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

12. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March eq: Implement-
ing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H.,
Mitchell, D.G. (eds.) Theory and Applications of Satisfiability Testing, 7th Inter-
national Conference, SAT 2004. Lecture Notes in Computer Science, vol. 3542, pp.
345–359. Springer (2004)

13. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
In: Kaczorowski, J., Pieprzyk, J., Pomykala, J. (eds.) Number-Theoretic Methods
in Cryptology - First International Conference, NuTMiC 2017, Warsaw, Poland,
September 11-13, 2017, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 10737, pp. 3–21. Springer (2017)

https://github.com/cbouilla/libfes-lite

Logical cryptanalysis with WDSat 17

14. Laitinen, T., Junttila, T.A., Niemelä, I.: Conflict-driven XOR-clause learning (ex-
tended version). In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy,
June 17-20, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7317, pp.
383–396. Springer (2012), http://arxiv.org/abs/1407.6571

15. van Maaren, H., Franco, J.: The International SAT Competition Web Page.
http://www.satcompetition.org/, accessed: 2020-05-27

16. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge
Tracts in Mathematics and Mathematical Physics, University Press (1916),
https://books.google.fr/books?id=uA7vAAAAMAAJ

17. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT
problem. J. Autom. Reasoning 24(1/2), 165–203 (2000),
http://dblp.uni-trier.de/db/journals/jar/jar24.html#MassacciM00

18. McDonald, C., Charnes, C., Pieprzyk, J.: An algebraic analysis of Trivium ciphers
based on the boolean satisfiability problem. IACR Cryptol. ePrint Arch. 2007,
129 (2007), http://eprint.iacr.org/2007/129

19. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS-
10. Pragmatics of SAT, Edinburgh, UK, July 10, 2010. EPiC Series in Computing,
vol. 8, pp. 2–14. EasyChair (2010)

20. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019. pp. 1592–1599. AAAI Press (2019)

21. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing
- SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July
3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009)

22. Trimoska, M., Ionica, S., Dequen, G.: Parity (XOR) reasoning for the index calculus
attack. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-
11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333, pp. 774–790.
Springer (2020)

23. Trimoska, M., Ionica, S., Dequen, G.: A SAT-based approach for index calculus
on binary elliptic curves. In: Nitaj, A., Youssef, A. (eds.) Progress in Cryptology
- AFRICACRYPT 2020 - 12th International Conference on Cryptology in Africa,
Cairo, Egypt, July 20-22, 2020, Proceedings. Lecture Notes in Computer Science,
vol. 12174, pp. 214–235. Springer (2020)

24. Zhang, X., Cai, S.: Relaxed Backtracking with Rephasing. In: Balyo, T., Froleyks,
N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competi-
tion 2020 – Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 16–17. University of Helsinki (2020)

http://arxiv.org/abs/1407.6571
http://www.satcompetition.org/
https://books.google.fr/books?id=uA7vAAAAMAAJ
http://dblp.uni-trier.de/db/journals/jar/jar24.html#MassacciM00
http://eprint.iacr.org/2007/129

	Logical cryptanalysis with WDSat

