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Introduction

In the history of Science, the construction of models describing physical phenomena has been triggered by the actual feasibility of generating experimental proofs. In accordance with this approach, the Cauchy version of Continuum Mechanics has seen a successful amount of validations. Classic Continuum Mechanics assumes some ad hoc limitations in the selection of the terms to be used in the energy of deformable media [START_REF] Dell'isola | The complete works of Gabrio Piola: Volume I[END_REF]. These hypotheses were generalized to obtain new mechanical models. They are reasonable when looking for simple models that lead to a wide domain of validity. As every mathematical model, Cauchy Continuum Mechanics has a limited range of applicability. In the present paper, the mechanical behavior of pantographic cells is investigated as they constitute an important microstructural element of second gradient metamaterials [START_REF] Alibert | Pierre Seppecher, and Francesco 731 dell'Isola. Truss modular beams with deformation energy de-732 pending on higher displacement gradients[END_REF].

As an example of aforementioned limitations, it was established for Cauchy continua that the macroscopic strain energy a priori includes only the first displacement gradients. This choice may be accepted without any doubt on the basis of experimental evidences for many materials.
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However, it becomes too restrictive when modeling differ-23 ent, tailored-designed materials, e.g. for so-called meta-24 materials [START_REF] Barchiesi | Mechan-740 ical metamaterials: a state of the art[END_REF]). In the present work, it is proven that, when 25 using pantographic cells as metamaterial microstructure, 26 it is necessary, after homogenization, to use generalized 27 micro-stretched continua. In particular, when the micro-28 deformability of connecting hinges is not negligible, it may 29 be appropriate to specify the kinematics of introduced gen-30 eralized continua with two placement fields [START_REF] Spagnuolo | 827 Qualitative pivot damage analysis in aluminum printed panto-828 graphic sheets: Numerics and experiments[END_REF]. It is note-31 worthy that such micro mechanisms play significant role in 32 the deformation of natural as well as synthesized granular 33 materials [START_REF] Giorgio | Chirality in 2D Cosserat Media Related to Stretch-Micro-rotation coupling with links to Granular Micromechanics[END_REF].
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In the classic works [START_REF] Germain | The method of virtual power in continuum mechanics. part 2: Microstructure[END_REF][START_REF] David | Microstructure in linear elasticity[END_REF], the authors have demon-35 strated that the presence of a microstructure can be taken 36 into account from the macroscopic viewpoint by also con-37 sidering (at least) second gradients of displacements in the 38 strain energy of the microstructured (architectured) ma-39 terial. This observation has led to the development of 40 various constitutive postulates [START_REF] Victor | Isola. A note on reduced strain gradient elasticity[END_REF][START_REF] Victor A Eremeyev | Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses[END_REF].
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Pantographic structures are particular metamaterials 42 that can be modeled by means of such second gradient 43 continua [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF][START_REF] Scerrato | Threedimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations[END_REF]. The underlying microstructure (some-44 times simply called pantographic structure) consists of a 45 grid made up of two layers of parallel fibers (or beams) in-terconnected by perfect hinges (free rotations) or deforming hinges (with torsional stiffness), which are sometimes referred to as pivots. The pantographic metamaterial is normally studied by means of two types of models, one discrete, based on a system of springs, and one continuum, obtained from the discrete one by a suitable homogenization procedure, as it is shown in [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]. The model we use in this work is a mesoscale model in the sense that it models each fibre as a continuum medium (a non-linear Euler-Bernoulli beam) and therefore this model is in a middle position between the two above mentioned. However, for the hinges we chose to consider a model that is in effect discrete because it models the torsion deformation with a rotational spring and the pivot shear deformation with an extensional spring. On the other hand, modeling pivots with a beam element does not seem appropriate. In this sense, the model presented in this paper is multiscale.

In literature many examples of similar architectured metamaterials are present. In [START_REF] Coulais | A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials[END_REF] the authors study the effects of the architecture of mechanical metamaterials on their mechanical properties, showing experimental examples and numerical simulations. In [START_REF] Zhang | Extensible beam-like metastructures at the 843 microscale: Theoretical and modified hencky bar-chain model-844 ing[END_REF], on the other hand, the authors study the deformations of stretchable meta- The minimal pantographic structure that can be designed (and that preserves the basic mechanical features of this metamaterial) consists of a three-element pantograph, namely a structure that is globally similar to that of three successive crosses (Figure 1). In addition to macroscopic second gradient models plex structural element: in order to observe experimen-tally the energy contributions related to the second gradient of the displacement (i.e. those related to the bending of the fibers) it is necessary that the deformation energy of the pivots is as small as possible. So the ideal would be to have perfect hinges. This is of course possible in numerical simulations, but it is not always feasible in the production of test specimens (the possibility of producing perfect working hinges depends very much on the scale at which such mechanisms are printed and on the precision of the 3D printer). So in some cases, as in the present one, it is necessary to take into account the torsion of the cylinders, as well as their shear deformation, which becomes non-negligible when they are slender. If, on the other hand, the ratio between the height and diameter of the pivot is very small, the torsion energy prevails over the bending energy and makes the second gradient contribution negligible. From a microstructure homogenization point of view, the continuum obtained in this case is a first gradient continuum as shown in [START_REF] Boutin | Microstructural effects in elastic composites[END_REF].

In this paper, the mechanical behavior of pantographic cells is analyzed. The work is organized as follows: (i) the adopted model, which was introduced in Ref. [START_REF] Andreaus | A Ritz approach for the static analysis of 736 planar pantographic structures modeled with nonlinear Euler-737 Bernoulli beams[END_REF], is recalled and adapted to pantographic cells; (ii) through the model, numerical simulations are performed and the consequent results (force-displacement curves and deformed shapes of the structure) are compared to experimental data relative to bias extension and compression tests; (iii) by means of a newly conceived Digital Image Correlation (DIC) framework [START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF], a theoretical "Ansatz" about the nature of deformations in the hinges is successfully corroborated.

Finally, we want to remark that in this work we have expressly chosen to study a pantographic structure consisting of only three cells. In fact, with larger structures, it would be difficult to study the various energy terms precisely and to separate the pivot terms. Clearly, the results obtained for a structure consisting of a few cells can also be used when one wishes to study a structure consisting of many cells. Note, however, that when the number of cells becomes very high, the continuous model can be used for pantographic structures. The "mesoscopic" model presented in this paper is optimal in the case of structures with a wide knit.

Euler-Bernoulli beam theory adapted to pantographic cells

In this section, the model presented in Ref. [START_REF] Andreaus | A Ritz approach for the static analysis of 736 planar pantographic structures modeled with nonlinear Euler-737 Bernoulli beams[END_REF] is discussed and adapted to the structure under study. First, a summary is given of the physical system to be designed, and then a description is provided of how to proceed in modeling the observable quantities of the system. The interested reader will find additional details of the beam system presented herein in Refs. [START_REF] Nejadsadeghi | Parametric experimentation on pantographic unit cells reveals local extremum configuration[END_REF].

As stated in the introduction, the real system that is the object of this work is a pantographic structure, which consists of an assembly of two planar alignments of parallel fibers (or beams), see Figure 2. It was produced by Addi-174 tive Manufacturing and was made of polyamide PA2200. The model adopted herein to describe the fiber system 206 discussed above has been introduced in Ref. [START_REF] Andreaus | A Ritz approach for the static analysis of 736 planar pantographic structures modeled with nonlinear Euler-737 Bernoulli beams[END_REF] and is sum- (5) and considering that the assumed value for the param-294 eter β is 1.55 (see Table 3). 

Ritz approach for minimizing the energy 296

The strain energy is written as the sum of the contributions of beam elements for extensional and flexural terms, as well as hinges for torsional and fiber connectivity terms. Specifically, let N be the number of beam elements, and P the number of hinges (for the studied pantographic structure, N = 6 for two families of beams, and P = 7), the extensional energy reads

E (e) = 2N i=1 1 2 λi 0 EAη 2 (x)dx (2)
and the flexural energy

E (b) = 2N i=1 1 2 λi 0 EJχ 2 (x)dx (3) 
where η(x) and χ(x) denote generalized strains relative to the axis line of the beam. More precisely, η(x) is the stretching strain, while χ(x) is the curvature. For the hinges, the torsional term depends on the angular variation between the two fibers that the hinge interconnects

E (p) = P i=1 1 2 K p π 2 -∆ϑ i β (4) 
where K p accounts for the torsional stiffness and is related to the geometric characteristics of the hinge, ∆ϑ i the variation of the angle between the fibers crossing in the i-th hinge, β an exponent that in general is different from 2 and is obtained from fit of experimental data. The energy term related to fiber connectivity is written as

E (c) = P i=1 1 2 K c δ 2 i + K 3 δ 3 i + . . . (5) 
where K c is related to the shear deformation of the hinge, 297 δ i to sliding of the fibers at the i-th hinge, and K 3 a coeffi- 

δ 2 i = X (i) A + U (i) A -X (i) B + U (i) B 2 + Y (i) A + V (i) A -Y (i) B + V (i) B 2 (6) 
Like E (c) , the other energy terms are also written according to the components of displacements and rotations of the nodes. It suffices to minimize the total strain energy to find, for each assigned deformation step, the nodal displacements and rotations. With these variables and the shape functions used to define finite elements, the deformed configuration is obtained, and then the reaction forces. The selected shape functions are cubic Hermite polynomials. The detailed procedure of finite element decomposition and minimization is reported in Ref. [START_REF] Andreaus | A Ritz approach for the static analysis of 736 planar pantographic structures modeled with nonlinear Euler-737 Bernoulli beams[END_REF]. Let us merely indicate the way to obtain the values of the displacements at equilibrium. The total strain energy reads

E E = E (e) + E (b) + E (p) + E (c) (7) 
and it is postulated that equilibrium is given by the minimum of the potential energy

δE = 0 (8) 
In the present case, there is no need for adding an exter- As it can be seen in the following Fig. 6, the elongation metal specimens, as shown in [START_REF] Spagnuolo | Phe-831 nomenological aspects of quasi-perfect pivots in metallic panto-832 graphic structures[END_REF]). Furthermore, the spec-391 imen was unloaded and no permanent deformation was 392 visible.
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The parameters related to the hinges are those that 394 need to be calibrated since the two energy components 395 related to the hinges were deduced phenomenologically.

396

The calibration was performed by comparing the com-397 puted force-displacement curve with the experimental one 398 for the bias extension test (see Figure 4). As the study 3. An important point to note is that the same constitutive parameters were used in the model to describe tension and compression tests. The difference between the two total energies lies in the fact that the deformation mechanisms mainly involved in extension and compression are not identical. In an extension test, there is a non-negligible component of the fiber connectivity energy, while in a compression test this component is of the same order of magnitude as the bending energy. In both tests, as expected from a theoretical point of view, the stretching energy is negligible. Further, the levels of shear energy are very similar for both tests when compared to other contributions. This observation reveals that in both tests the relative rotation of the fibers in correspondence of the hinges is roughly the same, thereby revealing a certain "symmetry" between the two tests. The lack of overall symmetry at the global scale is then interpreted as the result of fiber connectivity. In Figures 789, the deformed configurations of the pan- This point will be further discussed when dealing with the comparisons between computed and measured relative displacements. In Figure 9, the predicted deformed shape (in red) is In Figures 101112, additional details about the numerical results related to the fiber connectivity are shown. This contribution was introduced in the strain energy in order to take into account the slender ratio between height and radius of the hinges. The relative displacements of the beams in correspondence of the hinges, which are referred to as displacement jumps, are indicated by the distance of the two red and blue points that correspond to the upper and lower ends of the hinges. A symmetry is observed in these displacement jumps. In Figure 10, the fiber connectivity is studied for four different deformation steps for the bias extension test, analogous results are reported for the compression test in Figure 11. For the hinges labelled in Figure 13, displacement performing properties in three-point bending tests [START_REF] M Erden Yildizdag | Isola. 838 Three-point bending test of pantographic blocks: numerical 839 and experimental investigation[END_REF]).
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Before presenting the results obtained by DIC, we want 552 to remark that the discrepancies that will be observed be- Let us also note that on a more quantitative way the The results obtained in this work deserve to be further investigated by means of other numerical tools. In particular, the calibration of the model parameters may be performed at the hinge scale when based upon the kinematic measurements reported herein. This new route may lead to a better description of the hinge response that was not used for the calibration performed herein. One question that will then arise is whether all the hinges have the same overall response given the printing imperfections. We recall that a model similar to the one developed in [START_REF] Andreaus | A Ritz approach for the static analysis of 736 planar pantographic structures modeled with nonlinear Euler-737 Bernoulli beams[END_REF] and developed here was proposed in [START_REF] Capobianco | Modeling planar pantographic sheets using a nonlinear Euler-Bernoulli beam element based on B-spline functions[END_REF]. Suitable numerical algorithms, already available in the literature [START_REF] Cazzani | Isogeometric analysis of plane-curved beams[END_REF][START_REF] Cazzani | An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams[END_REF][START_REF] Cazzani | A refined assumed strain finite element model for statics and dynamics of laminated plates[END_REF][START_REF] Greco | A quadrilateral g1conforming finite element for the kirchhoff plate model[END_REF], can be implemented for the detailed analysis of problems similar to the one we discussed.

Conclusion

698

As shown in Ref. [START_REF] Spagnuolo | 827 Qualitative pivot damage analysis in aluminum printed panto-828 graphic sheets: Numerics and experiments[END_REF], fiber connectivity induces failure 699 modes that were not previously observed in pantographic 700 structures. This observation and, in general, the study 701 of damage in pantographic structures have motivated a 702 recent study on the optimization of such structures [START_REF] Desmorat | Stiffness optimization in nonlinear pantographic structures[END_REF].

703

Various studies on damage in materials described by gen-704 eralized models may be useful to refine the approach to 705 damage in the specific case of pantographic structures.

706 Some results available in the literature can be found in 707 [START_REF] Placidi | Energy approach to brittle fracture in strain-gradient modelling[END_REF].

  beams. The cited examples provide, from a model point of view, first gradient continua. The case of the metamaterial studied in this paper is slightly different. As we have already remarked, the pantographic metamaterial has been specifically designed to give rise, after homogenization, to a second gradient continuum model. The model based on the non-linear Euler-Bernoulli beam model is limited to the study of cases where there are few fibers and these are arranged in such a way as to obtain a low-density lattice. Furthermore, in this paper a study is conducted to directly model the deformation of individual hinges. The information obtained by studying this case with only three cells will be important later for the study of denser architectures, where the mechanical response of the single hinge is difficult to separate from that of the rest of the elementary components.

Figure 1 :

 1 Figure 1: Minimal pantographic structure consisting of three successive cells. CAD model used for 3D printing the specimen (a) and detail of the pivots (b). The test studied in this work are a bias extension test (c) and a compression test (d).
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  of pantographic structures, mesoscopic descriptions are 92 based on nonlinear Euler-Bernoulli beams for describing 93 the "arms" of the pantograph. This mesomodel has been 94 successfully used for interpreting experimental measure-95 ments (e.g. bias extension tests) performed on a fabric-96 like pantograph [2]. In the following, the mesomodel was 97 selected in the analysis of pantographic cells. The very low 98 number of unit cells does not seem sufficient for justifying 99 the use of a macroscopic (i.e. continuum) model [19]. In 100 order to validate second gradient models used to describe 101 such metamaterials, it is necessary to conduct experimen-102 tal tests. It is therefore essential to produce samples to be 103 used in experiments. This has been significantly simplified 104 by the rapid development of Additive Manufacturing. 105 From a modeling point of view, one can make appropri-106 ate simplifying choices depending on the type of mechan-107 ical behavior one expects for a given test. If, for example, 108 one expects that the chosen test does not involve out-of-109 plane deformations, then one can model the pantographic 110 structure with a 2D model, neglecting deformation mech-111 anisms characteristic of out-of-plane deformations (such 112 as torsion of the fibers or their bending in the direction 113 orthogonal to the plane in which they are initially con-114 tained). In a 2D model, the deformations of the fibers 115 are taken into account by introducing in the deformation 116 energy a term related to elongation and one related to 117 bending. Pivots, on the other hand, are a more com-118
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Figure 2 :

 2 Figure 2: Picture of the reference configuration of a printed pantographic modular structure ( = 10 mm and L = 30 mm).

  Geometrical propertiesBasis of the cross section b = 1 mm Height of the cross section h = 1 mm Cross sectional area A = b × h Moment of inertia J = 1 12 bh 3 Height of the pivots H P = 2 mm Radius of the pivots R P = 0.45 mm The deformation observed experimentally can be 190 schematized as follows, namely, the deformation of the 191 beams, which are stretched and bent, and the deformation 192 of the hinges. The latter ones are subject to torsion due to the relative rotation of the beams of the two families, 194 and to shear deformation. The effect of torsion is observed 195 by comparing the reaction force plot measured versus pre-196 scribed displacement when the hinges are elastic with a 197 certain torsional stiffness and when they are perfect (see 198 for example Ref. [27]). In this last case, the initial part of 199 the plot is close to zero for the forces. When the hinges 200 deform, the force departs from 0. The direct observation 201 of the shear deformation mechanism of the hinges was de-202 duced through Digital Image Correlation [19] as also shown

207 marized as shown in Figure 3 .

 3 It characterizes the fibers as 208 Euler-Bernoulli (nonlinear) beams, whilst the hinges are 209 modeled as rotational springs (torsion model of the real 210 cylinders) in addition to extensional springs (to take into 211 account shear, which produces relative displacements be-212 tween the two fibers connected by the hinge itself). It was 213 observed in previous works [2, 26] that for ratios between 214 the height and radius of the hinge in a certain range, the 215 hinge may exhibit, in addition to the usual torsional de-216 formation due to the change of angle between the fibers of 217 the two families, deformations due to the relative motion 218 of the two fibers, which was modeled by a linear spring. 219 It is assumed that the constitutive law of the extensional 220 spring, modeling the hinge in terms of energy, depends on 221 the square of the relative displacement. Another cubic de-222 pendence on the relative displacement must also be added 223 to obtain results in good agreement with experimental ob-224 servations. This last deformation mechanism allows rela-225 tive sliding to be introduced between the fibers of the two 226 families in correspondence of the hinges. For this reason, 227 the associated energy term is called fiber connectivity.

Figure 3 :

 3 Figure 3: Kinematics of hinges depicting torsion (left) and fiber connectivity (right) mechanisms.
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  cient that has to satisfy the positiveness of the energy. The 299 nonlinear correction due to K 3 , and any other higher or-300 der correction, are to be considered to fit the experimental 301 response of the system. 302 To understand in detail this last term, let us con-303 sider a hinge connecting two fibers of the A and B fam-304 ilies. The ends of the hinge, (X A , Y A ) and (X B , Y B ), 305 in the undeformed configuration are superimposed (i.e. 306 (X A , Y A ) = (X B , Y B )). A deformation of the structure 307 may result in a relative displacement of the hinge ends. 308 By assigning the horizontal and vertical nodal shifts for 309 the two families (U A , V A ) and (U B , V B ), the relative shift 310 of the fibers δ i is expressed in terms of these positions and 311 shifts as 312

313 nal work to the minimization because essential boundary 314 conditions were prescribed. 315 3 .

 3143153 Figures 4 and 5 show the comparison between the mea-

Figure 4 :

 4 Figure 4: Bias extension test. Comparison between experiment (blue solid line) and model prediction (red dotted line).
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Figure 5 :

 5 Figure 5: Bias compression test. Comparison between experiment (blue solid line) and model prediction (red dotted line).

  372 and bending energies of the fibers are much smaller than 373 the energies associated with the pivots. The largest energy 374 contribution is due to the torsion of the pivots and, in a 375 second step, to the fibre connectivity energy term. The 376 latter two terms are clearly non-linear, although, as we 377 mentioned earlier, all four energy contributions are non-378 linear and therefore partly contribute to the non-linearity 379 found in the curves in Figures 4 and 5. Furthermore, we 380 would like to point out that the non-linear character of 381 the force-displacement graphs is not due to the material 382 of which the specimen is made, but to the architecture 383 according to which the fibers are organized. In the con-384 sidered tests, no plasticization phenomena are detected: 385 the fibers definitely did not undergo plasticization because 386 they are not sufficiently elongated (or compressed) and 387 not sufficiently flexed; the pivots could plasticize, but in 388 that case plasticization would be easily observable in the 389 force-displacement graph (for example this is well visible in 390
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  we present in this paper consists of a qualitative analy-400 sis of the mechanical behavior of a minimal pantographic 401 structure in order to investigate the individual mechanisms 402 occurring at the level of the microstructure, the model pa-403 rameters are optimized "by hand" in order to obtain both a 404 force-displacement curve compatible with the experimen-405 tal one and deformed shapes as close as possible to those 406 observed experimentally. As we have already pointed out, 407 in the second part of the paper, some analyses carried out 408 by means of Digital Image Correlation are presented. The 409 perspective of the joint work of the various co-authors is to 410 obtain a numerical tool able to quantitatively calibrate the 411 parameters of the model on the basis of the experimental data. In this perspective, the use of Digital Image Correlation is central. Above all, the authors' intent is to obtain an Integrated Digital Image Correlation [20] that can interact in an automated way with the numerical program and obtain the most suitable values for the constituent parameters of the model. At present, this is not yet implemented and requires a very articulated work, which the authors are carrying out. The calibrated parameters are reported in Table

  Parameter Value Shear stiffness K p 4.60 • 10 -3 N/m Fiber connectivity stiffness K c 1.20 • 10 3 N/m Fiber connectivity correction K 3 1.00 • 10 2 N/m 2 Exponent in shear energy β 1.55 With the calibrated parameters, the contributions of the various parts of the strain energy were computed for the two considered experiments (Figure 6). In these plots, in addition to the total energy (black solid line), the different contributions are shown, namely, stretching energy (red dashed line), bending energy (green dotted line), shear energy (blue dashed line) and fiber connectivity energy (yellow dot-dashed line). It is observed that the total energy in extension is about twice as high as that in compression for the same elongation magnitude. In both tests, the prevalent component is shear (i.e., most of the strain energy is due to hinge torsion).

Figure 6 :

 6 Figure 6: Energy contributions for bias extension (a) and compression (b) tests.

451Figure 7 :

 7 Figure 7: Bias extension test: comparison between experimental deformed shapes and the numerically simulated ones for three selected values of prescribed displacement. Imposed displacement on the horizontal axis and measured reaction force on the vertical axis.

Figure 7 - 8

 78 only show the face view of the two experiments. It is likely that, in the bias extension test, the deformation of the specimen is always in the plane. On the contrary, the specimen deformations are unlikely to remain in-plane in the compression test. For example, in Figure8(c), the relative displacements of the four hinges at the ends of the central cell seem very pronounced, but they could be affected also from parallax induced by out-of-place deformations (specifically, by torsion of the fibers themselves).

Figure 8 :

 8 Figure 8: Bias compression test: comparison between experimental deformed shapes and the deformed shapes obatined by numerical simulation for three selected values of prescribed displacement.

489Figure 9 :

 9 Figure 9: Superposition of computed (red) and experimental deformed shapes at the end of bias compression (a) and extension (b) tests.

Figure 10 :Figure 11 :

 1011 Figure 10: Bias extension test: numerically computed deformed shapes of the structure. The red and blue points, which are superimposed in the undeformed configuration, represent the two ends of the hinges and their subsequent misalignment is the result of the fiber connectivity term.

Figure 12 :

 12 Figure 12: Numerically computed deformed shape of the pantographic cells for the last extension step. The direction of the relative displacement between the beams of the two families is depicted by yellow arrow. In (a) and (b) the extremes of the figure are magnified for showing the antisymmetry of the arrows.

532Figure 13 :Figure 14 :

 1314 Figure 13: Location of the 7 hinges where the relative displacement has been computed for a comparison with the measured values obtained via DIC.

Figure 15 :

 15 Figure 15: History of displacement jump for the 7 labelled pivots in the horizontal (up) and vertical (down) directions for the compression test numerical simulation.
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  tween the Figs.[START_REF] Victor | Isola. A note on reduced strain gradient elasticity[END_REF]-15 and the Figs. 16-17 can be at-554 tributed to many simplifications assumed in the present 555 study, as, for example, the fact that both in the numerical 556 model and in the DIC analysis are not taken into account 557 out-of-plane deformations, which can clearly influence the 558 shear of the hinges. Out-of-plane deformations are non 559 prevalent in the presented experimental tests. This, of 560 course, does not avoid that such deformations can occur 561 and, indeed, can be observed in some tests, expressly de-562 signed for the study of such a phenomenon. However, 563 we have to consider some aspects: out-of-plain deforma-564 tion and buckling are phenomena that can be studied by 565 means of stability criteria of a structure. In the case of 566 the tests presented here, an out-of-plain deformation may 567 occur during the compression test. The main deformation 568 mechanisms involved in the compression test are those re-569 lated to fibre bending and pivot torsion and shear. In par-570 ticular, it has been observed by some co-authors of this 571 work (in a paper that is currently being written) that the 572 torsional stiffness of the pivots greatly influences the pres-573 ence or absence of out-of-plane deformation.

574 4 .Figure 16

 416 Figure16shows the displacement jumps for the bias

Figure 16 :

 16 Figure 16: DIC analyses at the microscale of the bias extension test. History of displacement jumps in the horizontal (a) and vertical (b) directions. The inset shows the location and labels of the 7 hinges.

607Figure 17 Figure 17 :

 1717 Figure17shows the displacement jumps for the bias

632A

  model of a pantographic structure composed of non-633 linear Euler-Bernoulli beams has been considered in this 634 study. In this study the focus is on the mechanical be-635 havior of hinges, which play a dramatically important role 636 in the mechanics of pantographic structures. For this rea-637 son, we have chosen to study a structure consisting of only 638 three cells, which makes it easier to focus on the hinges.639As pointed out in the text, there is an asymmetry between 640 the extension and compression tests. This asymmetry is related to the shear deformation of the pivots, which deform differently and not symmetrically in the two tests: this result would be difficult to detect in the case of structures with many beams and many pivots. In the present paper, a more in-depth study of the deformation mechanisms of pivots is presented. The energy term denoted as fibre-connectivity was in fact only mentioned in previous works. Analyses conducted with the Digital Image Correlation technique allowed us to detect, in a qualitative way at the current state of research, many details of the pivot deformations, thus providing an indication of the way forward in the modeling process.The effect of hinge deformation on the mechanical response of pantographic cells was studied herein. As said, the model adopted for the analysis of such system was based on the use of nonlinear Euler-Bernoulli beams. A very important role is assumed by the shear deformation of individual hinges. From a macroscopic point of view, that deformation corresponds to relative motions between the beams of the two families that constitute the metamaterial. From a numerical point of view, the simulation of bias extension and compression tests would be symmetric in the absence of fiber connectivity deformation. However, this symmetry is lost thanks to fiber connectivity. From a purely experimental point of view, it was observed that the reaction forces measured in both the tests are not antisymmetric but almost 5 times higher in magnitude in the bias extension test than in compression.The model developed herein was calibrated with a unique set of parameters that could accurately describe the macroscopic load/displacement response of the studied cells. Further, the deformed shapes were in qualitative agreement with the experimental observations. Since images were acquired during the experiments studied herein, displacements could be measured via DIC. In the present case, relative motions at hinge ends could be measured thanks to a specially designed kinematic basis[START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF], which led to very low registration residuals. Displacement jumps could be measured and quantified for both tests. Some of the general trends predicted by the calibrated model were confirmed by the DIC measurements. Conversely, loss of symmetries points toward printing and experimental imperfections of such centimetric objects.

Table 1 :

 1 Mechanical properties of the 3D printed polyamide PA2200
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	Mechanical Properties
	Young modulus E = 0.5 GPa
	Poisson ratio ν = 0.33
	Shear modulus G = E 2(1+ν)

Table 2 :

 2 Geometric dimensions of the beams composing the pantographic cells.

Table 3 :

 3 Constitutive parameters of the studied pantographic cells.
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