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fUniversité Paris-Saclay, ENS Paris-Saclay, CNRS
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Abstract

In order to synthesize exotic metamaterials, it was proposed to use as elementary components of metamaterial microstruc-
tures so-called pantographic cells. The use of a mesomodel based on Euler–Bernoulli nonlinear beam theory is utilized
for describing their behavior when their characteristic sizes are of the order of millimeters. With an in-house code, in
which the connecting hinges were modeled as elastic extensional and torsional elements, simulations were performed and
compared with experimental data. The comparison was carried out for compression and extension tests. It is proven,
both numerically and experimentally, that the hinges undergo different deformation mechanisms. As a consequence, for
compression and extension tests, the distribution and the total value of the strain energy vary significantly. The analysis
is made possible in parts via Digital Image Correlation, which allows kinematic fields to be measured and the hypotheses
employed for developing the proposed model to be probed experimentally.

Keywords: Digital Image Correlation, Euler–Bernoulli beam model, Extensible metamaterials, Large microstructural
torsion, Pantographic cells

1. Introduction1

In the history of Science, the construction of models2

describing physical phenomena has been triggered by the3

actual feasibility of generating experimental proofs. In ac-4

cordance with this approach, the Cauchy version of Con-5

tinuum Mechanics has seen a successful amount of valida-6

tions. Classic Continuum Mechanics assumes some ad hoc7

limitations in the selection of the terms to be used in the8

energy of deformable media [11]. These hypotheses were9

generalized to obtain new mechanical models. They are10

reasonable when looking for simple models that lead to a11

wide domain of validity. As every mathematical model,12

Cauchy Continuum Mechanics has a limited range of ap-13

plicability. In the present paper, the mechanical behav-14

ior of pantographic cells is investigated as they constitute15

an important microstructural element of second gradient16

metamaterials [1].17

As an example of aforementioned limitations, it was es-18

tablished for Cauchy continua that the macroscopic strain19

energy a priori includes only the first displacement gra-20

dients. This choice may be accepted without any doubt21
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on the basis of experimental evidences for many materials.22

However, it becomes too restrictive when modeling differ-23

ent, tailored-designed materials, e.g. for so-called meta-24

materials [3]). In the present work, it is proven that, when25

using pantographic cells as metamaterial microstructure,26

it is necessary, after homogenization, to use generalized27

micro-stretched continua. In particular, when the micro-28

deformability of connecting hinges is not negligible, it may29

be appropriate to specify the kinematics of introduced gen-30

eralized continua with two placement fields [26]. It is note-31

worthy that such micro mechanisms play significant role in32

the deformation of natural as well as synthesized granular33

materials [17].34

In the classic works [16, 21], the authors have demon-35

strated that the presence of a microstructure can be taken36

into account from the macroscopic viewpoint by also con-37

sidering (at least) second gradients of displacements in the38

strain energy of the microstructured (architectured) ma-39

terial. This observation has led to the development of40

various constitutive postulates [14, 15].41

Pantographic structures are particular metamaterials42

that can be modeled by means of such second gradient43

continua [12, 24]. The underlying microstructure (some-44

times simply called pantographic structure) consists of a45

grid made up of two layers of parallel fibers (or beams) in-46
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terconnected by perfect hinges (free rotations) or deform-47

ing hinges (with torsional stiffness), which are sometimes48

referred to as pivots. The pantographic metamaterial is49

normally studied by means of two types of models, one50

discrete, based on a system of springs, and one continuum,51

obtained from the discrete one by a suitable homogeniza-52

tion procedure, as it is shown in [12]. The model we use in53

this work is a mesoscale model in the sense that it models54

each fibre as a continuum medium (a non-linear Euler-55

Bernoulli beam) and therefore this model is in a middle56

position between the two above mentioned. However, for57

the hinges we chose to consider a model that is in effect58

discrete because it models the torsion deformation with a59

rotational spring and the pivot shear deformation with an60

extensional spring. On the other hand, modeling pivots61

with a beam element does not seem appropriate. In this62

sense, the model presented in this paper is multiscale.63

In literature many examples of similar architectured64

metamaterials are present. In [10] the authors study the65

effects of the architecture of mechanical metamaterials on66

their mechanical properties, showing experimental exam-67

ples and numerical simulations. In [30], on the other hand,68

the authors study the deformations of stretchable meta-69

beams. The cited examples provide, from a model point of70

view, first gradient continua. The case of the metamaterial71

studied in this paper is slightly different. As we have al-72

ready remarked, the pantographic metamaterial has been73

specifically designed to give rise, after homogenization, to74

a second gradient continuum model. The model based on75

the non-linear Euler-Bernoulli beam model is limited to76

the study of cases where there are few fibers and these are77

arranged in such a way as to obtain a low-density lattice.78

Furthermore, in this paper a study is conducted to directly79

model the deformation of individual hinges. The informa-80

tion obtained by studying this case with only three cells81

will be important later for the study of denser architec-82

tures, where the mechanical response of the single hinge is83

difficult to separate from that of the rest of the elementary84

components.85

The minimal pantographic structure that can be de-86

signed (and that preserves the basic mechanical features87

of this metamaterial) consists of a three-element panto-88

graph, namely a structure that is globally similar to that89

of three successive crosses (Figure 1).90

Figure 1: Minimal pantographic structure consisting of three succes-
sive cells. CAD model used for 3D printing the specimen (a) and
detail of the pivots (b). The test studied in this work are a bias
extension test (c) and a compression test (d).

In addition to macroscopic second gradient models91

of pantographic structures, mesoscopic descriptions are92

based on nonlinear Euler–Bernoulli beams for describing93

the “arms” of the pantograph. This mesomodel has been94

successfully used for interpreting experimental measure-95

ments (e.g. bias extension tests) performed on a fabric-96

like pantograph [2]. In the following, the mesomodel was97

selected in the analysis of pantographic cells. The very low98

number of unit cells does not seem sufficient for justifying99

the use of a macroscopic (i.e. continuum) model [19]. In100

order to validate second gradient models used to describe101

such metamaterials, it is necessary to conduct experimen-102

tal tests. It is therefore essential to produce samples to be103

used in experiments. This has been significantly simplified104

by the rapid development of Additive Manufacturing.105

From a modeling point of view, one can make appropri-106

ate simplifying choices depending on the type of mechan-107

ical behavior one expects for a given test. If, for example,108

one expects that the chosen test does not involve out-of-109

plane deformations, then one can model the pantographic110

structure with a 2D model, neglecting deformation mech-111

anisms characteristic of out-of-plane deformations (such112

as torsion of the fibers or their bending in the direction113

orthogonal to the plane in which they are initially con-114

tained). In a 2D model, the deformations of the fibers115

are taken into account by introducing in the deformation116

energy a term related to elongation and one related to117

bending. Pivots, on the other hand, are a more com-118

plex structural element: in order to observe experimen-119
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tally the energy contributions related to the second gradi-120

ent of the displacement (i.e. those related to the bending121

of the fibers) it is necessary that the deformation energy122

of the pivots is as small as possible. So the ideal would123

be to have perfect hinges. This is of course possible in124

numerical simulations, but it is not always feasible in the125

production of test specimens (the possibility of producing126

perfect working hinges depends very much on the scale at127

which such mechanisms are printed and on the precision128

of the 3D printer). So in some cases, as in the present129

one, it is necessary to take into account the torsion of the130

cylinders, as well as their shear deformation, which be-131

comes non-negligible when they are slender. If, on the132

other hand, the ratio between the height and diameter of133

the pivot is very small, the torsion energy prevails over134

the bending energy and makes the second gradient contri-135

bution negligible. From a microstructure homogenization136

point of view, the continuum obtained in this case is a first137

gradient continuum as shown in [5].138

In this paper, the mechanical behavior of pantographic139

cells is analyzed. The work is organized as follows: (i) the140

adopted model, which was introduced in Ref. [2], is recalled141

and adapted to pantographic cells; (ii) through the model,142

numerical simulations are performed and the consequent143

results (force-displacement curves and deformed shapes of144

the structure) are compared to experimental data relative145

to bias extension and compression tests; (iii) by means of146

a newly conceived Digital Image Correlation (DIC) frame-147

work [19], a theoretical “Ansatz” about the nature of de-148

formations in the hinges is successfully corroborated.149

Finally, we want to remark that in this work we have150

expressly chosen to study a pantographic structure con-151

sisting of only three cells. In fact, with larger structures,152

it would be difficult to study the various energy terms153

precisely and to separate the pivot terms. Clearly, the re-154

sults obtained for a structure consisting of a few cells can155

also be used when one wishes to study a structure consist-156

ing of many cells. Note, however, that when the number157

of cells becomes very high, the continuous model can be158

used for pantographic structures. The “mesoscopic” model159

presented in this paper is optimal in the case of structures160

with a wide knit.161

2. Euler–Bernoulli beam theory adapted to panto-162

graphic cells163

In this section, the model presented in Ref. [2] is dis-164

cussed and adapted to the structure under study. First, a165

summary is given of the physical system to be designed,166

and then a description is provided of how to proceed in167

modeling the observable quantities of the system. The168

interested reader will find additional details of the beam169

system presented herein in Refs. [22].170

As stated in the introduction, the real system that is171

the object of this work is a pantographic structure, which172

consists of an assembly of two planar alignments of parallel173

fibers (or beams), see Figure 2. It was produced by Addi-174

tive Manufacturing and was made of polyamide PA2200.175

Figure 2: Picture of the reference configuration of a printed panto-
graphic modular structure (` = 10 mm and L = 30 mm).

The geometrical and material characteristics of the176

sample are gathered in Tables 1-2. In this specific case, the177

pantographic structure is referred as ‘modular’ because its178

overall dimensions (i.e. ` and L, see Figure 2) are of the179

order of centimeters. In this particular case, the overall180

dimensions are 10 mm× 30 mm. It consists of three basic181

pantograph cells with an X-shape. This structure repre-182

sents the prototype of a minimal pantographic structure183

because, in order to observe its typical phenomenology, it184

is necessary to consider at least three X cells, two of which185

(i.e. the exterior ones) being clamped at their ends. The186

beams that constitute the pantograph are connected at187

their points of intersection by means of deformable cylin-188

ders that behave like hinges.189

Table 1: Mechanical properties of the 3D printed polyamide PA2200

Mechanical Properties
Young modulus E = 0.5 GPa
Poisson ratio ν = 0.33
Shear modulus G = E

2(1+ν)

Table 2: Geometric dimensions of the beams composing the panto-
graphic cells.

Geometrical properties
Basis of the cross section b = 1 mm
Height of the cross section h = 1 mm
Cross sectional area A = b× h
Moment of inertia J = 1

12bh
3

Height of the pivots HP = 2 mm
Radius of the pivots RP = 0.45 mm

The deformation observed experimentally can be190

schematized as follows, namely, the deformation of the191

beams, which are stretched and bent, and the deformation192
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of the hinges. The latter ones are subject to torsion due193

to the relative rotation of the beams of the two families,194

and to shear deformation. The effect of torsion is observed195

by comparing the reaction force plot measured versus pre-196

scribed displacement when the hinges are elastic with a197

certain torsional stiffness and when they are perfect (see198

for example Ref. [27]). In this last case, the initial part of199

the plot is close to zero for the forces. When the hinges200

deform, the force departs from 0. The direct observation201

of the shear deformation mechanism of the hinges was de-202

duced through Digital Image Correlation [19] as also shown203

below.204

2.1. Mechanical model205

The model adopted herein to describe the fiber system206

discussed above has been introduced in Ref. [2] and is sum-207

marized as shown in Figure 3. It characterizes the fibers as208

Euler–Bernoulli (nonlinear) beams, whilst the hinges are209

modeled as rotational springs (torsion model of the real210

cylinders) in addition to extensional springs (to take into211

account shear, which produces relative displacements be-212

tween the two fibers connected by the hinge itself). It was213

observed in previous works [2, 26] that for ratios between214

the height and radius of the hinge in a certain range, the215

hinge may exhibit, in addition to the usual torsional de-216

formation due to the change of angle between the fibers of217

the two families, deformations due to the relative motion218

of the two fibers, which was modeled by a linear spring.219

It is assumed that the constitutive law of the extensional220

spring, modeling the hinge in terms of energy, depends on221

the square of the relative displacement. Another cubic de-222

pendence on the relative displacement must also be added223

to obtain results in good agreement with experimental ob-224

servations. This last deformation mechanism allows rela-225

tive sliding to be introduced between the fibers of the two226

families in correspondence of the hinges. For this reason,227

the associated energy term is called fiber connectivity.

Figure 3: Kinematics of hinges depicting torsion (left) and fiber con-
nectivity (right) mechanisms.

228

In Ref. [2], it was shown how, in order to obtain the de-229

formed configuration and the reaction forces on the edges230

of the pantographic structure, the strain energy of the231

structure had to be written in terms of its individual con-232

stituents. Specifically, if each beam is considered as com-233

posed of a number of finite elements corresponding to the234

number of beam elements between two consecutive hinges235

(in the simple case of pantographic cells, all beams are236

made up of two finite elements), then the strain energy of237

each element is given by extensional and bending contri-238

butions. In order to obtain the strain energy of the entire239

structure, all these energies of the finite elements are com-240

bined. It is also necessary to add the contribution of the241

hinges. For each hinge, there is a term due to torsion242

(which in the case of perfect hinges should vanish), and243

another one due to possible shear. These contributions244

to the strain energy are as numerous as the number of245

hinges in the pantographic structure. For a pantographic246

modular structure, the number of beam elements and the247

number of hinges is easily counted. For each fiber family,248

there are three fibers, each consisting of two elements, for249

a total number of 12 fiber elements for 7 hinges.250

Let us call the ends of each beam element nodes.251

At these specific points, which correspond to the hinges,252

the nodal displacements and rotations are defined for the253

transverse sections [2], and are used to write the strain254

energy of the beams/fibers and the hinges. These dis-255

placements and rotations are therefore the unknowns to256

the problem, and are obtained by prescribing boundary257

conditions and minimizing the total strain energy. In the258

present case, which aims to analyze bias extension and259

compression tests, the boundary conditions consist in zero260

displacements for the nodes on one of the two short sides of261

the pantographic structure (corresponding to the clamped262

side), and in assigning displacements to the nodes on the263

other short side. The horizontal component of the dis-264

placements is designated as Ua and Ub (a and b for the265

two fiber families), and the vertical ones Va and Vb, then266

the boundary conditions become267

Ui(0, j) = 0, Ui(L, j) = Ū , (1)

∀i ∈ {a, b}, ∀j ∈ {set of nodes in the short side}
Vi(0, j) = 0, Vi(L, j) = 0,

∀i ∈ {a, b}, ∀j ∈ {set of nodes in the short side}

From boundary conditions (1), the displacements of the268

nodes on the two short side edges are assigned, while the269

other nodal displacements and rotations are calculated by270

means of the minimization problem. By minimizing the271

strain energy, it is possible to obtain the values of this272

energy for each deformation step and from these values,273

using Castigliano’s theorem [25], the force-displacement274

curve is obtained.275

We want to remark the fundamental role of the non-276

linearity of the adopted model for the pantographic archi-277

tecture, which will be central for obtaining numerical re-278

sults capable to properly describe the experimental data.279

The Euler-Bernoulli beam model used to model the fibers280

of the pantographic architecture is non-linear, as is speci-281

fied in the following. Furthermore, the geometric arrange-282

ment of the fibers itself provides for a global energy that is283

non-linear. The terms that contribute to the strain energy284

of the fibers are: (i) elongation energy, written in terms285
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of the generalized non-linear axial strain; (ii) bending en-286

ergy, written in terms of the non-linear curvature. These287

two terms alone would be sufficient to produce a non-linear288

global deformation energy, but to these must be added the289

two terms relating to hinge deformations, the torsion en-290

ergy (iii) and what we have called the “fiber connectivity”291

energy (iv). These last two contributions are themselves292

non-linear, as it will become manifest in equations (4) and293

(5) and considering that the assumed value for the param-294

eter β is 1.55 (see Table 3).295

2.2. Ritz approach for minimizing the energy296

The strain energy is written as the sum of the contribu-
tions of beam elements for extensional and flexural terms,
as well as hinges for torsional and fiber connectivity terms.
Specifically, let N be the number of beam elements, and P
the number of hinges (for the studied pantographic struc-
ture, N = 6 for two families of beams, and P = 7), the
extensional energy reads

E(e) =

2N∑
i=1

1

2

∫ λi

0

EAη2(x)dx (2)

and the flexural energy

E(b) =

2N∑
i=1

1

2

∫ λi

0

EJχ2(x)dx (3)

where η(x) and χ(x) denote generalized strains relative
to the axis line of the beam. More precisely, η(x) is the
stretching strain, while χ(x) is the curvature. For the
hinges, the torsional term depends on the angular vari-
ation between the two fibers that the hinge interconnects

E(p) =

P∑
i=1

1

2
Kp
(π

2
−∆ϑi

)β
(4)

where Kp accounts for the torsional stiffness and is related
to the geometric characteristics of the hinge, ∆ϑi the vari-
ation of the angle between the fibers crossing in the i-th
hinge, β an exponent that in general is different from 2
and is obtained from fit of experimental data. The energy
term related to fiber connectivity is written as

E(c) =

P∑
i=1

1

2
Kc
(
δ2i + K3δ

3
i + . . .

)
(5)

where Kc is related to the shear deformation of the hinge,297

δi to sliding of the fibers at the i-th hinge, and K3 a coeffi-298

cient that has to satisfy the positiveness of the energy. The299

nonlinear correction due to K3, and any other higher or-300

der correction, are to be considered to fit the experimental301

response of the system.302

To understand in detail this last term, let us con-303

sider a hinge connecting two fibers of the A and B fam-304

ilies. The ends of the hinge, (XA, YA) and (XB , YB),305

in the undeformed configuration are superimposed (i.e.306

(XA, YA) = (XB , YB)). A deformation of the structure307

may result in a relative displacement of the hinge ends.308

By assigning the horizontal and vertical nodal shifts for309

the two families (UA, VA) and (UB , VB), the relative shift310

of the fibers δi is expressed in terms of these positions and311

shifts as312

δ2i =
[(
X

(i)
A + U

(i)
A

)
−
(
X

(i)
B + U

(i)
B

)]2
+

[(
Y

(i)
A + V

(i)
A

)
−
(
Y

(i)
B + V

(i)
B

)]2
(6)

Like E(c), the other energy terms are also written ac-
cording to the components of displacements and rotations
of the nodes. It suffices to minimize the total strain en-
ergy to find, for each assigned deformation step, the nodal
displacements and rotations. With these variables and
the shape functions used to define finite elements, the de-
formed configuration is obtained, and then the reaction
forces. The selected shape functions are cubic Hermite
polynomials. The detailed procedure of finite element de-
composition and minimization is reported in Ref. [2]. Let
us merely indicate the way to obtain the values of the dis-
placements at equilibrium. The total strain energy reads
E

E = E(e) + E(b) + E(p) + E(c) (7)

and it is postulated that equilibrium is given by the mini-
mum of the potential energy

δE = 0 (8)

In the present case, there is no need for adding an exter-313

nal work to the minimization because essential boundary314

conditions were prescribed.315

In the next section, the results of numerical simulations316

based on the presented model are reported, and compar-317

isons with experimental measurements are carried out. All318

details for the numerical implementation of the presented319

model is found in Ref. [2].320

3. Numerical simulations and comparison with ex-321

perimental measurements322

The experimental tests have been performed with323

quasi-static loading conditions: the loading speed is324

0.5mm/s. Moreover, we want to underline that the fiber325

element and hinge numbers, in general, can affect the accu-326

racy and convergency of the numerical results. The num-327

ber of hinges considered in the code used corresponds to328

the number of physical pivots that are present in the tested329

specimen. On the other hand, the numerical code we wrote330

to perform the simulations subdivides the individual fibers331

into non-linear Euler-Bernoulli beam finite elements. As332

we have already remarked, the nodes of the subdivision333

into finite elements correspond to the physical pivots. One334

could certainly choose to increase the number of nodes and335

finite elements. This increases the computational effort336
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considerably. The calculation time in the current case is337

only a few seconds. By increasing the number of nodes,338

the calculation time can also increase considerably. The339

result, however, does not change substantially, and, there-340

fore, that the chosen decomposition is sufficient for the341

present case.342

Figures 4 and 5 show the comparison between the mea-343

sured reaction forces and those calculated for the extension344

and compression tests at the end of the calibration of the345

four parameters of the above model.346

Figure 4: Bias extension test. Comparison between experiment (blue
solid line) and model prediction (red dotted line).

These macroscopic predictions are in good agreement347

with the experimental results. To obtain them, some of348

the constitutive parameters have been calibrated. More349

specifically, the elongation and bending stiffness were as-350

sumed to be known from the Euler-Bernoulli beam theory.351

They are expressed in terms of the Young’s modulus of352

the chosen material and of geometrical dimensions of the353

beams.354

As we have specified, the parameters of the model were355

calibrated on the extension test, whose force-displacement356

graph is shown in Figure 4. The same parameters, thus357

calibrated expressly for the extension test, were used to358

carry out the numerical simulation of the compression test.359

Now, of course, in the case of Figure 5 the agreement be-360

tween numerical simulation and experimental data is not361

as strong as in Figure 4, but the results are reassuring.362

Clearly better results could be obtained by an iterative363

calibration that takes into account the experimental data364

of both tests: as far as the present study is concerned,365

we simply observe that the model adopted also predicts a366

lesser involvement of the fiber-connectivity mechanism in367

the compression test, a fact that is also revealed by the368

analysis of the experimental images carried out by means369

of Digital Image Correlation techniques. This last circum-370

stance will be clearer in the following.371

Figure 5: Bias compression test. Comparison between experiment
(blue solid line) and model prediction (red dotted line).

As it can be seen in the following Fig. 6, the elongation372

and bending energies of the fibers are much smaller than373

the energies associated with the pivots. The largest energy374

contribution is due to the torsion of the pivots and, in a375

second step, to the fibre connectivity energy term. The376

latter two terms are clearly non-linear, although, as we377

mentioned earlier, all four energy contributions are non-378

linear and therefore partly contribute to the non-linearity379

found in the curves in Figures 4 and 5. Furthermore, we380

would like to point out that the non-linear character of381

the force-displacement graphs is not due to the material382

of which the specimen is made, but to the architecture383

according to which the fibers are organized. In the con-384

sidered tests, no plasticization phenomena are detected:385

the fibers definitely did not undergo plasticization because386

they are not sufficiently elongated (or compressed) and387

not sufficiently flexed; the pivots could plasticize, but in388

that case plasticization would be easily observable in the389

force-displacement graph (for example this is well visible in390

metal specimens, as shown in [27]). Furthermore, the spec-391

imen was unloaded and no permanent deformation was392

visible.393

The parameters related to the hinges are those that394

need to be calibrated since the two energy components395

related to the hinges were deduced phenomenologically.396

The calibration was performed by comparing the com-397

puted force–displacement curve with the experimental one398

for the bias extension test (see Figure 4). As the study399

we present in this paper consists of a qualitative analy-400

sis of the mechanical behavior of a minimal pantographic401

structure in order to investigate the individual mechanisms402

occurring at the level of the microstructure, the model pa-403

rameters are optimized “by hand” in order to obtain both a404

force-displacement curve compatible with the experimen-405

tal one and deformed shapes as close as possible to those406

observed experimentally. As we have already pointed out,407

in the second part of the paper, some analyses carried out408

by means of Digital Image Correlation are presented. The409

perspective of the joint work of the various co-authors is to410

obtain a numerical tool able to quantitatively calibrate the411
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parameters of the model on the basis of the experimental412

data. In this perspective, the use of Digital Image Corre-413

lation is central. Above all, the authors’ intent is to obtain414

an Integrated Digital Image Correlation [20] that can in-415

teract in an automated way with the numerical program416

and obtain the most suitable values for the constituent417

parameters of the model. At present, this is not yet im-418

plemented and requires a very articulated work, which the419

authors are carrying out. The calibrated parameters are420

reported in Table 3. An important point to note is that421

the same constitutive parameters were used in the model422

to describe tension and compression tests.423

Table 3: Constitutive parameters of the studied pantographic cells.

Parameter Value
Shear stiffness Kp 4.60 · 10−3 N/m
Fiber connectivity stiffness Kc 1.20 · 103 N/m
Fiber connectivity correction K3 1.00 · 102 N/m2

Exponent in shear energy β 1.55

With the calibrated parameters, the contributions of424

the various parts of the strain energy were computed for425

the two considered experiments (Figure 6). In these plots,426

in addition to the total energy (black solid line), the dif-427

ferent contributions are shown, namely, stretching energy428

(red dashed line), bending energy (green dotted line),429

shear energy (blue dashed line) and fiber connectivity en-430

ergy (yellow dot-dashed line). It is observed that the total431

energy in extension is about twice as high as that in com-432

pression for the same elongation magnitude. In both tests,433

the prevalent component is shear (i.e., most of the strain434

energy is due to hinge torsion).435

The difference between the two total energies lies in the436

fact that the deformation mechanisms mainly involved in437

extension and compression are not identical. In an exten-438

sion test, there is a non-negligible component of the fiber439

connectivity energy, while in a compression test this com-440

ponent is of the same order of magnitude as the bending441

energy. In both tests, as expected from a theoretical point442

of view, the stretching energy is negligible. Further, the443

levels of shear energy are very similar for both tests when444

compared to other contributions. This observation reveals445

that in both tests the relative rotation of the fibers in cor-446

respondence of the hinges is roughly the same, thereby re-447

vealing a certain “symmetry” between the two tests. The448

lack of overall symmetry at the global scale is then inter-449

preted as the result of fiber connectivity.450

Figure 6: Energy contributions for bias extension (a) and compres-
sion (b) tests.

In Figures 7-9, the deformed configurations of the pan-451

tographic cells are compared to the simulated shapes for452

different deformation steps. More precisely, in Figure 7,453

a qualitative comparison between experiment and simu-454

lation was carried out for the bias extension test. The455

deformed shapes were numerically determined using Her-456

mite cubic polynomials, which were mentioned in the pre-457

vious section. The order of such shape functions was suf-458

ficient to ensure that the global deformed shape and that459

the calculation of the reaction force were well predicted460

(Figure 4). For the computation of the internal actions461

in beams (i.e. local analysis of deformation), the chosen462

order of the shape functions was not sufficient to obtain463

reliable results. In order to numerically calculate the inter-464

nal actions, it would be desirable to choose shape functions465

of higher order or, alternatively, to increase the number of466

finite elements to discretize each beam.467
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Figure 7: Bias extension test: comparison between experimental de-
formed shapes and the numerically simulated ones for three selected
values of prescribed displacement. Imposed displacement on the hor-
izontal axis and measured reaction force on the vertical axis.

In Figure 8, the same type of comparison is performed468

for the compression test. As it was clear by observing Fig-469

ure 6, extension and compression tests were not completely470

symmetric, due to the fiber-connectivity energy term. If,471

on the one hand, this is simply accountable from the model472

point of view (in fact the fiber-connectivity energy term473

depends also on the cube of the relative displacement), on474

the other hand one has to carefully interpret this lack of475

symmetry in the context of the experiments. Figure 7-476

8 only show the face view of the two experiments. It is477

likely that, in the bias extension test, the deformation of478

the specimen is always in the plane. On the contrary, the479

specimen deformations are unlikely to remain in-plane in480

the compression test. For example, in Figure 8(c), the481

relative displacements of the four hinges at the ends of482

the central cell seem very pronounced, but they could be483

affected also from parallax induced by out-of-place defor-484

mations (specifically, by torsion of the fibers themselves).485

This point will be further discussed when dealing with the486

comparisons between computed and measured relative dis-487

placements.488

Figure 8: Bias compression test: comparison between experimental
deformed shapes and the deformed shapes obatined by numerical
simulation for three selected values of prescribed displacement.

In Figure 9, the predicted deformed shape (in red) is489

laid over the image of the last deformation step for both490

tests. This result probes in a more quantitative way the491

trustworthiness of the computed deformed shapes, which492

are in very good agreement with experimental observa-493

tions. An even more quantitative comparison would be494

possible using Digital Image Correlation (see Section 4).495

This kind of comparison has been recently performed in496

Ref. [4].497
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Figure 9: Superposition of computed (red) and experimental de-
formed shapes at the end of bias compression (a) and extension (b)
tests.

In Figures 10-12, additional details about the numeri-498

cal results related to the fiber connectivity are shown. This499

contribution was introduced in the strain energy in order500

to take into account the slender ratio between height and501

radius of the hinges. The relative displacements of the502

beams in correspondence of the hinges, which are referred503

to as displacement jumps, are indicated by the distance of504

the two red and blue points that correspond to the upper505

and lower ends of the hinges. A symmetry is observed in506

these displacement jumps. In Figure 10, the fiber connec-507

tivity is studied for four different deformation steps for the508

bias extension test, analogous results are reported for the509

compression test in Figure 11.510

Figure 10: Bias extension test: numerically computed deformed
shapes of the structure. The red and blue points, which are su-
perimposed in the undeformed configuration, represent the two ends
of the hinges and their subsequent misalignment is the result of the
fiber connectivity term.

Two aspects emerge from the observation of Figures 10511

and 11. In both tests, for reasons of symmetry, the cen-512

tral hinge is not sheared at all (and for the same reasons,513

it is also the hinge that experiences the maximum relative514

rotation between the beams). The displacement jumps cal-515

culated in the bias extension test are in amplitude greater516

than those of the compression test, even if the absolute517

range of deformation is the same for both tests. The sec-518

ond observation is a direct consequence of the fact that the519

energy term associated with the fiber connectivity is not520

quadratic but consists of quadratic and cubic terms. In the521

next section, this asymmetry is experimentally probed.522
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Figure 11: Bias compression test: computed deformed shapes of
the cells. The red and blue points, which are superimposed in the
undeformed configuration, represent the two ends of the hinges and
their subsequent misalignment is the result of the fiber connectivity
term.

In Figure 12, for the last deformation step of the bias523

extension test, the displacement jumps are highlighted by524

adding yellow arrows. These arrows have the advantage525

of indicating not only the amplitude of the displacement526

jump, but also its direction. A careful observation of these527

arrows shows that some displacements, which would oth-528

erwise appear completely horizontal, have a vertical com-529

ponent as well. An analysis of these displacement jumps530

in a more quantitative way is reported in Figures 14-15.531

Figure 12: Numerically computed deformed shape of the panto-
graphic cells for the last extension step. The direction of the relative
displacement between the beams of the two families is depicted by
yellow arrow. In (a) and (b) the extremes of the figure are magnified
for showing the antisymmetry of the arrows.

For the hinges labelled in Figure 13, displacement532

jumps are plotted in components for the bias extension533

test in Figure 14 and for the compression test in Figure 15.534

Figure 13: Location of the 7 hinges where the relative displacement
has been computed for a comparison with the measured values ob-
tained via DIC.

In Figures 14-15 the displacement jumps at the hinges535

as labelled in Figure 13 are plotted for the two numeri-536

cal simulations (respectively, bias extension and compres-537

sion). These plots show that there is a certain symmetry538

in the microshear deformation of the hinges. Observing539

Figures 14-15, in both tests the hinges behave similarly.540

Specifically, the hinges labelled 2, 3, 5 and 6 mainly expe-541

rience horizontal displacement jumps, while hinges 1 and542

7 are sheared along the y (vertical) direction. Last, for543

symmetry reasons, the central hinge, labelled 4 does not544

undergo any displacement jump.545

Figure 14: Predicted history of displacement jump for the 7 labelled
pivots in the horizontal (up) and vertical (down) directions for the
bias extension.
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Figure 15: History of displacement jump for the 7 labelled pivots in
the horizontal (up) and vertical (down) directions for the compres-
sion test numerical simulation.

A further study could investigate the distribution of546

the displacement jumps for pantographic structures with547

more cells. A deeper analysis should be dedicated to the548

study of these jumps in multi-layered pantographic struc-549

tures (which until now have been considered only for their550

performing properties in three-point bending tests [29]).551

Before presenting the results obtained by DIC, we want552

to remark that the discrepancies that will be observed be-553

tween the Figs. 14-15 and the Figs. 16-17 can be at-554

tributed to many simplifications assumed in the present555

study, as, for example, the fact that both in the numerical556

model and in the DIC analysis are not taken into account557

out-of-plane deformations, which can clearly influence the558

shear of the hinges. Out-of-plane deformations are non559

prevalent in the presented experimental tests. This, of560

course, does not avoid that such deformations can occur561

and, indeed, can be observed in some tests, expressly de-562

signed for the study of such a phenomenon. However,563

we have to consider some aspects: out-of-plain deforma-564

tion and buckling are phenomena that can be studied by565

means of stability criteria of a structure. In the case of566

the tests presented here, an out-of-plain deformation may567

occur during the compression test. The main deformation568

mechanisms involved in the compression test are those re-569

lated to fibre bending and pivot torsion and shear. In par-570

ticular, it has been observed by some co-authors of this571

work (in a paper that is currently being written) that the572

torsional stiffness of the pivots greatly influences the pres-573

ence or absence of out-of-plane deformation.574

4. Digital Image Correlation analyses575

In the previous section, the acquired pictures were used576

for qualitative comparisons between the deformed shapes577

observed experimentally and predicted numerically with578

the calibrated model (Figures 7-9). These images can also579

be used to measure displacement fields via Digital Image580

Correlation [28]. Of the various approaches applied to the581

bias extension test [19], microscale analyses were run in582

which each beam was meshed and backtracked to fit the583

reference configuration of each test. Since displacement584

jumps were sought, no constraints (e.g. via Lagrange mul-585

tipliers) were applied to the displacement of the connect-586

ing ends of each hinge. These kinematic hypotheses led to587

the lowest registration residuals and thus were deemed the588

closer to the experiment [19].589

Figure 16 shows the displacement jumps for the bias590

extension test. For the longitudinal component (Fig-591

ure 16(a)), the overall trends are identical to those ob-592

tained by numerical simulation (Figure 14), namely, the593

two lower hinges (3 and 6) experience positive jumps, the594

two upper hinges (2 and 5) undergo negative displacement595

jumps, the two extreme hinges (1 and 7) have virtually no596

displacement jumps. Conversely, the middle hinge experi-597

ences some negative displacement jump in both directions,598

which was not expected from the numerical simulation.599

This observation shows that the response of the panto-600

graphic cells did not possess all the symmetries found in601

the simulation. This is due to imperfections induced by602

the printing process of such small structures, and align-603

ment of the sample in the testing machine. This trend is604

further confirmed when comparing the vertical component605

of the displacement jumps (Figures 14 and 16(b)).606
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(a)

(b)

Figure 16: DIC analyses at the microscale of the bias extension test.
History of displacement jumps in the horizontal (a) and vertical (b)
directions. The inset shows the location and labels of the 7 hinges.

Let us also note that on a more quantitative way the607

experimental amplitudes are lower than the predicted lev-608

els. This fact can be explained by considering that (i) at609

the current state of research the fiber connectivity stiff-610

ness Kc and the constant k3 were calibrated together with611

Kp and the parameter β for obtaining the best fit of the612

experimental force-displacement curve. The predicted de-613

formed shapes were consistent with experimental pictures.614

(ii) DIC analyses were performed on 2D pictures of exper-615

imental tests that were not totally in-plane. (iii) Last, the616

experimental conditions (e.g. 3D printed specimen with617

imperfections, clamping) are different from the ideal ones,618

which were assumed in the numerical simulations.619

Figure 17 shows the displacement jumps for the bias620

compression test. For the vertical component (Fig-621

ure 17(b)), the general trends are close to those obtained622

by numerical simulation (Figure 15). However, the lev-623

els are higher and nonlinearities are observed for the two624

extreme hinges (1 and 7). For the horizontal component625

of the displacement jumps (Figures 14 and 16(a)), the or-626

der of magnitude is closer even though more complex re-627

sponses are observed in comparison with the simulations.628

It is believed that such differences point toward imperfec-629

tions that induce 3D effects that were not accounted for630

in the 2D numerical simulations.631

(a)

(b)

Figure 17: DIC analyses at the microscale of the bias compression
test. The location and labels of the 7 hinges are identical to those of
Figure 16. History of displacement jumps in the horizontal (a) and
vertical (b) directions.

5. Conclusion632

A model of a pantographic structure composed of non-633

linear Euler-Bernoulli beams has been considered in this634

study. In this study the focus is on the mechanical be-635

havior of hinges, which play a dramatically important role636

in the mechanics of pantographic structures. For this rea-637

son, we have chosen to study a structure consisting of only638

three cells, which makes it easier to focus on the hinges.639

As pointed out in the text, there is an asymmetry between640
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the extension and compression tests. This asymmetry is641

related to the shear deformation of the pivots, which de-642

form differently and not symmetrically in the two tests:643

this result would be difficult to detect in the case of struc-644

tures with many beams and many pivots. In the present645

paper, a more in-depth study of the deformation mecha-646

nisms of pivots is presented. The energy term denoted as647

fibre-connectivity was in fact only mentioned in previous648

works. Analyses conducted with the Digital Image Corre-649

lation technique allowed us to detect, in a qualitative way650

at the current state of research, many details of the pivot651

deformations, thus providing an indication of the way for-652

ward in the modeling process.653

The effect of hinge deformation on the mechanical re-654

sponse of pantographic cells was studied herein. As said,655

the model adopted for the analysis of such system was656

based on the use of nonlinear Euler–Bernoulli beams. A657

very important role is assumed by the shear deformation658

of individual hinges. From a macroscopic point of view,659

that deformation corresponds to relative motions between660

the beams of the two families that constitute the metama-661

terial. From a numerical point of view, the simulation of662

bias extension and compression tests would be symmetric663

in the absence of fiber connectivity deformation. However,664

this symmetry is lost thanks to fiber connectivity. From665

a purely experimental point of view, it was observed that666

the reaction forces measured in both the tests are not anti-667

symmetric but almost 5 times higher in magnitude in the668

bias extension test than in compression.669

The model developed herein was calibrated with a670

unique set of parameters that could accurately describe671

the macroscopic load/displacement response of the stud-672

ied cells. Further, the deformed shapes were in qualitative673

agreement with the experimental observations. Since im-674

ages were acquired during the experiments studied herein,675

displacements could be measured via DIC. In the present676

case, relative motions at hinge ends could be measured677

thanks to a specially designed kinematic basis [19], which678

led to very low registration residuals. Displacement jumps679

could be measured and quantified for both tests. Some of680

the general trends predicted by the calibrated model were681

confirmed by the DIC measurements. Conversely, loss of682

symmetries points toward printing and experimental im-683

perfections of such centimetric objects.684

The results obtained in this work deserve to be further685

investigated by means of other numerical tools. In par-686

ticular, the calibration of the model parameters may be687

performed at the hinge scale when based upon the kine-688

matic measurements reported herein. This new route may689

lead to a better description of the hinge response that was690

not used for the calibration performed herein. One ques-691

tion that will then arise is whether all the hinges have the692

same overall response given the printing imperfections. We693

recall that a model similar to the one developed in [2] and694

developed here was proposed in [6]. Suitable numerical695

algorithms, already available in the literature [7–9, 18],696

can be implemented for the detailed analysis of problems697

similar to the one we discussed.698

As shown in Ref. [26], fiber connectivity induces failure699

modes that were not previously observed in pantographic700

structures. This observation and, in general, the study701

of damage in pantographic structures have motivated a702

recent study on the optimization of such structures [13].703

Various studies on damage in materials described by gen-704

eralized models may be useful to refine the approach to705

damage in the specific case of pantographic structures.706

Some results available in the literature can be found in707

[23].708
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