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Abstract—Graph-based transforms are powerful tools for sig-
nal representation and energy compaction. However, their use
for high dimensional signals such as light fields poses obvious
problems of complexity. To overcome this difficulty, one can
consider local graph transforms defined on supports of limited
dimension, which may however not allow us to fully exploit
long-term signal correlation. In this paper, we present methods
to optimize local graph supports in a rate distortion sense for
efficient light field compression. A large graph support can be
well adapted for compression efficiency, however at the expense of
high complexity. In this case, we use graph reduction techniques
to make the graph transform feasible. We also consider spectral
clustering to reduce the dimension of the graph supports while
controlling both rate and complexity. We derive the distortion and
rate models which are then used to guide the graph optimization.
We describe a complete light field coding scheme based on
the proposed graph optimization tools. Experimental results
show rate-distortion performance gains compared to the use
of fixed graph support. The method also provides competitive
results when compared against HEVC-based and the JPEG Pleno
light field coding schemes. We also assess the method against
a homography-based low rank approximation and a Fourier
disparity layer based coding method.

Index Terms—Light fields, compression, graph transforms,
super-rays, graph reduction, graph partitioning

I. INTRODUCTION

Light Fields represent light rays emitted by every point
in a scene and along different orientations [1]–[3]. They
constitute very large volumes of high-dimensional data that
contains redundant information in both the spatial and angular
dimensions, hence the need to design efficient compression
schemes. The gain in popularity of light fields for a variety
of applications has given an impulse to research in light field
compression. An overview of recent work can be found in [4].

The correlation or redundancy within a light field follows
structures that depend on scene geometry, and therefore may
not be regular. Graphs and graph-based transforms are natural
tools for processing the signal along irregular structures. In
[5] and [6], we have shown that non separable and separable
spatio-angular graph-based transforms could allow efficient
energy compaction of light fields, and eventually high com-
pression efficiency. More precisely, in [5] and [6], we construct
local graphs on individual 4D super-rays with a fixed size
that are therefore used as transform supports, instead of
traditional blocks in Standard coders. The concept of super-
ray has been introduced in [7] as an extension to light fields
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of the concept of super-pixels. Super-rays group perceptually
similar and corresponding pixels within and across several
views, i.e. corresponding to the same set of 3D points of the
imaged scene. The color signal lying on these local graphs
is compacted into few coefficients by using a Graph Fourier
transform. As per their construction, the graph supports may
not be fully adapted to the content of the scene and do
not guarantee an optimal rate-distortion performance. More
precisely, in uniform regions, shrinking the support of the
graph may reduce the capability of the transform to de-
correlate the signal hence to compact the signal energy. On
the other hand, some graph supports may be too large if they
group signals with different statistical properties for example
in textured or heterogeneous regions.

In this paper, we investigate methods to optimize the graph
supports in a rate-distortion sense. This allows us to adjust
the super-ray size to the scene content in a way that the
computational complexity of the graph transform remains
tractable. This complexity is directly related to the number
of vertices in the graph. To well capture light field spatial
and angular correlation, the 4D super-ray may need to be of
large dimension. In that case, to keep the transform complexity
tractable, we reduce the graph dimension, i.e. the number of
vertices, without altering its basic properties, by using graph
coarsening and reduction techniques [8]. The signal can also
be reduced to lie on the corresponding smaller subspace. The
graph dimensionality reduction is performed in order to have
a number of vertices below a number corresponding to an
acceptable complexity. However, if the signal approximation
on the reduced graph gives a too coarse approximation of the
input signal (i.e. corresponding to a distortion higher than
a fixed amount), then the graph on the input super-ray is
not reduced. In this case, its support, i.e. the underlying 4D
super-ray, is partitioned into two sub-graphs using spectral
clustering. Furthermore, a super-ray having already an ac-
ceptable number of vertices can be considered as too large
when two regions with different statistical properties are coded
together. This leads to a drop in performance. In this case,
the underlying 4D super-ray, is also partitioned into two sub-
graphs using spectral clustering.

We derive the distortion and rate models to guide these
different graph reduction and partitioning steps, so that the
resulting partition and graphs lead to the best rate-distortion
performance for a given target complexity. We have assessed
the rate-distortion gain obtained with the proposed algorithm
in a complete light field coding scheme, in comparison with
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standard non separable spatio-angular graph transforms in [5],
and in comparison with several reference methods (HEVC-
based coding [9] [10], JPEG-Pleno VM 1.1 and 2.1 (using both
the WaSP and MuLE configurations) [11] [12], Homography
low rank approximation (HLRA) in [13], Fourier disparity
layers [14], the disparity prediction based codec of [15] and the
translation assisted coder in [16]). Experimental results show
substantial gains in rate distortion performance especially at
low bitrate.

In summary, our contributions are as follows:
• We propose models to estimate the distortion of the

reconstructed signals in a super-ray and the rate needed
to code the graph supports and the transform coefficients.
These models guide the reduction and partitioning steps.

• We develop a Rate-Distortion optimization method to
find optimal graph supports using graph reduction and
partitioning to cope with the computational complexity
of the graph Fourier transform.

• We propose a full coding scheme that outperforms the
previously proposed schemes based on graph spectral
light field coding, and that also has competitive results
compared to state of the art light field coders.

The rest of the paper is organized as follows. After a
brief overview of state of the art light field compression
methods and graph transforms in Section II, we introduce
the graph coarsening and partitioning methods in Section IV.
Section IV also presents the distortion and rate models that
we derived for performing the rate-distortion optimization. We
then describe the complete light field coding scheme in Section
V. Experimental results are presented and discussed in Section
VI.

II. RELATED WORK

A. Light field Compression

Research in light field compression has been very active
in the past decade, with a variety of solutions which can be
broadly classified into the following categories: the solutions
that directly encode the lenslet images and those which first
extract views from the raw data, after de-vignetting and
demosaicing, and then encode the views by exploiting the
spatio-angular correlation. A good overview can be found in
[4]. Most of the solutions in the first category aim at adding
extra prediction modes in existing standards to capture the
spatio-angular correlation. This is for example the case in
[17]–[22] where the authors use block-based self-similarity
techniques, or macro-pixel directional prediction modes as in
[23], as additional HEVC Intra prediction modes. Scalable
extensions of HEVC have also been considered, e.g., as in
[24] where a sparse set of micro-lens images is encoded in a
base layer. The other micro-lens images are reconstructed at
the decoder using disparity-based interpolation and inpainting.
The reconstructed images are then used to predict the entire
lenslet image and a prediction residue is transmitted yielding
a multi-layer scheme. While the above solutions mostly rely
on the HEVC standard, Chao et al. [25] instead apply a graph
lifting transform on irregularly spaced color components of
pixel in the raw data without demosaicing.

Our proposed approach falls in the second category of
methods which compress views extracted from the raw light
field data. Solutions encoding the set of views as a pseudo
video sequence using standard inter-coding methods have first
been investigated, e.g. using HEVC in [9], [26], the latest JEM
coder [27], or multi-view HEVC based coding [28], [29] in
a single layer, or following a hierarchical approach [30], [31]
first coding a subset of views in a base layer using HEVC,
which are then used to predict views in an enhancement layer.

While the above techniques significantly rely on block-
based prediction mechanisms of standardized solution, meth-
ods departing from classical Inter-coding tools have also
been proposed, as in [32] where the author exploits inter-
view correlation by using homography and 2D warping to
predict views, or as in [31] where the authors use a linear
approximation computed with Matching Pursuit for disparity
based view prediction. View synthesis techniques have also
been considered in [31], [33], [34] for reconstructing the entire
light field from a sparse set of views, using either depth
image-based rendering techniques [34], [35], convolutional
neural networks [33], or linear approximation computed with
Matching Pursuit for disparity based view prediction [31]. The
synthesized set of views are then used as predictors of the
original light field views. An approach based on view synthesis
has also been adopted in the context of JPEG Pleno [11].

Another direction of research for exploiting spatio-angular
correlation has been in the design of sparse coding and trans-
form methods, e.g. with learned dictionaries as in [36] or ex-
ploiting signal priors as sparsity in the 4D Fourier domain [37],
[38], or sparsity in the shearlet transform domain [39]. Various
models and transforms have also been proposed for light field
de-correlation and compression. A global homography-based
low rank approximation approach is introduced in [13] while,
in [40], the authors describe a framework referred to as Steered
Mixture-of-Experts (SMoE) where high-dimensional kernels
are used to sparsely represent the plenoptic function. Local
transforms applied either on 4D blocks using 4D-DCT [41],
or graph-based transforms defined locally on super-rays in [42]
have also been explored for light field compression.

B. Simplifying graph structures : sparsification and reduction
As graphs may grow in size, it becomes important to

look for comprehensive ways of simplifying their structures
while preserving some key properties. We can simplify the
graphs by reducing the number of edges, also known as
graph sparsification ([43]–[46]). As such, sparsification can
yield computational benefits in particular whenever the number
of edges is the main bottleneck, mainly relevant for ma-
chine learning techniques concerning graph-structured data.
Alternatively, we may seek to reduce directly the number of
vertices in the graph, by some form of vertex selection or
re-combination scheme followed by re-wiring. This is known
as graph reduction and form a key element in modern graph
signal processing pipelines, especially with regards to graph
partitioning ([47]–[49]). In machine learning, graph reduction
is used to create multi-scale representations of graph signals
([50]–[52]), and as a layer in graph convolutional neural net-
works ([53]–[55]). Main benefits of graph reduction techniques
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Fig. 1: Proposed light field coding scheme. The proposed algorithms in section IV-D for rate-distortion optimization of the Graph Transform
supports correspond to the pipeline steps shown in the yellow box.

reside in their ability to deal with sparse graphs (N nodes with
at most Nlog(N) edges), as well as accelerating the graph
based algorithms whose complexity is mainly dependent of
the number of nodes and edges in the graph, such as the graph
Fourier transform.

In this paper, in order to reduce the complexity of geometry-
aware non separable graph transforms in the 4D light field
data, we propose to simplify the graphs. We rely on a specific
kind of reduction, i.e. graph coarsening where at each level,
reduced vertices are formed by contracting disjoint sets of
connected nodes. We use the recently proposed method [8]
based on local variation algorithms in order to approximate
the original large graphs by a coarser graph at the expense of
a restricted spectral approximation - an important property for
compression.

C. Graph Fourier Transform

Consider a graph G = {V, E} and a signal x residing on
this graph. Given an adjacency matrix A where Ai,j = 1 if
vi and vj are connected with an edge and 0 otherwise, we
define a diagonal degree matrix D, where di,i =

∑
j Ai,j .

The combinatorial graph Laplacian matrix L is L = D−A
[56]. Because L is symmetric positive semi-definite, it can be
eigen-decomposed into:

L = UΛUT (1)

where Λ is a diagonal matrix containing real positive eigenval-
ues λk along the diagonal, and U is composed of orthogonal
eigenvectors ul as columns. Eigenvalues λl can be inter-
preted as graph frequencies, and eigenvectors U interpreted as
corresponding graph frequency components [56]. The set of
eigenvectors in U form the graph Fourier transform (GFT),
which can be used to decompose a graph-signal x residing
on G into its frequency components via α = UTx, similar
to known discrete transforms such as DCT. The benefit of
such representation and transform is that it can be applied on
irregular domains, and thus on more flexible supports that are
shape-adaptive.

A signal x is considered to be smooth on a graph if strongly
connected vertices have similar signal values. This is usually
quantified in terms of the Laplacian quadratic form (the total
variation):

S(x) = x>Lx (2)

In general, graph based coding methods as in [42] make
use of the graph Fourier transforms to capture the main
characteristics of the signals. The coefficients are thus encoded
instead of the original signals. The smoother the signal is on a
graph, the more its energy is concentrated in low frequencies,
and the more it is easily compressible.

III. NOTATIONS AND SCHEME OVERVIEW

Let L(u, τ, x, y) be a light ray of the light field L, and
(u, τ, x, y) its coordinates using the two plane parametrization,
where (u, τ) and (x, y) are the angular (view) and spatial
(pixel) coordinates respectively. A super-pixel SPi denotes
a group of rays within the same view (ui, τi) and a super-ray
SR extends that concept by grouping super-pixels across all
views of the light field [7].

In the proposed coding scheme depicted in Figure 1, each
super-ray is the support of a graph-based transform and is
optimized in a rate-distortion sense in order to have a support
that best captures spatio-angular correlation while keeping
the graph transform computation tractable. First, the initial
segmentation map of the Light field top-left view is com-
puted with the well known SLIC algorithm [57]. We then
estimate the disparity maps of all views with the method
proposed in [58]. These maps are used in the proposed RD-
optimized graph partitioning to segment the top-left view. The
resulting segmentation map is coded along with the assigned
disparity values per super-ray as additional side information.
Non separable graph Fourier transforms are then applied
separately on graph signals obtained after graph reduction or
after partitioning. Transform coefficients are then quantized,
encoded with arithmetic coding and sent to the decoder.

The decoder, having received the optimized segmentation
of the top-left view, along with the necessary disparity infor-
mation, is able to construct the 4D super-rays of the light
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field i.e. the graph supports (with or without reduction).
With the retrieval of the graphs and the quantized transform
coefficients, the inverse quantization, graph lifting (if reduction
was applied) and inverse graph Fourier transform are applied
to recover the 4D light field.

In the next section, we describe the proposed R-D optimized
graph coarsening and partitioning method, and in Section V we
explain in detail the coding components of the entire scheme.

IV. R-D OPTIMIZED GRAPH COARSENING AND
PARTITIONING

A. Problem formulation

In order to efficiently capture spatial and angular corre-
lations in the 4D light field, we want to find local graphs
{Gk} on individual 4 dimensional super-rays {SRk} relying
on the geometrical information. Those graphs are further used
as transform graph supports, instead of traditional blocks in
standard coders. The color signals {xk} residing on those
graphs are transformed with the Graph Fourier Transform
as detailed above. The complexity of the graph transform
can be limited by restricting the size of the graph. However,
limiting the graph size prevents us from capturing long term
signal dependencies of the signal hence from compacting the
signal energy. On the other hand, increasing the dimension
of the graph enables us to capture long term dependencies
but at the expense of a high graph transform complexity. In
addition, if the graph is too large, it may group regions of
the image with different statistical characteristics, leading to a
low energy compaction of the graph Fourier transform. In that
case, smaller super-rays that adhere well to object boundaries
should be favored.

In this work, we aim at finding optimized local graph
supports in a rate-distortion sense with a constraint on the
graph transform complexity i.e. the maximum number of nodes
in the local graphs, which limits the resolution of the visual
signals that can be supported. First, we want the graph supports
to group pixels both in spatial and angular domain in order
to capture correlations in the 4 dimensions of the light field.
We also want to have larger graphs in uniform regions to
capture long term signal dependencies and smaller graphs
in non uniform regions. In order to define those graphs, we
are equipped with two graph dimensionality reduction tools
namely graph coarsening and graph partitioning.

We therefore aim to split the global graph of a light field
into several smaller sub-graphs {G1,G2, . . .GM} with their
respective signals {x1,x2, . . .xM} which can successfully
represent the 4D Light field while respecting the constraint
defined above. Each graph is Gi = {Vi, Ei,Ai} where Vi are
the vertices in the graph, with |Vi| < Nmax, Ei are their edges,
and Ai is the adjacency matrix. xi is the signal defined on
the ith graph. The signals on each of those graphs can be
independently processed, and transformed separately using the
graph Fourier transform defined above. Our problem can be

formulated as the following rate-distortion minimization:

min
G̃={Gi}

RC(G̃) +RB(G̃)

subject to D(Gi) < Dmax∀i
Ni < Nmax∀i

(3)

G̃ = {Gi} represents the set of local graphs capturing
local color information and the color variation inside the 4D
light field. D(Gi) is the distortion between the original signal
and the reconstructed one on the ith graph, RC(G̃) is the
rate cost of the quantized transform coefficients sent to the
decoder side, and RB(G̃) is the rate cost of the boundaries
for the graph partitioning description. Each of these terms
possibly depend on the chosen partition of the graph and
of the coding scheme envisioned. We propose one way of
solving (3) where we initialize the optimization process with
very large graph supports and then reduce them: either lower
the complexity with graph coarsening when the signal is
sufficiently smooth or reduce the graph dimension by splitting,
when the content is either textured or heterogeneous. For both
graph coarsening and splitting, we derive the distortion and
rate models in order to guide the steps in a full R-D optimized
graph partitioning algorithm for coding light fields. The two
methods, i.e., the graph coarsening and the graph partitioning
into smaller sub-graphs are illustrated in the upper and lower
branches respectively of Figure (2) for a given super-ray.

B. Graph reduction by coarsening

On way to reduce the dimension of a local graph G, i.e.
reducing the number of nodes, is to find a coarse graph
that approximates it. Basically, having an initial graph G0 =
{V, E ,L0} and a signal x0 = x, in a typical reduction scheme,
we proceed to the following recursive equations as detailed in
[8]:

L` = P∓` L`−1P
+
` x` = P`x`−1 (4)

where P` ∈ RN`×N`−1 are matrices with more columns than
rows, and ` is the level of reduction. Symbols + and ∓
denote the pseudo-inverse and the transpose pseudo-inverse
respectively. The reduced signal xc can be lifted back to RN
by recursion x̃`−1 = P+

` x̃` with x̃c = xc. We can express the
reduced quantities (the signal and the Laplacian), in a more
compact form as:

xc = Px

Lc = P∓L0P
+

x̃ = Πx,

(5)

with P = Pc...P1, P+ = P+
1 ...P

+
c and Π = P+P and x̃

is the lifted vector. The resulting graph is denoted by Gc =
{Vc, Ec,Lc}. Even in the general setting, where the reduction
matrix P is arbitrary, we can note two main properties. The
first is that Lc is also positive semi-definite after reduction.
Moreover, for every vector in x ∈ im(Π), we have x>Lx =
xcLcxc.

Coarsening is a special case of graph reduction abiding
to a set of constraints that render the graph transformation
explainable. At each coarsening level, contraction sets are
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Fig. 2: Illustration for one super-ray of the graph dimensionality reduction methods, i.e., graph coarsening and graph partitioning, used in
our Rate-Distortion optimization.

formed from the vertices. As such, every reduced variable at
level (l) corresponds to a small set of adjacent vertices in the
graph of level (l − 1) and coarsening amounts to a scaling
operation. The set of adjacent vertices is denoted by V(r)

l−1 and
is called a contraction set to produce one vertex in the reduced
graph denoted by vlr. As each level of reduction, the matrix Pl

is a coarsening matrix if and only if it satisfies the following
two conditions:

1) It is a surjective mapping of the vertex set. In other
words, if Pl(r, i) 6= 0 then Pl(r

′, i) = 0∀r′ 6= r
2) It is locality preserving, equivalently, the sub-graph of
Gl−1 induced by the non-zero entries of Pl(r, :) is
connected for each r.

This method of constructing the matrices Pl has two
interesting properties. First, with the previous definition of the
coarsening matrix, the expensive pseudo-inverse computation
can be substituted by simple transposition and re-scaling. More
precisely, it can be shown that the pseudo-inverse of the matrix
Pl is given by P+

l = P>l D−2 where D is a diagonal matrix
defined as Dr,r = ‖prl ‖2, with prl being the rth row of Pl.
Moreover, if we constrain at each level all non zero entries of
P+
l to be equally valued, then the resulting coarsened matrix

Ll is also a graph laplacian matrix. In the case of laplacian
consistent coarsening as defined before, it has been shown that
for every node vr in the reduced graph Gl and node vi in the
graph at the previous level Gl−1, the matrices Pl ∈ RNl×Nl−1

and P+
l ∈ RNl−1×Nl are defined as:

[Pl](r, i) =

{
1

‖V(r)
l−1‖

if vi ∈ V(r)
l−1

0 otherwise
(6)

[P+
l ](i, r) =

{
1 if vi ∈ V(r)

l−1
0 otherwise

(7)

for all vr in Vl. The resulting laplacian after reduction can
be further used for applying graph transform on the reduced
signals.

The work in [8] shows that a graph can be reduced such
that its fundamental structural properties are preserved namely
its first eigenvectors and eigenvalues. The methods based
on local variation algorithms [8] are tailored to provide the

following restricted spectral approximation guarantee:

Definition 1: restricted spectral approximation guaran-
tee : Let R be a k-dimensional subspace of RN . Matrices Lc
and L are (R, ε)-similar if there exists an ε ≥ 0 such that :

‖x− x̃‖L ≤ ε‖x‖L ∀x ∈ R

where x̃ = P+Px.
(8)

where ‖a‖L = a>La. If we define R to be the space
spanned by the k first eigenvectors of the original laplacian
Uk, then ensuring that ε is the smallest possible implies that
eigenvalues and eigenvectors of the original graph and its
reduced counterpart are aligned. In that way, an appropriately
constructed coarse graph aims to capture the global problem
structure of the original graph, i.e. the low frequencies of
the signals. In our experiments, we modify the multi-level
coarsening algorithm of the paper [8] by setting the threshold
ε′ =∞, aiming at a fixed reduction ratio at each level, instead
of the smallest ε.

1) Distortion estimation: Since the reduction procedure is
independent in each local graph, then the whole distortion is
the sum of the distortions on each of the graphs {Gi}. The
distortion of the lifted signal, w.r.t the original signal on a
graph Gi depends not only on the quality of the coarsen-
ing itself, but also on the signal statistical properties. In a
typical compression scheme, first we would find the reduced
counterpart of the original signal on the coarse graph, apply
a graph transform, then send the transformed coefficients to
the decoder side, with or without quantization. The decoder
having received the transformed coefficients can perform the
inverse graph transform then lift back the recovered reduced
signal to the original space.

Consider one specific graph Gi (i.e. one super-ray in the
light field) with the signal xi (i.e. the luminance values) lying
on its nodes. After reduction, the coarsened signal is xci =
Pxi where c is the last coarsening level. A graph transform
is applied on the reduced signal xci by projecting it on the
eigenvectors of the coarse graph: x̂ci = U>cixci. Once the
transformed coefficients are computed, they will be sent to
the decoder side after quantization. The inverse transform is
applied in the decoder to retrieve x̃ci = Uci

ˆ̂xci where ˆ̂xci
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are the quantized coefficients. Finally, x̃ci is lifted back to the
original space by x̃i = P+x̃ci. The distortion is computed as
the mean squared error between the original signal xi and the
lifted signal x̃i as follows:

D(Gi) =
1

Ni
‖xi − x̃i‖2 =

1

Ni
‖xi −P+Uci

ˆ̂xci‖2 (9)

If no quantization then

ˆ̂xci = x̂ci

= U>cixci

= U>ciPxi

(10)

Incorporating the latter in (9) and since the graph transform
is orthonormal, using only the signal in the spatial domain,
we can compute the exact distortion due to the coarsening
procedure as:

D0(Gi) =
1

Ni
‖xi −P+Pxi‖2 =

1

Ni
‖xi −Πxi‖2 (11)

If quantization, then we have to account for the quantiza-
tion errors.

Dq(Gi) =
1

Ni
‖xi − x̃i‖2

=
1

Ni
‖xi −P+x̃ci‖2

=
1

Ni
‖xi −P+x̃ci + P+xci −P+xci‖2

=
1

Ni
‖xi −P+xci + P+xci −P+x̃ci‖2

=
1

Ni
‖xi −P+Pxi + P+(xci − x̃ci)‖2

(12)

Using the inequalities of Frobenius norms, we get

Dq(Gi) =
1

Ni
‖xi − x̃i‖2

≤
(√

(D0(Gi) +
1√
Ni
‖P+‖‖xci − x̃ci‖

)2
≤
(√
D0(Gi) + ‖P+‖

√
DGci

)2
(13)

It is thus clear that the upper bound of the distortion is
related to both the error due to the coarsening and lifting
procedure and also to the quantization that altered the reduced
signal. If we consider high bitrate compression and a uniform
quantization with step size q, DGci can be approximated by
q2

12 , independent of the coarsening procedure.
2) Rate approximation: As per its construction, the matrix

P, is equivalent to an orthogonal projection when applied to
the signal x. Also, when the distortion on the lifted signal
x̃ = P+Px is restricted to be lower than a certain threshold
τ , then we are sure that ε in Equation (8) is also small. This
induces that:

x>c Lcxc ≈ x>Lx (14)

Moreover, the number of coefficients that we will be sending
to represent the reduced signals is much lower than the initial
number of coefficients on the original high dimensional graph.
We can thus assume that the bitrate needed to send reduced
signals is lower than the bitrate needed to code the original
signals when the distortion on the lifted signals is constrained.

C. Graph spectral clustering

When the reduction is not feasible on the graph without
degrading the quality of the signal to below a specified
distortion Dmax, we propose to use a second method to reduce
the dimension of our graphs: the graph spectral clustering. In
this case, the nodes in the graph are divided into two sets, and
new local graphs are constructed between them as shown in
figure 3.

In order to find the optimal clustering into two sets VA and
VB , we rely on the normalized cut algorithm, which is known
for favoring the smoothness inside partitions. More precisely,
in the specific super-ray SRk, we first extract the spatial
graph from the top left view. We create a new spatial graph
keeping the same connectivity but with weights depending on
the euclidean distances in the Y space (i.e. the luminance
space) and in the disparity domains relying on the original
light field color and disparity information. We define weights
as

wi,j =

{
exp

(
− δ2Y (i,j)

σ(δY )

)
exp

(
− δ2d(i,j)

σ(δd)

)
if ai,j 6= 0

0 otherwise.
(15)

where ai,j is the connectivity between the vertices i and j,
σ(δY ) and σ(δd) are the standard deviations of the euclidean
distance in the color and disparity domains respectively. The
disparity information is here to guide the steps along with
the color information, so that any two objects having the
same color but different disparities in the scene can be well
segmented, and so that trivial solutions are avoided. Note that
this graph is only used for the normalized cut algorithm, and is
thus not transmitted nor used for the graph Fourier transforms.
At the output of the normalized cut procedure, we have the
coloring of the nodes into two sets in the top-left view: V1

A

and V1
B . Using the partial coloring of the vertices on this view,

the nodes V in the original local graph G can be divided into
two sets VA and VB , as follow.

We first compute a mask to define where the initial super-
ray existed in the original segmentation. The median disparity
values per set of nodes dA and dB are assigned to all the
vertices in V1

A and V1
B respectively. We project the labels from

the first view to the other views using the disparity assigned
for each node by filling only the pixels where the mask is
true. More precisely, the algorithm proceeds row by row. In
the first row of views, we perform horizontal projections from
the top-left to the other views next to it. For each other row
of views, a vertical projection is first carried out from the
top view then horizontal projections to the other views are
performed. The pixels that end up outside the initial super-ray
are discarded. The occluded pixels are assigned the label of the
neighboring super-ray corresponding to the foreground objects
(i.e. having the higher disparity). As for appearing pixels (the
remaining blanks), they will be clustered with the neighboring
background super-ray (i.e. having the lower disparity).

Once the vertices are assigned to two different sets VA and
VB , we reconstruct local graphs connecting the nodes in both
the spatial and angular domains of the light field. As such,
instead of having a graph G, we end up with two smaller
graphs GA and GB .
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Fig. 3: Toy example of graph partitioning on a small super-ray defined on 4 light field views.

1) Distortion estimation: For a specific graph, since the
graph Fourier transform is an orthonormal transform, the
distortion is equivalent to :

D(Gi) = ‖xi − x̃i‖2 = ‖x̂i − x̂iq‖2 (16)

where xi and x̃i are the original signal and the decoded
signal respectively, x̂i and x̂iq are the original and quantized
signal graph Fourier coefficients. If we consider a uniform
scalar quantizer with small quantization step sizes q for all
coefficients, then

D(Gi) = q2
Ni
12

(17)

with Ni being the number of nodes in the graph Gi. The
distortion is thus independent of the fact that the graph is
partitioned or not into two sets, since at the end, the number
of nodes is the same. The problem in Equation (3) is reduced
to minimizing the rate terms with only one constraint: the
maximum number of nodes.

2) Rate of the transform coefficients: We can evaluate
the rate of the graph Fourier coefficients RC(Gi) in the
ith local graph using a modified normalized version of the
approximation in [59] based on the total variation of the signal
on a graph:

RC(Gi) = Snorm(xi) =
x>i L̃ixi∑

d̃i

=
x>i (Li + γu0u

>
0 )xi∑

d̃i

=

∑
l λlx̂

2
i,l + γx̂2i,0∑
l λl + γ

(18)

The altered version of the laplacian i.e L̃i is used in order
to take into account the DC term. u0 is the first eigenvector
of the Laplacian Li equally valued on all the nodes with 1√

Ni
.

λl and x̂i,l are the eigenvalues of the original laplacian and
the transformed Fourier coefficients of the signal xi. Hence
the aforementioned approximation is an eigenvalue weighted
mean of the of sum of squared transform coefficients which
depends on both the underlying graph Gi and the statistical
properties of the signal xi residing on its vertices. Such proxy
assumes that the bitrate of the transform coefficients increases
when the normalized smoothness of the signal on the graph
decreases and when the DC coefficients are smaller. This
approximation relates also to the energy compaction property
of an orthornomal transform, where we aim at having most
of the energy compacted in the low frequency coefficients.
The less Snorm is, the higher the energy is compacted in the

coefficients corresponding to the smallest eigenvalues i.e the
low frequencies of the graph Fourier transform.

3) Rate of the graph description: When we partition a
graph, then we have to send the information that describes this
partitioning to the decoder side. In our method, we impose that
each partition forms a connected component of the original
graph. Thus a common way to code the coloring of the
vertices (the cluster’s membership) is to code the boundary
between the partition. In order to approximate the coding rate
of the boundary ζ between two partitions A and B, we use 8-
directional differential freeman chaincodes [60] and estimate
the coding rate of this boundary as the entropy computed as
follows:

Cζ(A,B) = −#l

8∑
k=1

pklog2(pk), (19)

where #l is the number of chaincodes of the boundary ζ and
{pk} are the probabilities of each of the 8 directions.

4) Prediction of the cut decision: For a given target
distortion and a given super-ray SR with graph G where
N < Nmax, the rate performance of the compression scheme
depends on a key parameter: the decision to partition the graph
or not. To automatically predict the cut decision, we train a
model represented by a function f of a set of input features:

Decision(SR) = f(SR features, target distortion). (20)

To generate training data labels, we compute several super-
rays with different resolutions on different datasets. We then
compute the entropy of the graph transform coefficients HqB
on each of them with different quantization step sizes (as such
we can vary the distortion). Afterwards, we apply spectral
clustering on each and extract the two partitions. We apply
graph Fourier transforms on the resulting partitions and also
compute the entropy of the transform coefficientsHqA andHqB .
We find the rate of the boundary between them as already
detailed (in IV-C3). In fact, splitting a graph into two implies
removing the connections on the borderline between them,
hence adding a boundary. In order to have the best RD trade-
off in a super-ray, at each iteration, we should partition if and
only if this brings a decrease in the criterion in (3). In other
words, the difference in bitrate can be found as:

∆R(G) = NHq0 − (NAHqA +NBHqB + Cζ(A,B)) (21)

Then, the labels can be extracted by taking the best decision
(cut or not) corresponding to the lowest rate needed for coding
as follows:

Decision(G) =

{
1 if ∆R(G) ≥ 0
0 otherwise. (22)
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Feature space: The decision prediction is regarded as a
classification problem with the following input features:
• An indicator of the statistical properties of the signal xi

on the initial graph Gi in the super-ray SRi without
partitioning: the normalized modified total variation as
defined in Equation (18) of the signal xi on the graph
Gi = (Vi, Ei,Li).

• An indicator of the statistical properties of the signal
xi in the super-ray after partitioning: the normalized
modified total variation of xi on a modified graph Gcuti =
(Vi, Ei,Lcuti ), where we reduce the weights on the edges
between the two clusters i.e partitions retrieved after
applying spectral clustering.

• An indicator for the boundary rate: Cζ(A,B) as defined
in Equation (19).

• The quantization step size corresponding to a target
distortion.

Support Vector Machine: The model input features are all
discrete variables. SVM are known to be robust for learning
classification with discrete variables. We then chose it for
learning our classifier. The defined above have been pre-
processed with a whitening procedure to remove noise. A
standard scaler has been applied to whiten each of the features,
and has been saved for testing time.

D. RD optimization algorithm

Having set all the approximations detailed in the previous
sections, finding the solution of the problem in Equation (3)
is in general a combinatorial task, so we will solve it using
traditional agglomerative approximations.

In order to initialize the graph supports and signals prior
to the optimization procedure, we rely on a partitioning of
the entire 4D light field into geometry-aware super-rays as
already explained in [5]. We compute super-pixels in the top-
left view using the well-known SLIC algorithm that consists
of a k-means clustering, taking into account depth, spatial
neighborhood and color information. Then, using the estimated
disparity map, we project the segmentation labels to all the
other views. Namely, having a segmentation map in the top
left view and the corresponding disparity map, we compute
the median disparity per super-pixel, and use it to project the
segmentation mask to the other views.

We build a local graph per super-ray so we can jointly
capture spatial and angular correlations between pixels in the
light field. If we consider the luminance values in the whole
light field and a segmentation map S, the kth super-ray SRk
is represented by a graph signal xk ∈ RNk

defined on an
undirected connected graph G = {V, E} which consists of a
finite set V of vertices corresponding to the pixels at positions
{ul, vl, xl, yl}, l = 1 . . . N such that S(ul, vl, xl, yl) = k. A
set E of edges connect each pixel and its 4-nearest neighbors in
the spatial domain (i.e. in each view), and to its corresponding
pixels, found by disparity based projection (with the disparity
being equal to the median disparity per super-ray), in the 4
nearest neighboring views.

At the output of the initialization, we have a undersegmen-
tation with few super-rays corresponding to β non overlapping

Algorithm 1: Light Field Rate Distortion optimized
reduction and partitioning Algorithm
Data: The set of graphs and signals for all initial

super-rays, the disparity map and labels map of
the light field, the maximum tolerated number
of vertices, maximal distortion:
{Gi = {Vi,Li,xi}},Dref ,Sref ,Nmax,Dmax

Result: Optimized segmentation map (super-rays) and
local graphs: SMopt, {G̃i}

Initialize Sopt and G̃ ← ∅;
foreach Super-ray SRi do
Mi ← [Sref = i];
Siopt, G̃i ← Algo2(Gi,Sref ,Dref , Nmax,Dmax);
Update Sopt and G̃;
Sopt[Mi]← Siopt;
G̃ ← G̃ ∪ G̃i

end

subgraphs of the Light Field {G1,G2, . . . ,Gβ}. We then run the
optimization in a parallel manner on all the local subgraphs.
In this context, we propose a novel method to optimize the
segmentation in a rate-distortion sense using graph reduction
and partitioning on each of the super-rays. The final algorithm
is detailed in Algorithm 1. At the output of this optimization,
we have an approximate solution for the problem in Equation
(3) with γ non overlapping optimized local graphs of the Light
Field {G̃1, G̃2, . . . , G̃γ}.

V. CODING SCHEME

In this section, we detail the main building blocks of the
scheme and describe the different coding components.

A. Coding of the disparity values and the segmentation map

The optimized segmentation map of the reference view
is encoded using the arithmetic edge coder EAC proposed
in [61]. The contours are first represented by differential
chain codes and divided into segments. Then, to efficiently
encode a sequence of symbols in a segment, EAC uses a
linear regression model to estimate probabilities, which are
subsequently used by the arithmetic coder. Disparity values
(one disparity value per super-ray) are encoded using an
arithmetic coder.

B. Coding of transformed coefficients

Even after optimizing the partitions, the energy compaction
is not the same in all super-rays. This can be explained by
the fact, that the segmentation may not well adhere to object
boundaries due to disparity estimation errors, resulting in
high frequencies. Also, the transform coefficients obtained for
reduced signals do not have the same statistical properties as
for the non-reduced signals. In order to optimize the coding
performance, we optimize the quantization steps for each of
the two groups of super-rays: the reduced and partitioned ones
separately. First, for each group, we divide the set of super-
rays into four classes, where each class is defined according
to an energy compaction criterion.
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Algorithm 2: Recursive Super-ray Rate Distortion
optimized reduction and partitioning Algorithm

Data: The graph and signal for a super-ray, the
disparity map and segmentation map of the first
top-left view, the maximum tolerated number of
vertices, the maximum tolerated distortion and
the subspace dimension as in definition 1:
{Gi = {Vi,Li,xi}}, Dref ,Sref ,Nmax,Dmax,k

Result: Optimized super-ray segmentation and local
graphs: Siopt, G̃i

if Ni ≥ Nmax then
Try Graph Coarsening on Gi
{Gc,Lc,P} = Coarsening(Gi, k);

Find distortion D(Gi) as in (11);
if D(Gi) ≤ Dmax then

Siopt ← Siref ;
G̃i ← Gc;
Return Siopt and G̃i;

end
end
{G1i ,G2i } = Spectralclustering(Gi);
Compute the features: Cζ(A,B) (19), RC(Gi),
RC(Gcuti ) (18) and q (17);

Whiten the Features with the standard scaler;
Predict the partitioning decision (yes/no) with SVM
with the previously computed whitened features ;

if (decision = false) & (Ni < Nmax) then
Return Siref and Gi

else
Si1opt, G̃1i ← Algo2(G1i ,Sref ,Dref , Nmax,Dmax);
Si2opt, G̃2i ← Algo2(G2i ,Sref ,Dref , Nmax,Dmax)

end
Siopt ← Si1opt ∪ Si2opt;
G̃i ← (G̃1i ∪ G̃2i );
Return Siopt and G̃i;

Specifically, after applying the graph transforms on all
super-rays, and using the natural scanning order (increasing
order of eigenvalues), we assign a class number to each super-
ray. For a class i, the high frequencies are defined as the last
round(N×(4−i)/4) coefficients where N is the total number
of coefficients. Each super-ray belongs to class i if it does not
belong to class i− 1 and the mean energy per high frequency
coefficient is less than 1. Thus, we first find the super-rays in
the first class then remove them from the search space before
finding the other classes, and similarly for the following steps.
We code a flag with an arithmetic coder to give the information
of the class of super-rays to the decoder side. In class i, the last
round(N × (4− i)/4) coefficients of each super-ray are dis-
carded. The remaining low frequency coefficients are grouped
into 32 uniform groups. We then find optimal quantization step
sizes assuming a uniform quantization per group of coefficients
as explained below. Using the optimized quantization steps,
the coefficients are quantized then arithmetically encoded with
Context Adaptive Binary Arithmetic Coder (CABAC).

1) Finding the optimal quantization step sizes: We choose
a training dataset (in our experiments, we used Fountain-
Vincent2). Then, for each kind of super-rays (original and
reduced), a rate-distortion optimization is performed to retrieve
the optimal quantization step sizes. More precisely, the rate
cost for each group of coefficients quantized with a step size
Q, is approximated by its entropy. The distortion is defined
as the mean squared error between original and quantized
coefficients. By varying the quantization step Q on each
of the 32 groups of coefficients for all super-rays, we can
compute overall rate-distortion costs for all possible cases.
The optimal quantization steps for different output qualities
are then retrieved after finding the convex envelope of all rate-
distortion curves.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental setup

In order to assess the performance of the proposed RD
optimization algorithm, we apply the proposed coding scheme
on real light fields captured by plenoptic cameras from the
EPFL light fields dataset [62] and Inria dataset [63] and on
synthetic light fields from the HCI light field dataset [64].
To avoid the strong vignetting and distortion problems in the
views at the periphery of the light field, we first consider the
9×9 central views. For generalization purposes, we also assess
the performance of our coding scheme on 4 plenoptic images
following the common test conditions defined in [10]: we
coded original 13× 13 views, and computed the YUV-PSNR
as defined in [10]. The full set of real light fields considered
for the experiments is: Friends 1, Vespa, Stone Pillar Inside,
Stone Pillars Outside, Bikes, Fountain Vincent 2 and Danger
de Mort from the dataset in [62] and Toys, Bench and Fruits
from the Inria Light Field dataset [63]. Synthetic light fields
considered for the test are: Greek, Sideboard from the HCI
Light Field dataset. Some of those are shown in Figure 4.

We use the method based on deep learning in [58] to
estimate the disparity of the top-left views. Examples of the
computed disparity maps are shown in the second row of
Figure 4. The segmentation map of the reference view are
computed with SLIC [57] and a sparse set of disparity values
is then computed. The initial segmentation and disparity values
both lead to the initial super-rays, i.e., the initial local graph
supports as described in section IV-D. The number of initial
super-rays are fixed to 500 in the experiments reported in
this paper. Having a smaller number of super-rays implies
a higher super-ray size hence a tremendous increase in the
complexity due to partial eigen-decompositions needed for
graph spectral clustering and coarsening. Experimentally, we
have observed for our datasets that the use of 500 super-rays
offered a good compromise between computational complexity
and compression performance.

As for the maximum number of nodes allowed for the
graph transforms, there is indeed a trade-off between the
specified value of Nmax and the computational complexity
of the proposed approach, but also between Nmax and the
reconstruction quality of the lifted graph signals. Since the
diagonalization of the laplacian has a complexity of O(n3),
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it is important to keep it under a certain limit. Increasing the
maximum number of nodes by m < Nmax leads to a raise in
the computational complexity of O(m3). On the other side,
reducing Nmax leads to a high coarsening level; the more a
graph is reduced, the more small-term high frequencies are
discarded, and the less is the ability of the reduced graph to
capture small-term spatial signal differences. This leads to a
consequential drop of the reconstruction quality after lifting,
and reduces the interest of performing a graph reduction. With
all this in mind, in the experiments reported in this paper,
Nmax has been fixed to 5000 nodes since this number provided
us with interesting rate-distortion results and an acceptable
computational complexity.

Fig. 4: Examples of real and synthetic light fields used in
our experiments. 1st row: Friends 1 and Vespa from EPFL’s
dataset [62], Toys and Fruits from Inria’s dataset, Sideboard
and Greek from HCI dataset [64]. 2nd row: corresponding
disparity map estimated with the method in [58].

B. Analysis of the proposed RD optimized graph coarsening
and partitioning algorithm

1) Validation of the cut decision prediction model: The
cut decision prediction model has been trained using a large
number of super-rays with different dimensions computed
on a training set of light fields by applying the super-ray
construction method explained in section IV-D. More pre-
cisely, we chose 3 light fields, one from each dataset for
the training process : Stone Pillar Inside from EPFL light
field dataset, Fruits from Inria light field dataset, and Greek
from HCI dataset. Three initial segmentations are performed
using different initial numbers of clusters (3000, 6000 and
9000 super-rays) leading to different super-ray sizes. Each
segmentation is referred to as a layer. The model is then trained
on all super-rays in all layers in the training set.

In order to validate the model, the learning is tuned by 10-
fold cross-validation. We divide the super-rays used for train-
ing into 10 distinctive sets. Then in each learning operation, we
take 1 set for test, and train on the other 9 sets. The percentage
of partitioning decisions matching the model in Equation 3 are
reported in Table I. The prediction score is computed as the
mean of the prediction scores over the 10 learning operations
and is around 94%. Also, while the complexity of computing
the graph transforms and the diagonalization of the laplacian of
a size n is O(n3), our model reduces the complexity to O(n2).
Note that we also tried to modify the features by taking two
different total variations, to capture and distinguish between
the signal variations in both spatial and angular domain. With
no clear improvement, we preferred to use the original set of
features that are proven to be meaningful for the prediction.

2) Optimized segmentation map as a function of the target
distortion: In this section, we show how the rate distortion
optimized segmentation varies with respect to the target dis-
tortion of the reconstructed light field. We show in Figure 5

the optimized segmentation maps for the light field Fruits,
obtained with our algorithm when we enable both the tools
(i.e. graph coarsening, and graph spectral clustering).

If we look at the first row of the figure, it is clear that
the graph reduction tool is very efficient for low bitrate and
a high target distortion i.e when the target PSNR is low.
More precisely, we tend to have bigger super-rays when the
target PSNR is lower than 35 dB. The second row shows a
binary map where black and white correspond to original or
reduced super-rays respectively. Most of the super-rays are
reduced to lower dimensions. The third row shows the PSNR
of the reconstructed super-rays after the lifting procedure as
expressed in Equation 11. The information detained by the
coarsened signals on the reduced super-ray guarantees an
acceptable reconstruction of the super-rays where the signals
are mainly smooth. On the other hand, when we seek a higher
quality, the information kept in the coarsened signals is not
sufficient to reconstruct the high frequency details of the
respective super-rays therefore the graph partitioning tool is
used instead.

EPFL JPEG Pleno Inria

train
test Friends1 FV2 SPI Vespa Fruits Bench Toys

Friends1 94.6 92.4 95.2 93.9 90.3 88.5 94.4
FV2 95.0 93.0 95.4 94.3 92.0 91.2 95.6
SPI 94.6 92.6 95.9 94.1 93.4 94.1 96.6
Vespa 94.4 92.0 95.0 93.8 90.0 87.1 93.8

Fruits 94.1 92.0 96.4 93.3 93.7 94.2 96.5
Bench 94.1 92.0 96.1 93.4 93.5 94.2 96.5
Toys 95.1 93.1 95.8 94.8 93.8 94.1 97.3

TABLE I: Percentage of right cut decisions (in %) after
training and testing on different sets of super-rays corre-
sponding to the different light fields from the Inria and EPFL
dataset.

3) Bitrate cost percentage analysis: We evaluated for all
the datasets used in our experiments, the percentage allocated
for each of the different parts composing the final bit-streams.
In a nutshell, we observe that at high bitrates, a dominant
part of bits are allocated to encoding the graph transform
coefficients with a percentage of ≈ 95%. The cost of both
disparity values and segmentation maps is negligible in that
case compared to the cost of the transform coefficients. On the
other hand, for low bitrates, the segmentation map occupies
most of the bitstream while only ≈ 30% of the bits are
allocated for transform coefficients. This can be explained
by the fact that most of the super-rays are reduced, and the
graph transform coefficients of the reduced super-rays are too
coarsely quantized.

C. Comparative assessment of compression performance

In this section, we evaluate the compression performance
of our method. We first compare the method used against
previous graph based coding methods with a fixed super-
ray size then analyse its performance against state of the art
methods in light field coding.

1) Comparison with previous graph transform based meth-
ods: We first investigate the performance of our scheme
with the two reduction tools: graph coarsening and graph
partitioning and compare it to the performance of a traditional
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Fig. 5: Segmentation maps for different tolerated distortion levels (expressed in terms of PSNR (dB)) for the dataset Fruits. In the first row,
the optimized segmentation maps obtained after applying the algorithm in for different values of Dmax. The second row shows a binary
mask where white regions correspond to coarsened super-rays. The last row shows the quality of the reconstructed super-rays after lifting.

Fig. 6: PSNR-rate performance curves of the proposed
compression scheme against graph based approaches with
the JPEG Pleno dataset [62].

graph transform based scheme with a fixed size of super-rays
proposed in [5]. For that, we study 3 different variants of the
RD-optimized segmentation algorithm: (1) graph coarsening is
enabled but no graph partitioning is applied unless the number
of nodes is higher than the maximum allowed (5000 in our
experiments). (2) graph coarsening is disabled and partitioning
is necessarily applied if the number of nodes N higher than
Nmax, and predicted by the model N < Nmax. (3) Both graph
coarsening and graph partitioning are enabled. We compare the
above variants to a simple scheme where we fix the super-ray
size (denoted by Fixed SR).

Results are shown in Figure 6 for two light fields. Our
method with both the functionalities enables, brings a lot of
improvement to the rate distortion performance compared to
the original graph transform based scheme. The main limita-

tion of the graph transform scheme in [5] is the complexity of
the non separable graph transform which limits the resolution
of the super-ray that can be supported. Our proposed method
in this paper grants the possibility to have bigger super-rays for
areas where the signal is smooth. Since the graph transform
is applied on the reduced super-rays, the proposed scheme
allows to exploit the long term signal dependencies in the
spatial domain of the light field making the graph transform
feasible.

The graph partitioning brings improvement for high bitrate,
but not that much for low bitrate. Two reasons might explain
this behavior. First, we are not capable of exploiting the long
term signal dependencies since we are still limited in the
maximum resolution. Moreover, we can partition the super-
rays on regions where the signal is not smooth i.e texture. This
leads to a better energy compaction on those regions, hence a
lower bitrate needed to retrieve a very good reconstruction
quality. On the other hand, the graph coarsening is very
efficient at low bitrate, but not that much on high bitrate. The
ability of the graph reduction tool to represent the original
signals on lower dimensional spaces while preserving the
main spectral characteristics of the underlying graphs, leads
to substantial bitrate savings for a specified target distortion.
Indeed, the number of coefficients to code is much less than
original super-rays.

2) Comparison with state of the art coders: We assess the
compression performance obtained with the our graph based
coding method against different coding solutions proposed
in the literature: direct encoding of the views as a pseudo-
video sequence with HEVC based coding [9] [10], JPEG
Pleno Verification models 1.1 and 2.1 (WaSP and MuLE) [12],
the Homography Low Rank Approximation method (HLRA)
in [13] and Fourier Disparity layers in [14], the light field
translational coder [16] and the disparity prediction based
codec of [15]. In the simulations, for HEVC-lozenge, the base
QPs are set to 20, 26, 32, 38 and a GOP of 4 is used. The
HEVC version used in the tests is HM-16.10. We used both
versions of JPEG Pleno VM 1.1 and 2.1. In Figure 7, our
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Fig. 7: PSNR-rate performance curves of the proposed light field coding method against FDL bases schemes [14], HLRA [13], HEVC-Lozenge
[9] and JPEG Pleno VM 1.1 [11] with a set of light fields from Inria and EPFL datasets [63] [62].

Fig. 8: Rate-distortion performance of the proposed method on plenoptic images. Comparisons are made against VM 2.1 (WaSP and MuLE)
[12], WaSP-R [15], LFTC [16], and HEVC anchors [10], under the conditions specified in the CTC [10]

method with both functionalities enabled (graph coarsening
and partitioning) is investigated against HEVC-Lozenge, JPEG
Pleno verification model version 1.1, Fourier Disparity Layer
(FDL) and HLRA for a set of dense light field datasets from
the Inria Light field dataset and the EPFL light field dataset.
Substantial gains in favor of our coding scheme are observed
especially at low bitrates for most of the test light fields.
The benefit of the graph coarsening reduction tool is clear.
Graph coarsening not only preserves the small total variation
on the coarsened graph, but also reduces the overall number
of coefficients to code which brings a very good performance
at low bitrates range.

D. Limitations of the proposed method
For synthetic light fields in HCI dataset such as Greek and

Sideboard shown in Figure 9, our graph based coding scheme
performs in general better than state of the art coding schemes
such as the method in [15], the JPEG Pleno Verification model
software version 2.1 and the coding method based on Fourier
disparity layers [14] at low bitrates. It however comparatively

performs worse at high bitrates. This can be explained by
the fact that while the baseline of light fields captured with
plenoptic cameras is limited by the aperture size of the camera,
synthetic light fields may have much larger disparities between
views. In that case, super-ray projections, using one median
disparity value per super-ray, are therefore less accurate when
the super-ray is large, and are not able to fully compensate
for inter-view disparities, especially for scenes with complex
geometry such as Greek. Moreover, both synthetic light fields
that we tested are free of imperfections such as noise. The
real world Light fields imperfection degrade considerably the
performance of classical coding schemes based on prediction
while graph coarsening is not affected. The noise is mostly
removed by the low rank model approximation that lies behind
the graph coarsening technique.

Simulation results with real light fields under the com-
mon test conditions defined by JPEG-Pleno give performance
curves (see Figure 8), with a similar behaviour, i.e., better
performances at low bit rates but lower performances at higher
bit rates, compared with reference methods. This can be
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Fig. 9: PSNR-rate performance curves of the proposed graph
based coding method on the HCI dataset [64] compared to
recently published light field encoders in [15], [14] and [65]
with the 4D prediction mode.

explained by the fact that the peripheral views of the 13× 13
set of light field views captured by a Lytro camera suffer
from vignetting effect, which degrades the performance of the
depth estimation algorithm. Errors on depth maps induce a less
accurate super-ray construction and a reduced de-correlation
efficiency of the graph transform. As for the computational
complexity, compared to HEVC anchor, the execution time
of our coding method is 10 times higher for a single light
field given a target quality. This is indeed dependent on
the implementation and further optimization using fast graph
Fourier transforms can be considered.

VII. CONCLUSION

In this paper, we have proposed a graph-transform based
light field coding scheme using on a rate-distortion optimized
graph coarsening and partitioning algorithm. The transform
supports are based on super-rays constructed in a rate distor-
tion optimized way. To overcome the complexity issue on big
super-rays, a graph coarsening tool is applied and the graph
transform is applied on reduced super-rays. The proposed
algorithm also relies on another technique for dimensionality
reduction i.e. graph clustering.

We have derived the distortion and rate models allowing us
to optimize the graph supports in a rate-distortion sense. We
hence propose a novel segmentation optimization method that
aims at finding the optimized graph supports prior to graph
transform and coding. This algorithm has been shown to bring
substantial rate-distortion performance gains compared to a
scheme based on the graph transform on fixed size super-rays
and to state of the art light field coding schemes for light fields
with small baselines.
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