N
N

N

HAL

open science

On learning deep domain-invariant features from 2D

synthetic images for industrial visual inspection

Abdelrahman G. Abubakr, Igor Jovancevi¢, Nour Islam Mokhtari, Hamdi Ben

Abdallah, Jean-José Orteu

» To cite this version:

Abdelrahman G. Abubakr, Igor Jovancevié, Nour Islam Mokhtari, Hamdi Ben Abdallah, Jean-José
Orteu. On learning deep domain-invariant features from 2D synthetic images for industrial visual
inspection. QCAV’2021- 15th International Conference on Quality Control by Artificial Vision, May
2021, Tokushima (online), Japan. 9 p., 10.1117/12.2589040 . hal-03230285

HAL Id: hal-03230285
https://hal.science/hal-03230285

Submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03230285
https://hal.archives-ouvertes.fr

On learning deep domain-invariant features from 2D
synthetic images for industrial visual inspection

Abdelrahman G. Abubakr?, Igor Jovancevié®™, Nour Islam Mokhtari®, Hamdi Ben Abdallah®,
and Jean-José Orteu®

*DIOTASOEFT, 201 Pierre and Marie Curie Street, 31670 Labege, France
PInstitut Clément Ader (ICA); Université de Toulouse ; CNRS, IMT Mines Albi, INSA, UPS,
ISAE ; Campus Jarlard, F-81013 Albi, France

ABSTRACT

Deep learning resulted in a huge advancement in computer vision. However, deep models require a large amount
of manually annotated data, which is not easy to obtain, especially in a context of sensitive industries. Rendering
of Computer Aided Design (CAD) models to generate synthetic training data could be an attractive workaround.
This paper focuses on using Deep Convolutional Neural Networks (DCNN) for automatic industrial inspection of
mechanical assemblies, where training images are limited and hard to collect. The ultimate goal of this work is
to obtain a DCNN classification model trained on synthetic renders, and deploy it to verify the presence of target
objects in never-seen-before real images collected by RGB cameras. Two approaches are adopted to close the
domain gap between synthetic and real images. First, Domain Randomization technique is applied to generate
synthetic data for training. Second, a novel approach is proposed to learn better features representations by
means of self-supervision: we used an Augmented Auto-Encoder (AAE) and achieved results competitive to
our baseline model trained on real images. In addition, this approach outperformed baseline results when the
problem was simplified to binary classification for each object individually.

Keywords: deep learning, domain adaptation, domain randomization, augmented autoencoders, self-supervision,
synthetic rendering, 2D images, industrial visual inspection.

1. INTRODUCTION

Inspection and quality control are major tasks in modern industries. With more complex systems being devel-
oped, automation of the inspection process becomes crucial. It helps to increase production speed and decrease
human error rates. Our research is tackling various problems of automating the process of visual industrial
inspection. We develop algorithms that receive 2D images and provide a diagnostic on the state of mechanical
assemblies. Whenever available, we exploit the Computer Aided Design (CAD) models of the assemblies. More
precisely, we are dealing hereafter with a large family of industrial inspection problems, called presence/absence
problem. The challenge is to verify the presence of assembled parts at the locations predefined by the CAD
model of the assembly. Hence, we are looking to detect and raise an alarm if the part is absent or replaced by
another part. Naturally, we are defining our problem as a multi-class classification problem. The use case we
are using to validate our approach is a set of 3 specific different metallic supports in addition to a very diverse
background class (Fig. 1). It is evident, however, that our approach is a general one, seamlessly applicable on
any task of inspecting parts whose CAD models are available.

Typical assemblies we are aiming to inspect are airplane engines. In industries such as aircraft industry,
target assemblies are rarely available for acquisition, hence the number of training images is limited. Due to the
high variability of parts, some classes may have very small number of samples in the collected data. In addition,
the acquired images will not be reusable for training other models in slightly different context. Finally, manually
annotating target objects in real images is a laborious and time-consuming task.

CAD is a standard way to describe geometrical properties of mechanical assemblies. For each part, there is
a 3D CAD model with the real dimensions. Therefore, rendering CAD models to generate synthetic training

*corresponding author: Igor Jovanéevié, igorjovan@gmail.com

igorjovan@gmail.com

Class_1 Class_2

Background class

- AT
!
,. \'
¥ 1

Figure 1. Samples of the 3 target objects used in this work, and the background class.

image data is an attractive approach which implicitly provides perfect annotations. However, industrial CAD
models usually do not contain appearance properties, such as colour, texture, or the material properties of the
objects. Additionally, there are often deformable or disposable parts like cables and plastic caps which are
typically omitted in CAD models and present in real conditions.

Our goal is to explore the approaches to use 2D renders of such simplified 3D CAD models to train a Deep
Convolutional Neural Networks (DCNN) for the purpose of visual inspection. The ultimate goal is to have a
DCNN classification model trained on synthetic data only, and deployed to verify the presence of target objects in
never-seen-before real images collected by RGB cameras from different poses and in different lighting conditions.
The inspection process in this work is performed using a robotic arm equipped with a set of sensors mounted on
an effector. More information on our hardware platforms and modes of operation is available in our paper.!

We train the classifier using unrealistic 2D renders of the simplistic 3D CAD models of our target objects.
However, using synthetic data introduces a domain gap between features learned from synthetic data and those
computed from real images. This is a non-trivial problem, and many approaches were proposed to overcome
this issue by means of domain adaptation, domain randomization, domain generalization, and more? % . This
problem can be considered as a severe case of dataset bias; no matter how realistic the rendering might be, there
will still be a difference between renders and real images, which will affect the learned features and prevent the
model from generalizing knowledge on real images.

In this work, two approaches are adopted to solve the problem of domain gap between synthetic and real
images. First, we try to narrow the domain gap by improving the synthetic data used for training. In Sec. 3.1,
we introduce our rendering pipeline, and discuss the details of the domain randomization approach,*” which
is a key-stone in our solution. Second, we try to improve DCNN models and explore different ways of training
to learn domain-invariant features that generalize well between synthetic and real domains. In Sec. 3.2 we
try to understand the features learned by our classifier, and propose our approach to learn better features
representations by means of self-supervision. Namely, we propose an Augmented Auto-Encoder (AAE), which
enabled us to achieve results competitive to our baseline model trained on real images.

2. RELATED WORK

In our previous works, we were aiming to perform CAD based visual inspection by employing conventional image
processing’® and 3D point cloud processing techniques® !? as well as recent deep learning architectures on 3D
point clouds.'! In this work we are focusing on using DCNN on 2D images.

The use of synthetic data has a long history in computer vision. For example,'? used renders of 3D CAD
models as a source of labeled data. Due to the data-hungry nature of DCNN, synthetic rendering of 3D models is
an attractive source of data in many applications, such as object recognition, detection, instance segmentation,
and more.>% An intuitive solution to the domain gap could be to generate realistic renders that are very similar
to real images.'> However, this approach is costly and requires full knowledge of the target domain.*® In
addition, even when having such expensive renders, trained model will still suffer from the domain gap.*¢

Many approaches were proposed to overcome the domain gap with non-realistic renders. For example,® used
synthetic data to train object detection models for Pascal VOC classes, and investigated the importance of low
level cues. The authors in'? tried to have more photo-realistic rendering and simulated the context by using real
images as background for their images. The authors in® freezed the backbone layers of Faster-RCNN pre-trained

on ImageNet, then trained the remaining layers of the detector with plain OpenGL'* rendering. Using this trick,
the features learned from target domain (real images) were used to train the model on source domain (synthetic
images), which helped them to get competitive results to models trained on real images.

Another technique for domain adaptation is domain randomization.*” It is based on training deep models on
synthetic images that can transfer to real images directly. This can be done by randomizing rendering appearance
parameters that describe the objects, such as colour, texture, lighting conditions, and more.*” With enough
variability in the rendered training data, the real world may appear to the model as just another variation of
what it saw during training.* In addition to its simplicity, domain randomization achieved state of the art results
for object localization and detection when training the models completely with synthetic data.*

3. METHODOLOGY

Fig. 2 shows the general pipeline of our approach. In testing phase, we use an RGB camera. The goal is to
recognize each inspected object (Fig. 1) and either confirm its presence or report its absence (defect). We rely on
an in-house-developed CAD-based localization method in order to estimate a relative pose of our camera with
respect to the assembly. Knowing an approximate camera pose and camera intrinsic parameters, CAD model
can be projected onto the image plane, which provides an expected region of interest (ROI) around the target
object. Using this ROI and starting from a full image, we get a cropped image containing the area where the
inspection item is expected to be found. This cropped image is then fed to a classifier to output a label for one of
our target objects, or background which represents the fact that none of the known parts (classes) is recognised.

image to classify

Classification Output:
=¥ One of the classes or
A background

Image Classification
model

Training

Synthetic data from CAD (renders)

=

Wi

Figure 2. Multi-class classification based inspection pipeline.

3.1 Synthetic Data Generation

As our CAD models lack all appearance parameters, we adopted the method of domain randomization.*” In
order to apply domain randomization, a rendering pipeline is implemented using modern OpenGL that allows to
control all variants of rendering parameters. Two shading models are used, Phong shading!® and Cook-Torrance
shading,'® and we randomize the following parameters for each rendered object (Fig. 3).

e Object colour: Colour channels in OpenGL are scaled values ranging from 0 to 1. To better represent metallic
material, we use "griesh colours”. To generate griesh colours, the value of one channel is randomly sampled
from the range [0—1] let’s call it R for the red channel, then the blue and green channels are randomly sampled
so that they are within a distance of 0.1 from the R value, i.e. B,G = R+ rand(—0.1,0.1).

e Procedural texturing: We generate random procedural textures. A procedural function takes a coordinate, and
return a colour. For each object we randomly select one of the following textures: (1) mproved 3D Perlin noise
(Simplex),'™'® in which scale and orientations are also randomized, (2) random uniform colour disturbance
(like salt and pepper noise), or (3) no texture.

Figure 3. Samples of rendered objects after applying domain randomization.

e Camera positions: We sample the camera positions from a sphere around the target CAD to render. We fix
the radius of the sphere to 60 cm, and sample azimuthal angle § and polar angle ¢ with certain step size.

e Camera field of view (FOV): This value represents the zoom level. A uniform random value is sampled from
the range [20 — 35|, knowing that higher FOV value means the object is further (smaller).

o Specular reflection coefficient: This is the ratio of light reflecting from the surface. Uniform random value is
sampled from the range [0.1 — 0.5] for Cook-Torrance model, and range of [0.5 — 1.0] for Phong model.

e Shininess of the surface: The higher the shininess value of an object, the more it properly reflects the light
instead of scattering it all around. Uniform random value is sampled from the range [2 — 16].

o Fresnel complex coefficients: Light reflecting off metallic surfaces is described by the Fresnel equations,'® which
are controlled by the complex index of refraction n = n+ik. In Cook-Torrance model, we randomly simulated
metallic and non-metallic behaviours by controlling the values of n and k. n is randomly sampled from the
range [0.5 — 2.0], and k from the range [0.5 — 7.0].

After generating the renders of target objects, we create a training dataset. Following,®” we are randomizing
the background by placing our renders on top of randomly selected real images. Those real images can be random
captures from industrial environment, typically some photos from a factory with production line. They do not
have to be directly related to our inspection object. In addition, using the idea of ”flying distractors” introduced
in,” we randomly position some of the rendered ”context objects” around the rendered target objects. Fig. 4

shows samples of the generated synthetic dataset for training.

Figure 4. Samples of the synthetic dataset used for training. First 3 images contain rendered target objects, and the last
2 images are examples of the ”background class”, i.e. without our target objects.

3.2 Searching for Domain Invariant Features for Domain Generalization

The authors in® proved that freezing the backbone layers of Faster-RCNN pretrained on ImageNet worked well
as a domain-invariant features and improved the final precision for object detection when training with plain
OpenGL renders. In our use case, we applied the same approach but there was still a big domain gap as will
be shown in Sec. 4. To find better features as initialization for our model, we need to understand the features
learned when pretraining with ImageNet and why it is not good to represent our objects.

As DCNN are learning their weights directly from the huge amount of data seen during training, many
researchers tried to understand what are these learned features through different layers. The work in?° suggests
that along different layers, networks seek to identify increasingly larger patterns in image, starting from simple
edges and contours at early layers, and more complex shapes at deeper layers.?’ Recent works tried to investigate
this assumption, specially the work in?' which tried to answer an important question: how do neural networks

classify images; based on shape or texture? They came up with a simple experiment. Using style transfer,?? they
generated images with a texture different from the texture of the object in the image. For example, using the
texture of an elephant projected on a cat image, all state-of-the-art classifiers recognize the image as ”elephant”,
which clearly shows the bias of deep models to the texture, not the shape of objects.?!

More recently, the work in?? found that a network that models bag of local deep features had comparable
results to state-of-the-art classification models, proving the findings in.2! They even tested on set of scrambled
images that are difficult for humans to recognize, and found that DCNN can still recognize scrambled images
very well, which further proves the assumption that deep models do not recognize objects by their shapes.?!: 23

Auto-Encoders are family of neural networks for which the input is the same as the output. They work by
compressing the input into a latent-space representation, then reconstructing the output from this representation.
Denoising Autoencoders?#(DA) define a modified training process. Artificial random noise is applied to the input
images while the target image stays clean. The main assumption is that DA produces latent representations
which are invariant to noise because it facilitates the reconstruction of clean images.?’

Using DA idea,?* the authors in?® introduced the concept of Augmented Auto-Encoders (AAE). Their goal
was to learn 3D orientation of textureless objects for 6D object detection from RGB images. Using synthetic
rendering and domain randomization, they generated a high variability of source images with extensive augmen-
tation, while keeping clean images to be reconstructed. Their idea was to control what the latent representation
encodes and which information to be ignored, forcing the model to learn geometrical transformation for the
rendered objects, then apply it to real images to estimate the orientation of objects in real images.?®

Inspired by the approach,?® we adapted the idea of AAE for our goal to learn geometrical representation for
mechanical assemblies. Fig. 5 shows the training process for our AAE. The input images are similar to what is
used in classification, a rendered object on top of a random real image of a background. Output images contain
only the object centered in the image with black background. Ideally, the features learned by the AAE can
model the important geometrical features of the objects. Then using the features of the Encoder as initialization
for training, the classifier can become discriminative enough. Therefore, it can recognize objects in real images
depending on their shape and ignore all irrelevant texture and background information.

Bottleneck features

Encoder Decoder

Figure 5. Our Augmented Auto-Encoder (AAE) to learn better geometrical features representation.

4. EXPERIMENTS AND DISCUSSION

We have only 179 real images collected for the 3 target objects with ROIs as shown in Fig. 2. To generate a
test set for benchmark, the ROIs were used to crop the part of the image that contains the target object. To
increase the number of samples, in addition to the original crop, 4 transformations are applied: horizontal and
vertical flip, rotation 90 degrees clockwise and counter-clockwise. In addition, for each object, we crop 7 boxes
with random positions and sizes to represent the ”background” class. Hence, the total number of real images for
testing is 2148. Finally, all crops are resized to 500x500. Fig. 1 shows samples of the generated test set.

In this work, InceptionV326 is used for classification. All experiments are done using Keras with Tensorflow
backend. Training is done using Nvidia GeForce GTX 1060 with 6GB of RAM. Unless otherwise stated, SGD
optimizer is used with learning rate of 0.0001 and momentum of 0.9 for classifier training, with batch size of 20
images, and training run for maximum 3 epochs. For AAE, InceptionV3 is used as the encoder, while for decoder
we used a simple network consisting of successive convolutional and up-sampling layers that can reconstruct the
image with the same input size. Training of AAE is done using Adam optimizer with learning rate 0.0003, batch
size of 18 images and training run for 15 epochs. Input image size is set to 256x256 in all experiments.

4.1 Experiments

First, we get baseline results by training our 4-class classification model with real images with a 2-fold cross-
validation. The real images data is split into 2 parts. The training is done with first split then testing with the
other and vice versa. Then the results from the 2 splits are averaged to get final baseline results (15! row in
Table 1). This will be the reference to measure the gap between our baseline model trained on real images and
models trained with synthetic images. In all our experiments, the evaluation metrics are Precision/Recall/F1-
score, but Fl-score will be used for comparison between different models. For the average results, we use the
"macro” averaging between all classes, which calculates metrics for each label, and find their unweighted mean,
so treating all classes equally regardless of their number of samples.

4.1.1 Freezing different layers of feature extractor

Following,® we tried freezing and training different stages of the pretrained InceptionV3. We tried freezing all
layers, freezing all layers except last Inception block, freezing all layers except last 2 Inception blocks, and training
all layers. In all cases, the last fully connected layers are trained. We use 55K synthetic training images rendered
using Phong model. Table 1 shows the results of these experiments. We can see that the average F1l-score is
improving when training more Inception blocks, and the best result comes when all layers are trained allowing
the model to adapt all its weights to the training data. These results are against the findings in,% and it shows
that ImageNet pretrained weights are not good enough to describe our objects as discussed in Sec. 3.2.

Table 1. The results (Precision/Recall/F1-score) of training different stages of InceptionV3.
train/freeze avg results background class_1
train all 0.90 / 0.77 / 0.79 | 0.87 / 0.99 / 0/92 | 0.87 / 0.46 / 0.53
frecze all 0.42 /039 /0.28 | 0.99 /0.19 /031 | 0.1 / 0.27 / 0.15
train last block 0.45/0.39 /029 | 0.98 /0.10 /0.18 | 0.07 / 0.33 / 0.11
train last 2 blocks | 0.51 / 0.56 / 0.51 | 0.95 / 0.59 / 0.73 | 0.16 / 0.30 / 0.21
train all 0.76 / 0.51 / 0.54 | 0.76 / 0.98 / 0.86 | 0.89 / 0.32 / 0.47

class_3
0.86 / 0.90 / 0.88
0.16 / 0.75 / 0.26
0.19 / 0.48 / 0.27
0.31 / 0.49 / 0.38
0.66 / 0.08 / 0.15

class_2
0.99 /0.74 / 0.82
0.43 / 0.33 / 0.38
0.57 / 0.63 / 0.60
0.62 / 0.86 / 0.72
0.75 / 0.67 / 0.71

Training data
Real (2 splits)
Phong 55K
Phong 55K
Phong 55K
Phong 55K

4.1.2 Training AAE and classifier with different synthetic data

To find the best configuration for AAE and the classifier, we experiment the effect of using different illumination
models for rendering. In the first 3 rows of table 2, AAE is trained with 55K images of Phong renders, placed
on top of real image crops with no rendered context in the background (flying distractors”). Using the Encoder
network from AAE as the classifier, it is trained with synthetic data rendered with Phong, Cook-Torrance (55K
images with flying distractors), and mix of both. We can see that using Cook-Torrance renders for training the
classifier achieved the best Fl-score (52%). However, using Phong renders combined with the context objects
to train AAE (4*" row in Table 2), achieved much better Fl-score (61%), showing the importance of flying
distractors approach.” Last 3 rows in table 2 show the same experiments using ImageNet pretrained models,
which confirm that Cook-Torrance resulted in a better overall Fl-score, although the difference is small (1%).

Table 2. Effect of using different rendering models to train InceptionV3 pretrained with AAE and ImageNet.

Pretrain Training data | train/freeze avg results background class_1 class_2 class_3
AAE (Phong) Phong trainall | 0.65 / 0.38 / 0.40 | 0.70 / 0.08 / 0.81 | 0.43 7 0.16 / 0.23 | 0.51 / 0.31 / 0.38 | 0.95 7 0.09 / 0.16
AAE (Phong) Cook-Torrance train all 0.59 /0.50 /0.52 | 0.84 /0.95 /0.89 | 0.17 / 0.06 / 0.08 | 0.50 / 0.59 / 0.54 | 0.86 / 0.40 / 0.54
AAE (Phong) Mixed train all 0.64 /0.45/0.48 | 0.75 /0.97 /0.85 | 0.38 /0.13 / 0.19 | 0.51 / 0.41 / 0.46 | 0.92 / 0.29 / 0.44
AAE (Phong+cntxt) | Cook-Torrance train all 0.79 /0.56 / 0.61 | 0.77 / 0.98 / 0.86 | 0.62 / 0.17 / 0.26 | 0.82 / 0.67 / 0.74 | 0.95 / 0.42 / 0.58
AAE (Cook-Torrance) | Cook-Torrance train all 0.43 /0.41 /0.38 | 0.88 /0.79 / 0.83 | 0.00 / 0.00 / 0.00 | 0.40 / 0.73 / 0.51 | 0.45 / 0.10 / 0.17
ImageNet Phong train all 0.76 /0.51 /0.54 | 0.76 / 0.98 / 0.86 | 0.89 / 0.32 / 0.47 | 0.75 / 0.67 / 0.71 | 0.66 / 0.08 / 0.15
ImageNet Cook-Torrance train all 0.78 /0.51 /0.55 | 0.78 / 0.97 / 0.86 | 0.93 / 0.14 / 0.24 | 0.69 / 0.66 / 0.67 | 0.72 / 0.29 / 0.41
ImageNet Mixed train all 0.79 /0.49 /0.50 | 0.79 / 0.97 /0.87 | 0.94 / 0.16 / 0.27 | 0.65 / 0.74 / 0.69 | 0.80 / 0.09 / 0.16

4.1.3 Effect of number of training images

Results in Table 2 show that mixing the renders generated by both illumination models (110K images) decreased
the performance. The intuitive explanation is that with more data, the model is overfitting and becoming more
biased to the synthetic domain. To investigate this assumption, we trained the classification model pretarined
with AAE for 1 epoch with 55K, 27K, and 15K images. The results in Table 3 show a big improvement when
decreasing the number of training images. We can conclude that the weights learned by AAE are already good

enough and model our objects well, therefore training with more data (or for more epochs) will increase the
domain gap while not improving the overall performance.

Table 3. Training the classifier on different number of images after pretraining with AAE
Pretrain Training data train/freeze avg results background class_1 class_2 class_3
AAE (Phong+cntxt) | Cook-Torrance 55K train all 0.79 / 0.56 / 0.61 | 0.77 /0.98 / 0.86 | 0.62 / 0.17 / 0.26 | 0.82 / 0.67 / 0.74 | 0.95 / 0.42 / 0.58
AAE (Phongentxt) | Cook-Torrance 27K | train all | 0.80 / 0.60 / 0.65 | 0.80 / 0.96 / 0.87 | 0.66 / 0.21 / 0.31 | 0.80 / 0.77 / 0.79 | 0.96 / 0.47 / 0.63
AAE (Phong+centxt) | Cook-Torrance 15K train all 0.79 / 0.66 / 0.70 | 0.83 /0.94 / 0.88 | 0.62 / 0.28 / 0.38 | 0.84 / 0.86 / 0.85 | 0.85 / 0.59 / 0.70

4.1.4 Overall results

Table 4 summarizes the best 4-class classification results achieved by different approaches. It is interesting to
note that AAE itself is trained completely with synthetic data, and then using its weights, the classifier is also
trained on synthetic data. This achieves our goal to train the model completely on synthetic data. Our best
model achieved 70% F1-score which is 9% less than our baseline model trained on real images.

Table 4. Comparison between models trained on real images, and synthetic data with different pretraining strategies.

Pretrained weights Training images avg results background class class_1 class_2 class_3
TmageNet Real (2 splits) 09 /077 /079 | 0.87/0.99/0.92 | 0.87 /0.46 /0.53 | 0.99 /0.74 /0.82 | 0.86 / 0.90 / 0.88
ImageNet Synthetic (Cook-Torrance) | 0.78 / 0.51 / 0.55 | 0.78 /0.97 / 0.86 | 0.93 /0.14 / 0.24 | 0.69 / 0.66 / 0.67 | 0.72 / 0.29 / 0.41

AAE (Phong+cntxt) | Synthetic (Cook-Torrance) | 0.79 / 0.66 / 0.70 | 0.83 /0.94 /0.88 | 0.62 /0.28 /0.38 | 0.84 / 0.86 / 0.85 | 0.85 / 0.59 / 0.70

Finally, we loosen our inspection task to a simple verification that an object is present. So we tested binary
classification approach, i.e. training a separate model for each class. Each such binary model has a task to decide
between class vs. background. The results in Table 5 show an advantage of the model trained with synthetic
data with AAE pre-training over our baseline model in 2 out of 3 classes and also in overall score (3%).

Table 5. Results of binary classifiers (class vs. background) with synthetic images.

Pretrained weights Training images class_1 class_2 class_3 Overall
ImageNet Real (2 splits) 0.94 /0.55 / 0.56 | 0.95/0.87 /0.89 | 0.99 /0.97 / 0.98 | 0.96 / 0.80 / 0.81
ImageNet Synthetic (Cook-Torrance) | 0.76 / 0.62 / 0.65 | 0.89 / 0.85 /0.87 | 0.82 /0.72 / 0.76 | 0.82 / 0.73 / 0.76

AAE (Phong+cntxt) | Synthetic (Cook-Torrance) | 0.77 /0.69 / 0.72 | 0.90 /0.92 / 0.91 | 0.91 /0.85 /0.88 | 0.86 / 0.82 / 0.84

5. CONCLUSION

This work was motivated by industrial needs for reference-based automatic visual inspection in a context where
acquiring large amount of images is not practically feasible. To tackle the inspection challenge, we propose a
solution that uses 2D renders of simplified 3D CAD models to train a DCNN multi-class classification model.
The final objective is to deploy the trained model to recognize mechanical parts in never-seen-before real images.

To overcome domain gap problem, we adopted a two step approach. First, we implemented an OpenGL
rendering pipeline which randomizes appearance features of rendered objects. Second, we proposed a novel
method based on self-supervised learning that allows to learn better features representation for target objects.
Based on the idea of AAE, the model can learn the most important features to represent target objects, while
ignoring irrelevant information. By training on rendered data and testing on real data, we achieved F1-score
comparable to the baseline model trained on real images. Moreover, when the multi-class problem was simplified
to a binary classification, our models trained on synthetic data outperformed the baseline model by 3%.

REFERENCES

[1] Ben Abdallah, H., Jovancevié¢, I., Orteu, J.-J., and Bréthes, L., “Automatic Inspection of Aeronautical
Mechanical Assemblies by Matching the 3D CAD Model and Real 2D Images,” Journal of Imaging 5,
81-108 (10 2019).

[2] Csurka, G., “Domain adaptation for visual applications: A comprehensive survey,” arXiv
preprint:1702.05374 (2017).

[3] Sun, B., Feng, J., and Saenko, K., “Return of frustratingly easy domain adaptation,” in [Thirtieth AAAI
Conference on Artificial Intelligence], (2016).

[4]

[10]

[11]
[12]

[13]

[21]

[22]
23]

[24]

[25]

[26]

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P., “Domain randomization for
transferring deep neural networks from simulation to the real world,” in [2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)], 23-30, IEEE (2017).

Peng, X., Sun, B., Ali, K., and Saenko, K., “Learning deep object detectors from 3D models,” in [Proc.
IEEE Intl. Conf. on Computer Vision], 1278-1286 (2015).

Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Konolige, K., “On pre-trained image features and synthetic
images for deep learning,” in [Proc. European Conference on Computer Vision (ECCV)], (2018).
Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon,
S., and Birchfield, S., “Training deep networks with synthetic data: Bridging the reality gap by domain
randomization,” in [Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops], 969-977
(2018).

Jovancevié, I., Larnier, S., Orteu, J.-J., and Sentenac, T., “Automated exterior inspection of an aircraft with
a pan-tilt-zoom camera mounted on a mobile robot,” Journal of Electronic Imaging 24(6), 1-15 (2015).
Jovancevié¢, 1., Pham, H.-H., Orteu, J.-J., Gilblas, R., Harvent, J., Maurice, X., and Brethes, L., “3D point
cloud analysis for detection and characterization of defects on airplane exterior surface,” Journal of Non
Destructive Evaluation 36, 74 (12 2017).

Ben Abdallah, H., Orteu, J.-J., Jovancevié¢, 1., Brethes, L., and Dolives, B., “3D point cloud analysis for
automatic inspection of complex aeronautical mechanical assemblies,” Journal of Electronic Imaging 29(04),
1-22 (2020).

Mikhailov, 1., Jovancevié, I., Mokhtari, N., and Orteu, J.-J., “Classification using a three-dimensional sensor
in a structured industrial environment,” Journal of Electronic Imaging 29(4), 1-14 (2020).

Liebelt, J., Schmid, C., and Schertler, K., “Viewpoint-independent object class detection using 3d feature
maps,” in [2008 IEEE Conference on Computer Vision and Pattern Recognition], 1-8, IEEE (2008).
Movshovitz-Attias, Y., Kanade, T., and Sheikh, Y., “How useful is photo-realistic rendering for visual
learning?.” in [European Conference on Computer Vision], 202-217, Springer (2016).
“https://www.opengl.org/.”

Phong, B. T., “Illumination for computer generated pictures,” Communications of the ACM 18(6), 311-317
(1975).

Cook, R. L. and Torrance, K. E., “A reflectance model for computer graphics,” in [ACM Siggraph Computer
Graphics], 15(3), 307-316, ACM (1981).

Perlin, K., “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287-296 (July 1985).

Perlin, K., “Improving noise,” in [Proc. 29th Annual Conference on Computer Graphics and Interactive
Techniques], SIGGRAPH ’02, 681-682, ACM, New York, NY, USA (2002).

Gulbrandsen, O., “Artist friendly metallic fresnel,” Journal of Computer Graphics Techniques (2014).
Zeiler, M. D. and Fergus, R., “Visualizing and understanding convolutional networks,” in [Furopean con-
ference on computer vision], 818-833, Springer (2014).

Geirhos, R., Rubisch, P.; Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W., “Imagenet-
trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness,” arXiv
preprint:1811.12231 (2018).

Gatys, L. A., Ecker, A. S., and Bethge, M., “Image style transfer using convolutional neural networks,” in
[Proc. IEEE Conf. on computer vision and pattern recognition], 2414-2423 (2016).

Brendel, W. and Bethge, M., “Approximating cnns with bag-of-local-features models works surprisingly
well on imagenet,” arXiv preprint:1904.00760 (2019).

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A., “Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion,” Journal of machine
learning research 11(Dec), 3371-3408 (2010).

Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., and Triebel, R., “Implicit 3D orientation learning
for 6D object detection from RGB images,” in [European Conference on Computer Vision (ECCV)], (2018).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., “Rethinking the inception architecture
for computer vision,” in [Proc. of the IEEE conf. on computer vision and pattern recognition], 2818-2826
(2016).

	INTRODUCTION
	Related Work
	Methodology
	Synthetic Data Generation
	Searching for Domain Invariant Features for Domain Generalization

	Experiments and Discussion
	Experiments
	Freezing different layers of feature extractor
	Training AAE and classifier with different synthetic data
	Effect of number of training images
	Overall results

	Conclusion

