Maurice Clerc

ITERATIVE OPTIMISATION -WHEN A BEST ALGORITHM DOES EXIST AND OTHER FRUSTRATING THEOREMS

The No Free Lunch does not hold for some sets of continuous functions or that are not closed under permutations (not-c.u.p.) [1, 3]. On a computer everything is discrete nite so we consider more carefully not-c.u.p. sets of functions. It appears that except for very particular cases, not only the NFL does not hold, not only there is a best algorithm in average, but that an 'ultimate' algorithm does exist. However, when you compare some algorithms on a given benchmark, an algorithm that is the best can be the worst on another one.

Introduction

When we are looking for the minimum of a function but we know absolutely nothing about this function, except of course how to compute its value on each point of a search space, it is easy to prove that the rst point to sample should be the barycenter of this search space. It maximises the probability of success, even if it is usually very low after just one sampling. Usually, but not always, and we see published papers that propose new algorithms using a benchmark of 'center-biased' test functions. In such a case, and when the algorithm is itself 'center-biased', even not explicitly, it is pretty good on this benchmark, but this is a very particular case, and, in practice, a good benchmark should not contain such functions.

So, an interesting question is: what should be the structure of a benchmark so that there exists on it a 'ultimate' or, at least a 'partial-ultimate' algorithm. We give formal denitions of these properties and, as we will see, the conditions are very weak in practice, meaning they hold for all classical benchmarks, which is a good point. However, unfortunately, proving that something exists is dierent from nding it, but at least it means it is worth trying to improve algorithms again and again, looking for this grail, even if it can also be proved that an algorithm that is good on some problems can be very bad on some other ones.

Warm up

Let us consider the denition space

X = {1, 2, 3}
and the value space

Y = {0, 1}
This is obvious on a digital computer, but still true for an analogical one, even if the 'granularity' is far smaller, according to the quantum theory.

(0,0,0) f 2 (1,0,0) f 3 (0,1,0) f 4 (0,0,1) f 5 (1,1,0) f 6 (1,0,1) f 7 (0,1,1) f 8 (1,1,1)
a 2 (2,1,3) a 3 (1,3,2) a 4
(2,3,1)

a 5 (3,2,1) a 6 (3,1,2)
There are 2 3 possible functions X → Y , dened by their values on X, as we can see on the table 1.

We call F the set of these functions. Now we dene an iterative search algorithm as a sequence of sampled points 1 , without repetition, which can also be seen as their ranks in X. So they are the permutations of the positions, and we have 3! possible algorithms, detailed in the table 2.

We call A the set of these algorithms. Finally, we consider the benchmark B = {f 2 , f 3 , f 4 , f 6 , f 7 }. As for many articial benchmarks, we do suppose we know the minimum value of all problems of the benchmark, here zero. For each pair (a i , f j), we count the smallest number s i,j of samplings that are needed to nd this minimum. For easier further comparisons, we compute in fact a rate in [0, 1] and call it eciency:

(2.1)

E ai,fj = |X| -s i,j |X| -1
So, if a solution is found at the very rst sampling, the eciency is 1, and for exhaustive search it is zero.

1 If you are a practitioner you probably see an algorithm as a process. You just have to imagine that the denition given here is the result of a run of such a process. 0.5 1 0 1 0.5 0 Mean 0.67 1.0 0.5 1.0 0.67 0.5

a 1 a 2 a 3 a 4 a 5 a 6 f 2 2 1 2 1 1 1 f 3 1 2 1 2 1 1 f 4 1 1 1 1 2 2 f 6 2 1 3 1 2 3 f 7 1 2 1 3
We can then see on the eciency table 3 that not all algorithms are equivalent on our benchmark B. This is of course for B is not closed under permutation (c.u.p.) 2 [2], and therefore, the NFLT [4] is not applicable [START_REF] Streeter | Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold[END_REF] .

Denitions, relatively to a given benchmark.

• complete-best: an algorithm that is, in average, equivalent or better than all the possible ones, and strictly better than at least one. If the benchmark is c.u.p. such an algorithm does not exist. • partial-best(A), or simply best(A): an algorithm that is, in average, equivalent or better than all the ones of a subset A, and strictly better than at least one of this subset. This is the usual denition used when comparing algorithms. • complete-ultimate: an algorithm that is equivalent or better than all the possible ones, on all functions of the benchmark, and strictly better on at least one function. Can exist only for some special benchmarks. • partial-ultimate(A): an algorithm that is equivalent or better than all the ones of a subset A of all possible ones, on all functions of the benchmark, and strictly better on at least one function. In practice this is the most interesting property. So, according to the table 3:

• a 1 and a 2 are complete-best (but not complete-ultimate) for the benchmark

{f 2 , f 3 , f 4 , f 6 , f 7 } . 2 But B = B ∪ {f 5 } is c.u.p.
, although it is just a subset of all possible functions. On B , all algorithms have the same mean eciency 2/3. On all the eight possible functions, the common mean eciency would be 5/8, a bit smaller. It is greater than 0.5 for some functions have several global minima. [START_REF] Streeter | Two Broad Classes of Functions for Which a No Free Lunch Result Does Not Hold[END_REF] On too many published papers one can read something like 'On this benchmark our new algorithm outperforms the others on most problems, but not on all, because of the NFLT'. As, in practice the classical benchmarks are never c.u.p., such a claim is not valid.

• a 2 and a 4 are complete-ultimate for the benchmark {f 2 , f 4 , f 6 }.

• a 1 is partial-ultimate for the benchmark {f 2 , f 3 , f 4 , f 6 , f 7 }and the set of algorithms {a 1 , a 3 }. This very simple example is sucient to prove the following theorem : Theorem 1. On some not-c.u.p. benchmarks of discrete nite functions, there may exist a complete-best algorithm, and even a complete-ultimate one But this is too vague, and we will now try to be more precise. You may have noted that in this example the number of test functions (5) of the benchmark is greater than the number of possible positions in the search space (3). Their exist complete-best algorithms, but we have complete-ultimate algorithms only if we reduce the benchmark so that its size is at most equal to the one of the search space. In practice this is of course always the case, and, moreover, we never consider all possible algorithms. So we are mainly interested on partial-ultimate algorithms: under which conditions do they exist?

Generalisation

On a computer, the number N of possible distinct values is nite, for example 2 64 . For a search space of dimension D, the dierent positions X can be numbered from 1 to |X| = N D . The number of possible algorithms is |A| = N D ! and the number of possible functions is |F | = N N D (because on each position there are N possible values) [START_REF] Wolpert | No Free Lunch Theorems for Optimization[END_REF] . Knowing these values is not really useful for what follows, but having an idea of how big they are in practice is interesting, compared to how small are the classical benchmarks and the number of search methods that are usually compared to each other, even if you run them many times. And, therefore, how risky is a conclusion about the non-existence of a partial-ultimate algorithm without any formal proof, for, when N and D increase, the number of algorithms increases far quicker than the number of functions (for D > 1).

3.

1. An easy particular case. By denition our benchmark is a subset B of F . For each function f j ⊂ B there exists at least a position (a rank) in X on which the function reaches its minimum. Note that, we sometimes do not know when it happens, and stop the algorithm say after a xed number of samplings and evaluations that is always smaller than the size of the search space, so a partialultimate algorithm may exist but we are not able to say which one for sure.

A sucient structure is the following one: Condition 1: For all f j ⊂ B the position of the minimum (i.e. its rank x * in X) is the same.

It implies that B is not-c.u.p., and in such a case, any algorithm that samples rst the position x * is ultimate P It looks too easy? It is. But, as said, such benchmarks are indeed used in some published papers.

3.2.

A more general case. Now let us consider a better benchmark in which not all functions have the same solution point. Let us prove rst that under another weak condition there exists at least one complete-best algorithm. More precisely, if B = {f 1 , f 2 , . . . , f M } we assume this: Condition 2: There exists a point x 0 of X that is not solution of any f i of B Again, it implies that B is not closed under permutations. Also, it is just an easy and simple sucient condition. It does not hold for the example of the table 3 but nevertheless there are two best algorithms for the benchmark {f 2 , f 3 , f 4 , f 6 , f 7 }. However, it always hold in practice.

Theorem 2. Under the Condition 2, there exists a complete-best algorithm

The positions of the minimums of the functions in B, more precisely their rst ranks in X, are {x 1 , x 2 , . . . , x M }. It implies that the number of test functions must be at most equal to the number of points of the search space, but this is in practice always largely true.

Let us dene X = {x 1 , . . . , x M }, with M ≤ M , the set of the dierent solutions points for the functions of B. And we consider the algorithm a * whose denition sequence precisely begins with (x 1 , x 2 , . . . , x M). We do not know how to nd it, but it exists for sure among the N D ! possible ones.

There is obviously no better algorithm but maybe they are all equivalent. To prove that it is not the case we just have to nd an algorithm that is strictly outperformed by a * .

In the worst case, i.e. if M = M , a * nds a solution of f 1 at the very rst sampling, a solution of f 2 at the second sampling, etc. Its eciency on f i is therefore equal to (3.1)

E a * ,fi = |X| -j |X| -1
and its mean eciency on B (3.2)

E a * ,B = 1 M 1 |X|-1 M |X| -M (M +1) 2 = 1 2(|X|-1) (2 |X| -|B| -1)
It linearly decreases from 1 to 0.5 when the size of the benchmark increases from 1 to |X|and is an upper bound for the eciency of any algorithm 5 . Now let us consider the algorithm a 0 that rst samples x ∅ and then like a * a 0 = (x 0 , x 2 , . . . , x M , . . .)

It nds a solution of f 1 only after more than M samples. Therefore it is worse than a * P Note there are usually many possible algorithms equivalent to a * , given by the permutations of (x 1 , x 2 , . . . , x M), and the permutations of the other points of X. Let us call A * their set. We have 5 If you know both the maximum and the minimum values of a function f , you can dene something more sophisticated, by assigning a 'quality' to each sampled point x, for example fmax -f (x)) fmax -f min , and combining then all the quality values over the sampled sequence. But this is another topic.

|A * | = M ! (|X| -M)!
3.3. Conditions for a partial-ultimate algorithm. However, as said, what is really interesting is to know under which conditions, both on the benchmark B and on the set of algorithms A we compare, there exists at least one of these algorithms that outperforms all the ones of A on all functions of the benchmark, or, more precisely, that is partial-ultimate.

Again we consider the worst case, in which the set of dierent solutions is R = {x 1 , x 2 , . . . , x M }. A rst condition, which always holds in practice, is that R is strictly included in the search space X. An obvious second one is that the benchmark B is not closed under permutations.

Let a 0 now be an algorithm for which none of its M rst samples is in R. It is easy to see that a * outperforms it on all functions of B. Let us dene A 0 as the set of all algorithms a 0,i that have the same property as a 0 . Then a * is partial-ultimate on B for A 0 .

But this case is is too rudimentary. We need a more realistic an weaker condition. For example we can dene the algorithm a 0,i by the Condition 3:

• for k = i it samples x k , like a * .

• for k = i it samples a point that is not solution of f i . Then a * is partial-ultimate on B for A = M k=1 a 0,k . Many similar sucient conditions are of course possible, meaning there usually exist many sets of algorithms for which a * is partial-ultimate.

Frustrations

Let B be a set of M problems and A a set of algorithms. According to the classical NFLT, if B is closed under permutations, no matter A is, there is not best algorithm in it.

And according to the theorems we have seen, in practice B is not c.u.p. and there almost always exists a algorithm a * that is the best for A, but no way to nd it.

But there is something even more frustrating: in practice (i.e. B not c.u.p. and |A| small compared to size of the search space) there almost always exists a set of problems B on which a * is now the worst for A.

Let R = x 1,1 , . . . , x |A|,1 be the rst points of the algorithms/sequences of A.

The conditions are:

(1) a * is not in A (2) no x i,1 is also the rst point of a * (3) or a stronger condition, no x i,1 is one of the |A| rst points of a * Note that on classical studies (comparison of a few sophisticated algorithms on a 'decent' benchmark) these conditions always hold.

Example 1. Under conditions 1 and 2 we can dene a B that contains just one function, f 1 , which has |A| global minima on the positions of R. On f 1 each algorithm of A nds the solution at the very rst sampling, as a * doesn't P Example 2. Under conditions 1 and 3, we dene f i as a function whose minimum is on x i,1 , and B = f 1 , • • • , f |A| . Then, on B , and after |A| evaluations, each a i has found at least one solution (for f i), as a * found none. More formally, the mean eciency of a i is at least We dene a new benchmark by

B = {f α , f β }
where the minimum of f α is on α and the one of f β on β.

As we sample all points, we necessarily have something like a 1 = (α, . . . , β, . . .) and a 2 = (β, . . . , α, . . .).

Let r 1,β be the rank of β in a 1 and r 2,α the rank of α in a 2 . Therefore the eciencies are

E a1,fα = 1 E a1,f β = |X|-r 1,β |X|-1 E a2,f α = |X|-r2,α |X|-1 E a2,f β = 1
Any algorithm in A * is a sequence like a * = (x 1 , x 2 , . . . , α, . . . , β, . . .) or a similar one by permuting (x 1 , x 2) and (α, β). Let r α be the rank of α in a * , and r β the rank of β. The eciencies are

E a * ,fα = |X|-rα |X|-1 E a * ,f β = |X|-r β |X|-1
The claim is that we can have

E a * ,fα < E a2,f α and E a * ,f β < E a1,f β
Actually we of course just have to prove we can have (4.1)

r α > r 2,α r β > r 1,β
It is not possible if r 2,α = |X| or r 1,β = |X|, but this cases are rare. For example the rst one means that the algorithm a 2 never nds the solution of f α , or, more precisely, only at the very end of the exhaustive search.

So, let us suppose we have max (r 2,α , r 1,β) < |X| -1. Among the 2 (|X| -2)! algorithms of A * there is then at least one a * for which α and β are found only after, respectively, r 2,α and r 1,β samplings. And, therefore, the inequalities 4.1 hold.

Back to the Warm Up example. Let us dene B = {f 2 , f 4 }, and A = {a 5 , a 6 }. Remember we have

f 2 ≡ (1, 0, 0) f 4 ≡ (0, 0, 1) a 5 = (3, 2, 1) a 6 = (3, 1, 2)
According to the table 3 we can choose a * = (2, 1, 3) as ultimate algorithm. Now, if we dene B = {f 3 , f 5 }, then the eciencies of a * are 0.5 and 0, as the eciencies of a 5 and a 6 are 1 and 1.

So, on B , a * is now the worst compared to A.

Conclusion

On a computer the search space and the value space contain a nite number of points. When you dene a benchmark in order to compare some algorithms, you may therefore think a best algorithm in average can not exist because of the NFLT. But in fact it is highly unlikely for a benchmark to meet the conditions of this theorem. So unlikely that it is virtually impossible, unless you build it precisely for that. It means that in practice, an algorithm that outperforms in average all the other ones always exists.

Moreover, when you consider a subset of all possible algorithms, it also almost surely exists a partial-ultimate one that is better or equivalent on each function, and strictly better on at least one.

But in both cases, knowing such good algorithms do exist does not mean it is easy to nd them! Worse, even if, on a given benchmark, you nd an algorithm that is better than all the ones of a set of other algorithms, in practice there exists another benchmark on which it is on the contrary outperformed by all these other algorithms.

It means that we should never simply claim 'This algorithm is better than these ones', but we should precise 'on this class of problems', ... assuming we are able to rigorously dene what such a class is, and, of course, assuming we are able to prove such an assertion, which may be extremely dicult. So, nally, quite often, when comparing some algorithms, the most honest claim should be something like 'This one is better than these ones on these problems, which seem to have these properties in common'.

Table 1 .

 1 The eight functions of the 'Warm Up' example.

	Function Values on X
	f 1

Table 2 .

 2 The six algorithms of the 'Warm Up' example.

	Algorithm Sequence
	a 1	(1,2,3)

Table 3 .

 3 Number of needed sampled points and eciency table. On the benchmark B not all algorithms are equivalent. a 1 and a 2 are the best ones in average, but not the best on all functions. However, if you keep just f 2 , f 4 , and f 6 , then a 2 and a 4 are better on all these functions.

 [START_REF] Auger | Continuous lunches are free[END_REF] |A| as the one of a * is zero.So each a i is strictly better than a * P Example 3. Now you want to prove that a * can be the worse on a benchmark B , even if the eciencies are computed after the |X| possible samplings (exhaustive search). To explain it, let us consider a simple case with just two functions B = {f 1 , f 2 }, and two algorithms A = {a 1 , a 2 }. The solutions are R = {x 1 , x 2 }. We do suppose we found, as seen, an a * that is the best, or even ultimate on B for A, and the set of such algorithms is A * .Let us call α the rst point of a 1 and β the rst point of a 2 . They are both supposed to be dierent from x 1 and x 2 .

For simplicity we assume all functions have the same search space, which is always possible by normalisation.